76 research outputs found

    How Do Multilingual Encoders Learn Cross-lingual Representation?

    Get PDF
    NLP systems typically require support for more than one language. As different languages have different amounts of supervision, cross-lingual transfer benefits languages with little to no training data by transferring from other languages. From an engineering perspective, multilingual NLP benefits development and maintenance by serving multiple languages with a single system. Both cross-lingual transfer and multilingual NLP rely on cross-lingual representations serving as the foundation. As BERT revolutionized representation learning and NLP, it also revolutionized cross-lingual representations and cross-lingual transfer. Multilingual BERT was released as a replacement for single-language BERT, trained with Wikipedia data in 104 languages. Surprisingly, without any explicit cross-lingual signal, multilingual BERT learns cross-lingual representations in addition to representations for individual languages. This thesis first shows such surprising cross-lingual effectiveness compared against prior art on various tasks. Naturally, it raises a set of questions, most notably how do these multilingual encoders learn cross-lingual representations. In exploring these questions, this thesis will analyze the behavior of multilingual models in a variety of settings on high and low resource languages. We also look at how to inject different cross-lingual signals into multilingual encoders, and the optimization behavior of cross-lingual transfer with these models. Together, they provide a better understanding of multilingual encoders on cross-lingual transfer. Our findings will lead us to suggested improvements to multilingual encoders and cross-lingual transfer

    Universal Word Segmentation: Implementation and Interpretation

    Get PDF
    Word segmentation is a low-level NLP taskt hat is non-trivial for a considerable number of languages. In this paper, we present asequence tagging framework and apply it to word segmentation for a wide range of languages with different writing systems and typological characteristics. Additionally, we investigate the correlations between various typological factors and word segmentation accuracy. The experimental results indicate that segmentation accuracy is positively related to word boundary markers and negatively to the number of unique non-segmental terms. Based on the analysis, we design a small set of language-specific settings and extensively evaluate the segmentation system on the Universal Dependencies datasets. Our model obtains state-of-the-art accuracies on all the UD languages. It performs substantially better on languages that are non-trivial to segment, such as Chinese, Japanese, Arabic and Hebrew, when compared to previous work
    • …
    corecore