83,259 research outputs found

    Laser Diode Induced Lighting Modules

    Get PDF
    Laser diodes have the potential of becoming the light engines of future lighting technology since they have negligible efficiency droop factor, unlike light emitting diodes. This study demonstrates the possibility of laser diodes coupled to phosphor targets being used as a solid state lighting system with high power applications. It was revealed that white light emitting modules with efficiency of up to 217 lumens per watt based on laser diodes can currently be made and upon further development of laser diode technology and relevant phosphor materials there is room for further improvements. The report also demonstrates the ability of this technology to produce a tailored emission spectrum for a given specific requirement. Two test lamp prototypes were made using laser diodes and phosphor targets and their emission characteristics were investigatedBrunel University London & EPSRC grant No. EP/K504208/

    Luminous Intensity for Traffic Signals: A Scientific Basis for Performance Specifications

    Get PDF
    Humnan factors experiments on visual responses to simulated traffic signals using incandescent lamps and light-emitting diodes are described

    Solid State Lighting: A Summarization of Advancements

    Get PDF
    Solid State Lighting is a rapidly growing new technology in the field of lighting. By utilizing the concepts of solid-state physics and electronics, it generates light. Light emitting diodes and organic light emitting diodes pose several advantages over the current lighting technology but they still require development and research for using them to their full potential. In this paper the characteristics, sources of uncertainty, and market status of light emitting diode are reviewed to provide more suitable research directions for advancement in the field of solid-state lighting. Challenges faced by Light emitting diodes for maintaining color and visual comfort are also illustrated. Failure modes and environmental impact of light emitting diodes are also analysed. Quantum dot based solid state lightening is also presented to study the chromatic characteristics.  Some critical factors of concern for broader application of light emitting diodes and additional enhancements in electrical, optical, temperature characteristic, high power output and color furnishing capabilities are also demonstrated in paper. Light emitting diodes wattage output and efficiency are also discussed for practical viability of solid state devices in emerging fields. The extension lead of current LED technology in evolving applications are considered as accumulation of numerous technologies such as wireless, communication, sensors and control engineering. Undoubtedly, LED engineering is contemporary and the price maybe unreasonable. Nevertheless, it will find its usage in very nearly all applications and the initiation of new techniques that might lessen the cost

    Cathodic and Anodic Material Diffusion in Polymer/Semiconductor-Nanocrystal Composite Devices

    Get PDF
    In the present day, the information technologies and telecommunications sector continually increase their demand for low cost, low power consumption, high performance electroluminescent devices for display applications. Furthermore, general lighting applications, such as white light and large array colour displays, would also benefit from an increase in the overall efficiency. Several technologies are being investigated to fulfill these needs, such as organic light emitting diodes (OLED), polymeric light emitting diodes (PLED) and field effect emission devices. A new and promising technology is light emitting devices (LEDs) based on nanostructured materials. With organic LEDs (OLEDs) already making an impact on the market in an increasingly large number of applications, hybrid technologies based on organic/inorganic nano-composites are a potential the next step. The incorporation of highefficiency fluorescent semiconductor nanoparticles has been shown to have a beneficial effect on device performance, [1] modify the colour output from the device 2 and provide a simplified route to generation of LED type devices. [3

    Temperature compensation of light-emitting diodes

    Get PDF
    Circuit which includes a thermistor-resistor combination to compensate for temperature fluctuations by supplying input voltage to light-emitting diode, maintains constant light output. Similar circuits can be used for temperature-induced variations in photodiode applications

    Direct measurement of the magnetic field effects on carrier mobilities and recombination in tri-(8-hydroxyquinoline)-aluminum based light-emitting diodes

    Full text link
    The magnetic field effects on the carrier mobilities and recombination in tri-(8-hydroxyquinoline)-aluminum (Alq3) based light-emitting diodes have been measured by the method of transient electroluminescence. It is confirmed that the magnetic field has no effect on the electron and hole mobilities in Alq3 layers and can decrease the electron-hole recombination coefficient. The results imply that the dominant mechanism for the magnetic field effects in Alq3 based light-emitting diodes is the interconversion between singlet e-h pairs and triplet e-h pairs modulated by the magnetic field when the driving voltage is larger than the onset voltage of the electroluminescence.Comment: 14 pages, 4 figures,The revised version submitted to applied physics letter

    New Yellow Ba\u3csub\u3e0.93\u3c/sub\u3eEu\u3csub\u3e0.07\u3c/sub\u3eAl\u3csub\u3e2\u3c/sub\u3eO\u3csub\u3e4\u3c/sub\u3e

    Get PDF
    Phosphor-converted white light-emitting diodes for indoor illumination need to be warm-white (i.e., correlated color temperature \u3c4000 \u3eK) with good color rendition (i.e., color rendering index \u3e80). However, no single-phosphor, single-emitting-center-converted white light-emitting diodes can simultaneously satisfy the color temperature and rendition requirements due to the lack of sufficient red spectral component in the phosphors’ emission spectrum. Here, we report a new yellow Ba0.93Eu0.07Al2O4phosphor that has a new orthorhombic lattice structure and exhibits a broad yellow photoluminescence band with sufficient red spectral component. Warm-white emissions with correlated color temperature 80 were readily achieved when combining the Ba0.93Eu0.07Al2O4 phosphor with a blue light-emitting diode (440–470 nm). This study demonstrates that warm-white light-emitting diodes with high color rendition (i.e., color rendering index \u3e80) can be achieved based on single-phosphor, single-emitting-center conversion
    • …
    corecore