80 research outputs found

    Stochastic Approach to Test Pattern Generator Design

    Get PDF

    BIST test pattern generator based on partitioning circuit inputs

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1995.Includes bibliographical references (leaves 33-35).by Clara Sánchez.M.Eng

    Transition Faults and Transition Path Delay Faults: Test Generation, Path Selection, and Built-In Generation of Functional Broadside Tests

    Get PDF
    As the clock frequency and complexity of digital integrated circuits increase rapidly, delay testing is indispensable to guarantee the correct timing behavior of the circuits. In this dissertation, we describe methods developed for three aspects of delay testing in scan-based circuits: test generation, path selection and built-in test generation. We first describe a deterministic broadside test generation procedure for a path delay fault model named the transition path delay fault model, which captures both large and small delay defects. Under this fault model, a path delay fault is detected only if all the individual transition faults along the path are detected by the same test. To reduce the complexity of test generation, sub-procedures with low complexity are applied before a complete branch-and-bound procedure. Next, we describe a method based on static timing analysis to select critical paths for test generation. Logic conditions that are necessary for detecting a path delay fault are considered to refine the accuracy of static timing analysis, using input necessary assignments. Input necessary assignments are input values that must be assigned to detect a fault. The method calculates more accurate path delays, selects paths that are critical during test application, and identifies undetectable path delay faults. These two methods are applicable to off-line test generation. For large circuits with high complexity and frequency, built-in test generation is a cost-effective method for delay testing. For a circuit that is embedded in a larger design, we developed a method for built-in generation of functional broadside tests to avoid excessive power dissipation during test application and the overtesting of delay faults, taking the functional constraints on the primary input sequences of the circuit into consideration. Functional broadside tests are scan-based two-pattern tests for delay faults that create functional operation conditions during test application. To avoid the potential fault coverage loss due to the exclusive use of functional broadside tests, we also developed an optional DFT method based on state holding to improve fault coverage. High delay fault coverage can be achieved by the developed method for benchmark circuits using simple hardware

    On applying the set covering model to reseeding

    Get PDF
    The Functional BIST approach is a rather new BIST technique based on exploiting embedded system functionality to generate deterministic test patterns during BIST. The approach takes advantages of two well-known testing techniques, the arithmetic BIST approach and the reseeding method. The main contribution of the present paper consists in formulating the problem of an optimal reseeding computation as an instance of the set covering problem. The proposed approach guarantees high flexibility, is applicable to different functional modules, and, in general, provides a more efficient test set encoding then previous techniques. In addition, the approach shorts the computation time and allows to better exploiting the tradeoff between area overhead and global test length as well as to deal with larger circuits

    An Efficient Implementation of Built in Self Diagnosis for Low Power Test Pattern Generator

    Get PDF
    A New architecture of Built-In Self-Diagnosis is presented in this project. The logic Built-In-Self-Test architecture method is extreme response compaction architecture. This architecture first time enables an autonomous on-chip evaluation of test responses with negligible hardware overhead. Architecture advantage is all data, which is relevant for a subsequent diagnosis, is gathered during just one test session. Due to some reasons, the existing method Built-In Self-Test is less often applied to random logic than to embedded memories.  The generation of deterministic test patterns can become prohibitively high due to hardware overhead. The diagnostic resolution of compacted test responses is in many cases poor and the overhead required for an acceptable resolution may become too high.  Modifications in Linear Feedback Shift Register to generate test pattern with security for modified Built-In-Self-Test applications with reduced power requirement. The modified Built-In-Self-Test circuit incorporates a fault syndrome compression scheme and improves the circuit speed with reduction of time

    Power Droop Reduction In Logic BIST By Scan Chain Reordering

    Get PDF
    Significant peak power (PP), thus power droop (PD), during test is a serious concern for modern, complex ICs. In fact, the PD originated during the application of test vectors may produce a delay effect on the circuit under test signal transitions. This event may be erroneously recognized as presence of a delay fault, with consequent generation of an erroneous test fail, thus increasing yield loss. Several solutions have been proposed in the literature to reduce the PD during test of combinational ICs, while fewer approaches exist for sequential ICs. In this paper, we propose a novel approach to reduce peak power/power droop during test of sequential circuits with scan-based Logic BIST. In particular, our approach reduces the switching activity of the scan chains between following capture cycles. This is achieved by an original generation and arrangement of test vectors. The proposed approach presents a very low impact on fault coverage and test time

    Design of High-Speed Multiplier with Optimised Builtinself-Test

    Get PDF
    Current trend in Integrated Circuits (IC) implementation such as System-on-Chip has contributed significant advantages in electronic product features such as high circuit performance with high number of functions, small physical area and high reliability. Since the development of System-on-Chip, which is based on integrating subsystems supplied by various Intellectual Properties (IP) Block vendors, the required design time is shorter when compared to that of full-custom IC implementation. However, testing each internal subsystems using the common scan-path method where test data are generated and analyzed externally is considered too time consuming when the number of subsystems is high. Therefore, by including Built-In-Self-Test (BIST) facility into each subsystem is considered a good solution. Commonly, BIST structure is based on random test data generation from a Linear Feedback Shift Register (LFSR) due to its simple, small and economical circuit structure. Since t he number of subsystems in an IC chip is going to be increased from time to time, improvement on the BIST approach is required to provide shorter testing time while keeping the good features of LFSR. For this reason, development of test pattern for BIST based on combination of LFSR and deterministic approach could provide one of the solutions to reduce the testing time. In this research, the possibility of combining LFSR features and deterministic test pattern was carried out. A parallel high-speed multiplier considered as one of the demanding subsystems was chosen to verify the proposed BIST performance. Results show that the testing time (with 100% fault coverage) was reduced significantly when compared to the testing time taken for the BIST that was totally based on random test data generation. One of the reasons for this achievement is only one basic cell of the multiplier is required to determine the test pattern by considering the data flow from one cell to another. Identical test data can then be applied to both multiplier inputs simultaneously. This is the significant finding of the research. Further works based on the finding are also identified

    Acceleration of Seed Ordering and Selection for High Quality Delay Test

    Get PDF
    Seed ordering and selection is a key technique to provide high-test quality with limited resources in Built-In Self Test (BIST) environment. We present a hard-to-detect delay fault selection method to accelerate the computation time in seed ordering and selection processes. This selection method can be used to restrict faults for test generation executed in an early stage in seed ordering and selection processes, and reduce a test pattern count and therefore a computation time. We evaluate the impact of the selection method both in deterministic BIST, where one test pattern is decoded from one seed, and mixed-mode BIST, where one seed is expanded to two or more patterns. The statistical delay quality level (SDQL) is adopted as test quality measure, to represent ability to detect small delay defects (SDDs). Experimental results show that our proposed method can significantly reduce computation time from 28% to 63% and base set seed counts from 21% to 67% while slightly sacrificing test quality

    DESIGN OF POWER DROOP REDUCTION DURING SCAN-BASED LOGIC BIST

    Get PDF
    A new low power test pattern generator which can effectively reduce the average power consumption during test application is developed. The new test pattern generator reduces the weighted switching activity (WSA) of the circuit under test (CUT) by suppressing transitions at some primary inputs which make many transitions. Moreover, the new test pattern generator does not lose fault coverage. Experimental results on the ISCAS benchmark circuits show that average power reduction can be achieved up to 33.8% while achieving high fault coverage
    corecore