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Summary

This research investigates the suitability of Polytopic Linear Models (PLMs)
for the analysis, modelling and control of a class of nonlinear dynamical sys-
tems. The PLM structure is introduced as an approximate and alternative
description of nonlinear dynamical systems for the benefit of system analysis
and controller design. The model structure possesses three properties that we
would like to exploit.

Firstly, a PLM is build upon a number of linear models, each one of which
describes the system locally within a so-called operating regime. If these
models are combined in an appropriate way, that is by taking operating point
dependent convex combinations of parameter values that belong to the dif-
ferent linear models, then a PLM will result. Consequently, the parameter
values of a PLM vary within a polytope, and the vertices of this polytope are
the parameter values that belong to the different linear models. A PLM owes
its name to this feature. Accordingly, a PLM can be interpreted on the basis
of a regime decomposition. Secondly, since a PLM is based on several linear
models, it is possible to describe the nonlinear system more globally compared
to only a single linear model. Thirdly, it is demonstrated that, under the ap-
propriate conditions, nonlinear systems can be approximated arbitrary close
by a PLM, parametrized with a finite number of parameters. There will be
given an upper bound for the number of required parameters, that is sufficient
to achieve the prescribed desired accuracy of the approximation.

An important motivation for considering PLMs rests on its structural sim-
ilarities with linear models. Linear systems are well understood, and the
accompanying system and control theory is well developed. Whether or not
the control related system properties such as stability, controllability etcetera,
are fulfilled, can be demonstrated by means of (often relatively simple) math-
ematical manipulations on the linear system’s parameterization. Controller
design can often be automated and founded on the parameterization and the
control objective. Think of control laws based on stability, optimality and so
on. For nonlinear systems this is only partly the case, and therefore further
development of system and control theory is of major importance. In view
of the similarities between a linear model and a PLM, the expectation exists

ix



x Summary

that one can benefit from (results and concepts of) the well developed linear
system and control theory. This hypothesis is partly confirmed by the results
of this study.

Under the appropriate conditions, and through a simple analysis of the
parametrization of a PLM, it is possible to establish from a control perspective
relevant system properties. One of these properties is stability. Under the
appropriate conditions stability of the PLM implies stability of the system.
Moreover, a few easy to check conditions are derived concerning the notion
of controllability and observability. It has to be noticed however, that these
conditions apply to a class of PLMs of which the structure is further restricted.

The determination of system properties from a PLM is done with the
intention to derive a suitable model, and in particular to design a model based
controller. This study describes several constructive methods that aim at
building a PLM representation of the real system.

On the basis of a PLM several control laws are formulated. The main
objective of these control laws is to stabilize the system in a desired operating
point. A few computerized stabilizing control designs, that additionally aim
at optimality or robustness, are the outcome of this research.

The entire route of representing a system with an approximate PLM, sub-
sequently analyzing the PLM, and finally controlling the system by a PLM
based control design is illustrated by means of several examples. These exam-
ples include experimental as well as simulation studies, and nonlinear dynamic
(mechanical) systems are the subject of research.
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Chapter 1

Introduction

This thesis describes a systematic and creative approach towards the analysis,
modelling and control of a broad class of nonlinear systems. Polytopic linear
models are introduced to represent the system under investigation, and the
potential that these models offer for system analysis, modelling and control is
explored in detail. In this introductory chapter we give a motivation for this
thesis, outline the major themes to be explored and developed in subsequent
chapters, and it describes how the study is organized.

1.1 Motivation

Mathematical models, abstractions of real life systems, are of great importance
for the understanding of system behavior. From a control engineering point of
view it is of great interest how to choose the system inputs, such that desired
control objectives are met. The intended application of a model, in our case
control, will impose restrictions on its structure and complexity. There is a
trade-off, since models that can be analyzed and dealt with within a control
scheme are often inaccurate, and models that reflect system behavior more
accurately are often too complex to analyze and deal with within a control
scheme.

Model paradigms

Models that relate observed variables (inputs and outputs) by means of a
state-space description are common in systems and control theory. According
to such a model, at each time instant, the state variables summarize all of
the information needed in order to predict together with the future inputs,
the future evolution of the system in time. The dynamics of a large class
of nonlinear dynamical systems may be cast by a set of nonlinear first order

1



2 Introduction

differential equations together with a nonlinear algebraic output equation as
follows:

ẋ = f(x, u) (1.1)
y = h(x, u)

with the state x ∈ X ⊆ R
n, the manipulated input u ∈ U ⊆ R

m, and the
output y ∈ Y ⊆ R

p.
It is clear that systems as described by (1.1) are more general than their

linear time invariant (LTI) counterparts:

ẋ = Ax + Bu (1.2)
y = Cx + Du

However a large part of the control literature is devoted to linear systems and
many linear system theoretic properties and control problems have been sat-
isfactory dealt with in the literature [67], [41]. There are two main reasons
for studying linear systems for the purpose of control. Firstly, linear systems
are parametrized, and system properties can be revealed easily by analysis of
its representation (A, B, C, D). Furthermore, for linear systems the available
analysis tools enable strong results on system and control theoretic properties
such as stability, controllability, observability, optimality, robustness etc.. Sec-
ondly, first order approximations are in many cases sufficient to characterize
the local behavior of the nonlinear system. This means that often analysis
based on linearizations reveals properties of the system locally, and designs
based on linearizations often work locally for the original system [67]. This
‘linearization principle’1 restricts the applicability of the linear model since
desirable and expected behavior of the system can only be guaranteed for
operating conditions that are close to the point of linearization. This fact,
together with the problem of characterizing system properties, for which the
analysis based on its linearization fails, motivated researchers to study non-
linear models, with the intention to derive stronger results, confer [57], [65].
Much research effort is directed towards that goal, and since it is not just a
matter of extending the linear theory, new concepts are needed.

Instead of studying the general nonlinear model (1.1) to enlarge the appli-
cability compared to the linear model we will follow another approach based
on the linearization principle mentioned above. The idea behind the approach
is simple and several researchers and application oriented engineers have come
up with similar ideas, confer [55], [34], [71].

1The linearization principle is made precise in [67]. Sufficient conditions for local stability,
controllability and observability of the system (1.1) are derived based on the parametrization
(A, B, C, D) of the linearization (1.2) of the system (1.1).
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The basic idea is to linearize (1.1) at several specific operating conditions.
The operating conditions are chosen in such a way that the corresponding
linear models reflect the qualitatively different behavior in these operating
regimes. The operating regimes cover the full operating space. To mimic the
behavior of the general nonlinear model, the different linear models obtained
for different operating conditions are scheduled in the operating-space, as be-
havior changes qualitatively under varying operating conditions. Scheduling
in this case means forming convex combinations of locally valid linear models.
In this way a more global model is obtained that approximately reflects the be-
havior of the general model for the full range of operation. The resulting model
is represented by a finite number Nm of linear models {(Ai, Bi, ai, Ci, Di, ci)}
together with corresponding scheduling functions {wi(x, u)} as follows

ẋ =
Nm∑
i=1

wi(x, u){Aix + Biu + ai}

y =
Nm∑
i=1

wi(x, u){Cix + Diu + ci}
(PLM)

with

Nm∑
i=1

ωi(x, u) = 1 and ωi(x, u) ≥ 0 for all (x, u) ∈ X × U

These nonlinear models frequently occur in literature and although of an
equivalent mathematical structure they are given different names such as Fuzzy
Models [69], [86], Multi-Models [55] or Local Model Networks [38]. The model
structure has several desirable attributes that we would like to exploit. First
of all, the model class is rich since a large class of nonlinear systems can be
approximated arbitrarily close with the proposed model structure [86], [38].
Secondly, the model is interpretable on the basis of a regime decomposition
[69], [38]. Also the model has an a priori fixed structure, that shows similarities
with linear systems. The obtained model is called a Polytopic Linear Model
(PLM) since the model consists of a set of representations of linear models that
define a polytope in the models parameter-space, which will become clear later
on.

Trade-off

Especially within the area of systems and control engineering, the diversity of
the intended model applications, such as system analysis, controller synthesis
and simulation puts high demands on the model. As mentioned earlier, repre-
senting a system with an accurate mathematical description of its dynamical
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properties that is also simple to use for the intended application at hand, re-
sults in conflicting demands. On one hand, general nonlinear models can be
very accurate but as a result of their complexity difficult to build from first
principles and data. Furthermore, these models are difficult to analyze and
to apply in model based control schemes. So, these models are not simple.
On the other hand LTI systems are well understood, but are at most locally
valid in representing an actual system, i.e. incorrect conclusions may be drawn
from it, resulting in an unsuccessful control strategy. In the ideal situation,
one would like to build a model that is as accurate as the most detailed math-
ematical model and as simple as a LTI system in the sense as described before.
This situation is sketched in Figure 1.1.

ac
cu

ra
cy

complexity

general nonlinear
model

ideal model
for control

LTI model

low

lo
w

high

h
ig
h

PLMs

Figure 1.1: The PLM is an alternative compromise between the conflicting
demands, accuracy and complexity. Every candidate model is within the grey
region. The best candidate model is the one closest to the ideal model.

The ideal model as indicated in this figure does of course not exist. The
choice for a general nonlinear model or a LTI model to represent the system
for the intended application in mind are just two possibilities out of numerous
possible compromises between complexity and accuracy. The PLM is an al-
ternative compromise between these two conflicting demands that lies within
the shaded region in Figure 1.1. The intended application of the model, in our
case control, imposes demands on the model to be selected. The choice for a
fixed and flexible model structure that locally shows similarities with LTI sys-
tems, hopefully enlarges the possibility to develop systems and control theory,
and model building methodologies. This hypothesis motivates to explore the
suitability of the PLM as a candidate model structure for model based control
application. Suitability involves interpretability, representation capacity, and
the analysis and controller synthesis abilities as explored in this thesis. As
a consequence, it is to be expected that as a result of further research, the
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distance between the ideal model and the PLM will decrease further in the
future. This will probably increase the number of applications for which the
PLM is the minimizer of the distance between the ideal model and a member
of the set of all candidate model structures.

1.2 Overview of the Study

This thesis describes a systematic approach for the analysis, modelling and
control of a broad class of nonlinear systems, and consists of three main parts.

The first part, Part I, explores the system analysis potential of PLMs
that are relevant for model based control application. In Chapter 3, the PLM
structure will be introduced and its interpretations are explained. In Chapter 4
the approximation properties of PLMs are investigated. After that, in Chapter
5, properties will be explored that are relevant for system analysis and control
purpose, such as stability, controllability and observability of a PLM.

The second part, Part II, investigates the modelling power of PLMs and
describes in detail, how to construct a systems model with the desired PLM
structure. In Chapter 7, a model based modelling method is considered. It
is assumed that a nonlinear model of the system is available. In Chapter
8, two data based modelling methods are considered. It is assumed that
measurements have been obtained from the system.

The last part, Part III, examines the model based control capabilities of
PLMs. The acquired knowledge from the previous parts, will be utilized in
four experimental and simulation case-studies, to design controllers for non-
linear systems that meet pre-imposed control objectives. In Chapter 10, a
friction compensator design for a real rotational robotic manipulator system
is reported. In Chapter 11, an optimal regulator design is reported. In Chap-
ter 12, a model based controller design will be proposed with the objective to
perform servo tasks on mechanical systems that exhibit friction. Again the
control of a real rotational robotic manipulator system is considered. In Chap-
ter 13, a stabilizing controller is designed for a family of (nonlinear) systems.
The controller is robust against parametric uncertainty of the system.

The final chapter, Chapter 14, contains the main conclusions, summarizes
the main contributions, and gives some suggestions for further research.
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Chapter 2

Introduction to Analysis

In this part the analysis of PLMs, that are relevant for model based control
applications, are explored in detail.

In Chapter 3, the PLM structure is introduced and its interpretations are
explained. In Chapter 4, the approximation properties of PLMs are inves-
tigated. After that, in Chapter 5, properties are explored that are relevant
for system analysis and control purpose, such as stability, controllability and
observability of a PLM.

9
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Chapter 3

Model and Interpretations

3.1 Introduction

In this chapter the PLM is introduced and its interpretations are explained
in detail. We will start building on the results obtained in [34], where the
idea of patching together locally valid models was formalized, and was given
a theoretical foundation.

In Section 3.2, the polytopic model structure will be introduced on the
basis of a regime decomposition of the operating space of a nonlinear system.
After that, in Section 3.3, it is shown that the proposed PLM structure is
optimal in an appealing sense. In Section 3.4, the model based and knowledge
based interpretation of the PLM is introduced. In Section 3.5, a more in depth
description of the several model based interpretations is given. In Section
3.6, the knowledge based interpretation of the PLM is clarified. Finally, in
Section 3.7, some notes and comments are made regarding the presented model
structure and interpretation.

3.2 Polytopic Model Structure

Suppose we want to characterize the behavior of

ẋ = f(x, u, v) (3.1)
y = h(x, u, v)

with the state x ∈ X ⊆ R
n, the manipulated input u ∈ U ⊆ R

m, the observed
auxiliary variable v ∈ V ⊆ R

l and the output y ∈ Y ⊆ R
p. Then within a suf-

ficient small region Xi×Ui×Vi around (xi, ui, vi), a first order approximation,
a linear model Mi obtained by a Taylor linearization of (3.1) in (xi, ui, vi), that

11



12 Model and Interpretations

is

ẋ = fi(x, u, v) (3.2)

= f(xi, ui, vi) +
∂f

∂x
(xi, ui, vi)(x− x0i) +

∂f

∂u
(xi, ui, vi)(u− u0i)

+
∂f

∂v
(xi, ui, vi)(v − v0i)

y = hi(x, u, v)

= h(xi, ui, vi) +
∂h

∂x
(xi, ui, vi)(x− x0i) +

∂h

∂u
(xi, ui, vi)(u− u0i)

+
∂h

∂v
(xi, ui, vi)(v − v0i)

will give an approximate description of the system, provided the system is at
least differentiable with respect to its arguments. At this stage the operating
space Ψ = X × U × V with operating vector ψ ∈ Ψ is introduced, and it is
assumed that Mi has a range of validity Ψi ⊂ Ψ.

A model (3.2) that has a range of validity1 less than the desired range of
validity will be called a local model, as opposed to a global model that is valid
in the full range of operation. If now the models are chosen in such a way that
Ψ ⊆ (∪iΨi) then the models can be combined to form a globally valid model.

Often it is not necessary to characterize a validity region for a model within
the (high dimensional) operating space. Therefore the scheduling space Z,
consisting of the set of scheduling variables z ∈ Z is introduced. A scheduling
vector z, consists of variables that schedule the models, that means influences
validity of Mi. In many cases there will exist a function s : Ψ = X×U×V → Z
that projects ψ onto a lower dimensional scheduling space Z, thus z = s(ψ)
with dim(z) < dim(ψ). The region in which a model is valid is called an
operating regime, that is Ψi = {ψ ∈ Ψ | s(ψ) ∈ Zi}. The corresponding region
Zi is called a scheduling regime.

The framework can be conceptually illustrated as in Figure 3.1. Before
proceeding with the question on how to combine the models obtained for the
different regimes into a global model, let us first illustrate the above terms,
such as operating space and scheduling regime, by means of an example.

Example 3.2.1 Consider the pendulum without friction in Figure 3.2.
Its dynamics is described by

Jθ̈ −mgl sin θ = τ (3.3)

1The term ‘valid ’ has not been clarified at this stage and of course depends upon the
purpose of modelling. In our case validity of the model will be related to a measure of
closeness to the real system in such a way that they share the same qualitative structure or
some system properties, at least locally.
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z1

z2

Z1

Z2

Z3

Z4

Z

Figure 3.1: The system’s full range of operation, is completely covered by
a number of possibly overlapping operating regimes Ψi. The models Mi are
scheduled within the lower dimensional scheduling space Z ⊆ (∪i∈{1,..,4}Zi).
In each operating regime the system is modelled by a linear state-space model.
z ∈ Z is typically a subset of the variables that constitute ψ. One could think
of the remaining variables of ψ being on any axis perpendicular to z thereby
not influencing validity of a specific model.

where m is the mass of the ball, the mass of the stick is neglected, g is the grav-
ity, l is the (variable) position of the ball, and θ is the angle of the pendulum
with the vertical axis. If we write (3.3) in the form of (3.1) we obtain

ẋ1 = x2 (3.4)

ẋ2 =
mg

J
v sinx1 +

1
J

u

with x1 = θ, x2 = θ̇, u = τ and v = l and x ∈ X, u ∈ U and v ∈ V . First
assume that the position of the ball is fixed, i.e. l can be viewed as a constant
parameter. Then the operating space becomes Ψ = X × U with ψ = [θ θ̇ τ ]T .
Within a sufficient small scheduling regime Zi, the linearized model will give
an adequate description of the system. After a Taylor linearization of (3.4) in
the points (x1i, x2i, ui) we obtain the following non-homogeneous linear model
Mi

ẋ1 = x2 (3.5)

ẋ2 = (
mg

J
v cosx1i)x1 +

1
J

u +
mg

J
v(sinx1i − x1i cosx1i)

Here we see that behavior of the system qualitatively changes only as a function
of x1i, i.e. the linearization depends only upon x1. The scheduling regime is
therefore only a function of the state x1 = θ, i.e. s projects the operating vector
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l
m

τ

θ

Figure 3.2: A pendulum.

ψ = [θ θ̇ τ ]T on the lower dimensional scheduling variable z = θ. If instead,
it is assumed that the position of the ball along the stick changes, through
an external device, in a time varying way, that is v = v(t), the operating
space becomes Ψ = X × U × V with ψ = [θ θ̇ τ l]T . Furthermore, since
the ball position has become non-constant, the linearization in (3.5) depends
also on the observed external variable l(t) = v(t). In this case therefore the
operating point becomes z = [θ l]. One can interpret Figure 3.1 as follows.
The operation points z ∈ Zi describe the region for which the linear model Mi

is a valid approximation of the pendulum system. Clearly, since the pendulum
system is linear in the variables x2 = θ̇ and u = τ these variables do not
influence the difference between the models Mi. Therefore the θ̇ and τ axis are
perpendicular to the z1 = θ and z2 = l axis in Figure 3.1.

Suppose we are given a set of Nm linear models that are an adequate
description of the nonlinear system under different operating conditions. Next,
we assume that for each local model Mi, a local model validity function ρi :
Z → [0, 1] with local support is constructed, such that its value is close to one
for operating points where the local model is an accurate description of the
system, and close to zero elsewhere. Thus the relevance on a scale from zero
to one is indicated by the functions ρi as follows:

ρi(z) ≈
{

1 if z ∈ Zi

0 if z /∈ Zi

If there are Nm operating regimes with a local linear model and validity func-
tion defined for each regime, one may consider the following convex combina-
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tion of locally valid linear models (3.2) to obtain a global nonlinear model

ẋ =
Nm∑
i=1

wi(z)fi(x, u, v) (3.6)

y =
Nm∑
i=1

wi(z)hi(x, u, v)

wi(z) =
ρi(z)∑Nm
j=1 ρj(z)

A model of the above form, with its specific structure, will be called a Polytopic
Linear Model (PLM). To obtain a global model, it must be assumed that at
any operating condition at least one model validity function is non-zero, that
is
∑Nm

i=1 ρi(z) > 0 for all z ∈ Z. The scheduling function wi : Z → [0, 1] is a
normalization of the model validity function ρi, which has the property that∑Nm

i=1 wi(z) = 1 for all z ∈ Z. Next, it will be shown that the proposed method
of scheduling linear models to obtain a global nonlinear model is optimal in
some sense.

3.3 Optimal Model Structure

Without loss of generality, but for notational convenience we confine ourself to
the state equation of systems like (3.1). We seek a global approximate model,
a substitute for the state equation of (3.1), namely a model

ẋ = g(x, u, v)

based on a combination of a set of Nm linear models (3.2), obtained as lin-
earizations of (3.1) in some working points ψ ∈ Ψ. A linearized model (3.2)
becomes in shorthand notation

ẋ = fi(x, u, v)

with i ∈ {1, ..., Nm}. From the knowledge of the validity of a local linear model
it is natural to require that g(ψ) should be close to fi(ψ) at z = s(ψ) ∈ Zi, that
is where fi(ψ) is relevant, and consequently at those points where ρi(s(ψ)) > 0.
Among other possibilities, one could suggest to minimize a weighted mean
square error expression that penalizes the mismatch between g and fi the
hardest whenever ρi is large, i.e.

J(g) =
Nm∑
i=1

∫
ψ∈Ψ
‖g(ψ)− fi(ψ)‖22 ρi(s(ψ))dψ (3.7)

Here ‖·‖2 is the Euclidean norm. The following result is from [35].
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Theorem 3.3.1 Given the functional (3.7). Suppose the functions fi, with
i ∈ {1, ..., Nm}, belong to C(Ψ), the set of all continuous functions defined on
Ψ. Assume that

∑Nm
i=1 ρi(s(ψ)) > 0 for all ψ ∈ Ψ. Then the function g defined

by

g(ψ) =
Nm∑
i=1

wi(s(ψ))fi(ψ)

wi(s(ψ)) =
ρi(s(ψ))∑Nm
j=1 ρj(s(ψ))

minimizes J on C(Ψ).

Proof. Notice that J is strictly convex. Hence J must have a unique
global minimum. The Gateaux variation of J with respect to any perturbation
∆g ∈ C(Ψ) is

δJ(g; ∆g) = 2
Nm∑
i=1

∫
ψ∈Ψ

(g(ψ)− fi(ψ))ρi(s(ψ))∆g(ψ)dψ

A necessary and sufficient condition for global optimality of g is now [52]

Nm∑
i=1

(g(ψ)− fi(x, u))ρi(s(ψ)) = 0

for all ψ ∈ Ψ. From the assumption that
∑Nm

i=1 ρi(s(ψ)) > 0 for all ψ ∈ Ψ, it
follows that g is well defined and the desired result follows.

Of course optimality of the PLM (3.6) follows from the choice of the cri-
terion J . It suggests that the penalty on mismatch between g and fi should
be largest whenever ρi is large. This is reasonable since in that region fi is a
relevant description of the true system. We can interpret wi as a scheduling
function that has its largest values in the parts of Z where the function fi is
the best approximation to the system, and close to zero elsewhere.

Next, several interpretations of the proposed PLM will be discussed.

3.4 Interpretations

Rewrite (3.6) more explicitly in case there is no auxiliary variable v

ẋ =
Nm∑
i=1

wi(z){Aix + Biu + ai}

y =
Nm∑
i=1

wi(z){Cix + Diu + ci}
(PLM)
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where

Nm∑
i=1

ωi(z) = 1 and ωi(z) ≥ 0

for all z = s(x, u, v) ∈ Z. The model is specified by a set of nonhomogeneous
linear models

{(Ai, Bi, ai, Ci, Di, ci)}
together with corresponding scheduling functions

{wi(x, u)}
where i ∈ {1, ..., Nm} finite.

The interpretation (of the representation) of the PLM will be made clear
from two different viewpoints. The model based viewpoint gives insight in
how to interpret the PLM, and in more detail a realization of the linear model
parameters quantitatively. Secondly, the knowledge based viewpoint gives
insight on how to interpret the model structure, and in more detail a realization
of the scheduling functions qualitatively.

3.5 Model Based Interpretations

Performance of a model-based control strategy depends heavily on the quality
of the model. For model-based control one needs either an accurate description
of the system, or a ‘simplified’ model with an accurate description of the
expected variation (uncertainty) in the system. Both objectives can be reached
by the proposed model structure.

3.5.1 Linearizations

Suppose the nonlinear model (3.1) is given, in case there is no auxiliary variable
v, that is

ẋ = f(x, u) (3.8)
y = h(x, u)

Let (xi, ui) ∈ X × U = Ψ be given. Then by the Mean Value Theorem, the
right-hand side of (3.8) can be rewritten if it is at least one time continuously
differentiable with respect to x and u (that is f, h ∈ C1(Ψ)) as

f(x, u) = f(x0i, u0i) +
∂f

∂x
(ξ)(x− x0i) +

∂f

∂u
(ξ)(u− u0i) (3.9)
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where ξ lies on the segment between [xT
0i uT

0i]
T and [xT uT ]T and depends on

x and u. Rearranging (3.9) and applying the Mean Value Theorem to the
output equation as well gives

ẋ =
∂f

∂x
(ξ)x +

∂f

∂u
(ξ)u + f(x0i, u0i)− ∂f

∂x
(ξ)x0i − ∂f

∂u
(ξ)u0i (3.10)

y =
∂h

∂x
(ξ)x +

∂h

∂u
(ξ)u + h(x0i, u0i)− ∂h

∂x
(ξ)x0i − ∂h

∂u
(ξ)u0i

This method is known as global or exact linearization, see [17], [48], as opposed
to local or approximate linearization, where ξ = [xT

0i uT
0i]

T . A special case of
the global linearization procedure occurs whenever f(0, 0) = 0 and h(0, 0) = 0.
Then (3.10) with (x0i, u0i) = (0, 0) reduces to

ẋ =
∂f

∂x
(ξ)x +

∂f

∂u
(ξ)u (3.11)

y =
∂h

∂x
(ξ)x +

∂h

∂u
(ξ)u

suggesting a PLM consisting of homogeneous linear models as the next exam-
ple indicates.

Example 3.5.1 Consider again the pendulum in Figure 3.2. A global lin-
earization of the pendulum system can be obtained if (3.4) is rewritten in the
form (3.9), that is

ẋ = A(ξ1)x + Bu + a(ξ1)

with

A(ξ1) =
[

0 1
mg
J v cos ξ1 0

]
, B =

[
0
1
J

]

a(ξ1) =
mg

J
v(sinx1i − x1i cos ξ1)

and with ξ1 ∈ [x1i, x1] and depends on x1. This suggests, if possible, a PLM
consisting of a set of Nm scheduling functions wi, with corresponding linear
models specified by (Ai, B, ai), where

Nm∑
i=1

wi(z)
[

Ai ai

]
=
[

A(ξ1) ai(ξ1)
]

This representation is not unique since x1i can be given different values. With
the choice x1i = 0, the term a(ξ1) = 0 vanishes and the pendulum system is
rewritten as

ẋ = A(ξ1)x + Bu
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with (A(ξ1), B) as above. An explicit expression for ξ1 is easily found if (3.4)
is rewritten as

ẋ = A(x1)x + Bu

with

A(x1) =

[
0 1

mg
J v sin(x1)

x1
0

]

From the equality A(x1) = A(ξ1) it follows that ξ1 = arccos( sin(x1)
x1

). This
suggests, if possible, a PLM consisting of a set of homogeneous linear models
specified by (Ai, B), where

Nm∑
i=1

wi(z)Ai = A(x1)

and B as above. For the above equality to hold it is necessary to choose x1 as
the scheduling variable z. Sometimes, to facilitate the analysis of PLMs, we
will confine to PLMs consisting of only homogeneous linear models.

Comparing the exact linearization (3.10) to (PLM), suggests to find a PLM
{Ai, Bi, ai, Ci, Di, ci, wi} such that for all x, u

Nm∑
i=1

wi(z)
[

Ai Bi ai

Ci Di ci

]
(3.12)

−
[ ∂f

∂x (ξ)
∂f
∂u(ξ) f(xi, ui)− ∂f

∂x (ξ)xi − ∂f
∂u(ξ)ui

∂h
∂x(ξ)

∂h
∂u(ξ) h(xi, ui)− ∂h

∂x(ξ)xi − ∂h
∂u(ξ)ui

]

is minimized. If (3.8) is linear in some of the variables from x or u, then the
Jacobians from (3.12) do not depend on these variables and it follows that
these variables do not have to appear in z. So z has to be chosen such that
it captures the system nonlinearities. This was already illustrated in Example
3.2.1 and Example 3.5.1.

3.5.2 Uncertainty Model

An important issue in robust control theory is how to model or measure plant
uncertainty or variation. Here an uncertainty model is proposed that is directly
derived from the PLM structure. Assume that (3.12) equals zero for all (x, u),
than clearly[ ∂f

∂x (ξ)
∂f
∂u(ξ) f(xi, ui)− ∂f

∂x (ξ)xi − ∂f
∂u(ξ)ui

∂h
∂x(ξ)

∂h
∂u(ξ) h(xi, ui)− ∂h

∂x(ξ)xi − ∂h
∂u(ξ)ui

]
∈ Ω (3.13)
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where Ω is a polytope2 defined by (the vertices of) the PLM, namely

Ω = Co
{[

Ai Bi ai

Ci Di ci

]}

where the convex hull Co(a1, a2, ..., an) = {a|∑n
i=1 wiai,

∑n
i=1 wi = 1, wi ≥ 0}.

Now it is possible to associate with the PLM an uncertainty model, a polytopic
linear differential inclusion (PLDI) [17] as follows

[
ẋ
y

]
∈ Ω


 x

u
1


 (3.14)

Of course every trajectory of the nonlinear system (3.8) is also a trajectory of
the PLDI. If we can prove that every trajectory of the PLDI defined by Ω has
some specific property, say it converges to zero, then also every trajectory of
the nonlinear model has this property [17].

3.5.3 The Uncertainty Model Set

At this stage the uncertainty model setM will be introduced. The model set
is defined as follows

M({Ai, Bi, ai, Ci, Di, ci}) :=

{
(PLM)|

Nm∑
i=1

ωi(z) = 1, ωi(z) ≥ 0

}

(3.15)

One can think of the model set as a collection of PLMs that are all represented
with the same set of nonhomogeneous linear models {(Ai, Bi, ai, Ci, Di, ci)}.
However every PLM from the setM({Ai, ..., ci}) has its own unique realization
of the set of scheduling functions ωi. This means that the only difference
between two PLMs from the same model set is the realization of the set of
scheduling functions, which is constrained by

∑Nm
i=1 ωi(z) = 1 and ωi(z) ≥ 0.

By definition, the model set M has or satisfies a property if and only if all
PLMs fromM have or satisfy this property.

If a specific property of a PLM∈ M is investigated then it will in general
depend on the realization of the scheduling functions. If however a property
has to hold for the model set then it will be independent of the scheduling
functions and therefore depends solely on the parameters of the set of nonho-
mogeneous linear models. If we find a sufficient condition the model set M
has to satisfy, then of course it will also be sufficient for a PLM∈M from the

2A polytope or polyhedron is a closed set whose boundary consists of (affine) linear
subspaces.
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model set. On the other hand, if we find a necessary condition for a PLM∈M
from the model set, than it will also be necessary for the model set M. We
have

(necessary condition PLM ∈M) ⇒ (necessary conditionM)
(sufficient condition PLM ∈M) ⇐ (sufficient conditionM)

(3.16)

The introduction of a model set will be useful for the analysis of the polytopic
linear model. The concept of a model set is closely related to the aforemen-
tioned uncertainty model, the PLDI. In fact the model set and the PLDI
represent the same behavior.

3.6 Knowledge Based Interpretation

A priori knowledge about the operation of a given process in different regimes
can be used in a structural way to obtain a PLM. Moreover the PLM can be
explained qualitatively in terms of the operating regimes. Concepts described
in a linguistic manner can be related to the validity functions ρi by means of
fuzzy set theory [87],[84].

3.6.1 Fuzzy Model

To provide a mathematical tool for dealing with linguistic variables (i.e. con-
cepts described in natural language) fuzzy sets have been introduced. A fuzzy
set is defined as a set, the boundary of which is not sharp. Let Zi be a fuzzy
set. This means the region Zi ⊂ Z is assigned a linguistic label. This region
is characterized by a membership function µZi(z) that maps the set Z into
the interval [0 1]. The closer µZi is to 1, the more z belongs to Zi. We may
therefore also view µZi as the degree of compatibility of z with the concept
represented by Zi. Since in general Z defines a more than one-dimensional
space we can also look at the compatibility of zj with the concept Zij . Here
zj is the j-th coordinate of the operating vector z, and Zij the concept of the
j-th dimension for regime Zi. Also a membership function µZij (zj) can be
assigned to the concept Zij.

The set-theoretic operations of union (
⋃

) and intersection (
⋂

) for fuzzy
sets are defined through their membership functions µZij . Let Zi1 and Zi2

denote a pair of fuzzy one dimensional sets in Z with membership functions
µZi1 and µZi2 respectively. The membership function µZi1

⋃
Zi2 of the union

Zi1
⋃

Zi2 and the membership function µZi1
⋂

Zi2 of the intersection Zi1
⋂

Zi2
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are defined as follows3:

µZi1
⋃

Zi2(z) = softmax(µZi1 , µZi2)

µZi1
⋂

Zi2(z) = softmin(µZi1 , µZi2)

The complement of the fuzzy set Zi1 is defined by the membership function

µZ̄i1
(z1) = 1− µZi1(zi)

Depending on the concept Zi, ‘z = Zi’ could mean ‘if (zi1 = Zi1) and
(zi2 = Zi2)’ or ‘if (zi1 = Zi1) or (zi2 = Zi2)’. The degree of fulfillment of
that statement would become µZi(z) = softmin(µZi1(z1), µZi2(z2)) or µZi(z) =
softmax(µZi1(z1), µZi2(z2)) respectively.

Example 3.6.1 Consider again the pendulum from Example 3.2.1 with the
position of the ball as a variable. In that case z = [x1 v]T and one could define
the concepts zi1 = Zi1 meaning ‘if x1 is down’, and zi2 = Zi2 meaning ‘if v is
large’. One could also have the concept zi = Zi meaning

‘if (x1is down) and (v is large)’

The membership functions that are associated with these concepts can be cho-
sen as the unnormalized Gaussian functions:

µZi1 = e
− (x1−x1i)2

2σ1 and µZi2 = e
− (v−vi)2

2σ2 .

Because of the ‘and’ operator in the concept Zi its membership function be-
comes

µZi(z) = softmax(µZi1(z1), µZi2(z2)).

For the softmax operator one could choose the product of the two Gaussian
functions, that is

µZi(z) = µZi1(z1)µZi2(z2) (3.17)

= e
− (x1−x1i)2

2σ1 e
− (v−vi)2

2σ2 (3.18)

= e−(z−zi)
TΣ−1(z−zi) (3.19)

where zi = [x1i vi]T and Σ = 2diag(σi) a diagonal matrix with 2σi on its
diagonal. The result is a multivariable Gaussian membership function (3.19),
which has a qualitative interpretation (3.17), since it can be factorized (3.18).

3The softmax and softmin operators can be any max respectively min operator. In fact
these operators function as linguistic ‘or’ respectively ‘and’ operators.
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Returning to the issue at hand, the knowledge based interpretation of
the PLM, the major observation is that ρi can be interpreted as µZi . The
generation of the fuzzy model, see [71], that is mathematically equivalent with
the PLM consists of three steps:

1. Fuzzification, a mapping that changes the range of values of input vari-
ables z into a degree of membership to a concept Zi.

2. Knowledge base, which consists of a set of Nm linguistic rules (the knowl-
edge base) written in the form:

‘if (z = Zi) then


[

ẋ
y

]
=
[

Ai Bi ai

Ci Di ci

] x
u
1




 ’

3. Inference machine and defuzzification, which is a decision-making logic
that employs rules from the rule base to infer [ẋ y]T . In the case of the
PLM, Takagi-Sugeno inference and defuzzification are employed [71].

Example 3.6.2 Consider again the pendulum from Example 3.2.1 with the
position of the ball fixed. Then one could consider the linguistic variables

Z1 = ‘pendulum down’, Z2 = ‘pendulum horizontal’, Z3 = ‘pendulum up’.

The membership functions that are associated with these concepts are the Gaus-
sian functions:

µZi = e
− (x1−x1i)2

2σi

where x11 = π, x12 = 0.5π and x13 = 0. The rule-base becomes with i =
{1, 2, 3}:

‘if (x1 = Zi) then (ẋ = Aix + Biu + ai) ’

where a possible choice for the parameters is4

Ai=

[
0 1

(mg
J v cosx1i) 0

]
Bi =

[
0
1
J

]
ai =

[
0

mg
J v(sinx1i − x1i cosx1i)

]

After Takagi-Sugeno fuzzy inference one obtains as a fuzzy model:

ẋ =
1∑3

j=1 µZj(x1)

3∑
i=1

µZi(x1){Aix + Biu + ai}

4Note that in the matrices Ai, Bi, ai there are structural zeros and ones, and that
furthermore Bi = B for all i, which means that Bi is regime independent. These properties
may make system analysis and controller synthesis easier. This is not the subject of this
example however.
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Example 3.6.2 shows that qualitative information about a system can be
incorporated in a PLM, or extracted from a PLM via human expert’s knowl-
edge by means of the knowledge base. From this example it is also shown
that equilibrium points of the real system can be preserved, i.e. in the equilib-
rium position ‘pendulum down’ and the equilibrium position ‘pendulum up’
the PLM is exact, at least if the scheduling functions are properly chosen.

3.7 Notes and Comments

Polytopic model structure

In this thesis, state-space polytopic models with locally valid linear models
are considered. In general, one could also consider convex combinations of
arbitrary complex locally valid state-space models. This possibility is discussed
in [34], which also considers the case where locally valid models do not have the
same (dimension of the) state-space. In the literature also the combinations
of input-output models has been considered [36], [37].

Optimal model structure

Theorem 3.3.1 shows that

g∗(ψ) = argmin
g(ψ)

J(g(ψ))

= argmin
g(ψ)

Nm∑
i=1

∫
ψ∈Ψ
‖g(ψ)− fi(ψ)‖22 ρi(s(ψ))dψ

is a right-hand side of a PLM whenever fi is a right-hand side of a linear model.
An interesting fact is that whenever one replaces a local approximation fi with
a right-hand side of a PLM, then the function g∗ that minimizes J remains
a right-hand side of a PLM. Thus structural complexity does not increase as
the next result shows.

Corollary 3.7.1 Given the functional (3.7). Suppose the functions fi =
Nmi∑
j=1

wij(s(ψ))fij(ψ), with i ∈ {1, ..., Nm}, belong to C(Ψ), the set of all con-

tinuous functions defined on Ψ. Assume that
Nmi∑
j=1

wij(s(ψ)) = 1, wij(s(ψ)) ≥ 0

for all ψ ∈ Ψ. Then the function g defined by

g(ψ) =
Nm∑
i=1

Nmi∑
j=1

w∗
ij(s(ψ))fij(ψ)

w∗
ij(s(ψ)) = wi(s(ψ))wij(s(ψ))
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minimizes J on C(Ψ).

Proof. The result follows directly from the proof of Theorem 3.3.1.

Interpretations

Besides the presented interpretation, also statistical interpretations of the
PLM have been discussed [24], [55], [54]. These interpretations will not be
discussed here.
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Chapter 4

Approximation

4.1 Introduction

In the previous chapter, the PLM structure was introduced as a candidate
model structure for modelling a class of nonlinear systems. Besides the in-
terpretation of a model also its approximation capabilities are of importance,
since they restrict the potential of the model to represent the system. In this
chapter we investigate the approximation properties of PLMs.

The approximation properties are important for two main reasons. Firstly,
the approximation results provide us with approximation accuracy bounds,
which form a starting point for the analysis of the system interconnected with
controllers and/or observers based on the PLM. Secondly, the approximation
results are constructive, and form the basis of some of the modelling methods
that will be presented in Part II of this thesis.

For reason of clarity we will first consider autonomous systems. A useful
model has to be close to the system, in the sense that it explains the behavior
of the system. But then immediately the question arises of how to define and
measure accuracy, that is, distance between systems. One possible choice, the
one that is adopted here, is to consider the Euclidean distance between the
right-hand side of two systems, that is

dfg(E) := sup
x∈E
‖f(x)− g(x)‖2 (4.1)

where

ẋ = f(x) (4.2)

denotes the real system with f ∈ C1(E), where E is an open subset of R
n and

ẋ = g(x) (4.3)

27
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denotes the approximate autonomous model. Since our main interest goes to
the approximation capabilities of PLMs we will often specialize to approximate
systems having the PLM structure:

g(x) =
Nm∑
i=1

wi(x)gi(x) (4.4)

where

gi(x) = Aix + ai

If the distance dfg is measured on K, a compact subset of E, then the supre-
mum becomes the maximum in the definition of dfg. Other norms to measure
the distance between systems could also be considered1, but it will be shown
that accuracy defined as dfg ≤ ε will lead to the desired approximation results.

In Section 4.2, it will be demonstrated that the right-hand side f ∈ C1(E)
of the real system (4.2) can be uniformly approximated to an arbitrary accu-
racy ε > 0 on any compact operating range X ⊂ E with a right-hand side (4.4)
of a PLM (4.3), by making the decomposition of X into a finite number of
Nm operating regimes Xi sufficiently fine. A PLM turns out to be a universal
approximator.

In Section 4.3, we will give an upper bound on Nm, the number of operating
regimes sufficient to achieve ε-accuracy. It follows that ε-accuracy is achieved,
if the locally valid nonhomogeneous linear models gi from (4.4) are chosen as
zero-th or first order Taylor series of the real system (4.2) around operating
points x0i ∈ Xi, uniformly distributed over the operating space. We will also
observe that a PLM suffers from the ‘curse of dimensionality’. This means that
to achieve ε-accuracy, Nm grows exponentially with the number of scheduling
variables, in this case dim(x).

In Section 4.4, it will be established that under the appropriate conditions,
and for finite times, trajectories of the PLM can be made arbitrary close to
trajectories of the real system, at least if ε is small enough and dfg ≤ ε.
An upper bound is derived on the difference between trajectories of the real
system and the ε-accurate PLM, where it is assumed that both trajectories
originate from the same initial condition.

In a straightforward manner the above results generalize to systems with
inputs (and outputs). This is shown in Section 4.5

In Section 4.6, it is shown that structure of a system can be exploited to
reduce the complexity of the approximate PLM. Basically, the derived result
states that without loosing the universal approximation property, the locally

1For instance the distance supx∈E ‖f(x) − g(x)‖2 +supx∈E
∥∥ ∂f
∂x

− ∂g
∂x

∥∥
2
as defined in [60]

to analyze whether f and g are topologically equivalent.
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valid models gi from the PLM can be scheduled on a scheduling space Z
consisting of only the variables z that enter f of the real system in a non-
affine way. Since in this case dim(z) < dim(x), the ‘curse of dimensionality’
is partially reduced. In this case, the number of operating regimes or/and
the complexity of the local models can be reduced which results in a reduced
number of parameters for the PLM. This is illustrated by means of an example.

Finally, in Section 4.7 some notes and comments are made regarding the
presented approximation analysis of PLMs.

4.2 A Universal Approximator

In order to prove the universal approximation property for PLMs we need the
following preparatory result.

Lemma 4.2.1 Given f ∈ C1(E), E an open subset of R
n and ε > 0 arbitrary.

There exists a zero-th (k = 0) and first order (k = 1) Taylor series expansion
fk
i of f around x0i, that is

fk
i (x) :=

{
f0
i (x) = f(x0i) if k = 0

f1
i (x) = f(x0i) + ∂f

∂x (x0i)(x− x0i) if k = 1
(4.5)

such that dffki
(Brik(x0i)) ≤ ε, with Brik(x0i) ⊂ E a ball of radius rik(ε) cen-

tered at x0i.

Proof. Define the k-th order Taylor remainder F k
i (x) := f(x) − fk

i (x)
and note that since f ∈ C1(E) also F k

i ∈ C1(E) which implies that there
exists a finite positive number Lik such that

∥∥F k
i (x)− F k

i (x0i)
∥∥
2
=
∥∥F k

i (x)
∥∥
2
≤

Lik ‖x− x0i‖2. It follows that within the ball Brik(x0i) := {x| ‖x− x0i‖2 ≤
ε

Lik
= rik} we have

∥∥F k
i (x)

∥∥
2
=
∥∥f(x)− gk

i (x)
∥∥
2
≤ ε.

The universal approximation property for PLMs follows from the fact that
with Nm number of locally valid models, that means models with gi(x) = fk

i

as a right-hand side, with i ∈ {1, ..., Nm}, a compact space X ⊂ E can be
covered. More specifically X ⊆ {x|x ∈ (∪iBrik(x0i))}, and it follows that the
{x0i} have to be chosen sufficiently dense.

Theorem 4.2.2 Given the system (4.2) with f ∈ C1(E), E an open subset of
R

n, X any compact set such that X ⊂ E, and ε > 0 arbitrary. There exists a
right-hand side of a PLM (4.3,4.4) with Nm finite such that dfg(X) ≤ ε.

Proof. Construct a PLM (4.4) where gi(x) = fk
i (x) with k ∈ {0, 1}, that

is a zero-th or first order Taylor expansion defined as in Lemma 4.2.1. With
the identity f(x) =

∑Nm
i=1 wi(x)f(x) and the use of the triangle inequality,
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namely ‖x + y‖2 ≤ ‖x‖2 + ‖y‖2, it follows immediately that ‖f(x)− g(x)‖2 ≤∑Nm
i=1 wi(x)

∥∥F k
i (x)

∥∥
2
≤ ∑Nm

i=1 wi(x)Lik ‖x− x0i‖2, where F k
i (x) is defined as

in Lemma 4.2.1. Note that
∑Nm

i=1 wi(x)Lik ‖x− x0i‖2 ≤ ε for all x ∈ X implies
dfg(X) ≤ ε. Rewriting the last but one inequality and choosing wi = ρi∑Nm

j=1 ρj

gives
∑Nm

i=1 ρi(x){Lik ‖x− x0i‖2−ε} ≤ 0 for all x ∈ X, which can be satisfied if
for all x ∈ X there exists at least one i ∈ {1, ..., Nm} such that Lik ‖x− x0i‖2−
ε ≤ 0, that means X ⊆ (∪iBrik(x0i)). Since X is assumed to be a compact
set, it can be covered by a finite number of balls Brik(x0i), meaning that Nm is
finite, as desired. Furthermore, as a result of the construction, at least one of
the semi-positive definite functions ρi(x) has to be chosen greater than zero if
x ∈ Brik(x0i). This implies that

∑Nm
i=1 ρi(x) > 0 can be satisfied for all x ∈ X,

meaning that wi(x) and therefore the PLM is well defined for all x ∈ X.

A graphical interpretation of Theorem 4.2.2 is given in Figure 4.1. Basi-
cally it says that as long as x ∈ Brik(x0i) then ρi(x) can be chosen positive.
However to get a globally well defined model the requirement

∑Nm
i=1 ρi(x) > 0

for all x ∈ X has to be satisfied. This means that the x0i’s have to be cho-
sen sufficiently dense such that for all x ∈ X there exists a x0i such that
x ∈ Brik(x0i). It can be seen from Figure 4.1 that with a particular choice of
the model validity functions ρi(x), and sufficient number of models Nm, Theo-
rem 4.2.2 is satisfied. Figure 4.1 gives some insight concerning the realization
of the functions ρi(x) such that Theorem 4.2.2 holds, as will be illustrated
next.

Example 4.2.3 A possible realization for ρi(x) such that Theorem 4.2.2 holds
could be:

ρi(x) =
{

1 if Lik ‖x− x0i‖2 − ε ≤ 0
0 if Lik ‖x− x0i‖2 − ε > 0

(4.6)

Another, smoother choice for ρi(x) based on Theorem 4.2.2, which also reflects
the intuition that the region of validity depends on the particular norm bound
of the Taylor remainder in that specific operating region is:

ρi(x) =
1

Lik ‖x− x0i‖p2
(4.7)

for some p > 0. Another possible choice is the Gaussian validity function of
Example 3.6.1, namely

ρi(x) = e−(x−x0i)
TΣ−1(x−x0i) (4.8)

where Σ = 2diag(σi) is a diagonal matrix. Qualitatively σi can be chosen
inversely proportional to Lik, so σi small stands for a strong nonlinearity.
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Figure 4.1: Possible choice of the model validity functions ρi(x) based on a
worst case situation, namely for the upper bound on the Taylor remainder
it is assumed that for all i ∈ {1, ..., Nm} the following holds:

∥∥F k
i (x)

∥∥
2
≤

L ‖x− x0i‖2. The thick lines illustrate that ε-accuracy is achieved.

Theorem 4.2.2 is illustrated with Gaussian validity functions in Figure 4.1.
From this figure it is observed that without hard model switching as suggested
in (4.6), and even with ρi(x) > 0 outside Brik(x0i) it is possible to achieve the
desired accuracy.
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4.3 Upper bound on the Number of Models

Next an upper bound on the number of models Nm will be derived, that is
sufficient to construct a PLM with ε-accuracy. The upper bound is based on
a worst case analysis, that means we use the fact that

‖f(x)− g(x)‖2 ≤
Nm∑
i=1

wi(x)Lik ‖x− x0i‖2 (4.9)

≤ L

Nm∑
i=1

wi(x) ‖x− x0i‖2

where L ≥ Lik for all i ∈ {1, ..., Nm}.
We are faced with the problem of covering the region X with hyperballs

Br(x0i) = {x | ‖x− x0i‖2 ≤ r = ε
L}. Again it is assumed that X is a

compact operating space, because then a finite number of models Nm suffices
to cover X. It is in general easier to cover X with hypercubes Cc(x0i) =
{x | ‖x− x0i‖∞ ≤ c} where ‖v‖∞ = maxi |vi|. This leads to the following
idea. First inner-approximate the hyperball Br(x0i) with a hypercube Cc(x0i)
of maximum volume. Then cover the region X with hypercubes Cc(x0i) to
obtain the conditions the model has to satisfy to guarantee X ⊆ (∪iCc(x0i)),
which, since Cc(x0i) ⊆ Br(x0i) also implies X ⊆ (∪iBr(x0i)). A graphical
interpretation of the previous idea, for a two dimensional state space is given
in Figure 4.2. The radius of the circle Br(x0i) (hyperball) is r, the width of the
square Cc(x0i) (hypercube) is 2c and the centre of Br(x0i) and Cc(x0i) is x0i.
The working points x0i are uniformly distributed over the operating space as
a result of the worst case analysis based on (4.9). The next result is based on
the hypercube partitioning of the operating space as illustrated in Figure 4.3.
Here the operating space is (in each dimension) characterized with its center
di and width ei as depicted in Figure 4.3.

Before stating the result we define the ceiling operator �.� : R → N+ that
maps a real to the nearest integer towards infinity.

Theorem 4.3.1 Under the hypothesis of Theorem 4.2.2, given X = {x |
|xi − di| ≤ ei, i = 1, · · · , n}, and ε > 0 arbitrary, it suffices to construct a
PLM (4.3,4.4) with Nm = Πn

i=1

⌈
L
√
n

ε ei

⌉
, where L is from (4.9), to assure

that dfg(X) ≤ ε.

Proof. It holds that ‖x− x0i‖2 ≤
√

n ‖x− x0i‖∞. Then it follows that
‖x− x0i‖2 ≤ r is satisfied if ‖x− x0i‖∞ ≤ r√

n
. This implies that to cover X

with hypercubes Cc(x0i) it is necessary that the width of the hypercubes is
less or equal to 2r√

n
. This leads to the number of models Nmi that is sufficient
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X X

Br(x0i)

Br(x0i)
1

1
√

2

Cc(x0i)

Cc(x0i)

Figure 4.2: The compact operating space X has to be covered by hyperballs
Br(x0i). Therefore the hyperball Br(x0i) is inner approximated with a hyper-
cube Cc(x0i) of maximum volume. It holds that ‖x− x0i‖2 ≤

√
n ‖x− x0i‖∞.

Then it follows that ‖x− x0i‖2 ≤ r is satisfied if ‖x− x0i‖∞ ≤ r√
n

= c. The

region X can now be covered constructively with hypercubes Cc(x0i), which,
since Cc(x0i) ⊆ Br(x0i) also implies X ⊆ (∪iBr(x0i)).

to cover X in one direction, that is Nmi =
⌈
2ei
2r

√
n
⌉

=
⌈
L
√
n

ε ei

⌉
, since r = ε

L .
For an n dimensional operating-space X the total number of models Nm =
Πn

i=1Nmi = Πn
i=1

⌈
L
√
n

ε ei

⌉
.

The total number of models Nm sufficient to approximate the system (4.2)
with a PLM (4.3,4.4) with ε-accuracy, increases with, Nm ∼ Πn

i=1Nmi ∼(
L
√
n

ε

)n
Πn

i=1ei.

From Figure 4.4 it becomes clear that in practice, when ε is chosen in
advance, n = dim(x) is a limiting factor of the modelling approach since the
total number of models Nm increases exponentially with the dimension of the
scheduling space. This phenomenon is known as ‘the curse of dimensionality’
[24]. To enlarge the applicability and to reduce the complexity of the PLM
it is therefore important to reduce, if possible the dimension of z to obtain
dim(z) < dim(x). Besides the dimension of z also the nonlinearity of the
system as measured with the quantity L, the size of the compact operating
space {ei} and of course the desired accuracy ε affects the total number of
models within the PLM description.
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Cc(x0i)Cc(x0i)

Br(x0i)X

x1

x2

e1 e1d1

e2

e2

Figure 4.3: Covering of compact region X = {x | |xi − di| ≤ ei, i = 1, · · · , n}
with hyperballs Br(x0i). First the hyperballs Br(x0i) are inner approximated
with hypercubes Cc(x0i) of maximum volume. Then X is covered easily with
hypercubes Cc(x0i). This implies that since Br(x0i) covers Cc(x0i), also X is
covered with hyperballs Br(x0i) as desired.

0 1 2 3 4 5
0

10

20

30

40

50

60

N
m

n = dim(x) 0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100
N

m

ε

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

N
m

ei = e 0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

N
m

L
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4.4 Upper bound on the Difference between Trajec-
tories

We will relate the ε-accuracy between the right-hand side of two systems to
the difference in solutions of the two systems.

With the bound dfg ≤ ε, that is the approximation error on the right-hand
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side of two systems, an upper bound on the difference between the trajectories
of the system (4.2) and the PLM (4.3) will be derived. The result is in fact
based on a variation on the Gronwall Lemma, see e.g. [67] and [79].

Theorem 4.4.1 Given the system (4.2) with f ∈ C1, and an approximate
model (4.3), for instance a PLM, such that dfg(E) ≤ ε, then the solutions
ξ(t) of (4.2) and ζ(t) of (4.3) starting at ξ(0) = ζ(0) that remain in E are
uniformly close on the interval [0, T ] in the following sense:

‖ξ(t)− ζ(t)‖2 ≤ ε
eLt − 1

L
(4.10)

where L is an upper bound on
∥∥∥∂f
∂x

∥∥∥
2
.

Proof. Note that ξ(t) = ξ(0)+
∫ t
0 f(ξ(τ))dτ and ζ(t) = ζ(0)+

∫ t
0 g(ζ(τ))dτ

from which it follows that ξ(t)− ζ(τ) =
∫ t
0{f(ξ(τ))− g(ζ(τ))}dτ . If we write

f(ξ(τ))− g(ζ(τ)) = f(ξ(τ))− f(ζ(τ)) + f(ζ(τ))− g(ζ(τ)), and substitute this
in the integral equation, take norms and use the triangle inequality we have
‖ξ(t)− ζ(t)‖2 ≤

∫ t
0{‖f(ξ(τ))− f(ζ(τ))‖2 + ‖f(ζ(τ))− g(ζ(τ))‖2}dτ . Since f

is Lipschitz (in fact also C1), that is ‖f(ξ(τ))− f(ζ(τ))‖2 ≤ L ‖ξ(τ)− ζ(τ)‖2
with L an upper bound on

∥∥∥∂f
∂x

∥∥∥
2
, and supζ(τ)∈E ‖f(ζ(τ))− g(ζ(τ))‖2 ≤ ε it

is also true that

‖ξ(t)− ζ(t)‖2 ≤
∫ t

0
L ‖ξ(τ)− ζ(τ)‖2 dτ + εt (4.11)

Now define F (t) := e−Lt(
∫ t
0 L ‖ξ(τ)− ζ(τ)‖2 dτ − ∫ t

0 εLτe−L(t−τ)dτ) for all
t ≥ 0. Taking the time derivative of F yields Ḟ (t) = Le−Lt(‖ξ(t)− ζ(t)‖2 −∫ t
0 L ‖ξ(τ)− ζ(τ)‖2 dτ−εt) from which we can conclude that in order to satisfy

(4.11) for all t ≥ 0 we have F (t) = F (t) − F (0) =
∫ t
0 Ḟ (t)dτ ≤ 0. This

implies that
∫ t
0 L ‖ξ(τ)− ζ(τ)‖2 dτ ≤ ∫ t

0 εLτe−L(t−τ)dτ has to hold. With this
bound substituted in (4.11) we obtain ‖ξ(t)− ζ(t)‖2 ≤

∫ t
0 εLτe−L(t−τ)dτ+εt =

ε eLt−1
L .

The upper bound (4.10) will be useful if we analyze properties of trajecto-
ries of systems, such as convergence, based upon an ε-accurate approximate
model. This will become clear later on.

4.5 Systems with Inputs

The derived approximation results are easily extended to handle systems with
inputs and outputs. For reason of clarity we will only consider the state
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equation of the system

ẋ = f(x, u) (4.12)
y = h(x, u) (4.13)

with state x ∈ X ⊆ R
n, input u ∈ U ⊆ R

m, and output y ∈ Y ⊆ R
p. The

objective is to approximate (4.12) with an ε-accurate approximate model

ẋ = g(x, u) (4.14)

within a predefined compact region Ψ ⊆ X × U . Since our main interest is in
PLMs, we specialize to models with right-hand side

g(x, u) =
Nm∑
i=1

wi(x, u)gi(x, u) (4.15)

where

gi(x, u) = Aix + Biu + ai

In that case the locally valid models, the k−th order Taylor series expansions
of the system, are scheduled on the n + m dimensional operating space Ψ to
obtain an ε-accurate PLM. In particular, the following application of Theorem
4.2.2 and Theorem 4.3.1 will be a useful approximation result for systems with
inputs.

Corollary 4.5.1 Given f(ψ) ∈ C2(Ψ) the right-hand side of the state equa-
tion of (4.12) with Ψ = {ψ | |ψi − di| ≤ ei, i = 1, · · · , n + m}, and ε > 0 arbi-

trary. There exists a right-hand side of a PLM, that is g(ψ) =
Nm∑
i=1

wi(ψ)gi(ψ),

with Nm = Πn+m
i=1

⌈
ei√
2ε

√
λξn1/2(n + m)

⌉
finite such that dfg(Ψ) ≤ ε.

Proof. Firstly, it is assumed that f(x, u) is C2, that means at least 2
times continuously differentiable with respect to x and u. This allows us to
decompose the right-hand side of the state equation of (4.12) as follows

f(x, u) = fp
i (x, u) + F p

i (x, u)

with 0 ≤ p ≤ 2 and fp
i (x, u) a p-th order Taylor series expansion of f around

ψ0i = (x0i, u0i), and F p
i (x, u) := f(x, u) − fp

i (x, u) is defined as the corre-
sponding Taylor remainder. Since PLMs consist of (nonhomogeneous) linear
models, we take p = 1. Application of the Mean Value Theorem allows us to
rewrite the j-th component of vector F 1

i (ψ) as

F 1
i,j(ψ) =

1
2
[ψ − ψ0i]T

∂2fj
∂ψ2

(ξi)[ψ − ψ0i]
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here ψ = [xT uT ]T , ψ0i = [xT
0i uT

0i]
T and the matrix ∂2fj

∂ψ2 (ξi) =
[

∂2fj
∂ψp∂ψq

(ξi)
]

with ξi ∈ [ψ0i, ψ]. It is assumed that the triples (Ai, Bi, ai) that specify the
linear models gi(ψ) from the PLM (4.14,4.15) are chosen as Taylor lineariza-
tions of f(ψ) in the points ψ0i, that is gi(ψ) = f1

i (ψ) from (4.15). In that
case the triples become (∂f∂x (x0i, u0i),

∂f
∂u(x0i, u0i), f (x0i, u0i)− ∂f

∂x (x0i, u0i)x0i−
∂f
∂u(x0i, u0i)u0i) and for the difference between the system and the PLM we
have

f(ψ)−
Nm∑
i=1

wi(ψ)f1
i (ψ) =

Nm∑
i=1

wi(ψ)(f(ψ)− f1
i (ψ))

=
Nm∑
i=1

wi(ψ)F 1
i (ψ) (4.16)

With ri = ψ − ψ0i we obtain

F 1
i (ψ) =

1
2
[rTi

∂2f1
∂ψ2

(ξi)ri · · · rTi
∂2fn
∂ψ2

(ξi)ri]T (4.17)

Then the following upper bound for the contribution of model gi = f1
i to the

approximation error can be derived

∥∥F 1
i (ψ)

∥∥
2
≤ 1

2
(

n∑
j=1

λ2j,ξi(r
T
i ri)2)1/2

≤ 1
2
√

nλξi ‖ψ − ψ0i‖22 (4.18)

with

λj,ξi = max
ξi
{
∣∣∣∣eig(∂2fj

∂ψ2
(ξi))

∣∣∣∣}
λξi = max

j
{λj,ξi}

The upper bound is conservative since by taking the maximum it is assumed
that the maximum nonlinearity (as measured with the maximum absolute
eigenvalue of the Hessian matrices associated with the Taylor remainder) can
occur in every scalar equation of the set of equations, see (4.12). With the
norm bound of the second order term as given in (4.18) it follows from (4.16)
that:

‖f(ψ)− g(ψ)‖2 ≤
Nm∑
i=1

wi(ψ)
1
2
√

nλξi ‖ψ − ψ0i‖22 (4.19)
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The approximation error is smaller than ε if

Nm∑
i=1

wi(ψ)
1
2
√

nλξi ‖ψ − ψ0i‖22 ≤ ε ∀ψ ∈ Ψ (4.20)

Rearranging the terms in (4.20) yields

Nm∑
i=1

ρi(ψ)λξi ‖ψ − ψ0i‖22 −
2ε√

n
} ≤ 0 ∀ψ ∈ Ψ (4.21)

If we substitute λξ = max{λξi} for λξi, which means that the maximum
nonlinearity can occur everywhere within the operating space, one obtains

Nm∑
i=1

ρi(ψ){λξ ‖ψ − ψ0i‖22 −
2ε√

n
} ≤ 0 ∀ψ ∈ Ψ (4.22)

This condition can be satisfied for finite Nm within a compact set, that is if
Ψ ⊆ (∪i∈INmBr(ψ0i)) with radius r =

√
2ε√
nλξ

. This is just an application

of Theorem 4.2.2. Now by application of Theorem 4.3.1 and given Ψ = {ψ |
|ψi − di| ≤ ei, i = 1, · · · , n + m} it follows that it suffices to construct a PLM
with Nm = Πn+m

i=1

⌈
ei
r

√
n + m

⌉
= Πn+m

i=1

⌈
ei√
2ε

√
λξ
√

n(n + m)
⌉

to assure that
dfg(Ψ) ≤ ε.

Example 4.5.2 Consider the following application of Corollary 4.5.1. The
objective is to approximate the system

ẋ = f(x, u) = x2 + xu (4.23)

with a PLM

ẋ = g(x, u) =
Nm∑
i=1

wi(x, u)gi(x, u)

where

gi(x, u) = Aix + Biu + ai

such that dfg(Ψ) ≤ 1 for Ψ = {(x, u) | |x| ≤ 2, |u| ≤ 1}. The right-hand side
of (4.23) can be rewritten as

f(x, u) = f1
i (x, u) + F 1

i (x, u)
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with the first order Taylor series

f1
i (x, u) = f (x0i, u0i) +

∂f

∂x
(x0i, u0i)(x− x0i) +

∂f

∂u
(x0i, u0i)(u− u0i)

= −x20i − x0iu0i + (2x0i + u0i)x + x0iu

and the corresponding Taylor remainder

F 1
i (x, u) := f(x, u)− f1

i (x, u) =
1
2
[

x− x0i u− u0i
] ∂2f

∂ψ2

[
x− x0i
u− u0i

]

where ∂2f
∂ψ2 =

[
2 1
1 0

]
. We obtain for λξ = max{

∣∣∣∣eig(
[

2 1
1 0

]
)
∣∣∣∣} = 1 +

√
2.

Then to achieve ε-accuracy, it suffices to construct a PLM with Nm models,
where

Nm =
⌈

2√
2

√
2.41 ∗ 2

⌉
∗
⌈

1√
2

√
2.41 ∗ 2

⌉
= 4 ∗ 2 = 8

The operating points (x0i, u0j) with i ∈ {1, 2, 3, 4} and j ∈ {1, 2} are chosen
equidistantly since the upper bound for the number of models is based on a
worst case scenario, namely the maximum nonlinearity as measured with the
bound on the Taylor remainder can occur at every place in the operating space.
The corresponding triples defining the polytopic model are

(Ai, Bi, ai) = (2x0i + u0j , x0i,−x20i − x0iu0j)

with centers at

(x01, x02, x03, x04) = (−1.5,−0.5, 0.5, 1.5)
(u01, u02) = (−0.5, 0.5)

uniformly distributed over the operating space, see Figure 4.5.
The model validity functions are chosen Gaussian functions, namely

ρi(ψ) = e−7(ψ−ψ0i)
T (ψ−ψ0i)

With the objective dfg(Ψ) ≤ ε, model validity is made precise, meaning that the
operating regimes Ψi are naturally induced by means of the local model validity
regions Br(x0i). The operating regimes are constructed such that Ψi ⊆ Br(x0i)
and Ψ ⊆ ∪i∈{1,...,Nm}Ψi.
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Figure 4.5: System and ε-accurate PLM constructed as suggested in Corollary
4.5.1. Uniform distribution of the scheduling regimes Zi over the scheduling
space which equals the operating space, that is Z = Ψ.

4.6 Systems with Structure

When the operating space is high dimensional, the ‘curse of dimensionality’
will restrict the applicability of the polytopic linear modelling approach. The
core of this problem is that the number of operating regimes needed to uni-
formly partition the operating space increases exponentially with the dimen-
sion of the operating space, see Theorem 4.3.1 and Figure 4.4. Uniform parti-
tioning is often not necessary (as will become clear later on), but the problem
is still significant. However, in some cases the models can be scheduled on a
space of lower dimension, which will reduce the curse of dimensionality consid-
erably. On the basis of the approximation results that where derived earlier,
a suitable choice of variables z = s(ψ), that constitute the scheduling space,
will be determined and defined. A situation in which dim(z) can be chosen
smaller than dim(ψ) is illustrated in the next example.

Example 4.6.1 Consider the system

ẋ1 = x2

ẋ2 = 3x1 + x22
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which has two important features that restrict the upper bound (4.18) in a
structural way. First, one of the two scalar differential equations with right-
hand side fi(ψ) is linear, and secondly only x2 appears nonlinear in this system
description. As a result we take z = x2, because all other variables, in this
case only x1, appear linear in fi(ψ). In this case

∂2f1
∂ψ2

(ξ) =
[

0 0
0 0

]
∂2f2
∂ψ2

(ξ) =
[

0 0
0 2

]

The Taylor remainder is

F 1(ψ) =
1
2




[ψ − ψ0i]T
[

0 0
0 0

]
[ψ − ψ0i]

[ψ − ψ0i]T
[

0 0
0 2

]
[ψ − ψ0i]




=
[

0
(x2 − x20)

2

]

and depends only on x2 since the system is linear in x1. The Taylor remainder
measures the nonlinearity of the system. In this case

∥∥F 1(ψ)
∥∥
2
≤ 1

2
√

nλξi ‖z − z0i‖22 (4.24)

with z = x2. Moreover when there are linear differential equations fj(ψ),
like f1(ψ), we can further reduce conservatism of the upper bound (4.18) by
replacing it with

∥∥F 1(ψ)
∥∥
2
≤ 1

2
√

nNλξi ‖z − z0i‖22 (4.25)

where nN is the number of nonlinear differential equations fj(ψ).

The example shows that the upper bound on the approximation error
(4.25) compared with (4.18) can be significantly reduced if the system shows
some structural properties that can be exploited, e.g. linearity of the system
with respect to some variables. In this section the objective is to reveal some of
these structural properties. From the preceding example and the application
of Theorem 4.2.2 and Theorem 4.3.1 we have the following result concerning
the reduction of the operating space.

Corollary 4.6.2 Given f(ψ) = FψL + f1(ψN ) with f1(ψN ) ∈ C2(E), E
an open subset of R

nZ where ψL ∈ ΨL, ψN ∈ ΨN , and ΨL × ΨN = Ψ and
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f1 : ΨN → Rn is a nonlinear n-dimensional vector valued function with n−nN

scalar linear components and F ∈ Rn×dim(ψL), and ε > 0 arbitrary. Within
any set Ψ, with ΨN compact such that ΨN ⊂ E there exists a right-hand side
of a PLM, with z = ψN , that is g(ψ) =

∑Nm
i=1 wi(z)gi(ψ) with Nm finite such

that dfg(Ψ) ≤ ε. Moreover given ΨN = Z = {z | |zi − di| ≤ ei, i = 1, · · · , nZ},
it suffices to construct a PLM (4.14,4.15) with Nm = Πnz

i=1

⌈
ei√
2ε

√
λξn

1/2
N nz

⌉
.

Proof. Define gi(ψ) := FψL+f1
1i(ψN ). Then it follows that f(ψ)−g(ψ) =∑Nm

i=1 wi(z){f1(ψN ) − f1
1i(ψN )}. Corollary 4.5.1 can now be applied, which

shows that if ΨN is compact and with z = ψN a finite number of models

Nm = Πnz
i=1

⌈
ei√
2ε

√
λξn

1/2
N nz

⌉
is sufficient to achieve ε-accuracy.

It is shown that the operating vector z must be chosen such that it captures
the system’s nonlinearities.

Another structure that appears often in practice, are so-called affine right-
hand sides of systems:

f (ψ) = f (ψL, ψN ) = f1 (ψN ) + f2 (ψN )ψL (4.26)

where ψL ∈ ΨL, ψN ∈ ΨN , and ΨL × ΨN = Ψ. Furthermore f1 : ΨN → Rn

and f2 : ΨN → Rn×dim(ψL) are nonlinear vector- and matrix-valued functions,
respectively. As an example, models of mechanical systems are often affine
in the input [57]. For the right-hand side of the state equation of such a
mechanical system it holds that ψN = x, the state, and ψL = u, the input. It
will be the objective to approximate (4.26) with a PLM

g (ψ) =
Nm∑
i=1

wi(z)gi(ψ) (4.27)

where

gi(ψ) = A∗
i ψ + a∗i

and where z = s(ψ).

Theorem 4.6.3 Assume fi ∈ C1(E) as given by (4.26), Ψ = {ψ | |ψi − di| ≤
ei, i = 1, · · · , n + m}, and ε > 0 arbitrary. It suffices to choose z = ψN

from (4.27) such that dfg(Ψ) ≤ ε. Furthermore if fi ∈ C2(E) it suffices to
construct a PLM with Nm = ΠnZ

i=1Nmi models to assure that dfg(Ψ) ≤ ε.

HereNmi =
⌈
2ei
2rk

√
nZ

⌉
the number of models in direction i, nZ equals the
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dimension of z, and

rk =




r1 = ε

λ
1/2
ξ,2 ‖ψL‖2

(
−λξ,2‖ψL‖2

2√
nλξ,1ε

+
√

2λξ,2‖ψL‖2
2√

nλξ,1ε
+

λ2
ξ,2‖ψL‖4

2

nλ2
ξ,1ε

2

)
if g(ψ) =

∑Nm
i=1 wi(ψN )gi(ψ)

r0 = ε

1

λ
1/2
ξ,1

λ
1/2
ξ,2 ‖ψL‖2

1

λ
1/2
ξ,1

+ 1

λ
1/2
ξ,2 ‖ψL‖2

if g(ψ) =
∑Nm

i=1 wi(ψN )gi(ψL)
(4.28)

Proof. Fix an arbitrary ψ = (ψL, ψN ) ∈ Ψ = ΨL ×ΨN . Then

f (ψ)− g (ψ) = f (ψN , ψL)−
Nm∑
i=1

wi (ψN ) gi(ψN , ψL)

=
Nm∑
i=1

wi (ψN ) {f1(ψN ) + f2(ψN )ψL − gi(ψN , ψL)}

=
Nm∑
i=1

wi (ψN ) {f1(ψN )− gi1(ψN ) + f2(ψN )ψL − gi2(ψL)}

In the last line we split the linear function gi : Ψ→ Rn into two linear functions
gi1 : ΨN → Rn and gi2 : ΨL → Rn, that is gi(ψ) = gi1(ψN ) + gi2(ψL). With
gi2(ψL) = ΓiψL, where Γi is a not yet specified constant parameter matrix.
Then we have

‖f (ψ)− g (ψ)‖2

=

∥∥∥∥∥
Nm∑
i=1

wi (ψN ) {f1(ψN )− gi1(ψN ) + (f2(ψN )− Γi)ψL}
∥∥∥∥∥
2

≤
∥∥∥∥∥
Nm∑
i=1

wi (ψN ) {f1(ψN )− gi1(ψN )}
∥∥∥∥∥
2

+

∥∥∥∥∥
Nm∑
i=1

wi (ψN ) {f2(ψN )− Γi}ψL

∥∥∥∥∥
2

≤
∥∥∥∥∥f1(ψN )−

Nm∑
i=1

wi (ψN ) gi1(ψN )

∥∥∥∥∥
2

+ ‖ψL‖2
∥∥∥∥∥f2(ψN )−

Nm∑
i=1

wi (ψN ) Γi

∥∥∥∥∥
2
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By application of Theorem 4.2.2 the first and the second term can be made
arbitrarily small with a finite number of models. There is some freedom left.
The first term can be made arbitrarily small by choosing gi1 = fk

1i with k ∈
{0, 1}, that is a zero-th or first order Taylor series expansion of f1(ψN ) around
ψN0i. The case that k = 0, the function gi(ψ) = gi1(ψN0i) + gi2(ψL) = gi(ψL)
otherwise gi(ψ) = gi1(ψN ) + gi2(ψL) = gi(ψN , ψL).

Following the analysis as presented in Section 4 we determine the number
of models Nm, and the model parameters from the PLM description needed
to approximate (4.26) within the region Ψ with ε-accuracy.

First consider the case k = 1, where we assume f1(ψN ) to be C2, then

f1(ψN ) = f1(ψN0i) +
∂f1
∂ψN

(ψN0i)(ψN − ψN0i) (4.29)

+ F 1
1i(ψN )

The last term of (4.29) is the Taylor remainder. Application of the Mean
Value Theorem allows us to rewrite the j-th component of F 1

1i(ψN ) as

F 1
1i,j(ψ) =

1
2
[ψN − ψN0i]T

∂2f1j
∂ψ2

N

(ξi)[ψN − ψN0i]

here the matrix ∂2f1j

∂ψ2 (ξi) =
[

∂2f1j

∂ψNp∂ψNq
(ξi)

]
with ξi ∈ [ψN0i, ψN ]. If we assume

that f2(ψN ) is at least one time differentiable, then we obtain for

f2(ψN ) = f2(ψN0i) (4.30)
+ F 0

2i(ψN )

The last term of (4.30) is the Taylor remainder. Application of the Mean
Value Theorem allows us to rewrite F 0

2i(ψN ) as

F 0
2i(ψN ) =

∂f2
∂ψN

(ξi)(ψN − ψN0i)

with ξi ∈ [ψN0i, ψN ]. We will approximate with a desired accuracy the affine
system (4.26) in a predefined region Ψ with a PLM

ẋ = g(ψ) (4.31)

=
Nm∑
i=1

wi(ψN ){f1(ψN0i) +
∂f1
∂ψN

(ψN0i)(ψN − ψN0i) + f2(ψN0i)ψL}
(4.32)
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The difference between the system and the PLM becomes

f(ψ)− g(ψ) =
Nm∑
i=1

wi(ψN )F 1
1i(ψN )

+
Nm∑
i=1

wi(ψN )F 0
2i(ψN )ψL (4.33)

We split the Euclidean norm of (4.33) in two parts. The first and the second
part are respectively the Euclidean norm of the first and the second term of
(4.33). We can write

‖f(ψ)− g(ψ)‖2 ≤ ε

≤ ε1 + ε2

with ∥∥∥∥∥
Nm∑
i=1

wi(ψN )F 1
1i(ψN )

∥∥∥∥∥
2

≤ ε1 (4.34)

∥∥∥∥∥
Nm∑
i=1

wi(ψN )F 0
2i(ψN )ψL

∥∥∥∥∥
2

≤ ε2 (4.35)

We observe that (4.34) is similar to (4.16). This leads to a condition equivalent
to (4.20):

Nm∑
i=1

wi(ψN )1/2
√

nλξ,1 ‖ψN − ψN0i‖22 ≤ ε1 (4.36)

where

λξ,1 = max
i

{
max

j

{
max
ξi

{∣∣∣∣eig(∂2f1j
∂ψ2

(ξi))
∣∣∣∣
}}}

We obtain∥∥∥∥ ∂f2
∂ψN

(ξi)(ψN − ψN0i)
∥∥∥∥
2

≤ λ
1/2
ξi,2 ‖ψN − ψN0i‖2 (4.37)

where

λξi,2 = max
ξi
{
∣∣∣∣eig( ∂f2

∂ψN
(ξi)T

∂f2
∂ψN

(ξi))
∣∣∣∣}
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Then, with the norm given in (4.37) we obtain for (4.35)

Nm∑
i=1

wi(ψN )λ1/2ξ,2 ‖ψN − ψN0i‖2 ‖ψL‖2 ≤ ε2 (4.38)

where

λξ,2 = max
i

{λξi,2}

Now the question is how to choose ε1 and ε2 of (4.36) and (4.38) such that we
can guaranty ‖f(ψ)− g(ψ)‖2 ≤ ε. We substitute

ε1 = αε (4.39)
ε2 = (1− α)ε (4.40)

where

α ∈ (0, 1)

With (4.39) and (4.40) we obtain ε1 + ε2 = ε. Rearranging (4.36) and (4.38)
and substituting (4.39) and (4.40) gives

Nm∑
i=1

ρi(ψN )
(
‖ψN − ψN0i‖22 −

2εα√
nλξ,1

)
≤ 0 ∀ψ ∈ Ψ (4.41)

Nm∑
i=1

ρi(ψN )


‖ψN − ψN0i‖2 −

ε (1− α)

λ
1/2
ξ,2 ‖ψL‖2


 ≤ 0 ∀ψ ∈ Ψ (4.42)

The upper bound on the number of models, that is Nm, is determined by
the minimum of r1(α) =

√
2εα√
nλξ,1

and r2(α) = ε(1−α)

λ
1/2
ξ,2 ‖ψL‖2

, since both (4.41)

and (4.42) have to be satisfied. To construct a PLM with Nm as small as
possible, α has to be computed as the one that maximizes min(r1(α), r2(α)),
that is α∗ = argmaxα∈(0,1) min(r1(α), r2(α)). If we assume that there exists
an α∗ ∈ (0, 1) such that r1(α∗) = r2(α∗) then for any nonzero perturbation δα
such that α∗ + δα ∈ [0, 1] the following holds min(r1(α∗), r2(α∗)) = r1(α∗) =
r2(α∗) > max{δα 
=0|α∗+δα∈[0,1]} min(r1(α∗+δα), r2(α∗+δα)). This can be very
easily seen since for any nonzero perturbation δα of α∗ as suggested, either
r1(α∗+δα) < r1(α∗) or r2(α∗+δα) < r2(α∗) and thus min(r1(α∗+δα), r2(α∗+
δα)) is smaller then min(r1(α∗), r2(α∗)) which implies that a∗ is the unique
maximizer. Next it will be shown that there always exists an α∗ ∈ (0, 1).
Therefore we set

r = r1(α) = r2(α) =

√
2εα√
nNλξ,1

=
ε (1− α)

λ
1/2
ξ,2 ‖ψL‖2

(4.43)
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To determine α we solve the quadratic equation (4.43). So we obtain two roots

α1 = 1 +
A

2B2
+

√
A

B2
+

A2

4B4

α2 = 1 +
A

2B2
−
√

A

B2
+

A2

4B4

where

A =
2ε√

nNλξ,1

B =
ε

λ
1/2
ξ,2 ‖ψL‖2

The parameters (ε, nN , λξ,1, λξ,2, ‖ψL‖2) of A and B are always positive. From
this it follows that we must reject α1 as possible solution for α∗ because α1 > 1.
Only α2 is left as a possible solution, in Figure 4.6 we see that 0 < α2 < 1 for
every A/B2 > 0. We get with α∗ = α2 for the radius, (4.43)

r =
ε

λ
1/2
ξ,2 ‖ψL‖2


−λξ,2 ‖ψL‖22√

nλξ,1ε
+

√√√√2
λξ,2 ‖ψL‖22√

nλξ,1ε
+

λ2ξ,2 ‖ψL‖42
nλ2ξ,1ε

2
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For the case k = 0, the approximation errors are based on the zero-th order
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Figure 4.6: Plot of α2, 0 ≤ α2 ≤ 1 is valid for any A/B2 ≥ 0.

Taylor remainder both for f1 and f2. With an analysis similar to the one
above, the radius r can be computed for the case k = 0, as follows

r = ε

1

λ
1/2
ξ,1 λ

1/2
ξ,2 ‖ψL‖2

1

λ
1/2
ξ,1

+ 1

λ
1/2
ξ,2 ‖ψL‖2

(4.45)

The result now follows from the application of Theorem (4.3.1).
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The result is illustrated by means of two examples. It is clear that the
curse of dimensionality can not be avoided, but the reduction in dimension
considerably reduces this problem for a significant number of modelling prob-
lems, as we shall illustrate with these examples. The first example shows the
case that rk = r1. The second example illustrates the case that rk = r0.

Example 4.6.4 Consider the following application of Theorem 4.6.3 for the
case k = 1. The objective is to approximate the system

ẋ = f(x, u) = x2 + xu (4.46)

with a PLM

ẋ = g(x, u) =
Nm∑
i=1

wi(x)gi(x, u)

where

gi(x, u) = Aix + Biu + ai

such that dfg(Ψ) ≤ 1 for Ψ = {(x, u) | |x| ≤ 2, |u| ≤ 1}. The right-hand side
of (4.46) can be rewritten as follows

f(x, u) = f1(x) + f2(x)u

with

f1(x) = x2 (4.47)
f2(x) = x (4.48)

Rewrite (4.47) as follows

f1(x) = f1
1i(x) + F 1

1i(x)

with the first order Taylor series

f1
1i(x) = f1(x0i) +

∂f1
∂x

(x0i)(x− x0i)

= −x2 + 2x0ix

and the corresponding Taylor remainder

F 1
1i(x) := f1(x)− f1

1i(x) =
1
2

∂2f1
∂x2

(x− x0i)2
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where ∂2f1

∂x2 = 2. We obtain λξ,1 = 2. Next rewrite (4.48) as follows

f2 (x) = f0
2i(x) + F 0

2i(x)

with the zero-th order Taylor series

f0
2i(x) = f2(x0i)

= x0i

and the corresponding Taylor remainder

F 1
2i(x) := f2(x)− f0

2i(x) =
∂f2
∂x

(x− x0i)

where ∂f2

∂x = 1. We obtain λξ,2 = 1. We find for the radius (4.28) r1 = 0.618.
Then it suffices to construct a PLM with Nm models, where

Nm =
⌈

2
0.618

√
1
⌉

= 4

Given that the operating regimes are uniformly distributed over the operating
space we find for the centres of the operating regimes

(x01, x02, x03, x04) = (−1.5,−0.5, 0.5, 1.5)

The corresponding triples defining the polytopic model are

(Ai, Bi, ai) = (2x0i, x0i,−x20i)

see Figure 4.7. The model validity functions are chosen

ρi(x) =
1

2 ‖x− x0i‖22
Compared to Example 4.5.2 the scheduling space is reduced. The result is a re-
duction of local model parameters by a factor two, that is 12 model parameters
now against 24 for Example 4.5.2.

An important practical application of the approximation result, Theorem
4.2.2, for the case k = 0, is that it is always possible to eliminate dependence
of the locally valid models on the variables z, at least if Ψ is compact. This
was also shown in Theorem 4.2.2 and Theorem 4.6.3, and will be illustrated
in the next example.
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Figure 4.7: System and ε-accurate PLM constructed as suggested in Theorem
4.6.3 for the case k = 1. Uniform distribution of the scheduling regimes Zi

over the scheduling space which in this case equals Z = ΨN .

Example 4.6.5 Consider the following application of Theorem 4.6.3 for the
case k = 0. The objective is to approximate the system

ẋ = f(x, u) = x2 + xu (4.49)

with a PLM

ẋ = g(x, u) =
Nm∑
i=1

wi(x)gi(u)

where

gi(u) = Biu + ai

such that dfg(Ψ) ≤ 1 for Ψ = {(x, u) | |x| ≤ 2, |u| ≤ 1}. The right-hand side
of (4.49) can be rewritten as follows

f(x, u) = f1(x) + f2(x)u

with

f1(x) = x2 (4.50)
f2(x) = x (4.51)
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Rewrite (4.50) as follows

f1(x) = f0
1i(x) + F 0

1i(x)

with the zeroth order Taylor series

f0
1i(x) = f1(x0i)

= x20i

and the corresponding Taylor remainder

F 0
1i(x) := f1(x)− f0

1i(x) =
∂f1
∂x

(ξ)(x− x0i)

where
∣∣∣∂f1

∂x

∣∣∣ ≤ |x + x0i| = 4. We obtain λξ,1 = 4. Next rewrite (4.51) as
follows

f2 (x) = f0
2i(x) + F 0

2i(x)

with the zero-th order Taylor series

f0
2i(x) = f2(x0i)

= x0i

and the corresponding Taylor remainder

F 1
2i(x) := f2(x)− f0

2i(x) =
∂f2
∂x

(x− x0i)

where ∂f2

∂x = 1. We obtain λξ,2 = 1. We find for the radius (4.28) r1 = 0.2.
Then it suffices to construct a PLM with Nm models, where

Nm =
⌈

2
0.2

√
1
⌉

= 10

Given that the operating regimes are uniformly distributed over the operating
space we find for the centres of the operating regimes

(x01, x02, ..., x09, x010) = (−1.8,−1.4, ..., 1.4, 1.8)

The corresponding triples defining the polytopic model are

(Ai, Bi, ai) = (0, x0i, x
2
0i)

see Figure 4.8. Note that in this case the PLM description consists of 10∗2 =
20 model parameters (of course not taken into account the 10 structural zeros).
In the case of Example 4.6.4 there were 12 model parameters. The model
validity functions are chosen

ρi(x) =
{

1 if 4 ‖x− x0i‖2 − ε ≤ 0
0 if 4 ‖x− x0i‖2 − ε > 0
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Figure 4.8: System and ε-accurate PLM constructed as suggested in Theorem
4.6.3 for the case k = 0. Uniform distribution of the scheduling regimes Zi

over the scheduling space which in this case equals Z = ΨN .

4.7 Notes and Comments

A universal approximator

We have shown that the right-hand side of a Ck (k ∈ {1, 2}) ordinary differ-
ential equation that describes the real system can be uniformly approximated
to an arbitrary accuracy ε on any compact operating space with a PLM, by
making the decomposition into operating regimes sufficiently fine. Sometimes
also systems defined on an unbounded operating space can be approximated to
an arbitrary accuracy ε with a finite number of operating regimes. The idea
is to use a one to one coordinate transformation that maps the unbounded
operating space into a compact operating space. In the new coordinates the
derived results can be applied. More on how the one to one mapping may be
constructed can be found in [83].

Systems with structure

We have seen that system structure, as presented by Corollary 4.6.2 and The-
orem 4.6.3, can reduce the dimension of the operating space and thereby com-
plexity of the model. Of course, the structures that we have analyzed and for
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which model reduction, in the sense as described before was possible, depends
on the choice of coordinates for the system. Stated otherwise, the distance dfg

that we have used and system structure as we have analyzed are not invariant
under coordinate transformations. Therefore it could be useful to search for
coordinate transformations, in such a way, that within the new coordinates the
system can be approximated with a PLM consisting of fewer parameters, with-
out affecting the approximation accuracy. One can think of transformations
that transform the system to one of the proposed structures in this section.

More formally the question is under which conditions do there exist, and
how can we find, a nonsingular coordinate transformation

x̃ = T−1(x)

such that within the new coordinates x̃ the system (4.2)

.
x̃ = f̃(x̃)

can be approximated with a PLM (4.3)

.
x̃ = g̃(x̃)

in such a way that dfg(X) ≤ ε is achieved, and in such a way that the PLM
g̃(x̃) consists of less models and/or parameters then g(x), the PLM obtained
for the untransformed system. Since f(x) − g(x) = ∂T (x̃)

∂x̃

(
f̃(x̃)− g̃(x̃)

)
, it

follows that dfg ≤ ε holds if
∥∥∥∂T (x̃)

∂x̃

∥∥∥
2

∥∥∥f̃(x̃)− g̃(x̃)
∥∥∥
2
≤ ε or equivalently

(df̃ g̃(X̃) ≤ ε̃)⇒ (dfg(X) ≤ ε)

where ε̃ = ε∥∥∥ ∂T (x̃)
∂x̃

∥∥∥
2

and X̃ = T (X).

It is imaginable that within the new coordinates x̃, the transformed system
f̃(x̃) exhibits some desired system structure in contrast to the untransformed
system f(x), that could reduce ‘the curse of dimensionality’ and therefore
reduce the upper bound Nm. It is conceivable however, that the state trans-
formation comes at the expense of a reduced accuracy margin, ε∗ < ε and
an increased operating region X̃ > X, that has to be covered by Nm mod-
els. It seems natural to search for transformations that reduce dim(z), since
Nm increases inverse proportional with at most

√
ε, while Nm increases expo-

nentially with dim(z). Also state transformations that transform a set of n
first-order nonlinear differential equations into n−nN first-order linear differ-
ential equations together with nN nonlinear first order differential equations
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could considerably reduce the number of PLM parameters, at least if the con-
tribution of

∥∥∥∂T (x̃)
∂x̃

∥∥∥
2
, λξ,x̃, and X̃ is of less importance2. A more detailed

treatment of simplifying state transformations is not the subject of this thesis,
however.

2Note that under observability conditions it is always possible to find locally such state
transformations [57].



Chapter 5

Stability, Controllability and
Observability by Duality

5.1 Introduction

In the previous chapters, the PLM structure was introduced as a candidate
model structure for modeling a class of nonlinear systems, and was shown
to be flexible. From an approximation point of view, every other universal
approximator could equally well be chosen, e.g. a polynomial or radial ba-
sis function expansion or a neural network [24], [30]. The choice for a PLM
is however motivated by the intended application of the model, that is model
based control. Model based control imposes serious restrictions on the model’s
complexity and structure. For control it is important that the model is accu-
rate, and interpretable to some extent, since this may facilitate the design of
a successful control strategy. Furthermore the model by itself should give the
designer information about relevant properties of the system, such as equi-
libria, stability etc.. In addition these system properties have to be revealed
from the PLM, or incorporated in the PLM constructively, without too much
effort.

In this chapter the system analytic properties of PLMs are investigated.
Besides the practical relevance of PLMs, these models are of course a sub-
ject of interest and study on their own. Hence, sometimes only properties
of the PLM are revealed, while in addition sometimes the relation between
properties of the real system and the PLM are given. Due to the resemblance
between PLMs and linear state-space models, the intention is to derive easy
verifiable (algebraic) conditions of practical use for control synthesis, by taking
advantage of linear (and nonlinear) control theory.

In Section 5.3 stability is analyzed, which is a state property of the sys-
tem. From a control point of view, stability of the closed loop system, is

55
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one of the most important properties to analyze. Stability will play a cen-
tral role in this thesis. A definition of stability is given, and two commonly
used methods, namely the so-called first and second method of Lyapunov, are
introduced to establish stability properties of the system. In Section 5.3 we
specialize to PLMs. The presented Lyapunov methods are used to establish
stability properties of the system based upon its approximation, the PLM. In
Section 5.4, input-to-state properties of systems are analyzed. More specifi-
cally, controllability conditions are derived for PLMs. Controllability will play
a role in checking feasibility of a control strategy. Moreover, these properties
give insight on how a PLM structure can be chosen, such that after mod-
elling a controllable model results. In Section 5.5, observability conditions
are presented based on similarities between controllability and observability
for PLMs. These conditions are dual to the ones derived for controllability.
Finally, in Section 5.6, some notes and comments are made regarding the
presented analysis of PLMs.

5.2 Lyapunov Stability

In this section stability of a continuous-time autonomous system

ẋ = f(x) (5.1)

and more specifically also stability of its approximation, the PLM

ẋ =
Nm∑
i=1

wi(x, v){Aix + ai} (5.2)

will be discussed. In particular it will be discussed how the PLM description
can be used to establish local or global stability properties of the real system.
To guarantee stability of (5.1) based on (5.2) we need to know how the PLM
is related to the real system. At that stage the foregoing analysis concerning
approximation with PLMs comes into play. Especially, one can think of the
approximation error bounds derived earlier for the PLM, or the interpretation
of the PLM as an uncertainty description for the real system. The ideas
and concepts that will be introduced, will also play a central role if one is
interested in control. A main objective then will be the stability of the closed
loop system.

To analyze the qualitative behavior of a nonlinear system (5.1) around an
equilibrium point x0i, that is

0 = f(x0i) (5.3)
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one often uses Lyapunov methods. More specifically, to decide about stability
properties of (4.2) there are two Lyapunov methods available. These are the
so-called first and second (or direct) method of Lyapunov. Before stating these
two methods it will be made precise what is meant by the notion of stability
and the type of Lyapunov stability that we want to discuss [64].

Definition 5.2.1 (Stability) Consider the differential equation (4.2) with
unique solution ξ(t, x0) passing through x0 at time t = 0, i.e. ξ(0, x0) = x0.

1. An equilibrium point x0i ∈ X is called stable (in the sense of Lyapunov)
if for any ε > 0, there exists δ > 0 such that

‖x0i − x0‖2 ≤ δ =⇒ ‖ξ(t, x0)− x0i‖2 ≤ ε for all t ≥ 0

2. The equilibrium point x0i ∈ X is called an attractor if there exists δ > 0
with the property that

‖x0i − x0‖2 ≤ δ =⇒ lim
t→∞ ξ(t, x0) = x0i

3. The equilibrium point is called locally asymptotically stable (in the sense
of Lyapunov) if x0i is both stable and an attractor.

4. The equilibrium point is called (locally) exponentially stable (in the sense
of Lyapunov) if x0i is (locally) asymptotically stable (in the sense of
Lyapunov) with exponentially decay rate α > 0, i.e.

lim
t→∞ eαt ‖ξ(t, x0)− x0i‖2 = 0

The region of attraction associated with an equilibrium point x0i is defined
to be the set of all initial states x0 ∈ X for which ξ(t, x0)→ x0i as t→∞. If
this region coincides with X then x0i is said to be a global attractor. We will
say that an equilibrium x0i is globally asymptotically stable if it is stable and
globally attractive. We restrict ourself to (global) asymptotic stability, and
sometimes more specifically to (global) exponential stability of an equilibrium
point x0i of (5.1).

In the first method of Lyapunov the local stability of the equilibrium x0i for
the system (5.1) is related to the stability of the linearization of (5.1) around
the equilibrium point (5.3). Thus the linear dynamics in the local coordinates
xi = x− x0i

ẋi = Aixi (5.4)
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with

Ai =
∂f

∂x
(x0i) (5.5)

is considered.

Theorem 5.2.2 (First method of Lyapunov) The equilibrium point x0i
of (5.1) is locally asymptotically stable if the matrix Ai given in (5.5) is asymp-
totically stable, i.e. the matrix Ai has all its eigenvalues in the open left half
plane. The equilibrium point is not stable if at least one of the eigenvalues of
the matrix A has a positive real part.

Essentially local asymptotic stability and instability of (5.1) can be decided
via Theorem 5.2.2 provided x0i is a hyperbolic equilibrium point, that means
the linearized dynamics (5.4) has no eigenvalues with zero real part.

The second or direct method of Lyapunov for deciding about the (local)
asymptotic stability of an equilibrium point x0i involves the introduction of
positive/negative definite functions and invariant sets. A function V is called
positive definite on some neighborhood N(x0i) of x0i if V (x0i) = 0, and V (x) >
0 for each x ∈ N(x0i), x �= x0i. A set W ⊂ X is called an invariant set for (4.2)
if for all x1 ∈ W the solution ξ(t, x1) of (4.2) remains in W for all t ∈ R

+.
The idea of an invariant set is therefore that a solution remains in the set
once it started there. A point x1 is called an equilibrium point of (4.2) if the
singleton W = {x1} is an invariant set. Equivalently, an equilibrium point
defines a constant solution ξ(t, x0) = x0 of (4.2).

Theorem 5.2.3 (Second method of Lyapunov) Consider the dynamics of
(5.1) around the equilibrium point x0i. Let V be a C1 positive definite function
on some neighborhood N(x0i) of x0i. Then we have

i x0i is locally stable if

V̇ (x) =
∂V

∂x
f(x) ≤ 0 for each x ∈ N(x0i) (5.6)

ii x0i is locally asymptotically stable if (5.6) holds and the largest invariant
set under the dynamics (5.1) contained in the set

W = {x ∈ N(x0i) | ∂V

∂x
f(x) = 0}

equals x0i, that is

V̇ (x) =
∂V

∂x
f(x) < 0 for each x ∈ N(x0i), x �= x0i (5.7)
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The equilibrium x0i is globally stable respectively globally asymptotically
stable if Theorem 5.2.3 holds with N(x0i) = X, and if in addition V (x) is
(globally) proper [67]. A function V satisfying Theorem 5.2.3 is called a Lya-
punov function for (5.1). One can interpret a Lyapunov function V as a sort
of ‘energy’ measure of states, and in the case of asymptotic stability energy
decreases along every nonconstant solution of (5.1) and approaches zero. Since
V (x) → 0 implies x → x0i, then this means that ξ(t) → x0i. The closed (en-
ergy) level sets {x ∈ X | V (x) = C} are always approached from their exterior
to their interior with increasing t and therefore define invariant sets, that is
x1 ∈ WC := {x ∈ X | V (x) ≤ C} implies ξ(t, x1) ∈ WC ∀t ∈ R

+. The second
method of Lyapunov is useful in establishing stability properties of systems
that have nonhyperbolic equilibrium points, that means systems of which the
linearized dynamics (5.4) has some eigenvalues with real part identically zero.
Moreover, in contrast to the first method of Lyapunov, the direct method of
Lyapunov may be used to determine the region of attraction of an asymptoti-
cally stable equilibrium point. This is a desirable property we want to exploit,
since one of the main ideas of the PLM framework is to extend model validity
with respect to a single linearized model. In the case of stability this means
that we want a more precise characterization of the domain of validity of the
stability analysis with respect to an analysis based on the linearization. A
drawback of the second method of Lyapunov for the study of the stability of
an equilibrium point x0i, is that in general there is no systematic way to come
up with Lyapunov functions. For linear systems however, the existence of a
quadratic Lyapunov function is a necessary and sufficient condition for asymp-
totic stability of a linear system. Also for nonlinear systems it is often useful
to try a quadratic candidate Lyapunov function to establish some stability
property. The stability results that follow are all based upon the existence
of a quadratic Lyapunov function. Without loss of generality stability of the
origin is considered. We start with a well known stability result.

Proposition 5.2.4 The following statements are equivalent.

1. The origin is an asymptotic stable equilibrium point of (5.4).

2. All eigenvalues λ(Ai) of Ai have a strictly negative real part.

3. The linear matrix inequality

AT
i P + PAi < 0 (5.8)

admits a positive definite solution P = P T > 0.

Moreover, if one of these statements hold, then the equilibrium x0i of (4.2)
is asymptotically stable.
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Proof. We will proof only that 3 implies 1 because of its importance for
the results to come. Proofs can be found in standard systems and control
literature, for instance [67].

From Theorem 5.2.3 we know that the origin (xi = 0) is an asymptotically
stable equilibrium point of (5.4) if there exists a quadratic Lyapunov function
V (xi) = xT

i Pxi with P = P T > 0 such that dV (ξi(t))
dt < 0 along every nonzero

trajectory of (5.4). dV (xi)
dt = xT

i (AT
i P +PAi)xi and we see that V (xi) = xT

i Pxi

is indeed a Lyapunov function for the system (5.4) if AT
i P + PAi < 0.

Determining whether or not there exist solutions P to the Linear Matrix
Inequalities (LMIs) P = P T > 0 and ATP + PA < 0 is called a feasibil-
ity problem. These LMIs define a convex optimization problem and can be
solved efficiently and in a reliable way using convex optimization routines that
are readily available [1]. Many problems originating from linear systems and
control theory can be reformulated using LMIs, see [17], [64]. A lot of work
is done to extend some of these LMI results for different types of nonlinear
and uncertain systems, confer [17], [64], [39], [61]. Since the PLM shows sim-
ilarities with a linear model, we only consider quadratic candidate Lyapunov
functions and try to arrive at sufficient conditions for stability.

5.3 Stability of a PLM and Implications for the Sys-
tem

The objective is to derive easy verifiable stability conditions for both the sys-
tem and its approximation, the PLM. The stability conditions are based on
the PLM representation, together with a description of the mismatch between
the system and the approximate PLM. Three PLM based stability conditions
are derived that, under appropriate conditions, imply stability of the system.
For each of these three conditions, a different viewpoint for the PLM will be
adopted. Consecutively, the PLM will be viewed as

An uncertainty model That is, with the PLM an uncertainty model set
will be associated, and under appropriate conditions, the system will
be part of that model set. Thus, stability of the system is implied by
stability of the model set.

An ε-accurate model with ε small enough That is, under appropriate
conditions, stability of an ε-accurate PLM implies stability of the system
with the same region of attraction, at least if ε is small enough and if
the system possesses a local stability property. Since the PLM is a
universal approximator, ε can be made as small as desired with a finite
parametrization.
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An ε-accurate model with bounds on Taylor remainders That is, the
mismatch between an ε-accurate PLM based upon local linearizations
(first order Taylor series) is bounded by Taylor remainders associated
with the first order Taylor series. Under appropriate conditions, stabil-
ity of the PLM implies stability of the system.

5.3.1 An Uncertainty Model

Firstly, an uncertainty model, a model set M will be associated with the
PLM. The model set was already defined by (3.15), but since stability issues
are addressed, which is a property of the state, it is restricted to

M({Ai, ai}) :=

{
(5.2)|

Nm∑
i=1

ωi(x, v) = 1, ωi(x, v) ≥ 0

}
(5.9)

Here v ∈ V ⊆ R
l is an external scheduling variable. M is defined as a

collection of PLMs (5.2), where every PLM from the model set is represented
by the same set of autonomous nonhomogeneous linear models (Ai, ai). This
means that the only difference between two PLMs from the same model set
is the realization of the set of scheduling functions, which is constrained by∑Nm

i=1 ωi(x, v) = 1 and ωi(x, v) ≥ 0.

Theorem 5.3.1 M({Ai, 0}) is globally asymptotically stable if there exists
P = P T > 0 such that

AT
i P + PAi < 0 for all i ∈ {1, ..., Nm} (5.10)

Proof. From Theorem 5.2.3 we know that the origin is an asymptotic
stable equilibrium point of a PLM∈ M({Ai, 0}) if there exists a quadratic
Lyapunov function V (x) = xTPx with P = P T > 0 that decreases along every
nonzero trajectory of the PLM. That is, dV (x)

dt =
∑Nm

i=1 wi(x, v){xT (AT
i P +

PAi)x} < 0 for all x �= 0. Note that by definition for all x,
∑Nm

i=1 ωi(x, v) = 1
and ωi(x, v) ≥ 0. If (5.10) is satisfied then dV (x)

dt < 0 for all x �= 0 independent
of the particular realization of the scheduling functions.

Corollary 5.3.2 If for the system (5.1) it holds that f(0) = 0 and ∂f
∂x ∈

Co{Ai} for all x with i ∈ {1, ..., Nm}, then global asymptotic stability of the
origin of M({Ai, 0}) implies global asymptotic stability of (5.1).

Proof. By the mean-value theorem we have f(x) = f(x0i)+ ∂f
∂x (ξ)(x−x0i)

for some ξ that lies on the line segment between x and x0i. Take x0i = 0
and f(x) = ∂f

∂x (ξ)x. Since by assumption ∂f
∂x ∈ Co{Ai}, and by definition
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Co{Ai} = {∑Nm
i=1 wiAi |

∑Nm
i=1 wi = 1, wi ≥ 0}, it follows that all trajectories

of the system are also trajectories of the model setM({Ai, 0}).

Corollary 5.3.2 states that stability of (5.1) can be verified by studying
stability of the model setM, i.e. Theorem 5.3.1 can be applied. In this case,
the model set M gives a description of the expected variation (uncertainty)
in the system, and can be seen as an uncertainty model of the system.

5.3.2 An ε-Accurate Model with ε Small Enough

The next stability result is based upon [79] and the approximation results
that were derived earlier. Informally, it states that stability of a PLM implies
stability of the real system with at least the same region of attraction, if
the approximation of the PLM to the real system is close enough and if the
real system possesses a local stability property. First we make clear that
conditions like Theorem 5.3.1 imply also exponential stability of the origin of
a corresponding PLM. We therefore need the following preliminary result.

Proposition 5.3.3 ([17]) Suppose that dV (x)
dt ≤ −2αV (x) for all trajectories,

then V (x(t)) ≤ V (x(0))e−2αt, so that ‖x(t)‖ ≤ e−αtκ(P )1/2 ‖x(0)‖. Here κ(P )
= ‖P‖ ∥∥P−1

∥∥ the condition number of the matrix P .

The condition that dV (x)
dt ≤ −2αV (x) for all x, implies exponential stability

of the origin of the corresponding PLM and is equivalent to the LMI

AT
i P + PAi + 2αP ≤ 0 for all i ∈ {1, ..., Nm} (5.11)

The fact that Corollary 5.3.1 implies exponential stability can be seen as fol-
lows. Suppose that indeed AT

i P +PAi < 0 is satisfied. This means that there
exists a positive definite matrix M such that AT

i P +PAi+M ≤ 0. Since there
always exists an α > 0 such that 2αP ≤M , i.e. α ≤ 1

2λmin(D−TMD−1) with
P = DTD, exponential stability is implied.

Theorem 5.3.4 Assume that the origin of the system (5.1) is locally asymp-
totically stable. Let the origin of an ε-accurate PLM (5.2) be exponentially sta-
ble with a region of attraction X and such that (5.11) holds with P = P T > 0.
Then this implies asymptotic stability of the origin of the system with region
of attraction X.

Proof. By application of the triangle inequality on norms it holds that

‖ξ(t)‖ ≤ ‖ζ(t)‖+ ‖ξ(t)− ζ(t)‖
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where ξ(t) is the solution of (5.1) and ζ(t) of (5.2). By using the aforemen-
tioned norm bound together with Proposition 5.3.3 and (4.10) we obtain

‖ξ(t)‖ ≤ δ(t, ε) = e−αtκ(P )1/2 ‖ζ(0)‖+ ε
eLt − 1

L

From this expression it is clear that with ε small enough, δ(t, ε) and as a con-
sequence ‖ξ(t)‖ will decrease for small times. If δ(t, ε) decreases as a function
of time, then its minimum is attained at

t = tmin =
1

−α− L
ln(

ε

ακ(P )1/2 ‖ζ(0)‖)

Assume that the origin of the system (5.1) is locally asymptotically stable with
region of attraction Br1(0) ⊆ X. If now ε is small enough such that δ(tmin, ε) ⊂
Br1(0), global stability follows. Since δ(tmin, ε) = δ(ε) is a monotonically
increasing function of ε on the domain (0,∞) and its limit, i.e. limε→0 δ(ε) = 0
it follows that there always exists an ε > 0 such that δ(t, ε) ⊂ Br1(0) for some
positive time t.

Thus under appropriate conditions the PLM preserves global stability
properties of the real system, at least if the approximation is close enough,
that is ε small enough. Since the PLM is a universal approximator, ε can be
made as small as desired with a finite parametrization.

5.3.3 An ε-Accurate Model with Bounds on Taylor Remain-
ders

There is yet another natural way, and from a computational point of view
attractive way to find sufficient conditions for stability of the origin of the
system based upon an ε-accurate PLM. Consider again the system (5.1) and
its ε-accurate approximation, the PLM (5.2), constructed as in Theorem 4.2.2
i.e. with Ai = ∂f

∂x (x0i) and ai = f(x0i) − ∂f
∂x (x0i)x0i. Note that if x0i is

an equilibrium point of (5.1), then also x0i is an equilibrium of the PLM. So,
equilibria of interest are easily preserved by a PLM. Let us consider asymptotic
stability of the origin of the system.

The system (5.1) can be rewritten as

ẋ =
Nm∑
i=1

wi(x){Aix + ai + Fi(x)} (5.12)

where Fi(x) = f(x) − f(x0i) − ∂f
∂x (x0i)(x − x0i). From the proof of Theorem

4.2.2 we know that the mismatch between the system and the PLM is bounded
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by

Fi(x)TFi(x) ≤ Li(x− x0i)T (x− x0i) (5.13)

Li(x− x0i)T (x− x0i) ≤ ε2 (5.14)

for some finite positive number Li. Remember that ε-accuracy was implied
by letting wi(x) > 0 only if (5.14) holds. The following condition, again based
upon an ε-accurate PLM, and a norm-bound on the mismatch between the
system and the PLM, is sufficient for stability of the origin of the system (5.1).

Theorem 5.3.5 Given a PLM (5.2) constructed as suggested in Theorem
4.2.2. If there exist a matrix P = P T > 0, and scalars τij ≥ 0 with j ∈ {1, 2}
satisfying for i ∈ {1, ..., Nm} such that Lix0i

Tx0i ≤ ε2[
AT

i P + PAi + τi1LiI P
P −τi1I

]
< 0

and for all remaining i ∈ {1, ..., Nm} such that Lix0i
Tx0i > ε2

 AT
i P + PAi + (τi1 − τi2)LiI P Pai + x0iLi(τi2 − τi1)

P −τi1I 0
aT
i P + xT

0iLi(τi2 − τi1) 0 Lix
T
0ix0i(τi1 − τi2) + ε2τi2


 < 0

then the system (5.1) is asymptotically stable. Furthermore V (x) = xTPx
serves as a Lyapunov function for the system (5.1) and the corresponding
PLM (5.2).

Proof. From Theorem 5.2.3 we know that the origin is an asymptotic sta-
ble equilibrium point of the system (5.12) if there exists a quadratic Lyapunov
function V (x) = xTPx with P = P T > 0 that decreases along every nonzero
trajectory of the system, that is

dV (x)
dt

=
Nm∑
i=1

wi(x){

 x

Fi(x)
1



T 
 AT

i P + PAi P Pai

P 0 0
aT
i P 0 0




 x

Fi(x)
1


}

Clearly dV (x)
dt < 0 is implied by

 x
Fi(x)

1



T 
 AT

i P + PAi P Pai

P 0 0
aT
i P 0 0




 x

Fi(x)
1


 < 0

for all x �= 0, wi(x) > 0. Note that by construction of the ε-accurate PLM
wi(x) > 0 only if (5.14) holds, i.e.

 x
Fi(x)

1



T 
 LiI 0 −x0iLi

0 0 0
−xT

0iL 0 Lix
T
0ix0i − ε2




 x

Fi(x)
1


 ≤ 0
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Furthermore Fi(x) satisfies (5.13), i.e. the norm bound


 x

Fi(x)
1



T 
 −LiI 0 x0iLi

0 I 0
xT
0iLi 0 −Lix

T
0ix0i




 x

Fi(x)
1


 ≤ 0

Using the S-method [17] a sufficient condition for stability is that there exist a
matrix P = P T > 0, and scalars τij ≥ 0 satisfying for all i ∈ {1, ..., Nm} such
that Lix0i

Tx0i > ε2 (that is for regimes that do not contain the origin)
 AT

i P + PAi + (τi1 − τi2)LiI P Pai + x0iLi(τi2 − τi1)
P −τi1I 0

aT
i P + xT

0iLi(τi2 − τi1) 0 Lix
T
0ix0i(τi1 − τi2) + ε2τi2


 < 0

and for i ∈ {1, ..., Nm} such that Lix0i
Tx0i ≤ ε2 (that is for the remaining

regime that does not contain the origin)[
AT

i P + PAi + τi1LiI P
P −τi1I

]
< 0

Note that by construction of the PLM it holds that for the regime that contains
the origin, ai = 0.

5.4 Controllability

Before any controller design is attempted it is important to know if one can
steer any state to any other state. In other words we want to know if a system
is controllable or not.

A general definition of controllability is given by

Definition 5.4.1 (Controllability) A PLM is (complete or globally) con-
trollable, if for each pair of states x1, x2 ∈ X it holds that x1 can be steered
to x2 with a suitable chosen input u(t).

Just as in the linear case controllability is a central property for nonlinear
systems. From the Kalman controllability rank condition [41], we know that
a n-dimensional continuous-time linear system

ẋ = Ax + Bu

represented by the pair (A, B), is controllable if and only if rankR(A, B) = n
with

R(A, B) := [B, AB, A2B, ..., An−1B]
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The column space (the space generated by the column vectors) of the con-
trollability matrix R(A, B), is the controllability space of (A, B) and will be
denoted by R(A, B).

There is a big resemblance between PLMs and linear systems. In fact, the
PLM is based upon Nm representations of linear models (Ai, Bi, ai) together
with the scheduling functions wi, i.e.

ẋ =
Nm∑
i=1

ωi(x, v){Aix + Biu + ai} (5.15)

In this section, the objective is to find out if one can decide about controlla-
bility of the PLM (5.15) by means of easily verifiable conditions, i.e. through
simple manipulations on its representation like in the linear case.

Firstly, an uncertainty model, a model set M will be associated with the
PLM. The model set was already defined by (3.15), but since controllability
issues are addressed, which is an input-to-state property, it is restricted to

M({Ai, Bi, ai}) :=

{
(5.15)|

Nm∑
i=1

ωi(x, v) = 1, ωi(x, v) ≥ 0

}
(5.16)

Here v ∈ V ⊆ R
l is an external scheduling variable. M is defined as a col-

lection of PLMs (5.15), where every PLM from the model set is represented by
the same set of nonhomogeneous linear models (Ai, Bi, ai). This means that
the only difference between two PLMs from the same model set is the realiza-
tion of the set of scheduling functions, which is constraint by

∑Nm
i=1 ωi(x, v) = 1

and ωi(x, v) ≥ 0.
The general problem of finding necessary and sufficient conditions for de-

ciding when a nonlinear system is controllable is still open, even if one restricts
to classes of systems with much extra structure, such as bilinear systems. For
PLMs this is also the case. Hence, we will sometimes specialize to PLMs of
which the model set M is restricted. This is done by imposing extra struc-
ture on the representation. Sometimes the model set will be restricted. As
an example, consider the model set M({Ai, B, 0} | wi = wi(v)), meaning the
restricted model set, consisting of PLMs represented by homogeneous linear
models (Ai, B), and with scheduling functions wi that depend only on the
external variable v.

In the sequel of this section we mention a few easy verifiable controllability
conditions derived for PLMs.

5.4.1 Kalman Controllability Decomposition

We start with a controllability result which follows from Kalman’s controllabil-
ity decomposition of linear systems. The column space of the controllability
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matrix R(A, B), is the controllable space of (A, B) and will be denoted by
R(A, B). We have the following necessary condition for controllability of the
PLM.

Theorem 5.4.2 The n-dimensional PLM∈ M({Ai, Bi, ai} | wi = wi(v)) is
controllable only if ∪i∈{1,...,Nm}R(Ai, Bi) = R

n.

Proof. Assume that R = ∪i∈{1,...,Nm}R(Ai, Bi) = R
r, r < n. Then there

exists a subspace S such that R ⊕ S = R
n. Let {v1, . . . , vr} be a basis of R

and {w1, . . . , wn−r} be a basis of S. With the change of variables x = TxN ,
where T := [v1, . . . , vr, w1, . . . , wn−r], the system is transformed into (Kalman
controllability decomposition)

ẋN
1 =

Nm∑
i=1

wi(v)
{
AN

i1xN
1 + AN

i2xN
2 + BN

i1u + aN
i1

}

ẋN
2 =

Nm∑
i=1

wi(v)
{
AN

i3xN
2 + aN

i2

}

where xN
1 , xN

2 are r-dimensional and (n − r)-dimensional respectively. It is
clear that the xN

2 component of the state cannot be controlled in any way.

Corollary 5.4.3 The n-dimensional PLM∈M({Ai, Bi, ai} | wi = wi(xN
2 , v))

is controllable only if ∪i∈{1,...,Nm}R(Ai, Bi) = R
n.

Theorem 5.4.2 is exactly the same for discrete-time PLMs [42].

5.4.2 Feedback Equivalence

Sufficient conditions for controllability are derived by explicitly constructing a
controller for a PLM in such a way that the PLM is linearized. If the linearized
PLM is controllable then this implies that also the PLM is controllable.

We first restrict to PLMs from the model setM({Ai, B, ai}), i.e. consisting
of nonhomogeneous linear models sharing the same input matrix.

Theorem 5.4.4 M({Ai, B, ai}) is feedback linearizable (into a nonhomoge-
neous linear model) if for all i, j ∈ {1, . . . , Nm} it holds that (Ai−Aj , ai−aj)
is in the range of B, i.e. (Ai, B, ai) and (Aj , B, aj) are feedback equivalent.
M({Ai, B, ai}) is controllable if also (Ai, B) is controllable.

Proof. If we apply the feedback control law

u =
Nm∑
i=1

wi(x, v){Fix + fi}+ u∗
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to the PLM

ẋ =
Nm∑
i=1

wi(x, v) {Aix + Bu + ai}

the closed-loop system becomes

ẋ =
Nm∑
i=1

wi(x, v) {(Ai + BFi)x + Bfi + ai}

Now, since Ai + BFi = Acl, and Bfi + ai = acl, ∀i ∈ {1, . . . , Nm}, then

ẋ =
Nm∑
i=1

wi(x, v){Aclx + Bu∗ + acl}

= Aclx + Bu∗ + acl

is linearized. This linearizing feedback law is possible if ai − aj = B(fj − fi)
and Ai−Aj = B(Fj−Fi), ∀(i, j) ∈ {1, ..., Nm}. This condition can be satisfied
if (Ai −Aj , ai − aj) is in the range of B, ∀(i, j) ∈ {1, ..., Nm}.

Next we prove that the closed-loop

ẋ = Aclx + Bu∗ + ai (5.17)

is controllable if and only if (Acl, B) is controllable. From the Kalman control-
lability decomposition, see Theorem 5.4.2, we know that (5.17) is controllable
only if (Acl, B) is controllable. If (5.17) is controllable then rank[Acl, B] = n,
and thus acl is in the range of [A, B]. This implies that there are x0,u0 such
that

ẋ = Aclx + Bu∗ + ai = ẋ− ẋ0 = Acl(x− x0) + B(u∗ − u0)

From which it follows that (5.17) is controllable if and only if (Acl, B) is
controllable. If (Acl, B) = (Ai + BFi, B) is controllable then also the PLM is
controllable. But rankR(Ai+BFi, B) = n is equivalent with rankR(Ai, B) =
n, see [67] and the result follows.

We restrict to single input PLMs from the model setM({Ai, biB, 0}) with
(Ai, B) in controller form and bi a scalar.

Ai :=




0 1 0 0 0
0 0 1 0 0
...

...
. . . . . . 0

0 0 · · · 0 1
ai
1 ai

2 · · · · · · ai
n


 B =




0
0
...
...
1
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The idea is to use a preliminary transformation of the control value space, in
such a way that Theorem 5.4.4 can be applied.

Theorem 5.4.5 The PLM ∈M({Ai, biB, 0}) with (Ai, B) in controller form
and bi a scalar, is controllable if the scheduling functions wi(x, v) are such that∑Nm

i=1 wi(x, v)bin �= 0 for all x, v.

Proof. If we use the following input transformation

u =

(
Nm∑
i=1

wi(x, v)bi

)−1

u∗

for the PLM

ẋ =
Nm∑
i=1

wi(x, v) {Aix + biBu} (5.18)

which is well defined if the representation is such that

Nm∑
i=1

wi(x, v)bi �= 0 ∀ x, v, (5.19)

we obtain the transformed system

ẋ =
Nm∑
i=1

wi(x, v) {Aix + Bu∗} (5.20)

with (Ai, B) in controller form. From Theorem 5.4.4 it follows that (5.20) is
controllable. This implies that the PLM (5.18) is also controllable, at least if
condition (5.19) is satisfied.

Corollary 5.4.6 M({Ai, biB, 0}) with (Ai, B) in controller form and bi a
scalar, is controllable if and only if 0 /∈ Co{bin}.

Proof. The sufficiency part follows from Theorem 5.4.5. To prove that
this condition is also necessary we show that 0 ∈ Co{bin} implies the existence
of at least one PLM ∈M that is uncontrollable. SinceM is controllable only
if each PLM ∈ M is controllable, we must conclude that the model set is
uncontrollable, implying necessity of the condition.

Assume 0 ∈ Co{bin}, then with a constant realization of the scheduling
functions {wi |

∑Nm
i=1 wib

i
n = 0}, the PLM becomes the autonomous linear

model ẋ =
∑Nm

i=1 wiAix that is clearly uncontrollable.

The derived controllability results are illustrated with the next example.
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Example 5.4.7 Consider a system described by

ẋ1 = 3x1 + 2 sin(x2) + 5 cos(x2)u (5.21)
ẋ2 = 1.5x1 + 1.25x2

y = x2

The approximate PLM

ẋ =
2∑

i=1

wi(x2) {Aix + biBu}

is obtained from [18].

A1 =
[

3 2
1.5 1.25

]
A2 =

[
3 4/π
1.5 1.25

]

b1B = 5
[

1
0

]
b2B = 5ξ

[
1
0

]
C1 =

[
0 1

]
C2 =

[
0 1

]
and ξ = cos(880). This model describes the dynamics of the system (5.21) in
the range x1 ∈ (−π/2, π/2). The scheduling functions, which depend upon x2,
are depicted in Figure 5.1.

0
0

0.2

0.4

0.6

0.8

1

x2

w1
w2

−0.5π 0.5π

Figure 5.1: Scheduling functions wi(x2) with i = {1, 2} of a PLM.

Using the control law

u = (
2∑

i=1

wi(x2)bi)−1ũ

ũ =
2∑

i=1

wi(x2)Fix + u∗
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we obtain the linear system

ẋ = Aclx + Bu∗ (5.22)

where

Acl =
[ ∗ ∗

1.5 1.25

]
B =

[
1
0

]

and the ∗ can be assigned arbitrary values. Since rankR(Acl, B) = 2 we con-
clude that the PLM is controllable.

5.4.3 Stabilizability

A sufficient condition for stabilizability is derived. This is done by constructing
a controller for the PLM in such a way that the PLM is controlled to the origin.

We restrict to PLMs from the model setM({Ai, Bi, 0}).

Theorem 5.4.8 M({Ai, Bi, 0}) is stabilizable if there exists a (n, n) matrix
Q = QT > 0 and a scalar σ such that

AiQ + QAT
i − σBiB

T
i < 0 for all i ∈ {1, ..., Nm} (5.23)

Proof. Consider an arbitrary feedback u = Fx. The closed-loop model
set becomesM({Ai +BiF, 0, 0}). By application of Corollary 5.10 a sufficient
condition for stabilizability is the existence P = P T > 0, F such that

(Ai + BiF )TP + P (Ai + BiF ) < 0 for all i ∈ {1, ..., Nm}
or equivalently, after a congruence transformation with Q = P−1, the existence
Q = QT > 0, F such that

Q(Ai + BiF )T + (Ai + BiF )Q < 0 for all i ∈ {1, ..., Nm}
After a change of variables, Y = FQ, this yields

QAT
i + AiQ + Y TBT

i + BiY < 0 for all i ∈ {1, ..., Nm}
By application of Finler’s lemma (see [17]) this is equivalent to (5.23).

5.5 Observability by Duality

Before any controller design is attempted based on output information, it is
important to know to which extend state information can be recovered by
means of input and output information. In other words we want to know if a
system is observable or not. The output of the PLM at time t for the initial
state x0 and admissible input function ω ∈ U is denoted by η(t, x0, ω)

A definition of observability is given by



72 Stability, Controllability and Observability by Duality

Definition 5.5.1 (Observability) A PLM is (complete or globally) observ-
able if for some T > 0 and for every admissible input function ω, from the
output η(t, x1, ω) = η(t, x2, ω) for 0 ≤ t ≤ T it follows that x1 = x2.

Just as in the linear case observability is a central property to be checked
for nonlinear systems. From the Kalman observability rank condition [41], we
know that a n-dimensional continuous-time linear system

ẋ = Ax

y = Cx

represented by the pair (A, C), is observable if and only if rankO(A, C) = n
with

O(A, C) :=




C
CA
...

CAn−1




or, equivalently, by duality if and only if the pair (AT , CT ) is controllable,
i.e. rankR(AT , CT ) = n. The row space (the space generated by the row
vectors) of the observability matrix O(A, B), is the observable space of (A, C)
and will be denoted by O(A, C).

There is a big resemblance between PLMs and linear systems. In fact, the
PLM is based upon Nm representations of linear models (Ai, ai, Ci, ci) together
with the scheduling functions wi, that is

ẋ =
Nm∑
i=1

ωi(x, v){Aix + ai} (5.24)

y =
Nm∑
i=1

ωi(x, v){Cix + ci}

In this section, the objective is to find out if one can decide about observability
of the PLM (5.24) by means of easily verifiable conditions, i.e. through simple
manipulations on its representation like in the linear case.

Firstly, an uncertainty model, a model set M will be associated with the
PLM. The model set was already defined by (3.15), but since observability
issues are addressed, it is restricted to

M({Ai, ai, Ci, ci}) :=

{
(5.24)|

Nm∑
i=1

ωi(x, v) = 1, ωi(x, v) ≥ 0

}
(5.25)
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Here v ∈ V ⊆ R
l is an external scheduling variable. M is defined as

a collection of PLMs (5.24), where every PLM from the model set is repre-
sented by the same set of nonhomogeneous linear models (Ai, ai, Ci, ci). This
means that the only difference between two PLMs from the same model set
is the realization of the set of scheduling functions, which is constraint by∑Nm

i=1 ωi(x, v) = 1 and ωi(x, v) ≥ 0.
The general problem of finding necessary and sufficient conditions for de-

ciding when a nonlinear system is observable are still open, even if one restricts
to classes of systems with much extra structure, such as bilinear systems. For
PLMs this is also the case. Hence, we will sometimes specialize to PLMs of
which the model set M is restricted. This is done by imposing extra struc-
ture on the representation. Sometimes the model set will be restricted. As
an example, consider the model set M({Ai, 0, C, 0} | wi = wi(v)), meaning
the restricted model set, consisting of PLMs specified by homogeneous linear
models (Ai, C), and with scheduling functions wi that depend only on the
external variable v.

In the sequel we mention a few easy verifiable observability conditions
derived for PLMs. These conditions are dual to the controllability conditions
and a derivation can be found in [42].

Corollary 5.5.2 The following duality relations hold:

1. ẋ = Ax + Bu controllable if and only if R(A, B) = n or equivalently
R(A, B) = R

n ⇐⇒ ẋ = ATx, y = BTx observable if and only if
O(AT , BT ) = n or equivalently O(AT , BT ) = R

n

2. ẋ =
Nm∑
i=1

wi(v){Aix + Biu} controllable only if ∪Nmi=1R(Ai, Bi) = R
n ⇐⇒

ẋ =
Nm∑
i=1

wi(v)AT
i x, y =

Nm∑
i=1

wi(v)BT
i x observable only if ∪Nmi=1O(AT

i , BT
i ) =

R
n

3. ẋ =
Nm∑
i=1

wi(x, v){Aix+Bu} controllable if rankR(Ai, B) = n and Ai−Aj

is in the range of B ⇐⇒ ẋ =
Nm∑
i=1

wi(v, y)AT
i x, y = BTx observable if

rankO(AT
i , BT ) = n and Ai −Aj is in the range of B

4. M({Ai, biB, 0}) with (Ai, B) in controller form is controllable if and
only if 0 /∈ Co{bi} ⇐⇒ M(AT

i , 0, biB
T , 0) with (AT

i , BT ) in observer
form is observable if and only if 0 /∈ Co{bi}

5. M({Ai, Bi, 0}) is stabilizable if there exists Q = QT > 0 and a scalar
σ such that AiQ + QAT

i − σBiB
T
i < 0 for all i ∈ {1, ..., Nm} ⇐⇒
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M(AT
i , 0, BT , 0) is detectable if there exists Q = QT > 0 and a scalar σ

such that AiQ + QAT
i − σBiB

T
i < 0 for all i ∈ {1, ..., Nm}

5.6 Notes and Comments

Lyapunov stability

Stability results for PLMs and related models are also reported in [17], [33],
[53], [61] and cited references. The stability conditions formulated as LMI
problems can be constructed with ease from an ε-accurate PLM and are easy
verifiable. However since the PLM is based on linear models (often lineariza-
tions) only stability of nonhyperbolic equilibria can be proven in this way.
This is the price to pay for these easy verifiable conditions.

First method of Lyapunov

A PLM can be constructed on the basis of Nm linearizations of (5.1) around
operating points x0i. Note that in that case, equilibria x0i and local stability
properties of the nonlinear system (5.1) are easily preserved by a PLM (5.2).
For instance by constructing a PLM (5.2) with Ai = ∂f

∂x (x0i), ai = −∂f
∂x (x0i)x0i

and the corresponding scheduling function wi(x) such that wi(x0i) = 1 and
also ∂wj

∂x (x0i) = 0 for j �= i. In this case the linearization of the PLM (5.2)
equals the linearization of the system (5.1) around equilibria x0i, and the
linearization is given by (5.4,5.5). Local stability properties are now preserved
as can be verified by application of the first method of Lyapunov, i.e. Theorem
5.2.2.

Controllability and observability

Most of the controllability and observability results are weak in the sense
that necessary conditions are far from sufficient and vice-versa. Moreover the
PLM class is often restricted, by imposing structure on the representation
(Ai, Bi, ai), of the locally valid models. However, the controllability and ob-
servability results are constructive, since they reveal how to design a controller
or an observer for the PLM. Moreover, a nice property of a PLM is that, in
the extreme case, where all scheduling functions are constants, the PLM de-
generates to a LTI system. As a consequence all the results that were derived
are consistent with the well understood theory of linear systems.

Structural controllability

Reducing the structural complexity of a PLM doesn’t have to limit the sig-
nificance of the model. For instance the system matrices of second order
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mechanical systems, with state variables, position and velocity, have a struc-
tural zero and one since the derivative of the position equals the velocity. This
means that controllability results for PLMs represented by pairs in controller
canonical form can readily be applied to nonlinear mechanical systems.

Studying controllability for a restricted model set is related to the field
of structural controllability, see i.e. [67], [33]. Furthermore since with the
model set that we consider a PLDI is associated also the work from [45] could
be of interest for PLMs. Studying structural controllability within the PLM
framework, implies that the PLM is interpreted as an uncertainty model.

An interesting controllability result for differential inclusions is given in
[62]. There the same measure of closeness between systems as in this thesis is
adopted. Since the PLM can be interpreted as an uncertainty model, i.e. a
polytopic linear differential inclusion, this result is of relevance to this work.
Informally, it states that under appropriate conditions reachable sets of the
real system are preserved with an ε accurate differential inclusion.

Also controllability results for time variant linear systems can be applied,
if one views the PLM as an uncertain time varying linear system of which the
parameters vary within a polytope and depend explicitly on time [67].

Nonlinear controllability

The proposed model fits within the class of control affine nonlinear systems.
For these systems a lot of work is done regarding controllability and observ-
ability, see for instance [57] and cited references. However it seems that the
PLM structure does not improve the practical applicability of Lie algebraic
controllability an observability conditions from nonlinear geometrical control
theory [57], with regard to general control affine systems, except for some
special cases [42].

First-order local controllability

For nonlinear systems tests based upon the linearization, sufficient for local
controllability and observability are reported [67]. Since a PLM is based upon
multiple linearizations of the system, it is clear that also local controllability
and observability properties can be preserved.

It is easy to preserve local controllability in a neighborhood of a finite set
of equilibrium points (x0i, u0i) of the nonlinear system

ẋ = f(x, u) (5.26)

with a PLM (5.15), for instance by choosing Ai = ∂f
∂x (x0i, u0i), Bi = ∂f

∂u(x0i, u0i)
and ai = −(∂f∂x (x0i, u0i)x0i +

∂f
∂u(x0i, u0i)u0i and the corresponding scheduling

function wi(x, u) such that wi(x0i, u0i) = 1 and also ∂wj
∂x (x0i, u0i) = 0 for
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j �= i. In this case the linearization of the PLM (5.15) equals the linearization
of the nonlinear system (5.1) around equilibria (x0i, u0i). The obtained linear
dynamics in the local coordinates xi = x− x0i and ui = u− u0i is given by

ẋi = Aixi + Biui

with

Ai =
∂f

∂x
(x0i, u0i), Bi =

∂f

∂u
(x0i, u0i)

Local controllability properties of the system are now preserved by the PLM
as can be verified by application of the following result.

Theorem 5.6.1 ([67]) If the Taylor linearization (Ai, Bi) of a nonlinear sys-
tem in an equilibrium point (x0i, u0i) is controllable, then the nonlinear system
is locally controllable around x0i.
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Chapter 6

Introduction to Modelling

In the first part of this thesis PLMs were introduced, and the system analytic
properties of PLMs were investigated. We presented and dealt with the basis
concepts underlying the analysis of systems for the purpose of control. This
resulted in the development of mathematical control and system theory for
PLMs.

This part is devoted to modelling methods specifically developed for PLMs,
and describes in detail, how to construct a system model of the desired PLM
structure. The main objective is to construct PLMs from a priori available
physical knowledge and data obtained from the system. A distinction has been
made between model based and data based modelling methods.

In Chapter 7, a model based modelling method is considered; so it is as-
sumed that a nonlinear model of the system is available. The method is based
upon the (worst-case) approximation results that were derived in Chapter 4.
It automatically decomposes the operating space in qualitatively different op-
erating regimes, and subsequently specifies a scheduling function and a linear
model for each regime. In contrast to Chapter 4, it constructs the simplest
PLM with the pre-imposed desired accuracy. The method is illustrated by
means of two examples.

In Chapter 8, two data based modelling methods are considered; so it
is assumed that measurements have been obtained from the system. The
first method is based upon the model based modelling method presented in
Chapter 7. This method is partially generalized, in the sense that the condition
of a model of the system being available is relaxed. It will be shown that it
suffices that data generated from the system are available. The method will be
illustrated by an example. This method is followed by a standard parameter
identification method, referred to in the literature as least squares filtering [22].
The applicability of this method is illustrated by means of an example. It is
shown how prior knowledge can be incorporated to enhance the applicability
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of the data based modelling methods.

The remainder of this chapter addresses general modelling issues that are
a requisite for a successful modelling methodology.

6.1 Model Building

In general, building a model from observed data and prior physical knowledge
of the system has to be approached with great care. It consists of a number of
basic steps, that force the modeler to make a lot of choices and assumptions
that can strongly influence the success of the finally obtained model for the
problem at hand. The route to a successful model for the intended application
is therefore in general of an iterative nature. This means that the choices and
assumptions made have to be reconsidered by the modeler if the model per-
formance is not satisfactory. The situation is sketched in Figure 6.1, followed
by a brief description of the basic ingredients of model building and the main
aspects that should be considered. More detailed treatments can be found in
[19], [78], [77], [51].

data priors

experiment
design

model
construction

model
validationmodeller

Figure 6.1: Model bulding and its basis steps. If the model is invalidated by the
modeller, then choices and assumptions that are made regarding experiment
design and model construction have to be reconsidered. Hopefully this will
lead to an improved and valid model.
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6.2 Experiment Design

To design an experiment means to design an input signal for the data generat-
ing system in order to extract information from the generated data, sufficient
to identify1 a PLM from an a priori proposed model set, that is successful
for the modelling task at hand. Design of a suitable input signal is not an
easy task. The shape of the input signal together with the required number
of data points have to be determined. Since nonlinear systems are considered,
not only the frequency range of the input signal but also its amplitude is of
great importance, in order to excite the system everywhere in the operating
space. Satisfactory results were obtained for the PLM by applying a low fre-
quent signal with a large amplitude, with on top of it a small amplitude signal
containing a broad spectrum of higher frequencies [68], [32], [72]. Similar in-
put shaping strategies are reported in literature, e.g. [47]. Intuitively, it is
clear that the number of data points that are needed depends on the smooth-
ness of the system, and the dimensionality of the operating space. If one
views approximation as an hypersurface reconstruction problem then because
of limited data it is not known how regular this hypersurface is in between
the data points. On the other hand, many more data points are needed to
fill a three dimensional cube than a two dimensional cube. This is known as
the curse of dimensionality, because complexity grows exponentially with the
dimension. Furthermore, the number of data points needed depends upon the
number of unknown parameters that have to be identified. One could say that
the total amount of information that is present in a data sequence is bounded;
when this information has to be divided over a larger set of unknown param-
eters the information-per-parameter is reduced leading to a lower confidence
level about the estimates. Of course prior knowledge can reveal some of these
problems. One can use regime information to create more dense data sets for
some regions, thereby reflecting complexity of the underlying system. If the
number of scheduling variables can be reduced with respect to the number
of operating variables then also the number of parameters that have to be
identified is reduced. Also, constraining the model set by restricting to locally
valid models with predefined structure, results in less parameters that have to
be identified. This also positively affects the amount of data needed for the
identification.

1Identification means here building a representative model from the collected data of the
system.
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6.3 Model Construction

This aspect, the core of model building, asks to choose for a specific model
structure, from which a set of candidate models, the model set is derived.
Finally the ‘best’ approximate model in the model set has to be selected.
Therefore a criterion has to be defined that reflects and measures model va-
lidity of the candidate models for the modelling task at hand. This last part
of model construction, the parameter estimation phase, is highly algorithmic.
The different stages of model construction are depicted in Figure 6.2.

model
structure

model
set

model
parameters

data priors

model construction

Figure 6.2: Model construction or model selection consists of three phases.
Firstly, a promising model structure is selected. Secondly, a more specific
collection of models with the selected model structure is selected. This model
set constrains the number of candidate models. Finally, a model from this
model set is selected. In all three phases prior knowledge can be utilized to
enhance the selection capacity. The needed data properties depend on the
model set that is selected. The estimated parameters are often those that best
explain the data.

In the case of PLMs, model construction boils down to approximate mod-
elling rather than exact modelling. This is the more realistic situation since in
this case it is not assumed that the data generating system can be modelled
exactly. This assumption is consistent with the interpretation of a PLM as an
ε-accurate approximate model of the real system. Since constructing a model
means finding an approximate rather than an exact representation, it is not
trivial which type of approximation to choose. The approximate model should
be close to the system in the sense that it is a useful substitute for the specific
modelling task at hand. The model construction phase is in contrast to the
other model building phases very much dependent on the model structure. In
view of this research, we will specialize to model construction for PLMs. The
choice for this model structure was already motivated at the beginning of this
chapter.
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Despite the fact that validity of a given model will depend on its ultimate
use, there are also application independent criteria that reflect the quality
of an approximate model. That is the trade-off between the conflicting re-
quirements, a small approximation error and a small estimation error, which
is similar to the bias-variance trade-off in statistics and in system identifica-
tion [58]. Firstly, if the system is assumed to be outside the representation
capacity of the selected model set then always an error between the system
and its approximation will exist, even if an infinite data set was available. In
this context, a class of models that has large representational power is referred
to as a class of high model complexity or flexibility. The error that the best
approximate model in the model set makes is referred to as the approximation
error (bias in statistics). From the preceding chapter on approximation we
know that for PLMs it holds that the approximation error dfg is proportional
to N

−1/n
m , where Nm is the number of locally valid models and n equals the di-

mension of the scheduling space. From this it follows that for high dimensional
modelling problems n 1, the curse of dimensionality complicates model con-
struction. Secondly, we do not have an infinite amount of data available but
only a finite set of data points from which we construct the model. There-
fore, different data sets convey different information on the system, and the
model constructed from the finite data set might not be the best approximate
model. This results in an additional error, the estimation error (variance in
statistics). With respect to the data side of the problem, the amount and
type of data needed to ensure a small estimation error is referred to as the
sample complexity. The approximation error and the estimation error are two
components of the generalization error. The model complexity, the sample
complexity and the generalization error are therefore related. The relation is
illustrated in Figure 6.3.

Simply, the approximation error results from a finite parameter set and
the estimation error is due to finite data (and/or noise). Simple models would
have high approximation errors but low estimation errors while for complex
models the opposite would be true. Schematized this is shown in Figure 6.4.
Two different sets of eight data points generated by an underlying mapping are
given and two models different in complexity are fitted to the data. Both have
a large generalization error. Whereas in Figure 6.4a this is the result of a large
estimation error, in Figure 6.4b this is the result of a large approximation error.
With the more complex model the two different data sets lead to two models
that differ substantially; the model is sensitive to the finite data set. The model
of low complexity is much less sensitive to the finite data set; the two different
data sets lead to two models that do not differ substantially. The trade-off
between model complexity and sample complexity is manifest in that complex
models can fit many functions but need large amount of data, while simple
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selected modelset

identified model

best model

system

Figure 6.3: Illustration of the relation between the approximation, estima-
tion and generalization error. The distance between the best model from the
selected model set and the system is the approximation error. The distance
between the identified model and the best model from the model set is the
estimation error. The generalization error is a sum of the estimation error and
the approximation error.

models need only small amounts of data but have a small representational
capacity. The trade-offs to be made between a small approximation error and
a small estimation error, and more generally between model simplicity and
model accuracy have to be reflected as much as possible by the choice of a
model set. A model should not be more flexible then necessary. To overcome
the problem of a high variance or estimation error it is important to restrict
the model set as much as possible by incorporating prior knowledge. For the
PLM one can distinguish between regime information, i.e. information on the
scheduling variables or functions, and information on (the structure of) the
models that are scheduled. This knowledge reduces the number of parameters
to be estimated and thus, also reduces the computational cost associated with
this model construction phase.

In the parameter estimation phase the objective is to select the best model
from the model set. The model is selected that is in some way the closest to the
system, e.g. that explains best the data generated by the system. The criterion
of closeness has to be defined by the modeler. This criterion has to convey the
important properties of the system to be preserved. In this way the parameter
estimation phase is reduced to an optimization problem, i.e. the minimization
of a criterion that measures closeness over all candidate models from the model
set. Since the model structure is fixed, this boils down to finding a set of
optimal model parameters. In the case of PLMs a suitable criterion to identify
a set of PLM parameters for the ‘modelling for control’ task could be the
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(a) Higher complexity model (b) Lower complexity model

Figure 6.4: Bias-variance trade-off. Two time-series are fitted to respectively
a higher and lower complexity model.

error measure dfg as defined in Chapter 4. From a computational point of
view, a convex optimization problem is to be preferred. This is often achieved
by choosing quadratic criteria and model sets that consist of models that
are linear in the free parameters. This can also be done for PLMs. Once
scheduling functions have been chosen, the PLMs becomes linear in the local
model parameters. So, a priori available knowledge about these scheduling
functions could simplify the model construction problem.

6.4 Model Validation

Finally, we give some short comments on another aspect of modelling, namely
validation. Consider the case where an experiment was designed to acquire a
suitable data set, a model structure was chosen to approximate the underlying
system, and its parameters were given values by means of a not yet specified
estimation method. Do we thus have a model that we can exploit for our
purposes? No, not yet. Different considerations bring us to postpone such a
conclusion. How do we know that our model captures the desired aspects of
the system sufficiently well?

By construction, the estimation process will always yield a set of parameter
values. When the model structure is not able to describe the system this will at
least result in an approximation error. Furthermore, if our model structure is
nonlinear in the parameters, often a nonconvex optimization problem results,
and no guarantee can be given that the parameter values found are the best
possible, in the sense that only a local minimum of the estimation criterium
is found. This is often referred to as the problem of local minima.

But even if our estimated model ‘explains’ the data used for estimation to
a sufficient degree of accuracy, we should not forget that only a finite noisy
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data set was used. It is quite possible that when confronted with a ‘fresh’ data
set from the system, the model will perform not as well due to the estimation
error, which, is the result of a model structure of high complexity combined
with a small data set. On the other hand, it is also possible that the data
set used for estimation of the model parameter values did not cover all the
system’s peculiarities or regions to a sufficient degree; this is a problem of
persistence of excitation.

The last problem can be solved by arranging an experiment which gives
us a data set that does fulfill the condition of persistence of excitation. But
as already mentioned, in general this is not an easy task.

To reduce the probability of not reaching the minimal possible value of
the estimation criterium, the estimation of the parameter values is repeated
several times for the same model structure under slightly varying (starting)
conditions. This gives us some assurance that the ‘best’ model within a par-
ticular model structure, given a particular data set, has been found. However,
it is not clear if this is what we want, since this ‘best’ model that minimizes
the estimation criterium is based on a particular finite data set, and a large
estimation error may be the result. We actually want a small generalization
error. It is possible that the ‘best’ model as the term is used in this paragraph
has a larger generalization error than a slightly ‘worse’ model.

Several validation methods have been devised which all try to alarm us in
case we come across some of the mentioned pitfalls. The most obvious and
pragmatic way of validation is to investigate how well the model is capable
of reproducing the system behavior on a new set of data (the cross-validation
data) that was not used to fit the model. That is, we supply both the model
and the system with an input different from the one used to obtain the esti-
mation data set, and compare the model and system output afterwards. We
may visually inspect the result or use a more quantitative measure of fit, e.g.,
the root-mean-square value of the difference between the outputs.

A second basic method for model validation is to examine the residu-
als (‘leftovers’) from the estimation process, i.e. the differences between the
measured and the estimated output. The advantage hereby is that separate
validation data sets are not necessary. A number of statistical residual anal-
ysis tests can be performed to see if what the model could not ‘explain’ still
contains traces of a deterministic nature, e.g., unmodelled dynamics. For a
detailed treatment the reader is referred to [21], [50], [15]. These tests can also
be applied to a validation data set.

If possible, it is wise to use all the available a priori information to validate
the model, for instance, does the model make physically sense? Since the
PLM has locally a clear physical interpretation, its parameter values can be
qualitatively validated by inspection.

Besides these application independent criteria for assessing the quality of
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a model, validity of a proposed model should in the first place be judged by
its success within the intended model application.
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Chapter 7

Building PLMs from known
Nonlinear Models

7.1 Introduction

In this chapter a model based modelling method is considered. It is assumed
that a nonlinear model of the system is available. The method is based upon
the approximation results that were derived in Chapter 4. It automatically
decomposes the operating space in qualitatively different operating regimes,
and subsequently specifies a scheduling function and a linear model for each
regime. For notational convenience the modelling method is presented for
systems without an output equation, i.e. (7.1), nonetheless (by augmenting the
right-hand side of the system with the right-hand side of the output equation)
it naturally extends to systems with outputs [81].

A novel method is developed that, given an a priori sufficiently smooth
nonlinear continuous time state space description of the system

ẋ = f(x, u) (7.1)

with the state x ∈ X ⊆ R
n, the manipulated input u ∈ U ⊆ R

m, automatically
constructs a PLM

ẋ =
Nm∑
i=1

wi(x, u){Aix + Biu + ai} (7.2)

= g(x, u)

with Nm as small as possible, and such that within the region of interest, a
compact operating space Ψ ⊆ X × U ,

dfg(Ψ) ≤ ε (7.3)
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with ε > 0 pre-specified by the modeler.
The distance dfg between the right-hand side of the system and the PLM

was already defined in (4.1). It is known from Theorem 4.6.3 that with this
particular choice of distance between the system and the PLM, an upper bound
for the number of scheduling regimes Nm can be computed, sufficient to ensure
the existence of an ε-accurate PLM. A PLM that achieves this accuracy is
built from a set of Nm Taylor series expansions of the system, equidistantly
distributed over the scheduling space Z.

The above-mentioned upper bound, will be denoted by Nupper
m and is based

on a worst-case situation. It is assumed that the maximum nonlinearity as
measured with an upper bound on the Taylor remainders corresponding to
the aforementioned Taylor series expansions, is attained everywhere in the
scheduling space, and as a consequence the scheduling space is uniformly par-
titioned into scheduling regimes.

Thus the objective is to select an ε-accurate PLM from the model set

M(Nm ≤ Nupper
m ) := {(7.2) | Nm ≤ Nupper

m } (7.4)

with Nm as small as possible. Determination of a PLM∈ M(Nm ≤ Nupper
m )

implies that a PLM from the model set has to be selection. The modelling
problem can be divided into three subproblems that are solved sequentially.

problem 1: operating space → scheduling space The scheduling space
is determined. The dimension of the scheduling space is reduced as much
as possible compared to the operating space, since Nm grows exponen-
tially with the dimension of the scheduling space Z.

problem 2: scheduling space → scheduling regimes The Nm schedul-
ing regimes Zi are determined. The number of scheduling regimes Nm

is reduced as much as possible. The result is a nonuniform partitioning
of the scheduling space.

problem 3: scheduling regimes → PLM parameters The parameters
are determined either by linearization of the system in the centers of
the obtained operating regimes or by a least squares fitting procedure.

In each of the three steps the model set is restricted and the number of
candidate PLMs is eventually reduced to one. In Section 7.2 through Section
7.4 a more in depth description of the three subproblems is given as well as
a solution to each of the three subproblems is suggested. The situation is
depicted in Figure 7.1.

In Section 7.5 the modelling method is illustrated by two examples, the
modelling of two nonlinear mechanical systems. Finally, in Section 7.6, some
notes and comments are made regarding the proposed method.
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f(ψ)

Ψ→ Z Z ⊆ (∪iZi)

g({Ai, Bi, ai, wi})
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dfg ≤ ε

Nm ≤ Nupper
m

Figure 7.1: Sketch of the modelling problem. The modelling problem is divided
into three subproblems. These subproblems are solved sequentially and in such
a way that ε-accuracy of the finally obtained PLM is assured.

7.2 From Operating Space to Scheduling Space

Since the system (7.1) operates on the operating space, it seems natural to
schedule the models (Ai, Bi, ai) from the PLM (7.2) on the operating space.
However, if the scheduling space is of high dimension, the curse of dimension-
ality will restrict the applicability of the polytopic linear modelling approach.
The core of the problem is that the number of scheduling regimes, needed to
uniformly partition the scheduling space, increases exponentially with the di-
mension of the scheduling space, see Theorem 4.3.1. In some cases the models
can be scheduled on a space of lower dimension then the operating space, which
will reduce the modelling problem considerably. In these cases the structure
of the system is exploited to reduce dimensionality.

Thus, first of all a scheduling space Z is defined of which the dimension is
reduced as much as possible compared to the dimension of the operating space
Ψ, the space on which the system (7.1) operates. In this step the structure
of the right-hand side f(ψ), of the system (7.1) is exploited. This means
components of the operating vector ψ that enter f(ψ) in an affine way are
excluded from the scheduling variables z, since this does not negatively effect
the approximation capabilities of PLMs. This completely agrees with Theorem
4.6.3, where it was already shown that an exponential reduction of the number
of models Nm involved in the PLM description can be achieved in this way.

In summary, the set of candidate models is reduced, since the model set
(7.4) is restricted, i.e. M({wi(z)} | Z determined) ⊂M(Nm ≤ Nupper

m )
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(1) (2)
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Figure 7.2: The procedures aggregation (1) and segregation (2) for a two
dimensional scheduling space Z. The aggregation procedure reduces complex-
ity of the PLM by means of regime aggregation. The segregation procedure
increases complexity of the PLM by means of regime segregation.

7.3 From Scheduling Space to Scheduling Regimes

This subproblem is the core of the modelling problem. In this step the number
of models Nm is reduced compared to Nupper

m by dropping the idea of uniform
partitioning. The key assumption is that in general, nonlinearity, as measured
with a norm-bound on the first (or zeroth) order Taylor remainder in an op-
erating point of the system, varies as a function of the operating point and
therefore depends on the scheduling variable z. In the process of reduction the
computation of Nupper

m will play an important role.
In this step a minimum number of scheduling regimes Zi is constructed that

covers the compact scheduling space Z. These regimes have to be constructed
in such a way that for this scheduling regime configuration an ε-accurate PLM
exists. Theorem 4.6.3, and in particular the formula to compute the number
of regimes Nm sufficient to achieve ε-accuracy, act as a guide to arrive at a
non-uniformly partitioned scheduling space consisting of a minimum number
of partitions. As opposed to Theorem 4.6.3 however, the formulas will be
applied to evaluate Nm within local operating regions instead of over the
whole operating space of interest.

Two procedures will be introduced; segregation and aggregation, that au-
tomatically decompose Z in qualitatively different scheduling regimes Zi such
that Z ⊆ (∪iZi) and the modelling objective, i.e. ε-accuracy can be satisfied.
The idea of both procedures is illustrated by Figure 7.2.

Aggregation is a procedure that describes how to aggregate regimes when
starting from a PLM consisting of Nm = Nupper

m regimes, such that iteratively
a simpler realization is obtained. Hence, complexity is reduced by aggrega-
tion. Segregation is a procedure that describes how to segregate regimes when
starting from a simple PLM consisting of Nm = 1 regime, such that iteratively
a more complex realization is obtained. Hence, complexity is increased by seg-
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Figure 7.3: Regime aggregation.

regation. It is also possible to alternate between the procedures to enlarge the
number of possible scheduling regime configurations.

7.3.1 Regime Aggregation

The aggregation procedure starts from a uniformly decomposed scheduling
space consisting of Nupper

m regimes, as defined in Chapter 4. The situation
is depicted in Figure 7.2a. The preliminary analysis in Chapter 4, and in
particular the computation of Nm, allows to state a very useful and almost
trivial definition of a scheduling regime. Namely, a scheduling regime is a
region Zi within the scheduling space Z for which it holds that Nm = 1,
or equivalently in shorthand notation Nm(Zi) = 1. We start with Nupper

m

regimes and it is tried to unite scheduling regimes conceptually as follows: if
Nm(Zi ∪ Zj) = 1 for two adjoining scheduling regimes Zi and Zj then these
regimes are aggregated to obtain a new scheduling regime Zij . The model is
simplified since Nm is reduced. This action is repeated until no further model
simplification occurs. Conceptually the procedure is illustrated in Figure 7.3.

In practice, to automate this procedure of finding and aggregating two ad-
joining operating regimes, several choices and restrictions have to be made that
may influence the final result. There may be several candidate regimes that
equally well qualify for aggregation. Hence, priority has to be given to certain
combinations for avoiding possible deadlock situations in the implementation
of the procedure.
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Figure 7.4: Regime segregation.

7.3.2 Regime Segregation

Contrary to the aggregation procedure, the segregation procedure starts with
the most simple PLM, consisting of a single linear model, which covers the
entire scheduling space as depicted in Figure 7.2c. Step by step the model com-
plexity is increased conceptually as follows: split the nZ dimensional schedul-
ing space ‘in the middle’ in two scheduling regimes Zi and Zi+nZ . This can be
done in nZ different ways, i.e. i = {1, ..nZ}. Compute the number of models
Nm = Nm(Zi)+Nm(Zi+nZ ) for all obtained configurations that is sufficient to
achieve ε-accuracy. Select the configuration with the lowest number of mod-
els. One segregation step is then completed. Segregation is repeated until
Nm(Zj) = 1. Conceptually the procedure is illustrated in Figure 7.4.

Notice that the segregation procedure is restricted to decompose the schedul-
ing space in the middle into two regions. This restricts the possible regime
configurations that can be obtained after executing the segregation procedure.
Nevertheless the procedure can be further improved by adding the possibil-
ity to split the scheduling space not only into two, but in every larger prime
number i = 3, 5, 7, 11, 13, 17, .... This allows for more different regime con-
figurations. The improvement is a reduction of the number of models Nm.
However we observed that adding these additional configurations, for i > 3,
will not necessarily yield a significant reduction of the number of models Nm

[81]. Moreover, considering more candidate configurations is more computa-
tional intensive, which may be undesirable. Therefore, only splitting in two
and three regions is considered.
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7.4 From Scheduling Regimes to PLM Parameters

Two procedures were presented, aggregation and segregation, that decompose
the scheduling space Z in Nm disjoint regions Zi, such that ε-accuracy can
be achieved. A scheduling regime Zi is characterized by its center z0i and
width ri. For each scheduling regime Zi a model Mi, the triple (Ai, Bi, ai) will
be defined together with a scheduling function wi(θi), ergo the PLM will be
specified. If the scheduling function parameters θi are to be computed simul-
taneously with the model parameters Mi a complex nonlinear programming
problem results. We like to point out that our experience obtained with the
procedures aggregation and segregation, indicates that the qualitative infor-
mation, concerning the validity of the scheduling regimes, provides enough
knowledge to construct the scheduling functions.

The scheduling functions are chosen as normalized basis functions, centered
in the middle of operating regime i and with support in accordance with the
size of scheduling regime Zi. The parameters of the linear models are either
obtained by linearization of the system in the centers of the scheduling space,
or by a least squares fitting procedure.

7.4.1 Constructing Scheduling Functions

The scheduling functions are the result of a normalization of a set of basis
functions, the model validity functions ρi. For instance as in (3.6)

wi(z, θi) =
ρi(z, θi)∑Nm
j=1 ρj(z, θi)

A few possible choices for the ρi functions are given in Example 4.2.3. The
basis functions ρi have support in the region Zi and tend to zero outside this
region. Furthermore

∑Nm
i=1 ρi(z) ≥ 0 for all z ∈ Z. A common choice is the

multivariate Gaussian function (4.8):

ρi(z, θi) = e−(z−θi1)
TΘ−1

i (z−θi1)

where Θi = 2diag(σij) with j = 1, ...,dim(z), and θi = [θi1,Θi] are the un-
knowns to be determined. The unknowns denoted by θi are expressed as a
function of the centre z0i and width ri of regime Zi. Typically the maximum
value of ρi(z) is attained in z0i, which is ‘the centre’ of operating regime Zi,
that was determined with the procedure aggregation or segregation. Therefore
θi1 = z0i. The variance matrix Θi is expressed as a function of the width ri
of the scheduling regime, i.e. Θi = γIri. Here γ is a scaling parameter that
considers the overlap between the validity functions. A typical value of γ is
between 0.25 and 2. There will almost be no overlap when γ = 0.25 and a
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large overlap when γ = 2. Sometimes prior knowledge about the system is
a good guide for the choice of γ. It may appear that the choice of the type
of validity function has significant impact on the model. However it is our
experience that both the efficacy of the algorithm and the model predictions
are quite insensitive with respect to this choice, hence the specification of the
type of validity function does not seem to require much prior knowledge of
the system. On the other hand, the choice of the user specified parameter γ
appears to be of major influence.

7.4.2 Constructing Linear Model Parameters by Linearizations

It is known from Chapter 4 that with the adopted choice of distance between
systems, an ε-accurate PLM is ensured if the model parameters are chosen as
linearizations of the system around ψ0i, the centers of the operating regimes.
This statement still being valid, a useful choice for the model parameters is:

Ai = ∂f
∂x (ψ0i) Bi = ∂f

∂u(ψ0i) ai = f(ψ0i)− ∂f
∂ψ (ψ0i)ψ0i (7.5)

7.4.3 Constructing Linear Model Parameters by Least Squares

Another method which yields good results, is to determine the model param-
eters with a least squares method. Therefore the system is linearized in Ng

points ψ0i, uniformly scattered over the scheduling space. Evidently it is not
possible to linearize the system in every point of the operating space. It is
important that Ng  Nm, to assure enough information is available to com-
pute reliable model parameters. At the points of linearization, i.e. ψ0i with
i = 1, ..., Ng the obtained linearized model is an exact representation of the
system and becomes

ẋ = A(ψ0i)x + B(ψ0i)u + a(ψ0i)

Here the matrices are defined as in (7.5). For the Ng points we can write for
the error between the system and the PLM

A(ψ0i)x + B(ψ0i)u + a(ψ0i)−
Nm∑
j=1

wj(ψ0i){Aix + Biu + ai} = EABa,i

where i = {1, ..., Ng}. This error can be split in different parts to reflect the
contribution of the different components of the PLM description, i.e. EABa,i =
EA,i + EB,i + Ea,i with

EA,i = A(ψ0i)−
Nm∑
j=1

wj(ψ0i)Aj
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Similar expressions hold for the matrices EB,i and Ea,i. Note that the number
Nm and the scheduling functions wj are already determined as a result of the
application of the aggregation or segregation procedure.

For the first part of EABa,i, i.e. EA,i, the objective is to minimize the cost
function

J({Aj}) =
Ng∑
i=1

‖EA,i‖2F (7.6)

with respect to the unknown parameters {Aj} with j = {1, ..., Nm}. Here

‖E‖F =
√√√√ ∑

1≤i≤n
1≤j≤m

|E(i, j)|2

is the Frobenius norm of the matrix E ∈ R
n∗m, i.e. the square root of the

sums of the squares of the entries of the matrix E. Similar expressions hold
for J({Bj}) and J({aj}). In the sequel the least squares estimates for {Aj}
are derived. The remaining unknown parameters {Bj , aj} can be obtained
similarly. Thus

‖EA,i‖2F =
n∑

j,k=1

|EA,i(j, k)|2

=
n∑

j,k=1

∣∣∣∣∣A(ψ0i)(j, k)−
Nm∑
l=1

wl(ψ0i)Al(j, k)

∣∣∣∣∣
2

=
n∑

j,k=1

∣∣A(ψ0i)(j, k)− w(ψ0i)TAPLM (j, k)
∣∣2

where

w(ψ0i)T = [w1(ψ0i), · · · , wNm(ψ0i)]

and

APLM (j, k) = [A1(j, k), · · · , ANm(j, k)]T .

With

W T = [w(ψ01), · · · , w(ψ0Ng)]

and

A(j, k) = [A(ψ01)(j, k), · · · , A(ψ0Ng)(j, k)]
T
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the cost function (7.6) becomes

J({Ai}) =
n∑

j,k=1

‖A(j, k)−WAPLM (j, k)‖2

The least square estimate is

APLM (j, k) = (W TW )−1W TA(j, k)

The other free parameters of the PLM can be determined in the same way,
i.e.,

BPLM (j, l) = (W TW )−1W TB(j, l)

and

aPLM (j) = (W TW )−1W Ta(j)

7.5 Examples

The modelling method, as it was described in this section will be illustrated
by two examples. In each of the two examples the objective is to derive the
simplest ε accurate PLM. It is assumed that a suitable white-box model for the
system is available. The two systems under consideration belong to the class
of nonlinear mechanical systems that are often encountered in applications
[57]. The state space equations describing systems of this particular class are

d

dt

[
q
q̇

]
=
[

q̇
−M(q)−1(C(q, q̇) + k(q))

]
+
[

0
M(q)−1B

]
u (7.7)

with input u and state x = [q, q̇]T , where q are the displacements and q̇ the
velocities. Here M(q) is the positive definite mass matrix, B is denoted the
distribution matrix, k(q) represents the conservative generalized forces, and
C(q, q̇) comprehends the remaining generalized forces such as the Coriolis,
centrifugal and friction components. The particular structure of the model
(7.7) will be exploited in the two examples. More specifically, since the input
enters the system in an affine way, this variable can be excluded from the
set of scheduling variables without affecting the approximation capability of
the PLM, thereby reducing the complexity of the modelling problem. In this
way the set of candidate PLMs is reduced. This is in fact the result of the
application of Theorem 4.6.3, and as already mentioned, a possible solution to
the first of the three subproblems in which the modelling problem was divided
(see Figure 7.1).
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The first example, i.e. modelling of a rotating robot arm subjected to sig-
nificant friction in the drive line, shows a local nonlinearity. This implies that
on any non-compact operating region an ε-accurate PLM exists, consisting of
a finite number of models, in contrast to a system that features a global non-
linearity. Because of the strongly local character of the nonlinearity, i.e. the
friction torque characteristic, we expect that the number of models Nm will be
reduced significantly as compared to Nupper

m , see Theorem 4.6.3, by dropping
the idea of uniform partitioning and applying the aggregation or segregation
procedure.

The second example, i.e. modelling of an inverted pendulum on a cart,
shows a global nonlinearity. This system is more complex in the sense that
the scheduling space is two dimensional instead of one dimensional. Because of
the global nonlinearity, the reduction of Nm is expected to be less significant,
as compared to the previous example.

The examples will illustrate the modelling method and its features. The
choice for the two white-box models used in the examples is motivated by
the fact that they show great similarity with those located in our laboratory.
The modelling method was automated as a Matlab implementation. A more
detailed description of the modelling method for these specific examples can
be found in [81] and [11].

7.5.1 A Rotational Robotic Manipulator System

Consider the rotating robot arm from Figure 7.5, which is subjected to signifi-
cant friction in the driveline. The rotating robot arm is a nonlinear mechanical

q

u

Figure 7.5: Rotational robotic manipulator.

system with one degree of freedom q, where q represents the angular displace-
ment of the arm, and u is the motor input current. The state space equations
(7.7) reduce to

d

dt

[
q
q̇

]
=
[

q̇
−M−1C(q̇)

]
+
[

0
M−1B

]
u (7.8)
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with M = 0.0292 [Nms2] the effective inertia of the motor-transmission-
rotating arm combination, B = 16 [NmV −1] is the motor gain, and C(q̇) is
the friction torque. Friction models that are often used for modelling purposes
are depicted in Figure 7.6. A survey on friction models is given in [32]. The

velocityvelocity

velocityvelocity

friction torque

friction torquefriction torque

friction torque

(b)(a)

(c) (d)

Figure 7.6: Friction models. (a) viscous friction model, (b) Coulomb+viscous
friction model, (c) Coulomb+viscous+Stribeck friction model, (d) continuous
Coulomb+viscous+Stribeck friction model.

friction torque is assumed to be a continuous friction model consisting of a
Coulomb part (Cc), a viscous friction part (Cv), and the Stribeck friction
effect Cs, i.e.

C(q̇) = Cc(q̇) + Cv(q̇) + Cs(q̇)

where

Cc(q̇) = Tc
2
π

arctan(κq̇)

Cs(q̇) = (Ts − Tc)e
−
(
q̇
vs

)2 2
π

arctan(κq̇)

Cv(q̇) = σq̇

See Figure 7.6d for the qualitative relation between friction torque and angular
velocity. The friction parameters values are Tc = 0.416 [Nm], Ts = 0.4657
[Nm], vs = 0.2 [rad/s], σ = 0.0135 [Nms], κ = 1000[−]. All the parameter
values are estimates obtained from measurements on a real rotating robot
arm in the mechanical engineering laboratory. The unknown parameters were
estimated with standard parameter estimation methods [22].
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In this example the objective is to derive the simplest PLM that achieves
ε-accuracy, this means that it is tried to minimize the number of scheduling
regimes Nm. The modelling problem is divided into 3 subproblems as de-
picted in Figure 7.1, and solved sequentially following the modelling approach
presented earlier in this section.

Subproblem 1: From Operating Space to Scheduling Space

The operating space is defined as the product space of the state space with
the input space, i.e. Ψ = X × U where x = [q, q̇]T ∈ X, q ∈ X1, q̇ ∈ X2,
and u ∈ U . From Corollary 4.6.2 we know that it is sufficient to schedule
the models over the angular velocity q̇ only, instead of over all the operating
variables q,q̇ and u. This is because the variables q and u enter the model in
an affine way. Hence the scheduling space Z = X2. Corollary 4.6.2 tells us
that there will always exist a PLM with Nm finite, at least if Z is compact.
Therefore it is assumed that Z = {q̇ | |q̇| ≤ 25[rad/s]}1. The result is a
dimensionality reduction of the next modelling subproblem.

Subproblem 2: From Scheduling Space to Scheduling Regimes

In this step the number of models Nm is reduced as much as possible compared
to the upper bound from Corollary 4.6.2. This upper bound is based on a worst
case scenario, and the result is a uniform partitioning of the scheduling space
in Nupper

m scheduling regimes, where

Nupper
m = Πnz

i=1

⌈
ei√
2ε

√
λξn

1/2
N nz

⌉

Here nz = 1 the dimension of the scheduling space, nN = 1 the number of
scalar nonlinear differential equations involved in the state-space description,
e1 = 25 half the width of the scheduling space, ε the user specified demanded
accuracy of the PLM, and λξ = 53.59 the maximum eigenvalue of the Hessian
matrices evaluated over the scheduling space and associated with the Taylor
remainder, i.e. a measure of nonlinearity of the system. Since λξ varies as a
function of q̇, we can use the procedure aggregation or segregation to reduce
the number of models. In Table 7.1 the number of models Nm, sufficient to
assure ε-accuracy for, respectively, uniform decomposition, aggregation and
segregation of the operating space are given.

The result of the segregation method was improved by an extra aggregation
step and summarized as the ‘extended’ method in the last column of Table
7.1. Choosing for ε = 2 we obtain for the extended procedure 6 models.

1In the case of a local nonlinearity however, Corollory 4.6.2 also holds when Z is not
compact.
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Table 7.1: Number of models, Nm

ε uniform aggregation segregation extended
0.1 410 13 18 13
0.2 290 10 14 10
0.5 184 7 13 9
1.0 130 6 10 8
2.0 92 6 10 6
4.0 65 4 9 5
8.0 46 4 8 4

The advantage of segregation over aggregation, is the smaller computational
effort. The obtained center d(Zi) and width 2e(Zi) of each scheduling regime
Zi : d(Zi)− e(Zi) ≤ q̇ ≤ d(Zi) + e(Zi) are summarized in Table 7.2.

Table 7.2: Operating regimes and model parameters

i d(Zi) e(Zi) Ai(2, 2) Bi(2) ai(2)
1 −13.8889 11.1111 −0.4624 547.9452 14.2453
2 −1.6204 1.1574 −0.4658 547.9452 14.2354
3 −0.2315 0.2315 4.5093 547.9452 15.8029
4 0.2315 0.2315 4.5093 547.9452 −15.8029
5 1.6204 1.1574 −0.4658 547.9452 −14.2354
6 13.8889 11.1111 −0.4624 547.9452 −14.2453

Subproblem 3: From scheduling regimes to PLM parameters

The triples(
Ai =

(
0 1
0 Ai(2, 2)

)
, Bi =

(
0

Bi(2)

)
, ai =

(
0

ai(2)

))

are determined by linearizing f(q, q̇, u) in the points (∗, d(Zi), ∗), where be-
cause of linearity, ∗ can be chosen arbitrary. The obtained model parame-
ters for each scheduling regime are summarized in Table 7.2. As we could
expect Bi(2) is the same for the six operating regimes, because the system
is affine in u. From Bi(2) = M−1B it follows that the estimated inertia
M = B/Bi(2) = 0.0292 which is identical to the inertia of the system. The
scheduling functions are chosen as normalized radial basis functions that are
placed in the center d(Zi) of each operating regime Zi, i.e. wi(q̇) = ρi(q̇)∑Nm

i=1 ρj(q̇)

with ρi(q̇) = e
− (q̇−d(Zi))2

2γe(Zi) . The user-specified parameter γ is chosen 0.25, indi-



7.5 Examples 103

cating almost no overlap between the models. The scheduling functions are
shown in Figure 7.7.
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Scheduling functions

Figure 7.7: The scheduling functions w1, w2 and w3. The remaining schedul-
ing functions are omitted since they follow from the symmetry around zero
velocity.

Model Validation

The friction torque of the PLM is validated and depicted together with the
friction torque of the real system in Figure 7.8. A visually identical friction
curve compared to the system is observed. In this case

dfg = M−1 ∗max
q̇∈X2

‖C(q̇)− CPLM (q̇)‖2
= 1/0.0292 ∗ 0.0165
= 0, 5638

and thus the demanded accuracy dfg ≤ 2 is achieved.
The PLM can be unraveled as follows. Regime Z1, Z2 and Z5, Z6 indicate

the viscous friction, while the regimes for low velocities, i.e. regimes Z3 and Z4

introduce a Coulomb friction and Stribeck friction component. The symmetry
of the friction torque follows from the PLM parameters in Table 7.2. The
regimes are centered symmetric around zero velocity, and these symmetric
regimes share the same absolute model parameter values. The symmetry of
the system is revealed by the modelling method.
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Figure 7.8: Validation of the modelled friction torque.

7.5.2 An Inverted Pendulum on a Cart

In this example the inverted pendulum as depicted in Figure 7.9 is considered
as a subject for modelling. This is a benchmark example in the literature,
confer [82], [44], [85]. The inverted pendulum is again a nonlinear mechanical

q

m

M

2l

u

Figure 7.9: Inverted pendulum on a cart.

system with one degree of freedom q, where q denotes the angular displacement
of the arm from the vertical axis, and u is the motor input. The state space
equations (7.7) reduce to

d

dt

[
q
q̇

]
=

[
q̇

g sin(q)−0.5amlq̇2 sin(2q)
4l/3−aml cos2(q)

]
+

[
0

−a cos(q)
4l/3−aml cos2(q)

]
u (7.9)
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and are taken from [13]. Here g = 9.8m/s2 is the gravity constant, m = 2.0kg
is the mass of the pendulum, M = 8.0kg is the mass of the cart, 2l = 1.0m is
the length of the pendulum, and a = 1/(m + M).

Once again the objective is to derive the simplest PLM that achieves ε-
accuracy, that is the PLM that minimizes the number of scheduling regimes
Nm. The modelling problem is divided into 3 subproblems as depicted in
Figure 7.1, and solved sequentially following the modelling approach presented
earlier in this section.

Subproblem 1: From Operating Space to Scheduling Space

The operating space is defined as the product space of the state space with
the input space, i.e. Ψ = X × U where x = [q, q̇]T ∈ X, q ∈ X1, q̇ ∈ X2,
and u ∈ U . From Theorem 4.6.3 we know that it is sufficient to schedule the
models over the angle q and angular velocity q̇, instead of over all the operating
variables q,q̇ and u, because the variable u enters the model in an affine way.
Hence the scheduling space Z = X. Theorem 4.6.3 tells us that there will
always exist a PLM with Nm finite that achieves ε-accuracy, at least if Z is
compact, and Theorem 4.6.3 gives an upper bound for Nm. It is assumed that
Z = {q, q̇ | |q| ≤ π

2 [rad], |q̇| ≤ 6.5[rad/s]} covers the working range of the
inverted pendulum.

Subproblem 2: From Scheduling Space to Scheduling Regimes

In this step the number of models Nm is reduced as much as possible compared
to the upper bound from Theorem 4.6.3. This upper bound is based on a worst
case scenario, and the result is a uniform partitioning of the scheduling space.
Since the nonlinearity varies as a function of z ∈ Z, we can use the procedure
aggregation or segregation to reduce the number of models. In Table 7.3 the
number of models Nm, sufficient to assure ε-accuracy for, respectively, uniform
decomposition, aggregation and segregation of the operating space are given.

Table 7.3: Number of models, Nm

ε uniform aggregation segregation extended
0.5 324 306 281 275
1.0 150 144 137 137
2.0 90 88 85 85
4.0 39 39 43 41
8.0 27 27 21 21
16.0 14 14 15 13
32.0 10 8 11 9
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The result of the segregation method was improved by an extra aggregation
step and summarized as the ‘extended’ method in the last column of Table
7.3. It can be noticed that, because of the global geometric nonlinearities in
the system, the upper bound is much less conservative than in the previous
example with the local nonlinearity. Choosing ε = 8, we obtain for the segre-
gation method 21 models. It is difficult to determine a suitable value of ε in
advance. Typically, one starts with a value, validates the result, and increases
or decreases the value if one is not satisfied with the validation result.

The centres d(Zi) and the widths 2e(Zi) of each operating regime Zi :

d(Zi) − e(Zi) ≤ (z =
[

q
q̇

]
) ≤ d(Zi) + e(Zi), where d(Zi) =

[
d1(Zi)
d2(Zi)

]
and

e(Zi) =
[

e1(Zi)
e2(Zi)

]
are summarized in Table 7.4.

Table 7.4: Operating regimes and model parameters

i d1(Zi) d2(Zi) e1(Zi) e2(Zi) Ai(2, 1) Ai(2, 2) Bi(2) ai(2)
1 -1.0472 -1.4444 0.5236 0.7222 6.0328 -0.1949 -0.0779 -7.0498
2 -1.0472 0 0.5236 0.7222 5.8512 0 -0.0779 -7.0992
3 -1.0472 1.4444 0.5236 0.7222 6.0328 0.1949 -0.0779 -7.0498
4 -0.7854 2.8889 0.7854 0.7222 9.5247 0.4685 -0.1147 -4.4332
5 -0.7854 4.3333 0.7854 0.7222 9.6619 0.7027 -0.1147 -5.1713
6 -0.7854 5.7778 0.7854 0.7222 9.8539 0.9369 -0.1147 -6.2047
7 -0.7854 -5.7778 0.7854 0.7222 9.8539 -0.9369 -0.1147 -6.2047
8 -0.7854 -4.3333 0.7854 0.7222 9.6619 -0.7027 -0.1147 -5.1713
9 -0.7854 -2.8889 0.7854 0.7222 9.5247 -0.4685 -0.1147 -4.4332

10 0 0 0.5236 0.7222 17.2941 0 -0.1765 0
11 0 -1.4444 0.5236 0.7222 16.9259 0 -0.1765 0
12 0 1.4444 0.5236 0.7222 16.9259 0 -0.1765 0
13 0.7854 2.8889 0.7854 0.7222 9.5247 -0.4685 -0.1147 4.4332
14 0.7854 4.3333 0.7854 0.7222 9.6619 -0.7027 -0.1147 5.1713
15 0.7854 5.7778 0.7854 0.7222 9.8539 -0.9369 -0.1147 6.2047
16 0.7854 -5.7778 0.7854 0.7222 9.8539 0.9369 -0.1147 6.2047
17 0.7854 -4.3333 0.7854 0.7222 9.6619 0.7027 -0.1147 5.1713
18 0.7854 -2.8889 0.7854 0.7222 9.5247 0.4685 -0.1147 4.4332
19 1.0472 -1.4444 0.5236 0.7222 6.0328 0.1949 -0.0779 7.0498
20 1.0472 0 0.5236 0.7222 5.8512 0 -0.0779 7.0992
21 1.0472 1.4444 0.5236 0.7222 6.0328 -0.1949 -0.0779 7.0498

The distribution of the centres d(Zi) over the scheduling space and for the
obtained configuration is depicted in Figure 7.10.
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Figure 7.10: Distribution of the centres d(Zi) over the scheduling space.

Subproblem 3: From scheduling regimes to PLM parameters

The triples(
Ai =

(
0 1

Ai(2, 1) Ai(2, 2)

)
, Bi =

(
0

Bi(2)

)
, ai =

(
0

ai(2)

))

are determined by linearization, as described in [81]. The obtained model
parameters for each scheduling regime are summarized in Table 7.4. The
symmetry of the system is revealed by the PLM, i.e. regimes that are point
symmetric compared to the origin in Figure 7.10 have the same quantita-
tive and qualitative contribution to the overall behavior of the system. The
scheduling functions are chosen as normalized radial basis functions that are
placed in the center d(Zi) of each operating regime Zi, i.e. wi(z) = ρi(z)∑Nm

i=1 ρj(z)

with ρi(z) = e−
1
2
(z−d(Zi))

TΣ(z−d(Zi)) where Σ =

[
1

(γe1(Zi))
2 0

0 1
(γe2(Zi))

2

]
. The

user-specified parameter γ is chosen 0.25, indicating almost no overlap between
the models.

Model Validation

In Figure 7.11 the phase portrait of the system and the identified PLM, both
with u = 0, are plotted for the compact operating space Z. The initial condi-
tions of the plotted trajectories are indicated with a star (*). The boundaries
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of the ellipsoidal validity regions of the operating regimes Zi are also shown
by the dotted lines. It is interesting to see how the trajectories are going
through the different operating regimes Zi. Almost all of the system trajecto-
ries diverge to infinity. The phase portrait shows a saddle point, as indicated
with the asymptotes along the arrows. As a result in the centre of the plot
an unstable equilibrium point can be observed. The difference between the
trajectories of the system and the PLM can be made smaller by repeating
the procedure for a smaller ε. Qualitatively, the phase portrait of the system
and the PLM are very much alike; the system and the PLM are said to be
topological equivalent [60].
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Figure 7.11: Phase portrait of both the system (dashed line) and the PLM
(solid line) within the compact scheduling space Z. The dotted ellipsoidal
regions centered at d(Zi) are validity regions.

7.6 Notes and Comments

Nonlinearity

Frequently, the term nonlinearity is used in a loose sense when system be-
havior is discussed. Think about phrases as: This system is very or strongly
nonlinear, or, this system is locally nonlinear. These assertions are often not
made precise, i.e. not supported by mathematical definitions. Within the
presented modelling framework, terms as strongly nonlinear, and locally non-
linear, can be given a precise meaning. The decomposition of the system in
operating regimes, allows for an intuitively clear and natural interpretation
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of these terms. That is, these terms can be qualified and quantified. Next,
two definitions are proposed that can contribute to the classification of non-
linearities, at least for systems that are defined on a non-compact operating
space.

Definition 7.6.1 (Locally nonlinear ) A system is locally nonlinear if
for any ε > 0, and for any non-compact operating region, an ε-accurate PLM
exists, consisting of a finite number of models.

Definition 7.6.2 (Relatively strongly nonlinear ) A system is rela-
tively strongly nonlinear if for any ε > 0 an ε-accurate PLM exists for the
region Ψ such that for some operating region Ψ1 ⊂ Ψ it holds that Nm(Ψ1) !
Nm(Ψ) and Ψ1 " Ψ.

Segregation

The segregation procedure relies on a tree construction algorithm for struc-
ture optimization. It orthogonally partitions the scheduling space into hyper-
rectangles. Similar procedures but for discrete time systems are reported in
literature, see [56] and [34]. A main difference between all these procedures,
is the criterion that is used to select the ‘best’ partitioning.
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Chapter 8

Building PLMs from
Measured Data

8.1 Introduction

As depicted in Figure 6.2, model construction consists of three phases, namely
the selection of a model structure, followed by a model set and finally a model
from the model set. Since the model structure is chosen to be a PLM, what
remains to be determined is a model set and the best model has to be selected
from the model set. The determination of the model set and a suitable model
from the model set depends besides prior knowledge and the type and amount
of available data, of course on the objective of modelling.

Two data based modelling methods will be described that automatically
generate a PLM from data and prior knowledge. These two methods are
output error methods, based upon a well known augmented state least squares
filtering method [22]. A distinction has been made between local and global
parameter estimation methods.

Before presenting the modelling methods, in Section 8.2, the basic aspects
of least squares filtering will be discussed. After that, in Section 8.3, the first
method, a local parameter estimation method is presented. It is founded upon
the regime segregation method described earlier. This means that the schedul-
ing parameters are identified independently from the local model parameters.
In this case the decision to segregate is specified by the output error crite-
rion that an augmented state least squares filter tries to minimize. For each
segregated region, (that is a scheduling regime,) a linear model is estimated.
This method is illustrated by an example in Section 8.4. In Section 8.5, the
second method, a global parameter estimation method is presented. With the
second method it is shown that it is feasible, at least for small scale problems,
to utilize a standard augmented state least squares filter, to estimate for the

111
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entire operating space of interest, both the unknown scheduling parameters
and the unknown local model parameters simultaneously. This method is il-
lustrated by an example in Section 8.6. Finally, in Section 8.7, some notes and
comments are made regarding the proposed methods.

To make the data based modelling methods more clear, first the relevant
aspects of least squares filtering will be explained. We will closely follow the
formulation presented in [74].

8.2 Least Squares Filtering

In fact, the least squares filter is used as a state reconstruction and parameter
estimation method for the determination of the unknown state x and the
unknown parameters θ of a continuous time model

ẋ = f(x, u, θ), x(t0) = xt0 (8.1)
y = h(x, u, θ)

with state x ∈ R
n, input u ∈ R

m, parameters θ ∈ R
k and output y ∈ R

p. It is
the task of the filtering procedure to estimate the unknowns in some optimal
sense given measurements {u, yr} of the input and the output of the system.
The way to formulate and to solve this problem will be outlined below.

By adding a set of k trivial differential equations, θ̇ = 0, to the description
(8.1), the combined parameter and state estimation problem is converted into
a pure state reconstruction problem.

ẋ = f(x, u, θ), x(t0) = xt0 (8.2)

θ̇ = 0, θ(t0) = θt0 (8.3)
y = h(x, u, θ) (8.4)

Mathematically, the resemblance that exists between the state equation (8.2)
and the parameter equation (8.3) clearly suggests that there is no need to
distinguish the states x from the parameters θ. Therefore the unknown state
x is augmented with the unknown parameters θ, and the new augmented state
xa = [xT θT ]T is introduced.

ẋa = f(xa, u), xa(t0) = xat0 (8.5)
y = h(xa, u)

It is assumed that measurements {u(t), yr(t)} for times t ∈ [t0, te]} are avail-
able. A model like (8.5) however is only a limited description of reality and
there will always be some discrepancy between the model behavior and the
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measurements. Thus, the measurements will not satisfy (8.5). This discrep-
ancy can be taken into account by assuming that the system can be described
by

ẋa = f(xa, u) + ξ, xa(t0) = xat0 + ζ (8.6)
yr = h(xa, u) + η

where ξ(t) and η(t) are called the residuals on the state equation and the
output equation respectively, and ζ represents the difference between the es-
timated initial state xa(t0) and the real initial state xt0 of the system. If
the estimate xa is such that the residuals are small in some sense, then this
will give confidence in the chosen model structure, the measured data and
the obtained estimate. More specifically, optimal filtering refers to the ‘best’
estimate xa(t) at the current time t, based upon all past measurements, and is
specified as a least squares estimate xa(t) which minimizes a weighted squares
of the residuals, over the whole interval [t0, t]. For this choice the estimate
xa(t) has to minimize the measure

J :=
1
2

∫ t

t=t0

{ξ(t)TWξ(t) + η(t)TV η(t)}dt +
1
2

ζTR0ζ (8.7)

The matrices W , V and R0 are user specified weighting matrices that
weight the residuals on the state and output equation respectively, they express
confidence in these equations. As an example, suppose one restricts to model
structures with constant parameters θ, as is the case in (8.3). By choosing very
large values for those elements in W that weight the residuals on the parameter
equations, it is made sure that the parameter estimates in the augmented state
xa will not change significantly with time. In a similar way other prior model
assumptions and knowledge can be incorporated. For instance, the elements
of ξ(t) and ζ(t), besides having different dimensions, often take values that
differ substantially from each other in magnitude. Then, such values for the
elements in W and V are chosen that the weighted residuals are all of the same
order of magnitude. After that, to express the confidence we have in certain
model equations, we can choose larger values for the corresponding elements
in W and V . The matrix W has to be positive definite and V should be a
semi-positive definite matrix; often they are chosen diagonal. The column xat0

from ζ = xa(t0)−xat0 represents initial knowledge about the real initial state,
and R0 is a positive definite matrix expressing confidence in knowledge of the
initial state.

The optimal estimation or filtering problem is treated extensively in a
survey given in [32] and references therein. An approximate solution xa to the
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optimal filtering problem is given by [22]

ẋa = f(xa, u) + K(yr − h(xa, u)), xa(t0) = xat0 (8.8)

Ṗ (t) = F (t)P (t) + P (t)F (t)T

+ W − P (t)H(t)TV −1H(t)P (t), P (t0) = R0 (8.9)

K(t) = P (t)H(t)TV −1 (8.10)

where F = ∂f
∂xa

(xa, u) and H = ∂h
∂xa

(xa, u), both evaluated at the current
estimated state and current input.

The above filter can also be derived in a statistical setting and interpreted
in statistical terms, then called the extended Kalman filter. The state estimate
equation (8.8) of the above filter, is nothing more then a copy of the state
equation of the model (8.5), the state of which is improved by taking into
account measurements yr of the real system. The measurements are compared
to the output of the model (8.5). The difference between the estimated outputs
and the measurements is propagated by the gain matrix K to produce an
innovation signal and to improve the state estimate. The gain K, see (8.9) is
computed in such a way that it optimally balances the confidence in different
parts of the model, as specified by (8.7).

There is however no guarantee that the approximate filter (8.8,8.9,8.10) will
converge when applied to a system [49]. Nevertheless, in practical application
the filter is commonly used, which often leads to useful estimates.

8.3 Local Parameter Estimation

As explained earlier the segregation procedure has as a point of departure the
most simple PLM, consisting of only one linear model, which covers the entire
scheduling space as depicted in Figure 7.4, and step by step model complexity
is increased conceptually as follows: split the nZ dimensional scheduling space
‘in the middle’ in two scheduling regimes Zi and Zi+nZ . This can be done in
nZ different ways, i.e. i = {1, ..nZ}. After that a cost criterion is evaluated for
each partitioning, from which the most promising partitioning follows. One
segregation step is then completed, and segregation is repeated until some
prescribed accuracy is achieved, meaning that the criterion that is evaluated
is below some prescribed value.

If there is no model of the system available, the number of models Nm

sufficient to achieve ε-accuracy within some region, cannot be computed and
therefore the suggested criterion for splitting the operating space fails. A
useful criterion however has to measure the distribution of the nonlinearity of
the system over a grid in the scheduling space.
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It is assumed that the only information of the system available are measure-
ments {u, yr} of the input u and the output yr, on some time interval [t0, te],
and some prior knowledge on the system, such as the order of the system and
structure of the matrices (Ai, Bi, ai, Ci, Di, ci), such as structural zeros and
ones, involved in the representation of the PLM. The decision to segregate is
specified by the output error criterion that the least squares filter minimizes.
For each segregated regime Zi, a linear model (Ai, Bi, ai, Ci, Di, ci), that is
part of the PLM, will be estimated.

8.3.1 Data Based Regime Segregation

The least squares filter (8.8,8.9,8.10) is used as a state reconstruction and
parameter estimation method for the determination of the unknown state and
the unknown parameters of the locally valid continuous time models that are
part of the PLM. A locally valid model, i.e. a linear model valid within some
region of the operating space, is described as follows:

ẋ = Aix + Biu + ai, x(t0) = xt0 (8.11)
y = Cix + Diu + ci

with state x ∈ R
n, u ∈ R

m and y ∈ R
p. However, in general the state and in

particular the initial state xt0 is unknown, as are some elements θ ∈ R
k of the

matrices {Ai, Bi, ..., ci}. It is the task of the filter (8.8,8.9,8.10) to estimate
these unknowns.

By adding a set of k trivial differential equations, θ̇ = 0 to the description
(8.11), the combined parameter and state estimation problem is converted into
a state reconstruction problem.

ẋ = Ai(θ)x + Bi(θ)u + ai(θ), x(t0) = xt0

θ̇ = 0, θ(t0) = θt0

y = Ci(θ)x + Di(θ)u + ci(θ)

The unknown state x is augmented with the unknown parameters θ, and the
augmented state xa = [xT θT ]T is introduced to obtain (8.5).

First the (optimal) filter (8.8,8.9,8.10) is applied to reconstruct the aug-
mented state xa, i.e. the parameters θ and the state x, of the linear model
(8.11) based on all the measurements available. Next, the obtained constant
parameters θ are substituted in (8.11) and the state x of the model (8.11) is
again reconstructed by a filter. If the underlying nonlinear system is suffi-
ciently smooth, then it is expected that within a region small enough, a linear
model like (8.11) is an acceptable model for the system. Acceptability of the



116 Building PLMs from Measured Data

model (8.11) will be evaluated by a measure similar to (8.7), i.e.

J :=
1
2

∫ t

t=t0

{ξ(t)TWξ(t) + η(t)TV η(t)}dt +
1
2

ζTR0ζ (8.12)

where ξ(t) = ẋ(t)− Aix(t)−Biu(t)− ai = K(yr(t)− Cix(t)−Diu(t)− ci) is
the filter innovation, η(t) = yr(t)−Cix(t)−Diu(t)− ci the difference between
the output of the filter and the measurements, and ζ = x(t0)− xt0 represents
uncertainty about the real initial condition. Thus ξ, η and ζ represent errors
on the state and output equation due to unmodelled phenomena. A model
(8.11) is said to be acceptable if J ≤ ε, with ε > 0 to be specified by the
user. The decision to segregate is specified by a normalized version of (8.12),
to account for the time that is spent within some region Zi.

More specifically, we evaluate J(Zi) + J(Zi+nZ ) for all nZ obtained con-
figurations, and select the configuration of which the evaluated measure is the
smallest. Here

J(Zi) =
1

τ(Zi)

kZi∑
j=1

J(Zi, Tj,Zi) (8.13)

J(Zi, Tj,Zi) :=
∫
t∈Tj,Zi

{ξ(t)TWξ(t) + η(t)TV η(t)}dt +
1
2

ζTR0ζ (8.14)

were τ(Zi) stands for the time that is spent in region Zi, and Tj,Zi = [t0,j,Zi
te,j,Zi ] stands for one of the kZi time intervals spent in Zi. Thus

∑kZi
j=1(te,j,Zi−

t0,j,Zi) = τ(Zi). The situation is depicted in Figure 8.1. Basically, segregation
is repeated until for each obtained partitioning J(Zi) ≤ ε. There are how-
ever some limitations. If segregation gives no further improvement regarding
the error measure J , in comparison to the error measure of the undivided
space, segregation for that region is stopped. Furthermore, when there are
not enough measurements left to divide, the procedure is stopped. This means
that either the chosen accuracy, as specified by ε, is too high or the number
of measurements is too small.

For each scheduling regime Zi obtained by segregation, a model (8.1), the
set (Ai, Bi, ai, Ci, Di, ci), was already determined by the filter. These models
will be scheduled by the scheduling functions wi, that are defined as described
in Subsection 7.4, hence the PLM

ẋ =
Nm∑
i=1

wi(z){Aix + Biu + ai}

y =
Nm∑
i=1

wi(z){Cix + Diu + ci}

is specified.
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Figure 8.1: Data based regime segregation. For each candidate regime Zi

a linear model is identified. The parametrization of each linear model, i.e.
(Ai, Bi, ..., ci), is based on the data {u(t), yr(t) | z(t) ∈ Zi} associated with
regime Zi. That means, the measurements at times t for which it holds that the
estimated scheduling variable z(t), obtained from a previous segregation step,
is in the region Zi. The configuration for which the evaluated measure J(Zi)+
J(Zi+nZ ) is the smallest is selected. In this example dim(Z) = nZ = 2 and
we evaluate J(Z1) = 1

(t1−t0)+(t4−t3)
{J(Z1, [t0 t1])+J(Z1, [t3 t4])} and J(Z3) =

1
(t3−t1)+(te−t4)

{J(Z3, [t1 t3])+J(Z3, [t4 te])}. And also J(Z2) = 1
(t2−t0)

J(Z2, [t0
t2]) and J(Z4) = 1

(te−t2)
J(Z4, [t2 te]). In this case J(Z1) + J(Z3) > J(Z2) +

J(Z4) and the configuration with Z = Z2 + Z4 is selected.

8.4 Example

8.4.1 A Rotational Robotic Manipulator System

In this example a real rotational robotic manipulator system, as described
earlier and depicted in Figure 7.5, is considered as a subject to be modelled.
However, in contrast to the model based segregation method, the objective is
to derive a PLM based upon measured data on the system. More specifically,
the data based segregation method is illustrated as a possible solution to the
modelling problem.

The resolution of the encoder used to measure the angular displacement
is 1.9175 × 10−4 [rad]. The induction motor is supplied by a ’Pulse Width
Modulation’ source inverter which translates the input signal, i.e., the desired
torque expressed in a voltage, into three phase signals with a fundamental
frequency. This source inverter actually controls the torque produced by the
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motor to the desired torque. The input signal of the source inverter and the
TTL encoder signals are respectively sent and read by a dSPACE system [20].
During the experiments the sample frequency is set to 1 [kHz].

Prior Knowledge

It is assumed that the robot arm is a nonlinear control affine mechanical
system (7.7) with one degree of freedom q, where q represents the angular
displacement of the arm and u is the input motor voltage. The output y of
the system is the angular displacement q of the arm.

The mechanical model structure makes it possible to restrict the represen-
tation of the PLM by means of structural zeros and ones, i.e.,

Ai =
(

0 1
Ai(2, 1) Ai(2, 2)

)
Bi =

(
0

Bi(2)

)
ai =

(
0

ai(2)

)
Ci =

(
1 0

)
Di = 0 ci = 0

and only the nontrivial parameters, the ones different from 0 and 1 have to be
estimated.

From Operating Space to Scheduling Space

The operating space is defined as the product space of the state space with
the input space, i.e. Ψ = X × U where x = [q q̇]T ∈ X, q ∈ X1, q̇ ∈ X2, and
u ∈ U . From Theorem 4.6.3 and the prior knowledge available on the system,
we know that it is sufficient to schedule the models over the angle q and angular
velocity q̇, instead of over all the operating variables q,q̇ and u. This is because
the variable u enters the model in an affine way. Hence the scheduling space
Z = X. Theorem 4.6.3 tells us that there will always exist a PLM that achieves
arbitrary accuracy, at least if Z is compact and if the system is assumed to be
smooth enough. It is expected that the system exhibits nonlinear behavior for
low velocities due to nonlinear friction characteristics. Therefore, it is assumed
that Z = {q, q̇ | |q| ≤ π

10 [rad], |q̇| ≤ 4[rad/s]} covers the interesting working
range of the inverted pendulum.

Experiment Design

First, an experiment has to be designed, i.e. an input signal u has to be ap-
plied to the robot arm such that the measurements {u, yr} contain enough
information to determine together with a priori knowledge on the system a
PLM that suffices for the modelling task at hand. It is not an easy task to ex-
cite the system in the working range of interest. As mentioned earlier, several
case studies indicated that a relatively high frequency input signal of small
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amplitude, superimposed on a low frequency input signal with a relatively
large amplitude, leads to a data set that contains sufficient information for
the modelling task to be successful. Figure 8.2 shows the data set obtained
from the system, that is the input signal together with the output response
of the system. The measurement noise is not visible on the scale of the plot.
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Figure 8.2: Experimental data.

The measured angle is differentiated numerically by a zero-phase high pass
filter with a cut-off frequency of 200 Hz to reconstruct the angular velocity
q̇. This reconstruction makes it possible to depict the system response in the
scheduling space. From Figure 8.3 it can be seen that this trajectory covers
the estimated scheduling space fairly well, which is required for the segrega-
tion procedure to work. The reconstructed angular velocity will not be used
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Figure 8.3: System trajectory in the scheduling space Z.
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as an additional measurement for the segregation procedure.

Segregation

The data set {u, yr} is offered to the segregation procedure. The user specified
accuracy ε is set as follows, J(Zi) ≤ ε, and the measure J(Zi) is defined in
(8.13). Choosing ε = 0.01 we obtain for the segregation method 21 models.

The centres d(Zi) and the widths 2e(Zi) of each operating regime Zi :

d(Zi) − e(Zi) ≤ (z =
[

q
q̇

]
) ≤ d(Zi) + e(Zi), where d(Zi) =

[
d1(Zi)
d2(Zi)

]

and e(Zi) =
[

e1(Zi)
e2(Zi)

]
are summarized in Table 8.1. The unknown param-

Table 8.1: Operating regimes and model parameters

i d1(Zi) d2(Zi) e1(Zi) e2(Zi) Ai(2, 1) Ai(2, 2) Bi(2) ai(2)
1 0.1683 -2.5673 0.4331 2.1844 -19.6306 -1.3388 474.5737 23.2652
2 -0.0483 2.8937 0.2165 1.0922 -24.3043 -3.3836 406.8478 -7.0186
3 -0.0483 1.2554 0.2165 0.5461 -15.0759 -2.9403 369.6105 -5.9302
4 0.4931 2.8937 0.1083 1.0922 -24.5307 -6.5162 374.8093 1.5409
5 0.1683 0.2997 0.4331 0.1365 -14.6128 -10.8237 354.7136 -7.4879
6 0.2224 2.8937 0.0541 1.0922 -20.1223 -4.6237 373.2493 0.2875
7 0.3307 2.8937 0.0541 1.0922 -25.8769 -3.6231 366.1476 -2.5554
8 -0.0483 -0.2464 0.2165 0.1365 -21.7033 -9.8994 337.5465 19.8181
9 0.1683 0.0267 0.4331 0.1365 -12.3130 -41.1949 230.6125 5.4659

10 0.1683 0.5045 0.4331 0.0683 -22.4484 -10.9273 344.9230 -2.8270
11 0.3307 1.2554 0.0541 0.5461 -24.7331 -6.5735 351.7486 1.6675
12 0.4931 1.5285 0.1083 0.2731 -23.5115 -9.2669 359.3913 3.1342
13 0.2765 -0.2464 0.1083 0.1365 -20.1245 -8.6843 338.2395 14.3558
14 0.1683 0.6069 0.4331 0.0341 -16.7735 -11.4670 332.0291 -2.4134
15 0.1683 0.6752 0.4331 0.0341 -20.3161 -10.9481 335.3594 -1.2280
16 0.2224 0.9824 0.0541 0.2731 -21.7525 -8.0048 337.8189 5.0920
17 0.2224 1.5285 0.0541 0.2731 -22.8421 -9.6383 337.5241 4.3743
18 0.4931 0.8458 0.1083 0.1365 -25.8317 -11.3728 345.0546 -1.3407
19 0.4931 1.1189 0.1083 0.1365 -23.5545 -10.6700 343.2975 1.1010
20 0.4931 -0.3146 0.1083 0.0683 -17.1133 -9.0823 337.7909 13.8845
21 0.4931 -0.1781 0.1083 0.0683 -15.7904 -8.4212 339.0424 16.1129

eters from Ai =
(

0 1
Ai(2, 1) Ai(2, 2)

)
, Bi =

(
0

Bi(2)

)
, ai =

(
0

ai(2)

)
are determined by the augmented state least squares filter, as a part of the
segregation procedure. The scheduling functions are chosen as normalized
radial basis functions that are placed in the center d(Zi) of each operating
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regime Zi, i.e. wi(z) = ρi(z)∑Nm
i=1 ρj(z)

with ρi(z) = e−
1
2
(z−d(Zi))

TΣ(z−d(Zi)) where

Σ =

[
1

(γe1(Zi))
2 0

0 1
(γe2(Zi))

2

]
. The user-specified parameter γ is chosen 0.25,

indicating almost no overlap between the models.

Model Validation

The identified model is now used for validation. Figure 8.4 shows both the sys-
tem response, and the response of the identified PLM in the compact schedul-
ing space Z. The model validity regions as computed by the segregation pro-
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Figure 8.4: Response of the system (solid) and the identified PLM (dotted) on
the input signal used for identification. Also the segregated scheduling space
(in rectangular regions) is shown.

cedure are also depicted in the same figure. One can clearly see a preference
to segregate in the z2 = q̇ direction. Furthermore, the regimes are concen-
trated around q̇ = 0. This suggests that the system is nonlinear, as a function
of q̇, and highly nonlinear in the region around q̇ = 0. These are typically
properties of the nonlinear friction models that were proposed earlier. The
time response of the system and the identified PLM on the same input signal
is shown in Figure 8.5. The small difference between the two responses, also
on other input signals, confirms the good long-term prediction capabilities of
the PLM.

8.5 Global Parameter Estimation

The least squares filter (8.8,8.9,8.10) is used as a state reconstruction and
parameter estimation method for the determination of the unknown state and
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Figure 8.5: Time response of the system (solid) and the identified PLM (dot-
ted) on the input signal used for identification.

the unknown parameters of a PLM

ẋ =
Nm∑
i=1

wi(x, u){Aix + Biu + ai}, x(t0) = xt0 (8.15)

y =
Nm∑
i=1

wi(x, u){Cix + Diu + ci}

with state x ∈ R
n, u ∈ R

m and y ∈ R
p. In general the state and in particular

the initial state xt0 is unknown, as are some elements θ ∈ R
k of the matrices

{Ai, Bi, ..., ci} and the scheduling functions wi. The scheduling functions are
defined as wi(z, θ) = ρi(z,θ)∑Nm

j=1 ρj(z,θ)
where z = s(x, u) is a set of scheduling

variables. The unknown parameters of the scheduling functions are as before
the centres di and the widths ei of the basis of the a priori chosen basis
functions ρi(z, θ). It is the task of the filter (8.8,8.9,8.10) to estimate all these
unknowns simultaneously.

By adding a set of k trivial differential equations, θ̇ = 0 to the description
(8.15), the combined parameter and state estimation problem is converted into
a state reconstruction problem.

ẋ =
Nm∑
i=1

wi(z, θ){Ai(θ)x + Bi(θ)u + ai(θ)}, x(t0) = xt0 (8.16)

θ̇ = 0, θ(t0) = θt0

y =
Nm∑
i=1

wi(z, θ){Ci(θ)x + Di(θ)u + ci(θ)}
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The unknown state x is augmented with the unknown parameters θ, and the
augmented state xa = [xT θT ]T is introduced to obtain (8.5).

The optimal filter (8.8,8.9,8.10) is applied to reconstruct the augmented
state xa, i.e. the parameters θ and the state x, of the PLM (8.15) based on all
the measurements available. Prior system knowledge can be incorporated into
the PLM by restricting the structure, thereby facilitating the applicability
of the parameter estimation method. Next an experimental case study is
reported to illustrate the modelling method, and in particular it is shown how
prior knowledge can be incorporated.

8.6 Example

8.6.1 A Rotational Robotic Manipulator System

In this example a real rotational robotic manipulator system, as described
earlier and depicted in Figure 7.5, is considered as a subject for modelling.
In conformance with the data based segregation method, the objective is to
derive a PLM based upon measured data on the system. More specifically,
the global parameter estimation method is illustrated as a possible solution to
the modelling problem.

Prior Knowledge

The state space equations (7.7) describing the robotic manipulator system are
assumed to simplify to

d

dt

[
q
q̇

]
=
[

q̇
−M−1C(q̇)

]
+
[

0
M−1Bm

]
u

with M the unknown effective inertia of the motor-transmission-rotating
arm combination, Bm = 16 [NmV −1] is the motor gain, and C(q̇) is the
friction torque. The system is depicted in Figure 7.5. The friction torque is a
simplified model of reality, and assumed to be a function of the angular velocity
only. The validity of this assumption is partly confirmed by the outcome of
the previous example on the subject of data based segregation. There it could
be seen that segregation dominantly occurred in the q̇ direction. Furthermore,
it is assumed that the friction can be modelled by an odd continuous function,
i.e.

C(q̇) = −C(−q̇)

This is consistent with well known friction models, see Figure 7.6. For
angular velocity equal to zero the model friction torque is zero, which results
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in the preservation of equilibrium points of the system. The friction model does
not describe stiction, since the continuous friction model will always slide (i.e.
move) for an applied input u unequal to zero. However if stiction is present in
the system, the stiction regime will be approximated, if the friction function
near q̇ = 0 is very steep. Then the model can still give acceptable simulation
results, that is angular displacement during stiction will be negligible on our
scale of interest.

The PLM is composed of Nm locally valid models. The structure of each
model is chosen equal to the topology of a mechanical system. This makes it
possible to restrict the representation of the PLM, i.e.,

Ai =
(

0 1
0 Ai(2, 2)

)
Bi =

(
0

Bi(2)

)
ai =

(
0

ai(2)

)
Ci =

(
1 0

)
Di = 0 ci = 0

and only the nontrivial parameters have to be estimated. With each local
model (Ai, Bi, ai) a model validity function ρi is associated which, by definition
is close to one for those regions were the corresponding linear model is valid,
and zero elsewhere. Here, the validity depends only on the angular velocity q̇,
due to the choice of the nonlinear friction as a function of only q̇. Hence the
scheduling variable z = q̇. The scheduling functions are defined as normalized
model validity functions, i.e. wi(z) = ρi(z)∑Nm

i=1 ρj(z)
. A typical choice for ρi is the

Gaussian function

ρi(z) = e
− (z−d(Zi))2

(2e(Zi))
2

where d(Zi) marks the center and 2e(Zi) the width of operating region Zi.
The PLM becomes

d

dt

[
q
q̇

]
=

Nm∑
i=1

wi(z, θ){Ai(θ) + Bi(θ)u + ai(θ)} (8.17)

For the PLM the unknown model parameters that have to be estimated are

θ = [Ai(2, 2), Bi(2), ai(2), d(Zi), e(Zi)]
i = 1, ..., Nm

Note that Bi(2) = B(2) = M−1Bm with M unknown. The unknowns θ are
further reduced by restricting the PLM to construct only odd friction functions
in the following way

• Choose an odd number of local models, i.e. Nm = 2k + 1 with k ∈
{0, 1, 2, ...}, where one local model has no offset, i.e. ai(2) = 0 and the
corresponding center d(Zi) = 0.
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• The other Nm−1 models are divided in pairs of two symmetrical around
z = 0, i.e., the centers are opposite d(Zi) = −d(Zi+1), the widths
are equal e(Zi) = e(Zi+1) as well as the slopes Ai(2, 2) = Ai+1(2, 2)
and the offsets are again opposite ai = −ai+1 with i = 2k with k ∈
{1, 2, ..., 1/2Nm}

An advantage of this construction is the reduction of parameters by about
a factor two.

Experiment Design

This same data set was used as for the data based segregation method (see
Figure 8.2).

Filtering

The augmented state least squares filter (8.8,8.9,8.10) was implemented off-
line. For the PLM the number Nm is set to three, in order to facilitate the
estimation procedure. If this PLM does not lead to a satisfactory model, then
complexity can be increased gradually by increasing Nm.

In this case θ = [A1(2, 2), e(Z1), A2(2, 2), a2(2), d(Z2), e(Z2), M ], i.e. 7 pa-
rameters have to be determined; 6 for the friction model and the inertia M .
The filter parameters R0, W, V from (8.8,8.9,8.10), which express consecutively
confidence or uncertainty in initial states, model equations and measurements
have to be tuned in order to obtain reliable augmented state estimates. The
initial state x of the system is known, but the model parameters θ are not
known. The initial model parameters are chosen in such a manner that phys-
ical known properties, e.g., positive inertia value or positive viscous damper
value, are met. (Though we have no guarantee that that will stay that way dur-
ing the estimation phase.) Hence, the uncertainty for the initial state estimates
is small while we are not sure of the initial estimates for the model parameters.
These considerations lead to the initial augmented state uncertainty matrix
R0 = diag(0, 0, 1, . . . , 1) where the non-zero elements express the uncertainty
of initially uncertain parameters. The matrix W can be seen as expressing
uncertainty on the augmented state model equations. The model equations
describing constant model parameters θ̇ = 0 and d

dtq = q̇ are regarded as
true. The confidence in these equations being large, is expressed by a zero at
the corresponding places at the diagonal matrix W = diag(0, W22, 0, . . . , 0).
Here Q22 = 0.001 expresses uncertainty in the proposed friction model. Due
to the finite encoder resolution of 1.9175 10−4 [rad] and the differentiation
scheme an uncertainty on the angular velocity reconstruction is introduced.
To take this into account the matrix V is constructed as a diagonal matrix
V = diag(0.001, 0.01) where 0.001 corresponds to the uncertainty in the angle
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measurement and 0.01 to the uncertainty in the arm velocity reconstruction.
The filter tuning is mainly based on experience and trial and error. It is impor-
tant that the parameters converge to constant values. Different filter tuning
will result in different convergence speeds and even parameter divergence can
occur. The estimated data are passed through the filter several times until the
parameter estimates converge. After 10 filter passes the parameter estimates
become constant and the sum of eigenvalues of the covariance matrix P (t)
has become minimal. The identified inertia value is M = 0.0323 [kgm2rad−1].
The obtained model parameters for each scheduling regime Zi are summarized
in Table 8.2. The scheduling functions are shown in Figure 8.6.

Table 8.2: Operating regimes and model parameters

i d(Zi) e(Zi) Ai(2, 2) Bi(2) ai(2)
1 0 0.0290 −2040.3 495.7782 0
2 1.6162 1.4033 −2.2466 495.7782 18.7012
3 1.6162 1.4033 −2.2466 495.7782 −18.7012

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.5

1

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.5

1

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.5

1

w
2

w
1

w
3

Scheduling functions

x2 = z2 = q̇[rad/s]
Figure 8.6: The scheduling functions w1, w2, and w3.

Model Validation

The identified model is now used for validation. Figure 8.7 shows the time
response of the system and of the identified PLM. An input signal similar to
the one used for identification purposes is applied.

The identified friction torque of the PLM with superimposed on it the
scaled Kalman filter innovation signal (dotted line) is depicted in Figure 8.8.
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Figure 8.7: Time response of the system (solid) and the identified PLM (dot-
ted) on the input signal used for identification.

The innovation is small and seems random and therefore gives no further
information on how to improve the friction characteristic of the PLM. From
this observation together with the fact that the filtered output and even the
simulated output is very close to the system, it is concluded that the model
captures the main nonlinearity of the system.

Coulomb, viscous and Stribeck friction phenomena can be observed and
distinguished from the estimated friction model. The PLM can be interpreted
in terms of regimes as follows. Regimes Z2, Z3 and the associated models are
responsible for the viscous friction part. Regime Z1 and the associated model
is responsible for the Coulomb part. The non-empty intersection of the regions
Z1, Z2 and Z3 and the associated convex combination of the associated models
is responsible for the Stribeck part of the friction.

8.7 Notes and Comments

Least squares filtering

The least squares filtering toolbox, which includes simulation and validation
facilities, that was used throughout this chapter for the estimation of un-
known parameters, is available as a non-commercial Matlab toolbox with a
user friendly graphical interface [26].

In principle, the presented second modelling method could be applied on-
line in real time applications.
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Figure 8.8: The identified friction characteristic of the PLM (solid line) and
superimposed on it the least squares filter innovation signal (dots).

Optimal estimation

Also another well-known parameter estimation method, referred to in the lit-
erature as optimal estimation due to its analogy to optimal control, see [76]
and [80], is employed to estimate the unknown parameters of a PLM. A solu-
tion to this estimation problem is found as a solution to a two point boundary
value problem. Algorithms are available that can solve two point boundary
value problems. We have reported on these algorithms in [32]. Within our
group, software packages were developed especially for solving the optimal es-
timation problem [76], [73]. It was shown in several simulation studies, i.e. the
modelling of nonlinear mechanical systems, that it is feasible to estimate the
unknown parameters of a PLM [73], [32]. These examples include: modelling
of a spring with nonlinear hardening characteristic, a second order system
with a Coulomb-like friction component, and a fourth order system with two
Coulomb-like friction components. For these simulation studies it was also
shown how prior knowledge can be incorporated to enhance the applicability
of this method.
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Chapter 9

Introduction to Control

In the first two parts of this thesis, consecutively the analysis and modelling
possibilities of PLMs were explored. We introduced and dealt with the basic
concepts underlying the analysis and modelling of systems for the purpose of
control. This resulted in the development of mathematical control and system
theory for PLMs. Also novel modelling methods for PLMs were proposed. In
this part the acquired knowledge from the previous parts will be utilized to
design controllers for nonlinear systems that meet pre-imposed control objec-
tives.

The main control objective will be the stabilization of the system. Besides
stabilization, sometimes also more demanding performance specifications, such
as optimality and robustness of the closed-loop will be addressed. To inves-
tigate applicability of the proposed synthesis algorithms, the controllers have
been evaluated on several bench-mark examples. These examples include ex-
perimental as well as simulation case studies such as:

• Friction compensation for a rotational robotic manipulator system [28],
[29].

• Optimal control of an inverted pendulum system[42], [9], [3].

• Adaptive optimal friction control for a rotational robotic manipulator
system [27].

• Robust controller design with optimality bounds for a fictitious system
[10].

• Stable controller design for a translational inverted pendulum on a cart
[81].

• Vibration amplitude reduction with small control effort in a harmonically
excited system with one sided spring [25], [5].
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• Stable observer design for a harmonically excited system with one sided
spring [75].

• Piecewise constant controls for systems with discrete measurements [4].

• Improving performance of single input stable linear time invariant sys-
tems with positive controls[6], [2].

Only on the first four of these case-studies will be reported since they
illustrate the most relevant aspects and features of the PLM based control
approach. They show how PLM based system analysis and modelling can be
utilized to systematically design controllers for nonlinear systems. The main
observation is that representing a nonlinear system by a PLM, that is to say ‘a
linear model scheduler’ leads to a controller structure that can be characterized
as ‘a linear controller scheduler’. This controller is subsequently applied to the
system, and it will be shown that it outperforms linear controllers.

In Chapter 10, a friction compensator design for a real rotational robotic
manipulator system is reported. Analysis of the identified PLM reveals that
a nonlinear state feedback can be designed, that stabilizes and linearizes the
system. An experimental case study illustrates the applicability of the con-
troller.

In Chapter 11, an optimal regulator design is reported. That is, besides
stability of the closed-loop system also a cost functional associated with the
control is minimized. In fact, the proposed design method generalizes the
well-known Linear Quadratic Regulator (LQR) optimal control problem to a
class of nonlinear systems, the PLMs. Analysis of the PLM reveals that under
stabilizability conditions a solution exists to the optimal control problem. A
simulation study, the control of an inverted pendulum on a cart illustrates the
method.

In Chapter 12, a model based controller design will be proposed with the
objective to perform servo tasks on mechanical systems that exhibit friction.
Again the control of a real rotational robotic manipulator system is considered.
The controller consists of three parts, namely, a feedforward part on the basis
of estimated PLM parameters, an adaptive part to compensate for parameter
estimation errors, and finally an optimal regulator for the remaining error
dynamics. The controller is evaluated for performing servo tasks, by means of
experiments on the robotic manipulator system.

In Chapter 13, a stabilizing controller is designed for a family of (nonlinear)
systems. Thus the controller is robust against parametric uncertainty of the
system. In contrast to the previous chapters the PLM is interpreted as an
uncertainty model of the system. The applicability of the synthesis algorithms
is illustrated with a simulation example.



Chapter 10

Friction Compensation for a
Rotational Robotic
Manipulator System

10.1 Introduction

We have seen in previous chapters that a PLM is capable of identifying non-
linear friction characteristics of a rotational robotic manipulator, that are left
unexplained by first principles modelling. In an experimental case-study, a
PLM was applied to identify a rotating arm subjected to friction. The appli-
cability of the identified PLM is illustrated in a PLM based control scheme.
A nonlinear state feedback will be designed with the objective to linearize the
system, that is to compensate for the nonlinear friction force and in addition
to stabilize the system. Other friction compensation designs are described
by [40] and [46] who consider also nonlinear state feedback, in contrast [59]
considers dynamic friction models, [31] applies a dithering technique, and an
acceleration feedback control approach is reported by [70].

The purpose of this chapter is twofold. First we illustrate how modelling
and analysis based on a PLM, very naturally leads to nonlinear control de-
signs for the problem at hand. The suggested controller is a gain scheduling
controller, and the linear gains are scheduled by the scheduling variables of
the identified PLM. Secondly, the aim is to validate the identified PLM within
a control scheme. The controller performance is compared to a linear design
based upon a linear approximate model of the system and experiments reveal
that the PLM approach outperforms the linear approach.

In the next section the robotic manipulator system and the approximate
PLM will be introduced. After that in Section 10.3, analysis of the PLM
reveals that the PLM can be linearized and that the PLM is also control-
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lable. Based upon this information a linearizing and stabilizing controller is
designed. Next, in Section 10.4 this controller is implemented on the real sys-
tem, analyzed for positioning tasks and compared to a linear design. Finally,
the conclusions of this chapter are drawn.

10.2 A PLM Representing a Rotational Robotic Ma-
nipulator System

In this experimental case study it is the objective to feedback linearize the
rotating robotic manipulator as described in Section 8.4.1. For the friction
compensator feedback law to work, an accurate PLM, which includes a de-
scription of the nonlinear friction characteristic of the rotational robotic ma-
nipulator system, is needed. The controller will be based on the PLM from
Section 8.6.1. The structure of the PLM was based upon prior knowledge on
the system, and the unknown parameters were identified from experimental
data obtained from the robotic manipulator. The obtained PLM is

d

dt

[
q
q̇

]
=

3∑
i=1

wi(q̇)
{[

0 1
0 Ai(2, 2)

] [
q
q̇

]
+
[

0
ai(2)

]
+
[

0
Bi(2)

]
u

}
(10.1)

and the identified parameters are given in Table 8.2. Note that Bi(2) = B(2).

10.3 Nonlinear State Feedback Friction Compensa-
tion

From Theorem 5.4.4 it follows that the PLM (10.1) is indeed feedback lineariz-
able, since (Ai − Aj , ai − aj) is in the range of B. Furthermore the system is
controllable since (Ai, B) is controllable. The nonlinear controller

u =
3∑

i=1

wi(q̇) {Kix + ki + u∗} (10.2)

with x = [q q̇]T suggested by Theorem 5.4.4 linearizes the system and therefore
compensates the friction. The controller gains {Ki, ki} are chosen in such a
way that Ai + BKi = Acl and ai = Bki. In the ideal case, i.e. if it is assumed
that the PLM is an exact representation of the system, the closed loop system
is described by the linear system

ẋ = Aclx + Bu∗
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The PLM based controller design will be compared to a linear controller design

u = Kx + u∗ (10.3)

based upon an identified linear model of the system, namely

d

dt

[
q
q̇

]
=
[

0 1
0 A(2, 2)

] [
q
q̇

]
+
[

0
Bi(2)

]
u

that completely neglects the nonlinear friction of the system. The controller
gain K is chosen in such a way that A + BK = Acl.

10.4 Experiments

The closed loop parameters Acl(2, 1) and A(2, 2) are set to −10. The fric-
tion compensator (10.2) and the linear controller (10.3) are tested on the real
system, and analyzed for the following two positioning tasks

1. Step response performed with u∗ = 100
B(2)ε(t−2), where ε(τ) is the Heav-

iside function:

ε(τ) =
{

0, ∀ τ < 0
1, ∀ τ ≥ 0

2. Velocity reversal response performed with u∗ = −100
B(2) sin(1.5t).

For these tasks the closed-loop response, with and without friction com-
pensation, is compared to the theoretical linear response. It is well-known
that if friction phenomena such as coulomb friction, static friction and the
Stribeck effect, are neglected by the model, it can limit the performance of
industrial model-based control systems due to increasing tracking errors and
limit cycles [12]. In Figure 10.1 the responses on the step input are shown.The
solid line is the desired linear response, and the dotted line the experimentally
observed response with and without friction compensation. As expected, with
friction compensation a more accurate step response can be observed than
without friction compensation. The responses for the velocity reversal task
are shown in Figure 10.2. Also in this case the solid line is the desired linear
response, and the dotted line the experimentally observed response with and
without friction compensation. During the velocity reversal task no stiction is
recorded if the friction compensator is applied, but the stiction is considerable
without friction compensation. Hence, the performance of the two tasks can
be improved by using a friction compensator based on a PLM. Moreover, it
can be concluded that the PLM is a useful model for the control task at hand.
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Figure 10.1: Step input responses.
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Figure 10.2: Velocity reversal responses.

10.5 Conclusion

A simple analysis based upon the identified PLM shows that the PLM can
be linearized by compensating for the nonlinear friction phenomena. Further-
more, it can be concluded that the PLM is controllable. Hence, the PLM can
be stabilized. The example shows that an earlier identified PLM is applicable
within a model based control scheme with the objective to compensate for
the nonlinear friction phenomena. The controller design based upon a PLM
outperforms a linear controller design.



Chapter 11

Optimal Control

11.1 Introduction

In this chapter a novel regulator design method for PLMs is suggested and
formalized. Controller synthesis is based upon optimal control theory. It is
shown that under controllability assumptions a solution exists to the Hamilton
Jacobi Bellman (HJB) equation, which is known to be a sufficient condition
for optimality of the closed loop system. More specifically, the HJB equation
admits a solution, if there exists a common positive definite solution to a set
of algebraic Riccati equations (AREs), involving the different linear models by
which the PLM is represented. An optimal static state feedback controller can
then be computed as a solution of a convex optimization program. It turns out
that not only the PLM but also the resulting controller and cost functional that
is minimized can be interpreted in terms of regimes. Moreover, the optimal
control system has an infinite gain margin, a requisite for robustness of the
control system.

This chapter shows that the proposed design method generalizes the well-
known Linear Quadratic Regulator (LQR) optimal control problem to a class
of nonlinear systems, a class of PLMs. Analysis of the PLM reveals that un-
der stabilizability conditions, just as in the linear case, a solution exists to the
optimal control problem. This chapter clearly also shows how the similarities
between the PLM and a linear model can be exploited for controller design.
Well-known optimality and stabilizability conditions from linear systems the-
ory have also meaning if one considers nonlinear systems, namely PLMs.

In the next section the optimal control problem is stated and sufficient
conditions for optimality (of a PLM interconnected with a state feedback con-
troller) are derived. After that, in Section 11.3 a control algorithm is suggested
that solves a version of the optimal control problem. The control algorithm
is given as a convex optimization problem that can be solved efficiently. In
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Section 11.4 the controller design method is illustrated by an example, the
control of a translational inverted pendulum on a cart. Finally, in Section
11.5 this chapter is concluded with some notes and comments.

Next the PLM will be introduced and the optimal stabilization problem
for PLMs will be addressed.

11.2 Stabilizing Optimal Controls

We consider PLMs from the model setM, defined as

M :

{
PLM : ẋ =

Nm∑
i=1

wi(x){Aix + Biu}
}

(11.1)

with state x ∈ X ⊆ R
n and input u ∈ U ⊆ R

m, and where the realization of
the scheduling functions wi is constrained by

∑Nm
i=1 wi(x) = 1 and wi(x) ≥ 0.

The model set M is defined as a collection of PLMs, where every PLM from
the model set is represented by the same set of pairs {(Ai, Bi)}. The only
difference between two PLMs from the same model set is the realization of the
set of scheduling functions, which is constraint by the convexity property of
the scheduling functions.

We have to specify a class of admissable inputs U = {ω | ω : I = [0,∞)→
U}, sufficiently rich to have practical meaning for the model, i.e. we restrict
to the class of piecewise continuous functions on U . We assume that unique
solutions ξ(t) of the PLM for initial conditions ξ(0) = x0 ∈ X and ω ∈ U
exist.

The objective is to derive a sufficient condition that assures the existence of
a state feedback u = k(x) that achieves asymptotic stability of the equilibrium
x = 0 of the PLM and furthermore minimizes the cost functional

J∞(x0, ω) :=
∫ ∞

0
{Q(ξ(t)) + ω(t)TR(ξ(t))ω(t)}dt (11.2)

over all stabilizing controls ω for which limt→∞ ξ(t) = 0, and where it is
assumed that Q(x) > 0 for all x �= 0 with Q(0) = 0 and R(x) > 0 for all x.
Here ξ(t) denotes the solution of the PLM from (11.1) with initial condition
ξ(0) = x0 and input ω(.). It is well known that any solution u = k(x) that
satisfies the HJB equation guarantees optimality, i.e. minimizes J∞, confer
[41][14]:

Proposition 11.2.1 ([67]) Assume V (x) is a radially unbounded positive
definite function on R

n with V (0) = 0. Let k : X → U be so that

∀x, u V̇ (x, k(x)) + Q(x) + k(x)TR(x)k(x)
= min

u∈U
{V̇ (x, u) + Q(x) + uTR(x)u} = 0 (HJB)
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holds. Then for each state x0 the control ω(t) = k(ξ(t)) is optimal, and
V (x0) = J∞(x0, ω) is the corresponding minimal cost. Moreover, V is a global
Lyapunov function for the closed-loop system.

For convenience we define A(x) :=
∑Nm

i=1 wi(x)Ai and B(x) :=
∑Nm

i=1 wi(x)Bi.
Note that V̇ (x, u) = ∇V (x){A(x)x + B(x)u}. Then the following optimality
condition holds.

Lemma 11.2.2 Suppose there exists a C2 positive definite radially unbounded
function V (x) which satisfies

∀x Q(x) +∇V (x)A(x)x− 1
4
∇V (x)B(x)R(x)−1B(x)T∇V (x)T = 0

(11.3)

and define

k(x) := −1
2

R(x)−1B(x)T∇V (x)T (11.4)

then the conclusions of Proposition 11.2.1 hold.

Proof. By ‘completing the squares’ of

uTR(x)u +∇V (x)B(x)u

= (u +
1
2

R(x)−1B(x)T∇V (x)T )TR(x)(u +
1
2

R(x)−1B(x)T∇V (x)T )

− 1
4
∇V (x)B(x)R(x)−1B(x)T∇V (x)T

it follows that (11.4) minimizes (HJB), i.e.

k(x) = argmin
u
{∇V (x)A(x)x + Q(x) +∇V (x)B(x)u + uTR(x)u}

By substituting (11.4) in (HJB) one obtains the left hand side of (11.3) which
is assumed to be equal to zero, so (HJB) holds.

The idea is to use Lemma 11.2.2 together with a quadratic candidate Lya-
punov function to prove stability and optimality of the closed-loop polytopic
system. We are then able to state the following

Theorem 11.2.3 If there exists a (n, n) matrix P = P T > 0 satisfying
∀i, j, k ∈ {1, . . . , Nm} with wi(x)wj(x)wk(x) > 0 for some x ∈ X, the fol-
lowing set of AREs

Qijk + PAi + AT
i P − PBiR

−1
k BT

j P = 0 (ARE)



140 Optimal Control

then the input

uopt = k(x) = −
Nm∑
i,j=1

wi(x)wj(x)R−1
i BT

j Px

minimizes the cost functional

J∞(x0, u) :=
∫ ∞

0
{u(t)T (

Nm∑
l=1

wl(x)R−1
l )−1u(t)

+
Nm∑

i,j,k=1

wi(x(t))wj(x(t))wk(x(t))x(t)TQijkx(t)}dt

over all other controls, for the PLM ∈M. Furthermore V (x) = xTPx serves
as a Lyapunov function for the PLM.

Proof. Apply Lemma 11.2.2 together with V (x) = xTPx, P = P T >
0 (which serves as a Bellman or Value function) as a candidate Lyapunov
function to prove stability and optimality of the closed-loop polytopic system.
The algebraic condition (11.3) can then be written as

Nm∑
i,j=1

wi(x)wj(x){Q(x) + xT (PAi + AT
i P − PBiR(x)−1BT

j P )x} = 0

Now, by choosing a suitable structure for the cost function, i.e.

Q(x) =
Nm∑

i,j,k=1

wi(x)wj(x)wk(x)xTQijkx

Qijk = QT
ijk > 0

R(x) =

(
Nm∑
l=1

wl(x)R−1
l

)−1

Rl = RT
l > 0

one obtains the following condition for optimality

Nm∑
i,j,k=1

wi(x)wj(x)wk(x){xT (Qijk + PAi + AT
i P − PBiR

−1
k BT

j P )x} = 0

(11.5)

This condition is satisfied if (ARE) holds.
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From Theorem 11.2.3 a few interesting observations can be made. Firstly,
if P is a solution of (ARE) for all i, j, k ∈ {1, . . . , Nm} then Theorem 11.2.3
holds for the model set M, this means for all PLMs in M. Secondly, the
optimal controller is a gain scheduling (regime scheduled) controller. Also
the cost associated with a control input is regime dependent. This makes
it possible to interpret not only the PLM in terms of regimes, but also the
control inputs as well as the control objectives. Thirdly, if the functions wi

depend on v(t), an external C1 scheduling signal, then Theorem 11.2.3 remains
valid. Finally, the case the functions wi are constant for all x ∈ X, i.e. the
PLM becomes a LTI model, Theorem 11.2.3 gives the well-known solution
of the infinite time linear-quadratic regulator (LQR) optimal control problem
[41],[67]. So, in fact Theorem 11.2.3 generalizes the LQR problem to a class
of PLMs.

11.3 Inverse Optimal Controls

Optimal stabilization guarantees several desirable properties for the control
system, such as stability margins. These stability margins are largely inde-
pendent of the particular choice of functions Q(x) ≥ 0 and R(x) > 0. This
assertion, together with the fact that solving (HJB) with a pre-specified cost
function Q(x) + uTR(x)u is often not feasible, has motivated people to solve
inverse optimal control problems, confer [65],[10]. This means, given a candi-
date Lyapunov function or controller, compute a cost functional such that the
controller becomes optimal with respect to this cost functional. In the sequel
a quadratic Lyapunov function V (x) = xTPx, P > 0 (which serves as a Value
function) is shown to exist if a certain system property holds. The system
property the PLM has to obey is the analogue of the controllability condition
that a linear system has to satisfy in order that the ARE corresponding to the
optimal control problem has a solution. Furthermore, solutions to the inverse
optimality problem can be obtained efficiently since they can be computed as
a solution of a convex optimization program.

Theorem 11.3.1 If there exist matrices Q = QT > 0, Rk > 0 that satisfy
∀i, j, k ∈ {1, . . . , Nm} with wi(x)wj(x)wk(x) > 0 for some x ∈ X

AiQ + QAT
i −BiR

−1
k BT

j < 0 (11.6)

then the input

uopt = −
Nm∑
i,j=1

wi(x)wj(x)R−1
i BT

j Px
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with P = Q−1 minimizes the cost functional

J∞(x0, u) :=
∫ ∞

0
{u(t)T (

Nm∑
l=1

wl(x)R−1
l )−1u(t)

+
Nm∑

i,j,k=1

wi(x(t))wj(x(t))wk(x(t))x(t)TQijkx(t)}dt

where Qijk := −(PAi + AT
i P − PBiR

−1
k BT

j P ) over all other controls, for the
PLM ∈ M. Furthermore V (x) = xTPx serves as a Lyapunov function for
the PLM.

Proof. The idea is to apply Theorem 11.2.3 and to construct solutions P ,
Rk, Qijk that satisfy (ARE). We proceed as follows. Rewrite (ARE) as

PAi + AT
i P − PBiR

−1
k BT

j P = −Qijk

This implies that if a solution P = P T > 0, Rk > 0 exists that satisfies
∀i, j, k ∈ {1, . . . , Nm} with wi(x)wj(x)wk(x) > 0 for some x ∈ X

PAi + AT
i P − PBiR

−1
k BT

j P < 0 (11.7)

then the optimal control problem is solved, simply by defining

Qijk := −(PAi + AT
i P − PBiR

−1
k BT

j P ) (11.8)

After a congruence transformation with Q = P−1, i.e. multiplying (11.7) on
the left and right by Q = P−1, (11.7) can be rewritten as the dual and equiv-
alent condition (11.6). By the same congruence transformation the inequality
P = P T > 0 transforms to Q = QT > 0.

Theorem 11.3.1 makes it easy to automate inverse optimal controller de-
sign, since it can be written as a convex optimization routine in the variables
Q and R−1

k . Furthermore, it is possible to add extra LMI constraints on the
variables Q, R−1

k and Qijk. An example of such a control strategy is given in
[27].

11.4 Optimal Control of a Translational Inverted
Pendulum on a Cart

To illustrate the controller design method, consider the problem of swing-up
and balancing of an inverted pendulum on a cart as given by Figure 7.9. See,
(7.9) for the equations of motion of the pendulum.
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For the derived control strategy to work we need a PLM to represent the
plant. The following representation for the PLM was used in [85] to represent
the inverted pendulum on a cart:

A1 =
[

0 1
g

4l/3−aml 0

]
B1 =

[
0

− α
4l/3−aml

]

A2 =

[
0 1
2g

π(4l/3−amlβ2)
0

]
B2 =

[
0

− αβ
4l/3−amlβ2

]

A3 =

[
0 1
2g

π(4l/3−amlβ2)
0

]
B3 =

[
0
αβ

4l/3−amlβ2

]

A4 =
[

0 1
0 0

]
B4 =

[
0
α

4l/3−aml

]

with β = cos(880). The corresponding scheduling functions wi, which are
supposed to depend on x1 only, are shown in Figure 11.1.

0 0.5π π−0.5π−π

w1

w2

w3

w4

x1[rad]

0

0

0

0

1

1

1

1

Figure 11.1: The scheduling functions wi(x1), for i ∈ {1, 2, 3, 4}.

In the sequel this model is used for controller design and will represent the
plant during evaluation of the control strategy.

We apply Theorem 11.2.3 and solve the LMIs (11.6) for P and R−1
i Notice

that since w1w3 ≡ 0, w1w4 ≡ 0, w2w3 ≡ 0, w2w4 ≡ 0 the corresponding LMIs
need not to be solved. We obtain

P =
[

2.9064 · 103 0.9470 · 103
0.9470 · 103 0.3092 · 103

]
(11.9)
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and

R1 = 3.7883 · 103, R2 = 3.7883 · 103 (11.10)

R3 = 5.0802 · 103, R4 = 5.0802 · 103

as a feasible solution. The control law

u = −
∑

i,j∈INm
wi(x)wj(x)R−1

i BT
j Px (11.11)

guarantees global asymptotic stability of the PLM and optimality with respect
to the cost functional proposed in Theorem 11.2.3.

Figure 11.2 illustrates the response of the closed-loop systems for the initial
condition (x10, 0) with x10 = π

4 , 85
180π, 3π4 , π respectively.
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Figure 11.2: Angle response x1 of optimal PLM based control system.

We can also confirm that (HJB) holds, i.e. V̇ (x, uopt)+Q(x)+uT
optR(x)uopt =

0, see Figure 11.3, and the minimum cost to go J∞(x0, uopt) equals V (x0).

11.5 Notes and Comments

Optimal controls

Analogously to the LQR problem there are several variations on the optimal
control problem for PLMs, worthwhile to investigate. With the output equa-
tion y =

∑Nm
i=1 wi(x)Cix added to the PLM description (11.1), it is natural to

consider

J∞(x0, u) :=
∫ ∞

0
{u(t)TR(x(t))u(t) + yTQy}dt
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Figure 11.3: Time derivative of the Lyapunov energy V̇ (dashed line) is
depicted together with the instantaneous cost Q(x) + uT

optR(x)uopt (solid
line) as defined in Theorem 11.2.3. Simulation started at initial condition
x0 = (0.7π, 0). (HJB) holds, i.e. V̇ (x, uopt) = −{Q(x) + uT

optR(x)uopt}.

as the cost associated with control, i.e. a measure of the input u and output
y of the PLM. This cost functional can be rewritten as

J∞(x0, u) :=
∫ ∞

0
{u(t)TR(x(t))u(t) + Q(x)}dt (11.12)

where Q(x) =
∑Nm

i,j=1 wi(x)wj(x)xTCT
i QCjx is assumed to be positive semi

definite. Just like for the LQR case, one will need besides a stabilizability
condition also an detectability condition to be satisfied to solve this problem.

The cost functional (11.12) with Q(x) positive semi definite is of major
importance, since it occurs naturally if one formulates the optimal tracking
problem and the optimal deterministic filtering problem, which in the linear
case is dual to the optimal tracking problem [67].

Furthermore, it is worthwhile to investigate to what extend the choice for
a common quadratic Lyapunov function is conservative with respect to the
applicability and generality of optimal controller design.

Another interesting feature of the control strategy is the fact that the feed-
back system has infinite gain margin. If u = −∑Nm

i,j=1 wi(x)wj(x)R−1
i BT

j Px
solves the optimal control problem, i.e. Theorem 11.2.3 is satisfied, then
u = −∑Nm

i,j=1 wi(x)wj(x)aijR
−1
i BT

j Px with aij > 1 also stabilizes the PLM.
Furthermore optimal stabilization of the PLM is connected to passivity of the
PLM with output equation y =

∑Nm
i,j=1 wi(x)wj(x)R−1

i BT
j Px, this observation

leads to well defined stability margins as shown in [65].
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Inverse optimal controls

There exist solutions to the inverse optimal control problem if (11.7) is satis-
fied. Inequality (11.7) can be interpreted as a sufficient condition for V to be
a control Lyapunov function, i.e.

∇V (x)B(x) = 0 and x �= 0⇒ ∇V (x)A(x)x < 0

from [67] is satisfied.
The inverse optimal controller synthesis algorithm admits a solution, only

if the pairs (Ai, Bj) are stabilizable ∀i, j ∈ {1, . . . , Nm} with wi(x)wj(x) > 0
for some x ∈ X . This stabilizability condition can be relaxed. Clearly,
∀i ∈ {1, . . . , Nm}, wi(x) > 0 for some x ∈ X, and the pairs (Ai, Bi) have to
be stabilizable. However, Theorem 11.2.1 is also satisfied if (11.6) for i �= j
holds with non-strict inequality instead of strict inequality.

Conservatism can even be further reduced if one confines to the case that
Ri = R for all i ∈ {1, . . . , Nm} in Theorem 11.2.3. In that case the condition
to be satisfied for optimality, that is (11.5), reduces to

Nm∑
i,j=1

wi(x)wj(x){xT (Qij + PAi + AT
i P − PBiR

−1BT
j P )x} = 0

which can be rewritten as

Nm∑
i=1

w2
i (x)xTLiix +

1
2

Nm∑
i,j=1,j 
=i

wi(x)wj(x){xT (Lij + Lji)x}

= −
Nm∑
i=1

w2
i (x){xTQiix} − 1

2

Nm∑
i,j=1,j 
=i

wi(x)wj(x){xT (Qij + Qji)x}

where Lij = PAi + AT
i P − PBiR

−1BT
j P .

If one introduces x̃ = [w1x
T , w2x

T , · · · , wNmxT ]T this yields

x̃T




L11 ∗ · · · ∗
1
2(L12 + L21)

. . .
...

...
. . . ∗

1
2(L1Nm + LNm1) · · · · · · LNmNm


 x̃

= x̃T




Q11 ∗ · · · ∗
1
2(Q12 + Q21)

. . .
...

...
. . . ∗

1
2(Q1Nm + Q2Nm) · · · · · · QNmNm


 x̃
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The ∗ elements are induced by the symmetry of the matrices. From Theorem
11.3.1 it follows that there exists a solution to the optimal control problem if


L11 ∗ · · · ∗

1
2(L12 + L21)

. . .
...

...
. . . ∗

1
2(L1Nm + LNm1) · · · · · · LNmNm


 < 0

After a congruence transformation with the block diagonal Nm-blocks by Nm-
blocks matrix

Q̃ =




P−1 0 · · · 0

0 P−1
...

...
. . . 0

0 · · · 0 P−1




one obtains the equivalent and convex condition in Q = P−1




M11 ∗ · · · ∗
1
2(M12 + M21)

. . .
...

...
. . . ∗

1
2(M1Nm + MNm1) · · · · · · MNmNm


 < 0 (11.13)

where Mij = AiQ + QAT
i − BiR

−1BT
j . It follows that in general, for (11.13)

to admit a solution, the condition Mij ≥ 0 for i �= j not necessarily has to be
satisfied. Hence, conservatism is reduced with respect to condition (11.6).
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Chapter 12

Adaptive Optimal Friction
Control for a Robotic
Manipulator System

12.1 Introduction

Friction is to some extent present in all mechanical systems. In servo systems
this phenomenon can limit the performance considerably due to increasing
tracking errors and the appearance of limit cycles. Especially limit cycling
is an undesirable friction induced phenomenon in controlled servo systems
because of its oscillatory and persistent behavior. Limit cycling is mainly
caused by the combination of the difference in static and Coulomb friction,
and integral action in the control loop. One way of avoiding limit cycles is
to use solely a PD-controller, which consequently implies steady state errors.
In literature as discussed in [12], stiff PD-controllers have been proposed to
suppress these steady state errors.

Here, an adaptive optimal PLM based state feedback controller will be
derived with the objective to perform servo tasks on mechanical systems that
are subject to friction. Two desirable properties of the proposed controller
design are: (i) small positioning errors through high gain feedback for low
velocities, that means for the region where friction is important, and (ii) the
stability of the closed-loop system is guaranteed and limit cycling is avoided.
The controller design is based upon Lyapunov stability theory and consists of
three parts:

1. Feedforward control on the basis of estimated PLM parameters.

2. Adaptive control to compensate for parameter estimation errors.

149
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3. A nonlinear (regime dependent) optimal controller for the remaining
error dynamics.

The resulting controller design for performing servo tasks, is tested and
evaluated, by means of experiments on a rotational robotic manipulator sys-
tem.

To illustrate the benefits of a nonlinear regime dependent controller over
a linear controller for the remaining error dynamics, these two are compared.
The derived controller is compared to a classical PID controller with a feed-
forward part based on the inertia of the mechanical system.

In the next section the robotic manipulator system and the approximate
PLM will be introduced. After that in Section 12.3, an adaptive optimal
control design based upon a PLM will be derived. Next in Section 12.4, the
derived controllers are implemented on the real system, analyzed for position-
ing tasks and compared to a linear design. Finally, the conclusions of this
chapter are drawn.

12.2 A PLM Representing a Rotational Robotic Ma-
nipulator System

For the model based control scheme to work, an accurate PLM, which in-
cludes a description of the nonlinear friction characteristic of the real rota-
tional robotic manipulator system, as described in Section 8.4.1, is needed.
The controller will be based on a PLM that is identified with the filtering
method presented in Section 8.6.1. The structure of the PLM is based upon
prior knowledge on the system. It is chosen according to the topology of the
mechanical system, that means control affine and with the angular displace-
ment and its time derivative as state variables. Furthermore, it is assumed
that the friction can be modelled as an odd continuous function of angular
velocity.

The unknown parameters were identified from experimental data obtained
from the robotic manipulator. The obtained PLM is

d

dt

[
q
q̇

]
=

4∑
i=1

wi(q̇)
{[

0 1
0 Ai(2, 2)

] [
q
q̇

]
+
[

0
ai(2)

]
+
[

0
Bi(2)

]
u

}
(12.1)

and the identified parameters are given in Table 12.1.
To construct an odd friction function, the PLM was a priori composed of

an even (in this case Nm = 4) number of local models, divided in pairs of two.
Note that the input matrix Bi =

[
0 533. 33

]T is considered to be a priori
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Table 12.1: Operating regimes and model parameters

i d(Zi) e(Zi) Ai(2, 2) Bi(2) ai(2)
1 −1.50 0.21 −0.90 533.33 −13.33
2 −0.167 0.026 7 533.33 −16.43
3 1.50 0.21 −0.90 533.33 13.33
4 0.167 0.026 7 533.33 16.43

known exactly, and therefore not estimated. In fact Bi was identified in [28].
The scheduling functions

wi =
ρi∑Nm
j=1 ρj

are defined as normalized Gaussian model validity functions with

ρi(z) = e
− 1

(2e(Zi))
2 (z−d(Zi))

2

centered around d(Zi) and with a width (variance) e(Zi). In the upper plot of
Figure 12.1 the identified friction model is shown. In the lower plot of the same
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Figure 12.1: Identified friction model.

figure, the Gaussian validity functions of the different locally valid models are
given.
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12.3 Adaptive Optimal Control

The objective of the closed-loop system is to perform a high precision servo
or positioning task. It is assumed that the state x is available for control. As
mentioned already earlier the controller consists of (i) a feedforward part uff ,
(ii) an adaptive part uad which compensates for parametric uncertainty and
(iii) a nonlinear optimal regulator ufb for the remaining error dynamics.

The identified PLM (12.1) can be represented as

ẋ =
Nm∑
i=1

wi(q̇)
{

Âix + âi

}
+ Bu

where x = [q q̇]T and the hat symbol (ˆ) is used to emphasize that we deal with
estimates, and that the PLM is only an approximation of the real system. It
is assumed that the real system belongs to the PLM class and can be written
as

ẋ =
Nm∑
i=1

wi(q̇) {Aix + ai}+ Bu

The feedforward control part1 which is based on the approximate model can
be written as

uff =
(
BTB

)−1
BT

Nm∑
i=1

wi(q̇)
{

ẋd − Âixd + âi

}

where xd is a desired state trajectory and
(
BTB

)−1
BT is the pseudo-inverse

of B. With u = uff + u∗ the remaining error dynamics becomes

ė =
Nm∑
i=1

wi(q̇)
{

Aix− Âixd + ai − âi

}
+ Bu∗

=
Nm∑
i=1

wi(q̇)
{

Âie + εi

}
+ Bu∗

where the tracking error e = x−xd and the model error εi = (Ai−Âi)x+ai−âi.
Now, define the following Lyapunov function candidate:

V = eTPe +
Nm∑
i=1

1
γ

ε̃Ti ε̃i, (12.2)

1Note that this control part is not a feedforward in the strict sense, since it depends on
(the measurement) q̇.
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with ε̃i = εi − ε̂i and P = P T > 0, where ε̂i is an estimate for εi and γ a
positive constant. The time derivative of (12.2) becomes

V̇ = ėTPe + eTP ė +
Nm∑
i=1

1
γ
( ˙̃ε

T
i ε̃i + ε̃Ti ˙̃εi)

=
Nm∑
i=1

wi(q̇)eT
{

ÂT
i P + PÂi

}
e +

N∑
i=1

wi(q̇)
{
εTi Pe + eTPεi

}

+
{
u∗TBTPe + eTPBu∗}+

N∑
i=1

1
γ
( ˙̃ε

T
i ε̃i + ε̃Ti ˙̃εi) (12.3)

Now we determine the remaining control part as discussed above by u∗ =
uad + ufb. An adaptive compensation of model errors ε̃i is only possible if ε̃i
is in the range of B for all i. To design an adaptive mechanism the following
condition is imposed as demonstrated by [43].

uT
adB

TPe + eTPBuad +
Nm∑
i=1

wi(q̇)
{
εTi Pe + eTPεi

}

+
Nm∑
i=1

1
γ
( ˙̃ε

T
i ε̃i + ε̃Ti ˙̃εi) = 0 (12.4)

By choosing

uad = −
Nm∑
i=1

wi(q̇)
(
BTB

)−1
BT ε̂i (12.5)

and substituting (12.5) in (12.4) the following condition is obtained

Nm∑
i=1

wi(q̇)ε̃Ti B(BTB)−1BTPe + eTPB(BTB)−1BT ε̃i

+
1
γ
( ˙̃ε

T
i ε̃i + ε̃Ti ˙̃εi) = 0 (12.6)

By defining the update rule of the adaptive controller as

˙̃εi = −γwi(q̇)B(BTB)−1BTPe, ∀i ∈ {1, ..., Nm}
we assure that (12.6) is satisfied, implying boundedness of ε̃i. Here, it is
assumed that at least q̈ or (Ai − Âi) is small, that means ε̇i ≈ 0 for all
i ∈ {1, ..., Nm}, which results for the update rule in

˙̂εi = γwi(q̇)B(BTB)−1BTPe, ∀i ∈ {1, ..., Nm}
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The adaptive controller becomes

uad = −
Nm∑
i=1

wi(q̇)
(
BTB

)−1
BT ε̂i

˙̂εi = γwi(q̇)B(BTB)−1BTPe, ∀i ∈ {1, ..., Nm} (12.7)

Applying this adaptive controller, (12.3) reduces to

V̇ =
Nm∑
i=1

wi(q̇)
{

eT (ÂT
i P + PÂi)e

}
+ uT

fbB
TPe + eTPBufb

This is in fact the expression that appears when taking the derivative of a
quadratic Lyapunov function, V (e) = eTPe, P = P T > 0, along a trajectory
of the PLM

ė =
Nm∑
i=1

wi(q̇)Âie + Bufb (12.8)

To obtain an optimal regulator for (12.8), Theorem 11.2.3 is applied.
Theorem 11.2.3 states that if there exists a P = P T > 0 satisfying ∀i, j ∈

{1, . . . , Nm} with wi(x)wj(x) > 0 for some x ∈ X, the following set of AREs

Qij + PÂi + ÂT
i P − PBR−1

j BTP = 0 (ARE)

then the input

ufb = −
Nm∑
i,j=1

wi(q̇)R−1
i BTPe (12.9)

minimizes the cost functional

J∞(e0, u) :=
∫ ∞

0
{u(t)T (

Nm∑
i=1

wi(q̇(t))R−1
i )−1u(t)

+
Nm∑
i,j=1

wi(q̇(t))wj(q̇(t))e(t)TQije(t)}dt

over all other controls, for the error dynamics described by (12.8).
Two different optimal controllers will be derived, a static gain controller

and a regime (or gain) scheduled controller. The static gain controller is
derived by setting Ri = R in (12.9) such that the regulator becomes

ufb = −R−1BTPe (12.10)
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At this stage P, R have to be determined. For the robotic manipulator system
this implies that two AREs have to be solved for P = P T > 0, R > 0, Q1 > 0,
Q2 > 0, that is the above matrices are sought such that

ÂT
1 P + PÂ1 − P TBR−1BTP + Q1 = 0 (12.11)

ÂT
2 P + PÂ2 − P TBR−1BTP + Q2 = 0 (12.12)

Solutions exist to the AREs (12.11,12.12) if the stabilizability condition (11.6)
is satisfied. This condition defines a convex optimization problem and is
checked easily. It confirms that the AREs admit a solution. The (inverse)
optimal control design suggested by Theorem 11.3.1 can now be applied to
obtain an optimal regulator.

For this example however, an alternative solution to the optimal regulator
design problem is proposed, to assure acceptable input torques. First, (12.11)
is solved, yielding a P for given R and Q1. Next, given R and P , Q2 is
computed from (12.12). If Q2 > 0, a solution has been found for the optimal
control problem. For the rotating arm performance is initially specified on
the first ARE (by means of Q1, R), to assure acceptable input torques in the
high velocity region, that is the region where the maximum input torques are
expected. Q1 and R are chosen as follows

Q1 =
[

2500 0
0 2

]
, R = 10

after an iterative process, where the matrices are initialized as suggested in
[16]. We find for P and Q2

P =
[

80.5129 0.2965
0.2965 0.0095

]

Q2 =
[

2500 −2.4
−2.4 1.8

]
> 0

and the optimal state feedback becomes

ufb = −R−1BTPe = −Fe,

where F =
[

15.8114 0.5085
]
.

For the situation where different input weights Ri are used the optimal
control law becomes

ufb = −
4∑

i=1

wi(q̇)R−1
i BTPe
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and can be obtained by solving four AREs, namely

Qij + PÂi + ÂT
i P − PBR−1

j BTP = 0 ∀i, j ∈ {1, 2}

If we denote the input weight R from the previous controller design as R1, Q1

as Q11 and Q2 as Q21 we have to find R2, Q22 and Q12 for the given P . Due
to the fact that by using the weights R1, Q11 and Q21 and the optimal P the
third and fourth ARE are satisfied, we propose for R2

R2 = αR1 0 < α ≤ 1,

With α small we obtain a high gain controller for the low velocity regime. The
design variable α is limited due to the fact that high gain control will amplify
measurement noise, and due to the fact that the control torque u is bounded
in practice. For the low velocity regime a stiff PD-controller is required in
order to reduce steady state errors due to the static friction.

12.4 Experiments

The proposed gain scheduled controller is tested on the rotational robotic
manipulator system, and analyzed for performing the following two servo tasks

1. Tracking a smooth setup function

xd =




0 if t ≤ 8.1
−5
2π sin(2π(t− 8.1)) + 5(t− 8.1) if 8.1 ≤ t ≤ 9.1
5 if t ≥ 9.1

as depicted in the upper plot of Figure 12.2.

2. Tracking a (velocity reversal) reference trajectory

xd =
{

0.1 sin(t− 4.2) if 4.2 ≤ t ≤ 4.2 + 4π
0 if 4.2 ≥ t ≥ 4.2 + 4π

as depicted in the upper plot of Figure 12.3.

Since only the angular displacement of the arm is measured in the experi-
ment, we use a weak differentiator scheme to reconstruct the angular velocity.
The adaptive optimal controller is compared to a PID controller with a feedfor-
ward action uff = (BTB)−1BT ẋd that is tuned for the robotic manipulator
system. The closed-loop bandwidth of the PID controller connected to the
system is set to 25 [Hz]. Two notch filters are introduced to suppress higher
order dynamics. Furthermore, a second order low pass filter is introduced to
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Figure 12.2: Setpoint, controller effort and servo errors for both the PID
controller (thick line) and the PLM based gain scheduled controller (thin line).

suppress the influence of measurement noise. The adaptive gain for the PLM
based controller is set to γ = 1000, and for the gain scheduled feedback a gain
α = 0.5 is used.

The control effort for the different controllers can for the first servo task be
found in Figure 12.2, where the PID controller is shown by a thick line, and the
gain scheduled controller by a thin line. In the same figure the tracking errors
are shown (the same line definitions are used). During the setpoint change the
maximum absolute tracking error for the gain scheduled controllers is smaller
than the error achieved by the PID controller. At the end of the setpoint the
PID controller needs an additional 0.5 second to reach the steady state. This
settling behavior is not desirable, since the additional control effort might
result, for certain controller settings and friction characteristics, in a limit
cycle. The gain scheduled controller clearly outperforms the PID controller.

To investigate the controllers for velocity reversals, a sinusoidal reference
signal, as shown in the upper plot of Figure 12.3, is used. The corresponding
controller effort u and the servo errors are depicted in the same figure for both
the PID controller and the PLM based controller. During motion the difference
in performance between the two proposed controllers is small. However, the
PID controller needs an additional 0.3 second to reach the steady state.
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Figure 12.3: Setpoint, controller effort and servo errors for both the PID
controller (thick line) and the PLM based gain scheduled controller (thin line).

Additional modifications of the proposed controller design are possible,
such as scheduled adaptive gains, γ = γi. Furthermore, an integral action
can be used in the high velocity region, and as a result, performance during
motion might increase considerably for the described controllers.

Correct velocity reconstruction is very important for the applicability of
the adaptive optimal controller. We experienced that due to loss of phase
or amplification of measurement noise the performance of the proposed con-
trollers can be considerably limited.

12.5 Conclusion

We have presented an adaptive optimal controller which leads to a stable
closed-loop system under the assumption that the system is within the model
class. The proposed controller is investigated for two tracking tasks and com-
pared to a PID controller. The gain scheduled outperforms the PID controller
with respect to settling times. However, the servo error for the gain scheduled
controller and the PID controller are almost equal for position tasks. Due to
the absence of integral action for the proposed gain scheduled controller, limit
cycling is always avoided.



Chapter 13

Robust Control with Bounds
on Performance

13.1 Introduction

The purpose of this chapter is to design a stabilizing controller for a family
of (nonlinear) systems. This means that the controller is robust against para-
metric uncertainty of the system. In contrast to the previous chapters the
PLM is interpreted as an uncertainty model of the system.

The objective is to compute a stabilizing gain scheduling controller, which
is robust against parametric uncertainty. A similar discrete time robust stabi-
lization problem is discussed in [66], formulated as a bilinear matrix inequality
feasibility problem and locally solved using LMI algorithms. However, con-
trary to [66] we also demand that some performance level of the closed loop
system is achieved in certain regions of the state-space. Related work can be
found in [23], [63] though restricted to piecewise-affine systems. We also for-
mulate the synthesis problem as a matrix inequality feasibility problem. But
as mentioned in [23] and in conformance with [66] for the case of affine state
feedback this leads to nonlinear matrix inequalities. To avoid the nonlinear
matrix inequalities that are hard to solve, an iterative algorithm involving
LMIs will be proposed to solve the synthesis problem.

In Section 13.2 an algorithm will be proposed that partitions the state-
space into a number of disjoint clusters. With this partitioning a gain schedul-
ing controller will be associated. After that in Section 13.3 relevant perfor-
mance issues will be addressed. An analysis tool is presented that associates
with certain regions of the state-space, (a measure of) performance of the
closed-loop. The analysis tool builds naturally on the outcome of the iterative
robust controller synthesis algorithm that will be presented in Section 13.4.
This algorithm is proposed to solve the robust stabilization problem. In Sec-

159
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tion 13.5, the synthesis algorithm and the analysis tool are illustrated with an
example. Finally, the conclusions of this chapter are drawn.

13.2 State-space Partitioning and Feedback Law

It is assumed that the system to be stabilized can be described locally, that is
within the region X × U × V where x ∈ X ⊆ R

n, u ∈ U ⊆ R
m, v ∈ V ⊆ R

l,
sufficiently accurate by a PLM

ẋ =
Nm∑
i=1

wi(x, u, v) {Aix + Biu + ai} (13.1)

A partitioning of the state-space, similar to [66], and the associated feed-
back law will be formalized. The only knowledge that will be exploited to
stabilize the PLM is the region of support in the state space of the wi’s. First
these regions are identified and described by the sets Xs

j , where s stands for
support

Xs
i :=

⋃
(u,v)∈U×V

supp wi(·, u, v) ∀i ∈ {1, ..., Nm} (13.2)

where for wi the support suppwi(·, u, v) is defined as

supp wi(·, u, v) := {x ∈ X | wi(x, u, v) > 0} (13.3)

Now, a partitioning of the state space in clusters Xc
J where c stands for cluster

can be recursively computed as follows:

for k = 0 to k = Nm − 1 do
∀J ∈ V := {L | L ⊆ {1, ..., Nm},#L = Nm − k}

Xc
J =

(⋂
i∈J

Xs
i

)
\

 ⋃

i∈INm\J
Xc

J
⋃{i}


 (13.4)

Some of the clusters are possibly empty, and X̄c
01 = {Xc

J | Xc
J �= ∅} is the

set containing all non-empty clusters. X̄c
01 can be associated with J̄01 = {J |

Xc
J ∈ X̄c

01}, the set pointing to all polytopes that have non-empty clusters.
Furthermore it will be helpful to have another non-overlapping partitioning of
the state-space, i.e. the cluster Xc

J that contains the origin will be called X̄c
0

and the set of clusters X̄c
01\X̄c

0 will be called X̄c
1. In resemblance with this

partitioning, J̄0 is the set pointing to models associated with region X̄c
0. In
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Figure 13.1: The PLM with x ∈ R
2 consists of the triples (Ai, Bi, ci) with i ∈

{1, 2, 3, 4}. With the knowledge of the wi’s the support sets X s
i are identified

and are given a different hatching. The algorithm, (13.4) is initialized, k = 0,
by taking the intersection of all the support sets X s

i which in this case is
empty, X c

1,2,3,4 = ∅. For k = 1 the algorithm returns Nm!(k!(Nm − k)!)−1 = 4
polytopes of size Nm − k = 3. Only cluster X c

1,2,3 is non-empty. For k = 2
there are 6 polytopes of size 2. Again, some of them have non-empty clusters
e.g. X c

2,3. Along the same lines all the clusters are defined resulting in a
non-overlapping partitioning of the state-space.

the same way, J̄1 can be associated with X̄c
1, J̄1 = J̄01\J̄0. An example of

the suggested state-space partitioning (13.4), is given in Figure 13.1. Figure
13.1 shows that the state-space X is divided in a number of disjoint regions
Xc

J , in such a way that with every region an uncertainty model (a PLDI) is
associated as follows:

ẋ ∈ ΩJ


 x

u
1


 if x ∈ Xc

J ∈ X̄c
01 (13.5)

where ΩJ = Co{[ Ai Bi ai

] | i ∈ J}. With the robust stabilization of
(13.1) the stabilization of the associated uncertainty model (13.5) is meant.
It is assumed that the models indexed with i ∈ J̄0 reduce to (Ai, Bi, 0), from
which it follows that 0 ∈ X̄c

0 is an equilibrium point of (13.1) and (13.5). The
objective is to stabilize the origin.

With the uncertainty model (13.5) it seems natural to associate the fol-



162 Robust Control with Bounds on Performance

lowing piecewise affine state feedback:

u =
{

KJx if x ∈ Xc
J ∈ X̄c

0

KJx + kJ if x ∈ Xc
J ∈ X̄c

1
(13.6)

This controller can be interpreted as a gain scheduling controller, where the
scheduling of the controller parameters KJ , kJ is defined by the clusters Xc

J .

13.3 Performance and Bounds on the Associated
Cost

From earlier expositions on stability it is clear that a sufficient condition for
asymptotic stability of the closed-loop system, i.e. (13.5) interconnected with
(13.6), is the existence of a quadratic function

V (x) = xTPx (13.7)

with P = P T > 0 that decreases along every nonzero trajectory of the closed-
loop system, i.e. V̇ (x) < 0 for all x �= 0. If there exists such a P then V (x) is
a Lyapunov function for the closed-loop system.

Next, the quality of control will be considered. This means that the energy
function V (x) will not only be demanded to decrease, but also to decrease in
a prescribed way along every nonzero trajectory of the closed-loop system
to achieve some desired performance. With respect to performance, the cost
functional

J∞(x0, u) =
∫ ∞

0
(q(x(t), u(t))dt (13.8)

with x0 = x(0), q(x, u) = xTQxx + uTRuu the instantaneous cost function,
and Qx > 0, Ru > 0 is introduced. Two problems will be considered.

Problem 13.3.1 (performance) Given (13.1) with x0 = x(0) and the in-
stantaneous cost function q(x, u), the problem is to determine P > 0 from
(13.7) and {KJ , kJ} from (13.6) that minimize J∞(x0, u).

Problem 13.3.2 (inverse performance) Given (13.1) with x0 = x(0) and
a Lyapunov function (13.7) with P > 0 proving stability of the closed-loop sys-
tem, the problem is to determine the pair (Q, R) from the instantaneous cost
function q(x, u) and {KJ , kJ} from (13.6), that minimize V (x(0)).

It is well known that under appropriate conditions1, any solution u =
k(x) that satisfies (HJB), which in the context of the considered performance

1In contrast to the linear case, where under the appropriate controllability conditions
there always exists a solution to (HJB), here it has to be assumed that V exists.
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problems can be rewritten as

min
u∈U

{
V̇ (x, u) + q(x, u)

}
= 0 (13.9)

minimizes J∞, see Proposition 11.2.1. Suppose that (13.9) holds with u∗ =
k(x), that is

u∗ = k(x) = argmin
u∈U

{
V̇ (x, u) + q(x, u)

}
= 0

then

V̇ (x, u∗) = −q(x, u∗) (13.10)

and

V (x(T ))− V (x(0)) =
∫ T

0

d

dt
V (x(t))dt

=
∫ T

0
V̇ (x(t), u∗(t))dt = −

∫ T

0
(q(x(t), u∗(t))dt

for all T ≥ 0, from which can be concluded that

V (x(0)) = V (x(T )) +
∫ T

0
(q(x(t), u∗(t))dt

Using the fact that limT→∞ V (x(T )) = 0 since by assumption limT→∞ x(T ) =
0, it follows that

V (x(0)) = min
u∈U

J∞(x0, u)

That is V (x(0)) is the optimal cost.
In this case the structure of V see (13.7), u see (13.6), and q(x, u) see

(13.8) are a priori specified and therefore it is unlikely that (13.9) will hold.
However, lower bounds and upper bounds of the cost associated with (inverse)
performance analogous to [63], [17], as well as regions of performance level in
the state-space X will be derived. Therefore it is assumed that a stabilizing
feedback u = k(x) is designed such that

V̇ (x, k(x)) ≥ −q(x, k(x)) for all x (13.11)

or

V̇ (x, k(x)) ≤ −q(x, k(x)) for all x (13.12)

This means equality of (13.10) is replaced by an inequality. First the perfor-
mance problem will be addressed, and after that the same ideas are applied
to the inverse performance problem.
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Performance: lower bound for J∞(x0, u)

Assume q(x, u) given, and suppose that (13.11) holds. Then with an exposition
similar to the one following (13.10) it follows that

V (x(0)) ≤ J∞(x0, k(x)) for all x (13.13)

That is V (x(0)) is a lower bound for the cost that is achieved. The best lower
bound can be computed as the one that maximizes

V (x(0)) = x(0)TPx(0).

subject to (13.13) and the closed-loop system, that is the system intercon-
nected with the feedback u = k(x). The P that achieves this bound will be
denoted Plo.

Performance: upper bound for J∞(x0, u)

Assume q(x, u) given, and suppose that (13.12) holds. Then with an exposition
similar to the one following (13.10) it follows that

V (x(0)) ≥ J∞(x0, k(x)) for all x (13.14)

That is V (x(0)) is an upper bound for the cost that is achieved. The best
upper bound can be computed as the one that minimizes

V (x(0)) = x(0)TPx(0).

subject to (13.14) and the closed-loop system. The P that achieves this bound
will be denoted Pup.

Following a similar analysis as above, bounds on the cost associated with
inverse performance are derived.

Inverse performance: lower bound for V (x(0))

Assume the function V (x) proving stability of the system interconnected with
the feedback u = k(x) given, and suppose that (13.12) holds. Then with an
exposition similar to the one following (13.10) it follows that

J∞(x0, k(x)) ≤ V (x(0)) (13.15)

That is J∞(x0, k(x)) is a lower bound for the energy V (x(0)). The best lower
bound can be computed as the one that maximizes

J∞(x0, k(x)) =
∫ ∞

0

{
xTQxx + k(x)TRuk(x)

}
dt.

subject to (13.15) and the closed-loop system. The pair (Qx, Ru) that achieves
this bound will be denoted (Qx

lo, R
u
lo).
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Inverse performance: upper bound for V (x(0))

Assume V (x) proving stability of the closed-loop system given, and suppose
that (13.11) holds. Then with an exposition similar to the one following (13.10)
it follows that

J∞(x0, k(x)) ≥ V (x(0)) (13.16)

That is J∞(x0, u) is an upper bound for the energy V (x(0)). The best upper
bound can be computed as the one that minimizes

J∞(x0, k(x)) =
∫ ∞

0

{
xTQxx + k(x)TRuk(x)

}
dt.

subject to (13.16) and the closed-loop system. The pair (Qx, Ru) that achieves
this bound will be denoted (Qx

up, R
u
up).

Regions of performance (accuracy)

It follows that if Plo = Pup then necessarily (13.10) holds, since V (x) is a
common solution to (13.12) and (13.11). This implies that (13.9) holds, and
V (x(0)) = J∞(x0, k(x)) is minimized for every initial condition x(0), i.e. op-
timal performance is achieved everywhere in the state-space. As a measure of
accuracy of the upper bound and lower bound it is therefore natural to look
at the following ratio of quadratic terms:

R(x(0)) =
x(0)TPlox(0)
x(0)TPupx(0)

(13.17)

Here it is assumed that x(0) �= 0. Of course 0 ≤ R(x(0) ≤ 1. If R(x(0) ≈ 1
then the bounds are very accurate. R(x(0)), and therefore performance of the
controller depends on the initial condition x(0). Hence there will be regions in
the state-space with maximum and minimum performance (accuracy). With
the factorization Pup = F T

upFup and the nonsingular transformation z(0) =
Fupx(0) (13.17) becomes

R(z(0)) =
z(0)TF−T

up PloPFupz(0)
z(0)T z(0)

(13.18)

The minimum and maximum of the Rayleigh quotient (13.18), can be ob-
tained from the eigenvector-eigenvalue decomposition F−T

up PloFup = QzΛQT
z

with Qz a matrix containing the orthonormal eigenvectors, and Λ a diag-
onal matrix containing the eigenvalues λi arranged in order of magnitude.
Now the maxz 
=0 R(z(0)) = λmax and occurs in the direction of the corre-
sponding eigenvector zmax which is the corresponding column of Qz. Equally,
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minz 
=0 R(z(0)) = λmin with eigenvector zmin. With the transformation Qx =
F−1
up Qz the direction of minimum and maximum performance (accuracy) in

the state-space can be recovered. The regions for constant performance ac-
curacy are given by R(x(0)) = c with λmin ≤ c ≤ λmax. This analysis makes
it possible to associate with certain regions of the state-space a measure of
performance.

13.4 Controller Synthesis

An iterative synthesis algorithm will be proposed that guarantees robust sta-
bility for the PLM (13.1) via piecewise affine state feedback. The conditions
involved can be written as LMIs. Feasibility of these conditions can there-
fore be checked efficiently by means of convex optimization routines. If these
conditions are feasible then also the corresponding feedback can be computed.
Furthermore, the synthesis algorithm provides upper and lower bounds, that
are required to investigate performance of the closed loop.

Robust performance algorithm

The algorithm follows from standard Lyapunov arguments and LMI results
using the S-method. The S-method is introduced to reduce conservatism of
the synthesis inequalities [17]. Therefore a quadratic function

sJ(x) = [x1]TSJ [x1]

has to be identified that outer approximates Xc
J , that is it satisfies

{x | sJ(x) ≥ 0} ⊇ Xc
J .

More about how the outer approximation can be obtained can be found in
[23]. A complete derivation of the synthesis inequalities can be found in [8]
and [7].

step 1: iteration 1, compute the best lower bound Plo as a function
of the desired performance given by the fixed pair (Qx, Ru). Compute this
best lower bound for the cost without assuming a specific controller structure
within a cluster. This can be done by solving the appropriate LMIs based on
(13.11) together with the maximization of trace(P ).

step 2: iteration 1, solve the inverse performance problem, this means
with Qlo = P−1

lo fixed solve the appropriate LMIs based on (13.12) together
with the minimization of trace((Qx)−1) + trace((Ru)−1). The computed per-
formance matrices will be denoted Qx

lo respectively Ru
lo. By doing so Plo be-

comes an upper bound Pup for the cost, given by the obtained performance
pair (Qx

lo, R
u
lo).
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step 1: iteration 2, compute the best lower bound Plo as a function
of the pair (Qx

lo, R
u
lo) obtained in step 2: iteration 1 and iterate further

to see if some demanded agree of performance accuracy is achieved. At any
moment one could stop the iteration and validate performance by comparing
the computed upper- and lower bounds for performance. This means compare
Pup obtained at step 2: iteration k with Plo obtained at step 1: iteration
k+1 following the analysis presented after (13.18). If one is satisfied about
the (accuracy of) performance then the controller can be computed.

This leads to the following iterative procedure:
step 1: (find Plo)
check if ∃P , τJ ≥ 0 such that for J ∈ J̄01, j ∈ J


 AT

j P + PAj + Qx − τJSJ(x, x) ∗ ∗
cTj P − τJSj(x, 1)T −τJSJ(1, 1) ∗

BT
j P 0 Ru


 ≥ 0 (13.19)

and also maximize γ > 0

trace(P ) > γ

step 2: (find Pup)
and if for Qlo = P−1

lo ∃ τJ ≥ 0, (Qx)−1 > 0, (Ru)−1 > 0, {YJ}, {yJ} such
that for J ∈ J̄01, j ∈ J



−LJ − τJQloSJ(x, x)Qlo ∗ ∗ ∗
−MT

J − τJSj(x, 1)TQlo −τJSJ(1, 1) ∗ ∗
Qlo 0 (Qx)−1 ∗
YJ yJ 0 (Ru)−1


 ≥ 0

(13.20)

with LJ = QlA
T
j +Y T

J Bj
T +AjQl+BjYJ , MT

J = cTj +yT
J Bj

T and also minimize
γ > 0

trace((Qx)−1) + trace((Ru)−1) < γ

The ∗ elements are induced by symmetry of the matrices. SJ(., .) is partitioned
according to x and 1.

If the LMIs are feasible, i.e. there exists a solution to the two step synthesis
algorithm, then the controller (13.6) with KJ = YJPl and kJ = yJ robustly
stabilizes (13.1).
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13.5 Example

Assume that the PLM (13.1) consists of three models, parametrized by (Ai, Bi, ci),
i ∈ {1, 2, 3} where

A1 =
[

0 1
1 2

]
B1 =

[
0
1

]
c1 =

[
0
0

]

A2 =
[

0 1
−1 −2

]
B2 =

[
0
1

]
c2 =

[
0
1

]

A3 =
[

0 1
−4 2

]
B3 =

[
0
1

]
c3 =

[
0
−1

]

In this example it is assumed that the clusters are identified such that X̄c
01 =

{Xc
1, X

c
12, X

c
3} and X̄c

0 = Xc
1, see Figure 13.2. In order to be able to introduce

the S-method the different regions Xc
J ∈ X̄c

01 have to be outer approximated
by quadratic functions sJ(x). In this typical example

Xc
1 = R

2\X̄c
1

Xc
12 = {x | −((x1 − 3)2 + (x2 − 3)2)) + 1 > 0}

Xc
3 = {x | −((x1 + 3)2 + (x2 + 3)2) + 1 > 0}

and the associated quadratic outer approximations sJ(x) are equal except
s1(x) = 0. Some conservatism is introduced since s1(x) = 0 for all x ∈
R
2. Without the S-method, for every polytope defined by J ∈ J̄01, the

triples (Ai, Bi, ci) have to be stabilizable via the feedback (13.6). Therefore
the synthesis LMIs without the S-method would fail. In this case however
(13.19,13.20) are feasible and the following results are obtained.

step 1: iteration 1(find Plo)
Solve (13.19) with the suggested maximization of P for fixed

Qx =
[

10 0
0 10

]
and Ru = 1.

The following result is obtained:

Plo =
[

11.8148 1.7044
1.7044 2.7034

]
.

step 2: iteration 1 (find Pup)
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Solve (13.20) with the suggested minimization of (Qx)−1 and (Ru)−1, the
off-diagonal elements of Qx are chosen to be structural zeros. The following
solution is obtained:

Qx
lo =

[
7.9147 0
0 14.1451

]
and Ru

lo = 0.2547.

For the performance pair (Qlo, Rlo) the fixed Plo becomes Pup. The com-
puted controller parameters are

K1 =
[ −6.6911 −10.6129

]
k1 = 0

K12 =
[ −6.6917 −10.6084

]
k12 = 0.2714

K3 =
[ −6.7007 −10.5092

]
k3 = −0.0117

step 1: iteration 2(find Plo)
Solve (13.19) with the suggested maximization of P however with the pair

(Qx
lo, R

u
lo). The outcome of this step is

Plo =
[

11.3612 1.0562
1.0562 1.6998

]
.

The quality of the two step synthesis algorithm can be quantized by looking
at the distance between the performance achieved by the controller and the
desired performance. The achieved performance of the controller (13.6)

uc =
{

KJx if x ∈ Xc
J ∈ X̄c

0

KJx + kJ if x ∈ Xc
J ∈ X̄c

1

is measured by the cost functional

J∞(x0, uc) =
∫ T

0

{
x(t)TQx

lox(t) + uc(t)TRu
louc(t)

}
dt.

Vup(x(0)) = xT (0)Pupx(0) is an upper bound for the desired cost function
J∞(x0, u), see (13.12,13.20). The corresponding lower bound for the cost
function reads Vlo(x(0)) = xT (0)Plox(0), see (13.11,13.19). So clearly

Vlo(x(0)) ≤ J∞(x0, uc) ≤ Vup(x(0))

.
The upper bound Vup, lower bound Vlo, achieved performance J∞ and

performance accuracy R for the associated regions of minimal performance
accuracy βxmin, and regions of maximal performance accuracy βxmax in the
state-space, is given in Table 13.1.

In Figure 13.2 simulation results are shown for the polytopic system with
w1 = w2 = 0.5 for x ∈ Xc

12. Trajectories are initialized from: x(0) = [3 4.5]T ,
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Table 13.1: Upper bound, lower bound and achieved performance.
minimal accuracy maximal accuracy

x(0) xmin = [−0.019 −4.853]T xmax = [3.051 −1.971]T

R(x(0)) λmin = 0.6287 λmax = 0.9967
Vup(x(0)) 64.0072 99.9826
J∞(x0, uc) 61.9262 99.9071
Vlo(x(0)) 40.2440 99.6574
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Figure 13.2: Trajectories in the state-space for different initial conditions of
the closed loop PLM.

x(0) = xmin and x(0) = xmax. Also the (dotted) lines along which maximal
and minimal performance accuracy is obtained are drawn in this figure. From
the elliptical Lyapunov level curves it can be seen that, as expected, along the
trajectories energy decreases. Since trajectories of the closed loop system with
initial values x(0) = xmax and x(0) = xmin stay within cluster Xc

1 one could
compare the performance of the controller for these initial conditions with a
LQR design for the triple (A1, B1, c1) with performance pair (Qx

lo, R
u
lo). This

means solving the algebraic Riccati equation for the unknown P ,

PA1 + AT
1 P − PB1(Ru

lo)
−1BT

1 P + Qx
lo = 0

with optimal controller K = −(Ru
lo)

−1BT
1 P . The following solution is ob-
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tained:

P =
[

11.8036 1.6972
1.6972 2.6835

]
and K = [−6.6635− 10.5359].

This leads to the costs Exmax = 99.8224 and Exmin = 56.6821 evaluated for
initial conditions of maximal and minimal performance accuracy as given in
Table 13.1. Comparing these costs with the costs from Table 13.1 shows that
indeed performance is achieved for initial conditions x(0) close to axmax.

Yet another interesting observation can be made about performance of
the closed loop system. For initial conditions x(0) such that trajectories go
through an uncertain region (in this case cluster Xc

12), one may not expect the
upper and lower bound for the cost function to be the same. This is because for
such an initial condition different trajectories of the closed-loop are expected
to be possible. Different trajectories will most likely result in different costs.
If different costs are possible for the same initial condition then this will lead
to upper bounds and lower bounds that are not the same. This means that in
general the uncertainty reduces the performance.

13.6 Conclusion

In this chapter a stabilizing controller for a family of (nonlinear) systems is
designed. This means that the controller is robust against parametric un-
certainty of the system. In contrary to the previous chapters the PLM is
interpreted as an uncertainty model of the system.

An algorithm is proposed that partitions the state-space into a number
of disjoint clusters on which a gain scheduling controller is defined. The par-
titioning relies on the support of the scheduling functions of the PLM. The
objective is to parametrize this controller such that robust stabilization and
performance of the closed loop PLM is achieved.

An iterative algorithm involving LMIs is proposed to solve the robust sta-
bilization problem. If the LMIs are feasible then the synthesis problem is
solved. Furthermore performance of the closed loop in the state-space can be
analyzed with the presented analysis tool that builds naturally on the outcome
of the iterative synthesis algorithm presented in this chapter.
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Chapter 14

Conclusions

14.1 Main Conclusions

The hypothesis that the choice for a PLM structure enlarges the possibility
to develop control theory and modelling methodologies, that are in agreement
with and partly generalize the linear theory, is justified by this thesis. It
is demonstrated that a substantial variety of analysis, modelling and control
problems for nonlinear systems can be approached constructively with the
presented framework. The approach is attractive since it shows resemblance
with the linear approach and, therefore, already well-known theoretical con-
cepts and ideas can be formalized and generalized in the PLM setting. The
presented framework is far from finished. The contents of this thesis, the
problems considered, are meant only to be representative and certainly not
exhaustive. The reader however will easy catch on and elaborate on the ideas
presented in this thesis. Next a few conclusions by part will be given.

Analysis

The proposed model structure, and the different interpretations of the PLM
are easily understood, which facilitates the transfer of information between the
model and the users of the model. Furthermore, a PLM is a universal approx-
imator, thus the model class is rich. However, the ‘curse of dimensionality’
restricts the practical applicability of PLMs to low dimensional scheduling
spaces. Stability of the system can be checked efficiently with the proposed
methods. The controllability and observability results are restricted to PLMs
which have additional structure.

173
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Modelling

The presented modelling methods demonstrate that it is feasible to model a
system adequately with a PLM. The modelling problems that we have con-
sidered, however, are of limited complexity. The practical applicability of the
modelling methods to more complex systems is not within the scope of this
thesis. It is our experience that, for the small-scale problems considered, the
transparency of the PLM, contributes to the understanding of system proper-
ties, in particular nonlinearities.

Control

The presented control approaches show that it is viable to design controllers
for a nonlinear system on the basis of an approximate PLM representation
of the system. The presented control approaches are constructive and can be
automated to a large extent. They show how PLM analysis and modelling
can be utilized and combined to design controllers for the system. From the
presented examples it can be concluded that the same objective or perfor-
mance could never be achieved with a linear control design. Furthermore, the
resulting controllers are easy to understand and intuitively appealing.

One can conclude that model scheduling leads to controller scheduling.
Within industry controller scheduling has already been done for years, how-
ever on an ad-hoc basis. Gain scheduling controller designs are often a first
step beyond linear designs. The presented research work is a step towards
theoretically sound and automated model-scheduling and gain-scheduling and
is therefore of practical relevance.

14.2 Main Contributions

The main contributions of this thesis are classified by part and ordered by
appearance.

Analysis

• The approximation results Theorem 4.3.1 and Theorem 4.6.3.

• The stability results Theorem 5.3.1, Corollary 5.3.2, Theorem 5.3.4 and
Theorem 5.3.5.

• The controllability results Theorem 5.4.2, Theorem 5.4.4, Theorem 5.4.5,
Corollary 5.4.6 and the observability conditions that follow from duality.
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Modelling

• The model based modelling method presented in Chapter 7.

• The data based modelling method presented in Section 8.3.

Control

• The optimal control results Theorem 11.2.3 and Theorem 11.3.1.

• The robust controller design algorithm presented in Chapter 13.

14.3 Suggestions for further Research

The PLM structure is of a form lending itself to computer aided modelling and
controller design. Preliminary work indicates that it is feasible and paying to
implement the presented algorithms for system analysis, modelling and control
in a software environment with an interface especially developed for PLMs.

I also suggest to elaborate on the ideas presented in this thesis and to
contribute to the framework. Next a few suggestions by part will be given.

Analysis

The polytopic linear model structure as suggested, is constrained by the fact
that each regime consists of the same set of state variables. However, if a
system is identified in several characteristic operating regimes by a linear state
space model, it is imaginable that these linear models will have different state-
spaces. Often on the basis of these locally valid models, locally valid controllers
are designed. How to schedule these controllers over the operating space is
far from trivial, and often approached in an ad-hoc way. If it is possible to
combine the locally valid models into a polytopic linear model, then controller
scheduling could be handled in the way presented in this thesis. A next step is
thus to extend the PLM approach such that linear models with different state
spaces can be handled. A point of departure can be [34], who addresses this
problem.

Modelling

The practical applicability of the modelling methods has to be evaluated on
more complex systems. A user friendly software implementation of the de-
rived identification algorithms, will facilitate the applicability of the modelling
method.
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Control

The stabilizing controllers that are presented for PLMs are all based upon
the existence of a quadratic Lyapunov function for the closed-loop system.
Quadratic candidate Lyapunov functions are only sufficient for establishing
stability of the nonlinear systems under consideration and many systems do
not admit a quadratic Lyapunov function. Therefore, more powerful candi-
date Lyapunov functions can reduce the conservatism of quadratic candidate
Lyapunov functions. A next step, that naturally generalizes the presented ap-
proach, can be to search for piecewise quadratic Lyapunov functions. These
functions are more powerful then quadratic candidate Lyapunov functions [39],
and because of the structure of these functions, we expect that in some cases
it is possible to arrive at more powerful controller synthesis algorithms that
are nearly as tractable as the ones presented here.
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List of Acronyms

Acronym1 Meaning

ARE Algebraic Riccati Equation
HJB Hamilton Jacobi Bellman
LMI Linear Matrix Inequality
LQR Linear Quadratic Regulator
LTI Linear Time Invariant
PD Proportional Derivative
PID Propotional Integral Derivative
PLDI Polytopic Linear Differential Inclusion
PLM Polytopic Linear Model

1See the index for the page numbers.
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Some Symbols

Symbol Description

A system matrix
Ai system matrix of model i
A(i, j) system matrix entry located at the i-th row and j-th

column of A
(Ai, Bi, ai, Ci, Di, ci) parametrization of nonhomogeneous model i
ai system vector of nonhomogeneous linear model i
B control input matrix
Br(x0i) ball with radius r centered at x0i
Cc(x0i) cube with width c centered at x0i
Co convex hull
C output matrix
Ck(E) functions k-times continuously differentiable on the

domain E
ci output vector of nonhomogeneous linear model i
D direct feedthrough matrix
d(Zi) center of scheduling regime i
dfg(E) distance between system f and model g on the

domain E
e(Zi) width of scheduling regime i
F k
i k-th order Taylor remainder of f around x0i

f(·) right-hand side for system
fk
i k-th order Taylor series expansion of f around x0i

g(·) right-hand side for (approximate) model
h output map
J(·) cost function(al)
λξ maximum absolute eigenvalue of the Jacobian or

Hessian matrices associated with the Taylor remainder
M model set
Nm number of (local) models or operating regimes
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O(A, B) observability matrix
O(A, B) observable space
Ψ operating space
Ψi operating regime i
ρi(z) validity function i
R(A, B) controllability matrix
R(A, B) controllable space
θ parameter vector
wi(z) scheduling function i
x state
u input
v external (observed) variable
y output
Z scheduling space
Zi scheduling regime i
�·� ceiling operator
‖·‖2 Euclidean norm
‖·‖F Frobenius norm
|·| absolute value



Index

Algebraic Riccati Equation
ARE, 139

approximate modelling, 82

bias-variance trade-off, 83

controllability, 65
feedback equivalence, 67
Kalman decomposition, 66
stabilizability, 71

curse of dimensionality, 33

ε-accuracy, 32

fuzzy set, 21

gain scheduling, 133, 141, 154, 162
global model, 12

Hamilton Jacobi Bellman
HJB, 138

Linear Matrix Inequality
LMI, 60

Linear Quadratic Regulator
LQR, 141

Linear Time Invariant
LTI, 2

linearization
approximate, 18
exact, 18

local model, 12
Lyapunov stability, 57

first method, 57
second or direct method, 58

membership function, 21
Gaussian, 22

modelling error
approximation error, 83
estimation error, 83
generalization error, 83

nonhomogeneous linear model, 17

observability, 71
duality, 73

operating regime, 12
optimal filtering, 114
optimal stabilization, 141

polytope, 20
Polytopic Linear Differential Inclu-

sion
PLDI, 20

Polytopic Linear Model
PLM, 15

Proportional Derivative
PD, 149

Proportional Integral Derivative
PID, 150

regime aggregation, 93
regime segregation

data based, 115
model based, 94

scheduling function, 15
scheduling regime, 12

uncertainty model, 19
uncertainty model set, 20
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universal approximation, 29

validity function, 14



Samenvatting

Dit onderzoek beschrijft de analyse, het modeleren, en het regelen van een
klasse van niet-lineaire dynamische systemen op basis van polytope lineaire
modellen. De polytope lineaire modelstructuur wordt gëıntroduceerd als een
alternatieve benaderende beschrijvingswijze van niet-lineaire dynamische sys-
temen ten behoeve van systeem analyse en regelaarontwerp. De modelstruc-
tuur heeft een drietal eigenschappen die we willen benutten.

Ten eerste, een PLM is opgebouwd uit een aantal lineaire modellen die ieder
afzonderlijk binnen een werkgebied, een zogenaamd regime, het systeem kwal-
itatief beschrijven. Door deze modellen op geschikte wijze aan elkaar te kop-
pelen, door middel van werkpuntsafhankelijke convexe combinaties van de pa-
rameters behorend bij de lineaire modellen, ontstaat een PLM. De parameter-
waarden van het PLM variëren dan ook binnen een polytoop die gedefiniëerd
wordt door alle mogelijke convexe combinaties van parameterwaarden te ne-
men behorende bij de afzonderlijke lineaire modellen. Aan deze eigenschap
dankt een PLM zijn naam. Een PLM is dus te interpreteren op basis van een
regime decompositie. Ten tweede, daar een PLM gebaseerd is op meerdere
lineaire modellen, is het mogelijk om het niet-lineaire systeem meer globaal
te beschrijven dan mogelijk zou zijn geweest met één enkel lineair model.
Ten derde wordt er aangetoond dat onder geschikte condities, niet lineaire
systemen tot iedere gewenste nauwkeurigheid benaderd kunnen worden door
een PLM, geparametriseerd met een eindig aantal parameters. Er wordt een
bovengrens gegeven voor het aantal benodigde parameters, voldoende om een
vooraf gegeven gewenste nauwkeurigheid van de benadering te behalen.

Een belangrijke motivatie voor het beschouwen van een PLM berust op
de overeenkomsten in structuur met een linear model. Voor lineaire systemen
is de systeem- en regeltheorie goed ontwikkeld en begrepen. Het al dan niet
voldoen aan de voor dit vakgebied belangrijke systeem eigenschappen, zoals
stabiliteit, regelbaarheid enzovoort, kan aangetoond worden middels (vaak re-
latief eenvoudige) mathematische manipulaties van de parametrisatie. Het
regelaarontwerp kan vaak geautomatiseerd worden op basis van de parametri-
satie en de regeldoelstelling. Denk hierbij aan regelwetten op basis van sta-
biliteit, optimaliteit enz.. Voor niet-lineaire systemen is dit maar ten dele het
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geval en is dus het ontwikkelen van systeem- en regeltheorie van groot belang.
Gezien de overeenkomsten tussen een lineair model en een PLM bestaat de
verwachting dat (van resultaten en concepten) van de goed ontwikkelde li-
neaire systeem- en regeltheorie gebruik gemaakt kan worden. Deze hypothese
wordt ten dele bevestigd door dit onderzoek.

Onder geschikte voorwaarden kunnen middels een eenvoudige analyse van
de parametrisatie van het PLM systeem theoretische en regeltechnisch gezien
relevante systeemeigenschappen van het PLM vastgesteld worden. Eén van
die eigenschappen is stabiliteit. Onder geschikte voorwaarden impliceert sta-
biliteit van het PLM stabiliteit van het werkelijke systeem. Verder worden er
enkele eenvoudig te verifiëren condities afgeleid met betrekking tot de begrip-
pen regelbaarheid en waarneembaarheid. Hierbij dient opgemerkt te worden
dat daartoe de modelstructuur van het PLM in verdere mate beperkt is.

Het afleiden van systeemeigenschappen van het PLM heeft tot doel om tot
een geschikt model, en in het bijzonder een model gebaseerd regelaar ontwerp
te komen. Dit onderzoek beschrijft dan ook enkele constructieve methoden
om tot een PLM representatie van het werkelijke systeem te komen.

Op basis van het PLM zijn enkele regelwetten geformuleerd. Deze regelwet-
ten hebben als hoofddoel het systeem in een gewenst werkpunt te stabiliseren.
Enkele geautomatiseerde stabiliserende regelaarontwerpen die als neven regel-
doelstelling optimaliteit of robuustheid beogen, behoren tot het resultaat van
dit onderzoek.

Het complete traject van het representeren van een systeem met een be-
naderend PLM, vervolgens het analyseren van het PLM, tot en met het uitein-
delijk regelen van het systeem op basis van een op het PLM gebaseerd rege-
laarontwerp is gëıllustreerd aan de hand van enkele voorbeelden. Het be-
treft hier zowel experimentele alsook simulatie studies waarbij niet-lineaire
dynamische (mechanische) systemen het onderwerp van onderzoek zijn.
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