38 research outputs found

    Intelligent model-based control of complex three-link mechanisms

    Get PDF
    The aim of this study is to understand the complexity and control challenges of the locomotion of a three-link mechanism of a robot system. In order to do this a three-link robot gymnast (Robogymnast) has been built in Cardiff University. The Robogymnast is composed of three links (one arm, one torso, one leg) and is powered by two geared DC motors. Currently the robot has three potentiometers to measure the relative angles between adjacent links and only one tachometer to measure the relative angular position of the first link. A mathematical model for the robot is derived using Lagrange equations. Since the model is inherently nonlinear and multivariate, it presents more challenges when modelling the Robogymnast and dealing with control motion problems. The proposed approach for dealing with the design of the control system is based on a discrete-time linear model around the upright position of the Robogymnast. To study the swinging motion of the Robogymnast, a new technique is proposed to manipulate the frequency and the amplitude of the sinusoidal signals as a means of controlling the motors. Due to the many combinations of the frequency and amplitude, an optimisation method is required to find the optimal set. The Bees Algorithm (BA), a novel swarm-based optimisation technique, is used to enhance the performance of the swinging motion through optimisation of the manipulated parameters of the control actions. The time taken to reach the upright position at its best is 128 seconds. Two different control methods are adopted to study the balancing/stablising of the Robogymnast in both the downward and upright configurations. The first is the optimal control algorithm using the Linear Quadratic Regulator (LQR) technique with integrators to help achieve and maintain the set of reference trajectories. The second is a combination of Local Control (LC) and LQR. Each controller is implemented via reduced order state observer to estimate the unmeasured states in terms of their relative angular velocities. From the identified data in the relative angular positions of the upright balancing control, it is reported that the maximum amplitude of the deviation in the relative angles on average are approximately 7.5° for the first link and 18° for the second link. It is noted that the third link deviated approximately by 2.5° using only the LQR controller, and no significant deviation when using the LQR with LC. To explore the combination between swinging and balancing motions, a switching mechanism between swinging and balancing algorithm is proposed. This is achieved by dividing the controller into three stages. The first stage is the swinging control, the next stage is the transition control which is accomplished using the Independent Joint Control (IJC) technique and finally balancing control is achieved by the LQR. The duration time of the transition controller to track the reference trajectory of the Robogymnast at its best is found to be within 0.4 seconds. An external disturbance is applied to each link of the Robogymnast separately in order to study the controller's ability to overcome the disturbance and to study the controller response. The simulation of the Robogymnast and experimental realization of the controllers are implemented using MATLAB® software and the C++ program environment respectively

    System analysis, modelling and control with polytopic linear models

    Get PDF
    This research investigates the suitability of Polytopic Linear Models (PLMs) for the analysis, modelling and control of a class of nonlinear dynamical systems. The PLM structure is introduced as an approximate and alternative description of nonlinear dynamical systems for the benefit of system analysis and controller design. The model structure possesses three properties that we would like to exploit. Firstly, a PLM is build upon a number of linear models, each one of which describes the system locally within a so-called operating regime. If these models are combined in an appropriate way, that is by taking operating point dependent convex combinations of parameter values that belong to the different linear models, then a PLM will result. Consequently, the parameter values of a PLM vary within a polytope, and the vertices of this polytope are the parameter values that belong to the different linear models. A PLM owes its name to this feature. Accordingly, a PLM can be interpreted on the basis of a regime decomposition. Secondly, since a PLM is based on several linear models, it is possible to describe the nonlinear system more globally compared to only a single linear model. Thirdly, it is demonstrated that, under the appropriate conditions, nonlinear systems can be approximated arbitrary close by a PLM, parametrized with a finite number of parameters. There will be given an upper bound for the number of required parameters, that is sufficient to achieve the prescribed desired accuracy of the approximation. An important motivation for considering PLMs rests on its structural similarities with linear models. Linear systems are well understood, and the accompanying system and control theory is well developed. Whether or not the control related system properties such as stability, controllability etcetera, are fulfilled, can be demonstrated by means of (often relatively simple) mathematical manipulations on the linear system’s parameterization. Controller design can often be automated and founded on the parameterization and the control objective. Think of control laws based on stability, optimality and so on. For nonlinear systems this is only partly the case, and therefore further development of system and control theory is of major importance. In view of the similarities between a linear model and a PLM, the expectation exists that one can benefit from (results and concepts of) the well developed linear system and control theory. This hypothesis is partly confirmed by the results of this study. Under the appropriate conditions, and through a simple analysis of the parametrization of a PLM, it is possible to establish from a control perspective relevant system properties. One of these properties is stability. Under the appropriate conditions stability of the PLM implies stability of the system. Moreover, a few easy to check conditions are derived concerning the notion of controllability and observability. It has to be noticed however, that these conditions apply to a class of PLMs of which the structure is further restricted. The determination of system properties from a PLM is done with the intention to derive a suitable model, and in particular to design a model based controller. This study describes several constructive methods that aim at building a PLM representation of the real system. On the basis of a PLM several control laws are formulated. The main objective of these control laws is to stabilize the system in a desired operating point. A few computerized stabilizing control designs, that additionally aim at optimality or robustness, are the outcome of this research. The entire route of representing a system with an approximate PLM, subsequently analyzing the PLM, and finally controlling the system by a PLM based control design is illustrated by means of several examples. These examples include experimental as well as simulation studies, and nonlinear dynamic (mechanical) systems are the subject of research

    Mechatronics Design Process with Energy Optimization for Industrial Machines

    Get PDF
    The need for designing industrial machines with higher energy efficiency, reliability, flexibility, and accuracy has increased to satisfy market demand for higher productivity at reduced costs in a sustainable manner. As machines become more complex, model-based design is essential to overcome the challenges in mechatronic system design. However, a well-designed mechanical system with a well-designed and tuned control system are not sufficient for machines to operate at high-performance conditions; this also heavily depends on trajectory planning and the appropriate selection of the motors controlling the axes of the machine. In this work, a model-based design approach to properly select motors for single-axes or multi-axes coordinated systems was proposed. Additionally, a trajectory planning approach was also proposed to improve performance of industrial machines. The proposed motor selection process and trajectory planning approach were demonstrated via modeling, simulation, and experimental validation for three systems: two-inertia system, planar robot, and self-balancing transporter. Over 25% of the electric energy delivered in the U.S. in 2013 was used in the industrial sector according to the U.S. Energy Information Administration, with an estimated efficiency of 80% according to the Lawrence Livermore National Laboratory. This entails major responsibility by the industry to utilize energy efficiently and promote sustainable energy usage. To help improve the energy efficiency in the industrial sector, a novel method to optimize the energy of single-axis and multi-axis coordinated systems of industrial machines was developed. Based on trajectory boundaries and the kinetic model of the mechanism and motors, this proposed energy optimization method performs iterations to recalculate the shape of the motion profile for each motor of the system being optimized until it converges to a motion profile with optimal energy cost and within these boundaries. This method was validated by comparing the energy consumption of those three systems while commanded by the optimized motion profile and then by motion profiles typically used in industrial applications. The energy saved was between 5% and 10%. The implementation cost of this method in industrial systems resides in machine-code changes; no physical changes are needed

    Engineering Education and Research Using MATLAB

    Get PDF
    MATLAB is a software package used primarily in the field of engineering for signal processing, numerical data analysis, modeling, programming, simulation, and computer graphic visualization. In the last few years, it has become widely accepted as an efficient tool, and, therefore, its use has significantly increased in scientific communities and academic institutions. This book consists of 20 chapters presenting research works using MATLAB tools. Chapters include techniques for programming and developing Graphical User Interfaces (GUIs), dynamic systems, electric machines, signal and image processing, power electronics, mixed signal circuits, genetic programming, digital watermarking, control systems, time-series regression modeling, and artificial neural networks

    Optimised configuration of sensing elements for control and fault tolerance applied to an electro-magnetic suspension system

    Get PDF
    New technological advances and the requirements to increasingly abide by new safety laws in engineering design projects highly affects industrial products in areas such as automotive, aerospace and railway industries. The necessity arises to design reduced-cost hi-tech products with minimal complexity, optimal performance, effective parameter robustness properties, and high reliability with fault tolerance. In this context the control system design plays an important role and the impact is crucial relative to the level of cost efficiency of a product. Measurement of required information for the operation of the design control system in any product is a vital issue, and in such cases a number of sensors can be available to select from in order to achieve the desired system properties. However, for a complex engineering system a manual procedure to select the best sensor set subject to the desired system properties can be very complicated, time consuming or even impossible to achieve. This is more evident in the case of large number of sensors and the requirement to comply with optimum performance. The thesis describes a comprehensive study of sensor selection for control and fault tolerance with the particular application of an ElectroMagnetic Levitation system (being an unstable, nonlinear, safety-critical system with non-trivial control performance requirements). The particular aim of the presented work is to identify effective sensor selection frameworks subject to given system properties for controlling (with a level of fault tolerance) the MagLev suspension system. A particular objective of the work is to identify the minimum possible sensors that can be used to cover multiple sensor faults, while maintaining optimum performance with the remaining sensors. The tools employed combine modern control strategies and multiobjective constraint optimisation (for tuning purposes) methods. An important part of the work is the design and construction of a 25kg MagLev suspension to be used for experimental verification of the proposed sensor selection frameworks

    Nonlinear robust H∞ control.

    Get PDF
    A new theory is proposed for the full-information finite and infinite horizontime robust H∞ control that is equivalently effective for the regulation and/or tracking problems of the general class of time-varying nonlinear systems under the presence of exogenous disturbance inputs. The theory employs the sequence of linear-quadratic and time-varying approximations, that were recently introduced in the optimal control framework, to transform the nonlinear H∞ control problem into a sequence of linearquadratic robust H∞ control problems by using well-known results from the existing Riccati-based theory of the maturing classical linear robust control. The proposed method, as in the optimal control case, requires solving an approximating sequence of Riccati equations (ASRE), to find linear time-varying feedback controllers for such disturbed nonlinear systems while employing classical methods. Under very mild conditions of local Lipschitz continuity, these iterative sequences of solutions are known to converge to the unique viscosity solution of the Hamilton-lacobi-Bellman partial differential equation of the original nonlinear optimal control problem in the weak form (Cimen, 2003); and should hold for the robust control problems herein. The theory is analytically illustrated by directly applying it to some sophisticated nonlinear dynamical models of practical real-world applications. Under a r -iteration sense, such a theory gives the control engineer and designer more transparent control requirements to be incorporated a priori to fine-tune between robustness and optimality needs. It is believed, however, that the automatic state-regulation robust ASRE feedback control systems and techniques provided in this thesis yield very effective control actions in theory, in view of its computational simplicity and its validation by means of classical numerical techniques, and can straightforwardly be implemented in practice as the feedback controller is constrained to be linear with respect to its inputs

    Design and simulation of a distortion masking control algorithm for a pneumatic cylinder

    Get PDF
    Low energy efficiency is one of the main detractors of fluid power technology. To ensure the availability and sustainability of energy sources, fluid power technology needs to meet high energy-efficiency and cost standards. This study aims to design, simulate and test a control algorithm that attenuates the detrimental effects of air compressibility on the performance and efficiency of a pneumatic cylinder. The transmission of power over long distances makes it more difficult for fluid power technology to meet energy-efficiency and cost requirements. Transmitting power over long distances represents a challenge particularly for pneumatics due to the compressibility of air. The compressibility of air transmitted through lengthy tubing decreases the performance and efficiency of pneumatic actuators, mainly affecting their time response and velocity. The system under analysis was composed of a pneumatic cylinder, two proportional control valves, and connective tubing. The dynamics of the individual components were characterized through experimentation. Nonlinear and linear models for the system were validated through the comparison of simulated and experimental data. The models predicted the system behavior more accurately at 2.5 Hz, when friction effects became negligible, as compared to 1.0 and 0.5 Hz. A controller was designed using pole/zero cancellation, a control strategy able to mask undesirable dynamics of the system being controlled. Pole/zero cancellation had superior performance in the attenuation of air compressibility effects in comparison to proportional and proportional-derivative (PD) control. System performance and efficiency were assessed in terms of the variation of the length of tubing connecting the pneumatic cylinder and the control valves. Pole/zero cancellation enabled the cylinder to achieve similar levels of performance for long (3.0 m) tubing as with short (0.55 m) tubing. With a 1.0-Hz sinusoidal input and equal control gains, pole/zero cancellation reduced the tracking error by approximately 30% and 23% in comparison to proportional and PD control, respectively. In terms of efficiency, with the system tracking a 2.5-Hz sinusoidal command, and using equal control gains, pole/zero cancellation increased the cylinder efficiency by approximately 36% and 54% in comparison to proportional and PD control, respectively. In general, pole/zero cancellation increased the system performance and efficiency in comparison to the other control schemes applied

    5th EUROMECH nonlinear dynamics conference, August 7-12, 2005 Eindhoven : book of abstracts

    Get PDF

    5th EUROMECH nonlinear dynamics conference, August 7-12, 2005 Eindhoven : book of abstracts

    Get PDF
    corecore