4 research outputs found

    Safe robot execution in model-based reinforcement learning

    Get PDF
    Task learning in robotics requires repeatedly executing the same actions in different states to learn the model of the task. However, in real-world domains, there are usually sequences of actions that, if executed, may produce unrecoverable errors (e.g. breaking an object). Robots should avoid repeating such errors when learning, and thus explore the state space in a more intelligent way. This requires identifying dangerous action effects to avoid including such actions in the generated plans, while at the same time enforcing that the learned models are complete enough for the planner not to fall into dead-ends. We thus propose a new learning method that allows a robot to reason about dead-ends and their causes. Some such causes may be dangerous action effects (i.e., leading to unrecoverable errors if the action were executed in the given state) so that the method allows the robot to skip the exploration of risky actions and guarantees the safety of planned actions. If a plan might lead to a dead-end (e.g., one that includes a dangerous action effect), the robot tries to find an alternative safe plan and, if not found, it actively asks a teacher whether the risky action should be executed. This method permits learning safe policies as well as minimizing unrecoverable errors during the learning process. Experimental validation of the approach is provided in two different scenarios: a robotic task and a simulated problem from the international planning competition. Our approach greatly increases success ratios in problems where previous approaches had high probabilities of failing.Peer ReviewedPostprint (author's final draft

    LRTDP Versus UCT for Online Probabilistic Planning

    No full text
    UCT, the premier method for solving games such as Go, is also becoming the dominant algorithm for probabilistic planning. Out of the five solvers at the International Probabilistic Planning Competition (IPPC) 2011, four were based on the UCT algorithm. However, while a UCT-based planner, PROST, won the contest, an LRTDP-based system, Glutton, came in a close second, outperforming other systems derived from UCT. These results raise a question: what are the strengths and weaknesses of LRTDP and UCT in practice? This paper starts answering this question by contrasting the two approaches in the context of finite-horizon MDPs. We demonstrate that in such scenarios, UCT's lack of a sound termination condition is a serious practical disadvantage. In order to handle an MDP with a large finite horizon under a time constraint, UCT forces an expert to guess a non-myopic lookahead value for which it should be able to converge on the encountered states. Mistakes in setting this parameter can greatly hurt UCT's performance. In contrast, LRTDP's convergence criterion allows for an iterative deepening strategy. Using this strategy, LRTDP automatically finds the largest lookahead value feasible under the given time constraint. As a result, LRTDP has better performance and stronger theoretical properties. We present an online version of Glutton, named Gourmand, that illustrates this analysis and outperforms PROST on the set of IPPC-2011 problems

    Learning relational models with human interaction for planning in robotics

    Get PDF
    Automated planning has proven to be useful to solve problems where an agent has to maximize a reward function by executing actions. As planners have been improved to salve more expressive and difficult problems, there is an increasing interest in using planning to improve efficiency in robotic tasks. However, planners rely on a domain model, which has to be either handcrafted or learned. Although learning domain models can be very costly, recent approaches provide generalization capabilities and integrate human feedback to reduce the amount of experiences required to learn. In this thesis we propase new methods that allow an agent with no previous knowledge to solve certain problems more efficiently by using task planning. First, we show how to apply probabilistic planning to improve robot performance in manipulation tasks (such as cleaning the dirt or clearing the tableware on a table). Planners obtain sequences of actions that get the best result in the long term, beating reactive strategies. Second, we introduce new reinforcement learning algorithms where the agent can actively request demonstrations from a teacher to learn new actions and speed up the learning process. In particular, we propase an algorithm that allows the user to set the mínimum quality to be achieved, where a better quality also implies that a larger number of demonstrations will be requested . Moreover, the learned model is analyzed to extract the unlearned or problematic parts of the model. This information allow the agent to provide guidance to the teacher when a demonstration is requested, and to avoid irrecoverable errors. Finally, a new domain model learner is introduced that, in addition to relational probabilistic action models, can also learn exogenous effects. This learner can be integrated with existing planners and reinforcement learning algorithms to salve a wide range of problems. In summary, we improve the use of learning and task planning to salve unknown tasks. The improvements allow an agent to obtain a larger benefit from planners, learn faster, balance the number of action executions and teacher demonstrations, avoid irrecoverable errors, interact with a teacher to solve difficult problems, and adapt to the behavior of other agents by learning their dynamics. All the proposed methods were compared with state-of-the-art approaches, and were also demonstrated in different scenarios, including challenging robotic tasks.La planificación automática ha probado ser de gran utilidad para resolver problemas en los que un agente tiene que ejecutar acciones para maximizar una función de recompensa. A medida que los planificadores han sido capaces de resolver problemas cada vez más complejos, ha habido un creciente interés por utilizar dichos planificadores para mejorar la eficiencia de tareas robóticas. Sin embargo, los planificadores requieren un modelo del dominio, el cual puede ser creado a mano o aprendido. Aunque aprender modelos automáticamente puede ser costoso, recientemente han aparecido métodos que permiten la interacción persona-máquina y generalizan el conocimiento para reducir la cantidad de experiencias requeridas para aprender. En esta tesis proponemos nuevos métodos que permiten a un agente sin conocimiento previo de la tarea resolver problemas de forma más eficiente mediante el uso de planificación automática. Comenzaremos mostrando cómo aplicar planificación probabilística para mejorar la eficiencia de robots en tareas de manipulación (como limpiar suciedad o recoger una mesa). Los planificadores son capaces de obtener las secuencias de acciones que producen los mejores resultados a largo plazo, superando a las estrategias reactivas. Por otro lado, presentamos nuevos algoritmos de aprendizaje por refuerzo en los que el agente puede solicitar demostraciones a un profesor. Dichas demostraciones permiten al agente acelerar el aprendizaje o aprender nuevas acciones. En particular, proponemos un algoritmo que permite al usuario establecer la mínima suma de recompensas que es aceptable obtener, donde una recompensa más alta implica que se requerirán más demostraciones. Además, el modelo aprendido será analizado para identificar qué partes están incompletas o son problemáticas. Esta información permitirá al agente evitar errores irrecuperables y también guiar al profesor cuando se solicite una demostración. Finalmente, se ha introducido un nuevo método de aprendizaje para modelos de dominios que, además de obtener modelos relacionales de acciones probabilísticas, también puede aprender efectos exógenos. Mostraremos cómo integrar este método en algoritmos de aprendizaje por refuerzo para poder abordar una mayor cantidad de problemas. En resumen, hemos mejorado el uso de técnicas de aprendizaje y planificación para resolver tareas desconocidas a priori. Estas mejoras permiten a un agente aprovechar mejor los planificadores, aprender más rápido, elegir entre reducir el número de acciones ejecutadas o el número de demostraciones solicitadas, evitar errores irrecuperables, interactuar con un profesor para resolver problemas complejos, y adaptarse al comportamiento de otros agentes aprendiendo sus dinámicas. Todos los métodos propuestos han sido comparados con trabajos del estado del arte, y han sido evaluados en distintos escenarios, incluyendo tareas robóticas

    Hybrid Mission Planning with Coalition Formation

    Get PDF
    corecore