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ABSTRACT 

Yao, Bo. Ph.D., Purdue University, December 2013.  Transition Faults and Transition 
Path Delay Faults: Test Generation, Path Selection, and Built-In Generation of Functional 
Broadside Tests.  Major Professor:  Irith Pomeranz. 
 
 
 

As the clock frequency and complexity of digital integrated circuits increase rapidly, 

delay testing is indispensable to guarantee the correct timing behavior of the circuits. In 

this dissertation, we describe methods developed for three aspects of delay testing in 

scan-based circuits: test generation, path selection and built-in test generation.  

We first describe a deterministic broadside test generation procedure for a path delay 

fault model named the transition path delay fault model, which captures both large and 

small delay defects. Under this fault model, a path delay fault is detected only if all the 

individual transition faults along the path are detected by the same test. To reduce the 

complexity of test generation, sub-procedures with low complexity are applied before a 

complete branch-and-bound procedure. Next, we describe a method based on static 

timing analysis to select critical paths for test generation. Logic conditions that are 

necessary for detecting a path delay fault are considered to refine the accuracy of static 

timing analysis, using input necessary assignments. Input necessary assignments are input 

values that must be assigned to detect a fault. The method calculates more accurate path 

delays, selects paths that are critical during test application, and identifies undetectable 

path delay faults. These two methods are applicable to off-line test generation. For large 

circuits with high complexity and frequency, built-in test generation is a cost-effective 

method for delay testing. For a circuit that is embedded in a larger design, we developed 

a method for built-in generation of functional broadside tests to avoid excessive power 

dissipation during test application and the overtesting of delay faults, taking the 
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functional constraints on the primary input sequences of the circuit into consideration. 

Functional broadside tests are scan-based two-pattern tests for delay faults that create 

functional operation conditions during test application. To avoid the potential fault 

coverage loss due to the exclusive use of functional broadside tests, we also developed an 

optional DFT method based on state holding to improve fault coverage. High delay fault 

coverage can be achieved by the developed method for benchmark circuits using simple 

hardware. 
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1. INTRODUCTION 

The correct operation of a digital integrated circuit requires not only correct 

functional behavior but also correct operation at the desired clock frequency. As the 

manufacturing technology allows smaller feature size and the complexity of circuit 

increases, imperfection and random variations in process parameters are more likely to 

cause propagation delays to exceed the clock period. To guarantee the correctness of the 

circuit, it is necessary to perform delay testing.  

 

1.1. Delay Fault Models 

Defects that cause the faulty timing behavior of a circuit are modeled by delay faults. 

Two types of delay fault models are commonly used: the transition fault model [1] and 

the path delay fault model [2]-[4].  
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Fig. 1.1 Example of a transition fault 
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The transition fault model captures delay defects that cause a slow-to-rise transition 

or a slow-to-fall transition at a specific line in the circuit. Under this fault model, it is 

assumed that the extra delay caused by a transition fault on a line is large enough so that 

the delay of every path passing through this line exceeds the clock period. Fig. 1.1 shows 

an example of a slow-to-rise transition fault at line c in a 3-input circuit. Input b and d 

have constant values. The value of input a changes from 0 to 1 at time point t1, i.e. a 

rising transition occurs at a, and the transition propagates through the circuit. If the circuit 

is fault free, the value of output e is 1 at the required time point t2, where t2-t1 is the clock 

period. However, due to the slow-to-rise transition fault at line c, the value of output e 

remains 0 at t2. Therefore, the circuit cannot operate correctly.  
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Fig. 1.2 Example of a path delay fault 

Different from the transition fault model which only captures single large delay at a 

specific line, the path delay fault model captures small extra delays whose cumulative 

effect along a path from inputs to outputs may result in faulty behavior of the circuit, 

although each small extra delay by itself may not fail the circuit. Fig. 1.2 shows an 

example of a path delay fault associated with path a-c-e-g and a rising transition at its 

source a in a 4-input circuit. Input b, d and f have constant values. A rising transition 

occurs at input a at time point t1, and the transition propagates along path a-c-e-g. If the 
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circuit is fault free, the value of output g is 1 at the required time point t2, where t2-t1 is 

the clock period. However, due to the path delay fault along path a-c-e-g, the value of 

output g remains 0 at t2. As a result, the circuit cannot operate correctly. 

 

1.2. Tests for Delay Faults 

Both a transition fault and a path delay fault are detected by a two-pattern test <p1, 

p2>. For a transition fault, the first pattern p1 assigns the initial transition value at the 

faulty line. The second pattern p2 assigns the final transition value at the faulty line and 

propagates the fault effect to the outputs. To detect the transition fault in Fig. 1.1, a test 

<001, 101> is applied to “abd” as shown in Fig. 1.3. The value of a line under p1(p2) is 

shown on the left(right) of the arrow. The value shown on the left of the slash is the 

expected value under p2 if the circuit is fault free, and the value on the right of the slash is 

the faulty value under p2 if a fault exists. The transition fault can be detected if a 0 instead 

of a 1 is observed at output e at the required time point. For a path delay fault, p1 and p2 

create a transition at the source of the target path, and p2 propagates it along the path. To 

detect the path delay fault in Fig. 1.2, a test <0010, 1010> is applied to “abdf” as shown 

in Fig. 1.4. The path delay fault can be detected if a 0 instead of a 1 is observed at output 

g at the required time point. 
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Fig. 1.3 A test for the slow-to-rise transition fault at c 
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Fig. 1.4 A test for the path delay fault associated with path a-c-e-g 
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Based on the propagation conditions used for the detection of path delay faults, tests 

for path delay faults can be categorized as robust and non-robust [5]-[7]. A robust test 

guarantees the detection of a path delay fault regardless of the delays in the rest of the 

circuit. For example, the test shown in Fig. 1.4 is a robust test for the path delay fault. A 

non-robust test requires that the desired transition is created at the source of the target 

path and p2 statically sensitizes the path to enable the propagation of the transition along 

the path. A non-robust test detects a path delay fault if none of the off-path input signals 

arrive late. Otherwise, the test may be invalid. A non-robust test <0011, 1010> for the 

path delay fault in Fig. 1.2 is applied to “abdf” as shown in Fig. 1.5. Different from the 

robust test in Fig. 1.4, a falling transition occurs at off-path input f. If the transition at f 

does not arrive late, the path delay fault is detected if a 0 instead of a 1 is observed at g at 

the required time point. Otherwise, the value of g will always be 1 at the required time 

point even if the delay of path a-c-e-g exceeds the clock period. In this case, the test is not 

valid for the path delay fault.  
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b e
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0à0

0à1 0à1

1à1 1à0
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Fig. 1.5 A non-robust test for the path delay fault associated with path a-c-e-g 

Non-robust tests can be further categorized as strong non-robust and weak non-

robust [7]. Under a strong non-robust test, there is a transition that matches the transition 

at the source of the path on every line along the path, and every off-path input has a non-

controlling value for the gate it drives under p2. Under a weak non-robust test, it is only 

required that every off-path input has a non-controlling value for the gate it drives under 

p2. A robust test for a path delay fault can detect all the transition faults along the path. 

However, a non-robust test for a path delay fault does not necessarily detect the transition 

faults along the path [8]. Fig. 1.6 shows a non-robust test for the path delay fault 
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associated with path b-d-f-h and a rising transition at its source b. The rising transition 

fault at b is then targeted under the non-robust test, as shown in Fig. 1.7. Under the test, a 

0 is observed at output h in both the faulty and fault free circuit. Therefore, the rising 

transition fault at b cannot be detected by the non-robust test. 
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Fig. 1.6 A non-robust test for the path delay fault associated with path b-d-f-h 
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Fig. 1.7 A transition fault under a non-robust test for a path delay fault 

1.3. Scan-Based Tests for Delay Faults 

Sequential circuits contain sequential elements (or storage elements) such as latches 

and flip-flops. In order to improve the testability of a sequential circuit, scan structure is 

inserted by replacing the sequential elements with scannable sequential elements (scan 

cells) and then stitching the scan cells into scan chains [9]. Fig. 1.8 shows a D flip-flop 

based sequential circuit before and after scan insertion. The scan cell in Fig. 1.8 can be 

implemented by inserting a multiplexer in front of the data input of a regular flip-flop. 

When the scan enable signal SE is 0, the scan cell works as a regular flip-flop. When SE 

is 1, the scan chain works as a shift register, allowing arbitrary values to be shifted in and 
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applied to the flip-flops. The values of the flip-flops can be shifted out as well. As a result, 

the scan cells are considered as the inputs and outputs of the circuit. The controllability 

and observability of the circuit are therefore improved. The inputs of the original circuit 

are called primary inputs, and the outputs of the original circuit are called primary 

outputs.  

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D
0
1

0
1

0
1

a

b

c
d

clk

a

b

c
d

clk

SE

Before scan insertion

After scan insertion

scan outscan in

scan cell

regular flip-flop

primary inputs primary output

 

Fig. 1.8 A circuit before and after scan insertion 

For a scan-based circuit, each pattern pi under the two-pattern test <p1, p2> has the 

form <si, vi>, where si denotes the values of the state variables (or the scan cells), and vi 

denotes the values applied to the primary inputs. The test <p1, p2> can be rewritten as <s1, 

v1, s2, v2>. s1 is usually shifted into scan chains. According to the way by which s2 is 

obtained, scan-based tests for delay faults can be categorized into three types: enhanced 

scan tests [10], skewed-load tests [11] and broadside tests [12].  
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Under an enhanced scan test, s1 and s2 are independent. Both s1 and s2 are shifted 

into scan chains simultaneously. Among the three types of scan-based tests for delay 

faults, enhanced scan tests can achieve the highest fault coverage. However, special scan 

cells that can hold two bits of state values are required for applying the tests.  

Under a skewed-load test, s2 is obtained by a single shift of s1. The timing waveform 

is shown in Fig. 1.9. During the application of a skewed-load test, SE is first set to 1 so 

that s1 can be shifted into scan chains. v1 is applied to the primary inputs once s1 is 

completely loaded and the circuit is under <s1, v1>. By triggering the launch clock edge, 

s1 is shifted by one bit and s2 is obtained. v2 is applied concurrently and the circuit 

operates under < s2, v2>. SE is then set to 0, and the capture clock edge is triggered one 

clock cycle after the launch clock edge to capture the response of the circuit to <s2, v2> 

into scan chains. SE is then set back to 1 so that the captured response can be shifted out. 

The response unloaded from scan chains and the response observed at the primary 

outputs are compared with the expected values. A fault is detected if a mismatch is 

identified. The clock for shifting is usually slower than that for capture. It can be 

observed from Fig. 1.9 that under a skewed-load test, SE must be changed between the 

launch and capture clock edges. 

… …

clk

SE

shift launch capture shift

one shift

loading scan-in state unloading response
 

Fig. 1.9 Timing waveform for a skewed-load test 

Under a broadside test, s2 is determined by the response of the circuit to <s1, v1>. 

The timing waveform is shown in Fig. 1.10. During the application of a broadside test, 

SE is first set to 1 so that s1 can be shifted into scan chains. v1 is applied to the primary 
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inputs once s1 is completely loaded and the circuit is under <s1, v1>. SE is set to 0 and 

then the launch clock edge is triggered. The response of the circuit to <s1, v1> is captured 

into scan chains and s2 is therefore obtained. v2 is applied concurrently and the circuit 

operates under <s2, v2>. The response of the circuit to <s2, v2> is captured into scan 

chains when the capture clock edge is triggered one clock cycle after the launch clock 

edge. SE is then set back to 1 so that the captured response can be shifted out. The 

unloaded response and the response observed at the primary outputs are compared with 

the expected values. A fault is detected if a mismatch is identified. It can be observed 

from Fig. 1.10 that under a broadside test, SE needs to be changed between the last shift 

and the launch clock edge. Since shifting clock is usually slower than capture clock, SE 

has a larger amount of time to change under a broadside test than a skewed-load test. 

… …

clk

SE

shift
launch capture

shift

unloading responseloading scan-in state
 

Fig. 1.10 Timing waveform for a broadside test 

To guarantee that the circuit can operate at its designed speed, at-speed testing [13], 

which requires the launch and capture clock edges to be triggered at the designed clock 

rate, can be performed. This implies that SE must be changed very fast within a single 

designed clock period under a skewed-load test. Since it is expensive to implement such a 

high-speed SE, skewed-load tests are not always considered in practice even though they 

usually achieve higher fault coverage than broadside tests. In this dissertation, we only 

consider broadside tests for delay faults in scan-based circuits. 
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1.4. Contributions 

This dissertation describes methods developed for three aspects of delay testing in 

scan-based circuits: deterministic test generation for a new path delay fault model, path 

selection, and built-in generation of functional broadside tests.  

To address the issue that the transition fault model only captures single large delay 

and the path delay fault model only captures distributed small extra delays along a path, a 

new fault model named transition path delay fault model was proposed in [14]. Under 

this fault model, a path delay fault is detected only if all the individual transition faults 

along the path are detected by the same test. Therefore, both small and large delay defects 

can be captured. We developed a deterministic broadside test generation procedure for 

transition path delay faults. To reduce the complexity of test generation, the procedure 

consists of five sub-procedures: a deterministic test generation procedure for transition 

faults, a preprocessing procedure that identifies undetectable transition path delay faults 

without performing test generation, a fault simulation procedure that identifies transition 

path delay faults that can be detected by the tests for transition faults, a heuristic 

procedure similar to dynamic test compaction for transition faults that generates tests 

without backtracking on decisions made for previously detected faults, and a complete 

branch-and-bound procedure. Experimental results show that for most of the transition 

path delay faults in benchmark circuits, either a test is found or the fault is identified as 

undetectable. 

Under the path delay fault model, it is not practical to target all the paths in a circuit 

for test generation since the number of paths can be exponential in the number of lines 

throughout the circuit. As a result, a subset of critical paths is usually selected for test 

generation. Various path selection methods can be used for path selection. One common 

method is to select the critical paths identified by static timing analysis [15]. Static timing 

analysis computes the path delays and identifies paths with the largest delays as critical 

paths. However, static timing analysis, by itself, can be inaccurate as it does not take into 

consideration logic conditions that are necessary for detecting path delay faults. We 

developed a path selection method that takes these conditions into account during static 

timing analysis. The logic conditions are captured as what are called input necessary 
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assignments [16]. By providing the static timing analysis process with the input necessary 

assignments for a selected path, the static timing analysis process can estimate more 

accurate path delays that are closer to those obtained during test application. It can also 

identify additional paths whose delays are at least as high as those of the selected paths. 

Feeding back the input necessary assignments to the static timing analysis process 

enhances the correlation between static timing analysis and actual timing of tests on 

silicon. The result of the method is a set of potentially detectable path delay faults 

associated with critical paths based on more accurate estimates of the path delays that can 

be exhibited by a test set, compared with the set that would be obtained by static timing 

analysis alone. 

Both the deterministic test generation method and path selection method are 

applicable to off-line test generation, where tests are generated before being applied via 

an external tester. For large circuits with high clock frequency and complexity, it can be 

expensive to perform delay testing especially at-speed testing via an external tester, since 

a large amount of memory is required in the tester for storing the tests and the tests need 

to be applied at a high speed. For such circuits, built-in test generation is a cost-effective 

method for delay testing as it reduces test data volume by generating tests on-chip, and 

facilitates at-speed test application by avoiding the delivery of tests from an external 

tester. Many built-in test generation techniques allow arbitrary states to be scanned in 

during the application of the two-pattern tests, which may bring the circuit into non-

functional operation conditions. As a result, excessive power dissipation during test 

application and the overtesting of delay faults may occur [17]-[20]. These issues can be 

addressed by using functional broadside tests that create functional operation conditions 

during test application [21].  

We developed a method for built-in generation of functional broadside tests for a 

circuit that is embedded in a larger design, taking functional constraints on its primary 

input sequences into account. The constraints are captured by functional input sequences 

of the design. Specifically, the peak switching activity in the circuit under the functional 

input sequences is used to bound the switching activity during on-chip test generation. 

The exclusive use of functional broadside tests may cause fault coverage loss, i.e. faults 
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that can be detected by unrestricted broadside tests may not be detected by functional 

broadside tests. Such undetected faults may affect the reliability of the circuit in long-

term. To address this issue, we also developed an optional DFT method based on state 

holding to improve fault coverage. By keeping the values of some state variables from 

changing at certain clock cycles during on-chip test generation, unreachable states can be 

introduced to detect faults that cannot be detected by functional broadside tests. 

Experimental results show that using simple hardware, the developed method can achieve 

high transition fault coverage for benchmark circuits. 

 

1.5. Organization 

The dissertation is organized as follows. In chapter 2, the deterministic broadside test 

generation method for transition path delay faults is described. Chapter 3 describes the 

path selection method based on static timing analysis with input necessary assignments 

considered. Chapter 4 describes the built-in generation method for functional broadside 

tests considering primary input constraints. Chapter 5 concludes the dissertation and 

discusses future work. 
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2. DETERMINISTIC BROADSIDE TEST GENERATION FOR 
TRANSITION PATH DELAY FAULTS 

In this chapter, a deterministic broadside test generation procedure for transition path 

delay faults is described. The entire procedure consists of five sub-procedures: test 

generation for transition faults, preprocessing procedure, fault simulation, dynamic 

compaction heuristic procedure and branch-and-bound procedure. Experimental results 

show that most of the transition path delay faults associated with long paths in benchmark 

circuits can be detected or identified as undetectable. 

 

2.1. Introduction 

Delay faults are used to model defects that affect the timing behavior of a circuit. 

Two commonly used delay fault models, the transition fault model and the path delay 

fault model, have been introduced in chapter 1. In addition to these two fault models, the 

gate delay fault model [22] captures defects that cause small or large rising and falling 

transition delays from the input to the output of a logic gate. Variations of these three 

models include the double transition fault model [23] and the segment fault model 

[24][25].  

Since distributed small extra delays caused by process variations can lead to the 

malfunction of a circuit only when they are accumulated along a path, it is important to 

apply tests for path delay faults. Robust tests are the highest quality tests for path delay 

faults. However, for most path delay faults, robust tests do not exist. Therefore, non-

robust tests must be used. A non-robust test for a path delay fault may not detect the 

existence of a transition fault on the path, as shown in Fig. 1.6 and Fig. 1.7. As a result, 

the following was noted in [14]. Suppose that the accumulation of small extra delays 

along a subpath that ends at an internal line g is sufficient to cause the circuit to fail. A 
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non-robust test for a path delay fault that includes the subpath may not detect this 

situation since the test does not detect the transition fault on g. To address this issue, a 

different path delay fault model named the transition path delay fault model was 

proposed in [14]. Under this new path delay fault model, a path delay fault is detected if 

an only if all the individual transition faults along the path are detected by the same test. 

This guarantees that the cumulative propagation delay in the situation mentioned above 

can be detected by detecting a transition fault at the end of the subpath. Therefore, both 

small and large delay defects are detected by the test. 

Test generation for a transition path delay fault requires the generation of a test that 

detects all the individual transition faults along the path. There is similarity between this 

requirement and the way dynamic compaction procedures produce compact test sets [26]-

[28]. These procedures also try to generate a test that detects a subset of faults. However, 

in a dynamic compaction procedure, if test generation for a target fault fails when the 

current test is partially specified based on faults targeted earlier, the fault will be dropped 

and another fault will be selected to expand the subset of faults detected by the current 

test. The dropped faults will be considered later under different tests. In the test 

generation procedure for a transition path delay fault, all the transition faults along the 

path must be detected by the same test. Thus, there is no flexibility in deciding on the 

subset of faults that will be detected by the test. This implies that if test generation for a 

target transition fault fails when the current test is partially specified, it is necessary to 

backtrack on decisions made based on faults considered earlier until either a test that 

detects all the transition faults is found, or the path delay fault is shown to be 

undetectable. As a result, a complete test generation procedure for transition path delay 

faults can have a high computational complexity. To reduce this complexity, we use 

several sub-procedures. (1) A deterministic test generation procedure for transition faults 

is used to generate tests for transition faults and identify undetectable transition faults. 

The undetectable transition faults are used for identifying undetectable transition path 

delay faults. (2) A preprocessing procedure is used to identify undetectable transition 

path delay faults without performing test generation for them. (3) A fault simulation 

procedure is used to identify transition path delay faults that can be detected by the tests 
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generated in (1) for transition faults. (4) A heuristic procedure similar to dynamic test 

compaction is used to generate tests for transition path delay faults without backtracking 

on decisions made for transition faults detected earlier. (5) A complete branch-and-bound 

procedure is used to process the remaining undetected transition path delay faults. 

 

2.2. The Transition Path Delay Fault Model 

It has been shown in Fig. 1.6 and Fig. 1.7 that a non-robust test for a path delay fault 

may not detect a transition fault on the path. This occurs in a very common situation 

where different paths with opposite inversion polarities reconverge at a gate along the 

path. A non-robust test only requires the off-path input lines to have non-controlling 

values under the second pattern of a test in the fault free circuit. Therefore, the fault 

effects of the transition fault, which propagate along different paths with opposite 

inversion polarities, may counteract each other when the paths reconverge. As a result, 

the transition fault is not detected. Robust tests prohibit the reconvergence of fault effects 

in this case and remain valid for transition faults along the paths. However, they only 

exist for a small number of path delay faults. Therefore, it is common that a test can 

detect a path delay fault but cannot detect a transition fault along the path. 

This issue is important for the following reason. Consider a path p=g1-g2-g3-g4-g5 

and a non-robust test t for the path delay fault associated with p. Suppose that the 

cumulative small extra delays along subpath g1-g2-g3 are sufficient to cause the circuit to 

fail. This can be detected by t if it is a test for the transition fault at g3. However, since t 

may not detect transition faults along p, the fault effect may not be captured. 

The issue can be resolved if a path delay fault is detected by detecting all the 

transition faults along the path. This is the requirement for detecting a transition path 

delay fault in [14]. The relevant transition faults are defined in [14] as follows. Let us 

consider a transition path delay fault associated with a path p=g1-g2-…-gk and a transition 

v1àv’1 on g1. When the v1àv’1 transition is propagated from g1 along the path, let the 

transition on gi be viàv’i . We have vi=v1 if the number of inverters between g1 and gi is 

even, and vi=v’1 if the number of inverters between g1 and gi is odd. To detect the fault 
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associated with p and v1àv’1, it is required in [14] that the viàv’i transition fault on line 

gi should be detected by the same test, for 1≤i≤k. 

As discussed in [14], tests for transition path delay faults are strong non-robust tests 

for the standard path delay faults. A strong non-robust test creates a transition on each 

line along the path and assigns non-controlling value to every off-path input under the 

second pattern. Test sets for transition path delay faults detect all or almost all the 

detectable transition faults. In addition, they detect all or almost all the standard path 

delay faults that can be detected by strong non-robust tests. Therefore, the transition path 

delay fault model can be an alternative to the path delay fault model. 

A simulation based test generation procedure was proposed in [14]. Given a target 

transition path delay fault, the procedure tries to generate a test by combining tests for 

transition faults along the path. Compared with a deterministic test generation procedure, 

this procedure has lower computational complexity. However, it does not guarantee that 

every detectable transition path delay fault can be detected, and it cannot tell whether a 

transition path delay fault is detectable or not. For this, a deterministic test generation 

procedure is needed. 

 

2.3. Test Generation Procedure 

In this section, a deterministic broadside test generation procedure for transition path 

delay faults is described. For convenience, we use fp to symbolize a transition path delay 

fault associated with path p, and use TR(fp)={tr1(fp), tr2(fp), …, trk(fp)} to symbolize the 

set of transition faults along path p, where k is the length of the path and tri(fp) (1≤i≤k) is 

a single transition fault along the path. 

2.3.1. Test Generation for Transition Faults 

The first sub-procedure is a deterministic test generation procedure for transition 

faults. It achieves two goals. (1) Tests for transition faults sometimes detect transition 

path delay faults. We will simulate the tests under transition path delay faults as 

described later. (2) The procedure identifies undetectable transition faults. This 

information will be used in the following sub-procedure. 
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2.3.2. Preprocessing Procedure 

The preprocessing procedure identifies as many undetectable transition path delay 

faults as possible without performing test generation. A transition path delay fault fp is 

detected if and only if all the transition faults in TR(fp) are detected. If a transition fault 

tri(fp)∈TR(fp) has been identified as undetectable, fp is undetectable and no further 

processing of fp is needed. 

We also consider conflicts between the necessary assignments [29] of the transition 

faults in TR(fp). The necessary assignments for a fault are the assignments that must be 

made in order to find a test for the fault. For the vàv’ transition fault on line g, we use 

g=v under the first pattern and g=v’ under the second pattern as necessary assignments. 

In addition, we use the simple forward and backward implications of these assignments 

as necessary assignments. We find necessary assignments for each transition fault in 

TR(fp). If a conflict exists between the necessary assignments of the faults in TR(fp), we 

identify fp as undetectable. Otherwise, we keep the necessary assignments on input lines 

for use in later sub-procedures. 

Fig. 2.1 shows an example. We consider the path c-d-e with the 0à1 transition at its 

source. The transition path delay fault associated with this path consists of three transition 

faults: a 0à1 transition fault on c, a 1à0 transition fault on d, and a 0à1 transition fault 

on e. To detect the 0à1 transition fault on e, e should be 0 under the first pattern and 1 

under the second pattern. Under a broadside test, e=0 under the first pattern implies c=0 

under the second pattern. To detect the 0à1 transition fault on c, c should be 0 under the 

first pattern and 1 under the second pattern. A conflict occurs on c under the second 

pattern. Therefore, the transition path delay fault is undetectable. To identify such 

conflicts, we use implications to find all the necessary assignments of the 0à1 transition 

fault on e and the 0à1 transition fault on c. For the 0à1 transition fault on e, we have 

e=0 under the first pattern and c=0, e=1 under the second pattern. For the 0à1 transition 

fault on c, we have c=0, e=1 under the first pattern and c=1, d=0 under the second pattern. 

The necessary assignments of these two transition faults are compared. Since conflicts 

are identified on e under the first pattern and on c under the second pattern, the two 



 

 

17 

transition faults cannot be detected by the same test, i.e. the transition path delay fault is 

undetectable.  

Q

QSET

CLR

D

a b

ce

d 1à0/10à1/0

0à1/0

 

Fig. 2.1 Example of finding necessary assignments 

2.3.3. Fault Simulation 

After identifying undetectable transition path delay faults in the preprocessing 

procedure, we identify the transition path delay faults that can be detected by tests for 

transition faults. For this, we perform fault simulation of transition path delay faults 

under the test set computed in section 2.3.1. 

2.3.4. Dynamic Compaction Heuristic Procedure 

The dynamic compaction heuristic procedure is applied next to all the transition path 

delay faults that were not identified as undetectable or detected by the transition fault test 

set. For a transition path delay fault fp, the dynamic compaction heuristic procedure 

attempts to generate a test that detects all the transition faults in TR(fp). The transition 

faults in TR(fp) are targeted one after the other by using unspecified bits remaining after 

the detection of the transition faults targeted earlier. We refer to this procedure as 

heuristic since it cannot guarantee that all the faults in TR(fp) will be detected by the 

same test. 

The heuristic procedure is applied several times to each transition path delay fault fp. 

Every time the procedure is applied, the transition faults in TR(fp) are considered in a 

different order. The order is such that faults, which are more difficult to detect, are 

considered earlier. As additional test generation attempts are made, new faults are 

identified as difficult to detect and the order changes. This is implemented as follows. We 

associate a parameter called “number of failures” with every transition fault tri(fp) in 
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TR(fp). The parameter records the number of times test generation for tri(fp) fails. The 

initial value of the number of failures for each transition fault is 0. Every time when test 

generation for tri(fp) fails, we increase the parameter by 1. The transition fault with the 

higher number of failures, i.e. the transition fault for which test generation is more 

difficult, should be targeted earlier so that there will be more unspecified bits to use for 

generating the test. 

Using the terminology from [26], we refer to the first transition fault which is used to 

generate a test as a primary target fault and denote it by trprim(fp). We refer to any 

transition fault targeted after the primary target fault as a secondary target fault and 

denote it by trsec(fp). To distinguish between the secondary target faults, we denote the ith 

fault by trsec(i)(fp). A parameter named “detect status” is associated with every transition 

fault tri(fp) in TR(fp). If a transition fault tri(fp) is detected by the current test, its detect 

status is “detected”. Otherwise, its detect status is “undetected”. A label named “used” is 

used to mark a fault trprim(fp) whose detection is followed by the failure of the test 

generation for trsec(1)(fp). Since trsec(1)(fp) can be detected individually, the failure should 

be caused by the detection of trprim(fp). A transition fault in TR(fp) which has been marked 

as “used” will not be selected as a primary target fault again because its detection will 

cause the test generation for some secondary target fault to fail. 

The heuristic procedure proceeds as shown in Fig. 2.2. We randomly select a fault 

from the undetected unused transition faults that have the highest number of failures as 

trprim(fp). We attempt to generate a test for trprim(fp). If trprim(fp) is not detected, we stop 

attempting to generate a test for fp. Otherwise, we select the transition fault tri(fp) which 

has the highest number of failures as a secondary target fault and attempt to expand the 

test by using the remaining unspecified bits. If a choice exists, we randomly select one of 

the faults. If the test generation for a secondary target fault trsec(i)(fp) fails, we increase the 

number of failures of trsec(i)(fp) by 1 and check whether trsec(i)(fp) is the first selected 

secondary target fault trsec(1)(fp). If so, we mark the current primary target fault trprim(fp) as 

used, discard the current test and start the procedure again. If trsec(i)(fp) is detected, we 

first check whether fp can be detected by the current test. If so, a test for fp is found. 

Otherwise, we continue to consider other secondary target faults. The procedure runs 
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until fp is detected or the run time exceeds a predetermined limit. To accelerate the 

procedure, we apply the necessary assignments on input lines stored in the preprocessing 

procedure for fp before the procedure starts. 

 

Fig. 2.2 Dynamic compaction heuristic procedure 

2.3.5. Branch-and-Bound Procedure 

The dynamic compaction heuristic procedure does not backtrack on decisions made 

based on transition faults in TR(fp) that were targeted earlier. Once the detection of a 

transition fault tri(fp) in TR(fp) fails, it discards the current test and starts to generate a 

new one. The branch-and-bound procedure described in this section is a complete 

deterministic procedure that backtracks on previously made decisions if the detection of a 

transition fault in TR(fp) fails. 
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Fig. 2.3 Branch-and-bound procedure 

The branch-and-bound procedure proceeds as shown in Fig. 2.3. At the beginning of 

the procedure for a transition path delay fault fp, we apply the necessary assignments on 

input lines stored for fp. We then select the transition fault that has the highest number of 

failures from the heuristic procedure to start generating the test. Next, we select one 

undetected transition fault as a secondary target fault to expand the test. If test generation 

for a transition fault fails, we backtrack on the assignments made earlier and get a new 

partially specified test where the last decision for which other options exist is reversed. 

Before continuing test generation, we check the validity of the new test by checking 

whether all the undetected transition faults under the new test are potentially detectable. 
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We first imply all the specified bits of the test, and then check whether any conflict exists 

between the line values and the necessary assignments of each undetected transition fault. 

If no conflict is found, we select an undetected transition fault to expand the test. 

Otherwise we keep backtracking. This branch-and-bound procedure runs until one of the 

following situations occurs. (1) A test is found and fp is detected. (2) All the previously 

made decisions have been backtracked on and fp is undetectable. (3) The run time limit 

for the branch-and-bound procedure is reached and fp is aborted. (4) Since a test 

generator for transition faults is used in the branch-and-bound procedure, if the 

backtracking limit for transition faults is reached during test generation, fp is aborted. 

 

2.4. Experimental Results 

The deterministic broadside test generation procedure described in section 2.3 was 

implemented in C++ on top of an existing test generation procedure for transition faults. 

Experiments were conducted on ISCAS89 benchmark circuits using a Sun Microsystems 

workstation which has two 450MHz CPUs, a 1024MB memory and a Solaris operating 

system. The run time limit for test generation for each transition path delay fault is 1 

minute in the dynamic compaction heuristic procedure, and 2 minutes in the branch-and- 

bound procedure. The backtracking limit during test generation for transition faults is 128. 

We enumerated all the paths for smaller circuits to generate the transition path delay 

fault list. The results for these circuits are shown in Table 2.1. For circuits with larger 

numbers of paths, we considered faults from the longest paths to the shorter ones until at 

least 1000 detected faults were found. The results for these circuits are shown in Table 

2.2. In both Table 2.1 and Table 2.2, the first column identifies the circuit by name. The 

second to the sixth column show the number of transition path delay faults in the fault list, 

the number of detected faults, the number of undetectable faults, the number of aborted 

faults, and the total run time. 

In considering the numbers of detected faults, it should be noted that they are similar 

to the numbers of conventional path delay faults that can be detected by strong non-

robust tests. We verified that the numbers are identical for several of the circuits in Table 
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2.1. Therefore, there is no or little loss in fault coverage due to the use of transition path 

delay faults instead of conventional path delay faults [14]. 

Table 2.1 Results of test generation (enumerate all paths) 

Circuit No. of 
faults 

No. of 
Det. 

No. of 
Undet. 

No. of 
Abr. 

Run 
time 

s27 56 25 31 0 00:00:00 
s298 462 127 335 0 00:00:02 
s344 710 259 451 0 00:00:23 
s349 730 259 471 0 00:00:22 
s382 800 165 635 0 00:00:04 
s386 414 153 261 0 00:00:08 
s444 1070 166 904 0 00:00:11 
s510 738 197 541 0 00:00:22 
s526 820 147 673 0 00:00:06 
s641 3488 1121 2367 0 00:07:13 
s713 43624 1090 42460 74 03:18:45 
s820 984 369 615 0 00:00:52 
s832 1012 369 643 0 00:01:22 
s953 2312 961 1351 0 00:03:34 
s1196 6196 3402 2793 1 00:49:15 
s1238 7118 3363 3752 3 00:51:37 
s1488 1924 722 1202 0 00:06:51 
s1494 1952 723 1229 0 00:06:58 

Table 2.2 Results of test generation (at least 1000 det. faults) 

Circuit No. of 
faults 

No. of 
Det. 

No. of 
Undet. 

No. of 
Abr. 

Run time 

s1423 42782 1055 39746 1981 77:31:46 
s5378 1948 1282 393 273 12:46:29 
s9234 263916 1027 262757 132 08:57:07 
s13207 735800 1244 734296 260 30:08:05 
s35932 254400 1008 253300 92 07:21:07 
s38417 70928 1227 64121 5580 225:56:15 
s38584 1211890 1071 1210085 734 64:13:52 
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Table 2.3 Number of detected faults for sub-procedures (enumerate all paths) 

Circuit Prep. 
Proc. 

FSim 
Proc. 

Heur. 
Proc. 

Bran. 
Proc. 

s27 25 19 6 0 
s298 163 104 22 1 
s344 340 153 86 20 
s349 340 158 82 19 
s382 213 125 39 1 
s386 231 138 13 2 
s444 262 129 35 2 
s510 377 170 27 0 
s526 203 135 12 0 
s641 1509 289 810 22 
s713 1483 254 664 172 
s820 580 316 50 3 
s832 588 316 49 4 
s953 1310 624 327 10 
s1196 4535 1032 2216 154 
s1238 4510 1153 2117 93 
s1488 1495 588 127 7 
s1494 1500 617 98 8 

Table 2.4 Number of detected faults for sub-procedures (at least 1000 det. faults) 

Circuit Prep. 
Proc. 

FSim 
Proc. 

Heur. 
Proc. 

Bran. 
Proc. 

s1423 6063 0 106 949 
s5378 1634 101 207 974 
s9234 2418 6 273 748 
s13207 6271 1 60 1183 
s35932 2464 272 709 27 
s38417 8871 1 183 1043 
s38584 7637 220 238 613 
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Table 2.5 Run time comparison of sub-procedures (enumerate all paths) 

Circuit TG for 
Tran. 

Prep. 
Proc. 

FSim 
Proc. 

Heur. 
Proc. 

Bran. 
Proc. 

s27 0:00 0:00 0:00 0:00 00:00:00 
s298 0:01 0:00 0:00 0:01 00:00:00 
s344 0:00 0:01 0:00 0:07 00:00:15 
s349 0:01 0:00 0:00 0:06 00:00:15 
s382 0:00 0:01 0:00 0:01 00:00:02 
s386 0:01 0:01 0:00 0:02 00:00:04 
s444 0:01 0:01 0:00 0:02 00:00:07 
s510 0:02 0:01 0:00 0:06 00:00:13 
s526 0:01 0:01 0:00 0:01 00:00:03 
s641 0:00 0:02 0:00 0:33 00:06:38 
s713 0:01 0:02 0:01 1:13 03:17:28 
s820 0:06 0:02 0:01 0:11 00:00:32 
s832 0:06 0:02 0:02 0:14 00:00:58 
s953 0:03 0:06 0:02 1:39 00:01:44 
s1196 0:02 0:07 0:04 4:32 00:44:29 
s1238 0:03 0:08 0:04 4:57 00:46:24 
s1488 0:13 0:07 0:03 1:34 00:04:54 
s1494 0:13 0:07 0:03 1:40 00:04:54 

Table 2.6 Run time comparison of sub-procedures (at least 1000 det. faults) 

Circuit TG for 
Tran. 

Prep. 
Proc. 

FSim 
Proc. 

Heur. 
Proc. 

Bran. 
Proc. 

s1423 0:04 0:27 1:59 04:41:14 72:47:46 
s5378 0:25 0:13 2:38 00:38:41 12:04:31 
s9234 03:10 01:45 00:40:15 01:04:21 07:04:12 
s13207 03:08 12:04 00:48:17 09:00:58 19:34:27 
s35932 18:15 37:20 00:18:50 01:03:45 04:56:58 
s38417 08:32 09:24 08:26:17 25:23:10 191:48:27 
s38584 44:11 15:06 09:03:16 15:10:42 37:42:17 

 

It can be seen from Table 2.1 and Table 2.2 that most of the transition path delay 

faults in the fault list are proven to be detected or undetectable. The number of aborted 

faults can be reduced by increasing the run time limit for the branch-and-bound 

procedure and the backtracking limit during test generation for transition faults. Given 

enough time, all the aborted faults should be identified as either detected or undetectable. 
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The sub-procedures of the developed test generation procedure are compared as 

follows. Table 2.3 and Table 2.4 show the number of detected transition path delay faults 

in each sub-procedure. The first column identifies the circuit by name. The second 

column shows the upper bound on the number of detectable transition path delay faults 

after undetectable faults were identified by the preprocessing procedure. The third to the 

fifth column show the number of detected transition path delay faults for the fault 

simulation procedure, the number of detected transition path delay faults for the dynamic 

compaction heuristic procedure, and the number of detected transition path delay faults 

for the branch-and-bound procedure. 

Table 2.5 and Table 2.6 show the comparison of run time of each sub-procedure. The 

first column identifies the circuit by name. The second to the sixth column show the run 

time of test generation for transition faults, the run time of the preprocessing procedure, 

the run time of fault simulation, the run time of the heuristic procedure, and the run time 

of the branch-and-bound procedure. 

Several observations can be made from Table 2.3, 2.4, 2.5 and 2.6. First, a large 

number of undetectable transition path delay faults are identified during the 

preprocessing procedure, and this procedure is more important for large circuits. Second, 

part of the detectable transition path delay faults can be detected by tests for transition 

faults, although the number may decrease for larger circuits. Third, the fault simulation 

procedure and dynamic compaction heuristic procedure contribute significantly to the 

final number of detected transition path delay faults while the total run time of these sub-

procedures is much shorter than that of the branch-and-bound procedure. All of these 

show the efficiency of the developed procedure, compared with a pure complete 

deterministic test generation procedure.  
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3. PATH SELECTION BASED ON STATIC TIMING ANALYSIS 
CONSIDERING INPUT NECESSARY ASSIGNMENTS 

In this chapter, a static timing analysis based path selection method is described. 

Fault detection conditions are taken into consideration during static timing analysis by 

using input necessary assignments. The arrival times of signals are refined during static 

timing analysis, and more accurate path delays that are closer to those obtained during 

test application can be obtained. The correlation between static timing analysis and 

timing of tests on silicon is therefore enhanced. Using input necessary assignments can 

also identify undetectable faults. As a result, a set of potentially detectable path delay 

faults, which are associated with critical paths based on more accurate estimates of the 

path delays that can be exhibited by a test set, is obtained. 

 

3.1. Introduction 

Since the number of paths throughout a circuit can be exponential in the number of 

lines, it is impractical to enumerate all the paths for test generation in large circuits. As a 

result, when the deterministic test generation procedure for transition path delay faults 

was performed on larger circuits in section 2.4, we only targeted a subset of the paths by 

considering the transition path delay faults from the longest paths to the shorter ones until 

at least 1000 detected faults were found. In addition, the number of undetectable faults 

can be very high, as shown in Table 2.2. To address these two issues, path selection 

procedures [30]-[45] select a subset of critical paths for test generation. Using the unit 

delay model, it is possible to select the longest paths in the circuit [30]. This method was 

used in section 2.4. It is also possible to consider every line in the circuit and select one 

of the longest paths going through the line [31][32]. To avoid selecting undetectable path 

delay faults, several path selection procedures that identify undetectable path delay faults 
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were described in [33]-[36]. Procedures that estimate path delays through timing analysis 

were described in [37]-[45]. Since both the delay difference between gates of different 

types and the interconnect delays are taken into account, more accurate path delay is 

obtained and so is the critical path identification. Possible variations in operating 

conditions such as voltage and temperature were taken into account during path selection 

in [37]. Statistical timing analysis techniques were used to incorporate information about 

deep sub-micron manufacturing defects, process variations and noise effects during path 

selection in [38]-[43], path correlations were considered in [43], and multiple input 

transitions were considered in [44]. To address the issue of false paths, several false path 

aware timing analysis procedures were proposed in [45]-[48]. 

Dynamic timing analysis can achieve more accurate estimates of path delays than 

static timing analysis because a set of input patterns is simulated to exercise all the paths 

in the circuit, as described in [38] and [49]. However, the computational complexity of 

generating such input patterns can be very high and the simulation is time-consuming for 

large circuits. Therefore, static timing analysis is preferred due to its fast run time and 

acceptable accuracy as mentioned in [44]. However, two limitations should be considered 

when static timing analysis is used for path selection. The first limitation is that the delay 

of a target path can be overestimated compared with the delay obtained during test 

application on silicon. During static timing analysis, the delay of a target path is 

calculated with all the lines in the circuit unspecified. During test application, values are 

assigned to all the lines in the circuit by a test for the path delay fault associated with the 

target path. These values propagate a transition along the path in a way that the 

corresponding path delay fault is considered as detected. The propagation conditions can 

be robust, strong non-robust, weak non-robust, and so on. Even with non-robust tests, the 

delay of a path may be smaller than the delay estimated when detection conditions are not 

considered. As a result, static timing analysis may not select path delay faults whose 

delays are the highest during test application, given that delays are modified due to the 

logic values assigned in order to satisfy the detection conditions of the faults. The second 

limitation is that static timing analysis cannot identify undetectable path delay faults. 
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The procedure described in this chapter addresses the inaccuracy of static timing 

analysis in predicting delays during test application without incurring the increased 

runtime of dynamic timing analysis. In general, we use the conditions necessary for fault 

detection to refine the static timing analysis process. Feeding these conditions back to the 

static timing analysis tool enhances the correlation between static timing analysis and 

actual timing of tests on silicon. The correlation may be further enhanced by considering 

process variations, but this issue will not be discussed. 

Specifically, the procedure uses an existing static timing analysis tool to perform 

selection of the most critical path delay faults, allowing it to use a state-of-the-art process 

for estimating path delays. It addresses the limitations mentioned above and achieves 

more accurate timing estimates under the tests for the selected path delay faults by taking 

into account the conditions that need to be satisfied in order to detect a path delay fault. 

To ensure that these conditions can be considered by the static timing analysis tool, they 

are represented using what are called input necessary assignments [16]. Input necessary 

assignments are input values that must be assigned in order to detect the fault, and they 

can be given to the static timing analysis tool as input. They are derived by performing 

simple implications, without performing test generation. For a target path delay fault fp 

that is identified as critical by traditional static timing analysis, the procedure finds the 

input necessary assignments of fp and provides them to the static timing analysis process 

for path delay recalculation. The resulting delay is closer to the path delay that will occur 

during test application, compared with the delay obtained through traditional static timing 

analysis. The procedure also uses static timing analysis to identify other path delay faults 

whose delays are at least as high as that of fp under the input necessary assignments of fp. 

This information is used for updating the set of selected path delay faults. In addition, as 

discussed in [16], during the process of finding input necessary assignments of fp, it is 

possible to determine that fp is undetectable. The procedure uses this information to avoid 

the selection of undetectable faults. 

We use the transition path delay fault model to develop the path selection procedure. 

The procedure can also be applied using a conventional path delay fault model, or to 

assess path delays when generating timing-aware tests for transition faults.  
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3.2. Input Necessary Assignments 

Necessary assignments are values that a test for a fault must assign to lines in the 

circuit [29]. Input necessary assignments of a fault indicate the values that a test for the 

fault must assign to the input lines [16]. Input necessary assignments were computed in 

[16] as part of a broadside test generation process for path delay faults. The input 

necessary assignments were computed in polynomial time and provided a unified 

framework for identifying undetectable faults and for generating tests for detectable 

faults in [16]. 

To compute input necessary assignments for transition path delay faults in this 

chapter, we use a procedure similar to the procedure described in [16] and the 

preprocessing procedure described in section 2.3.2. As mentioned in chapter 2, a 

transition path delay fault fp is associated with a path p=g1-g2…-gk and a vàv’ transition 

on g1. We denote by TR(fp):={tr1(fp), tr2(fp), …, trk(fp)} the set of transition faults 

associated with fp. We denote by InNecAssign(fp) the set of input necessary assignments 

of fp. Using the terminology from [16], each entry of InNecAssign(fp) has the form q[i]a, 

where q is an input of the combinational logic (a primary input or the output of a state 

variable), i∈{1,2} is the pattern index (the first or second pattern of a broadside test), and 

a∈{0,1} is the value of q. In [16], input necessary assignments are defined for the 

primary inputs under both patterns of a broadside test, and for present-state variables only 

under the first pattern. This is due to the fact that, in a broadside test, the present-state 

variables under the second pattern are implied by the first pattern. Thus, they cannot be 

specified arbitrarily under a broadside test. For the discussion in this chapter, we retain 

the constraints imposed by a broadside test, but we collect input necessary assignments 

corresponding to the primary inputs and the present-state variables under both patterns of 

the test. This will be useful when the input necessary assignments are given to a static 

timing analysis tool. The procedure for computing input necessary assignments proceeds 

in four steps.  

Step 1 identifies fp as undetectable if a transition fault in TR(fp) is undetectable. All 

the undetectable transition faults are identified by performing deterministic test 
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generation for transition faults. This step is not required if conventional path delay faults 

are targeted. 

Step 2 finds the necessary assignments of faults in TR(fp). For a transition fault tri(fp) 

in TR(fp), a test must assign gi=vi under the first pattern and gi=vi’ under the second 

pattern. The simple forward and backward implications of these two assignments are 

used as the necessary assignments of tri(fp). Step 2 identifies fp as undetectable if a 

conflict exists between the necessary assignments of faults in TR(fp). Otherwise, the 

necessary assignments of all the faults in TR(fp) are merged into a set denoted by 

DetCon(fp). Each entry in DetCon(fp) has the same form q[i]a as entries in 

InNecAssign(fp) except that q can be any line in the circuit. Entries in DetCon(fp) that 

assign values to input lines are added to InNecAssign(fp). 

Step 3 adds to DetCon(fp) the propagation conditions that off-path inputs of fp must 

satisfy. In order to propagate a transition fault on fp from a gate input to a gate output, the 

off-path inputs of the gate must assume non-controlling values under the second pattern. 

For each gate that p goes through, every input line g of the gate except the one on p adds 

to DetCon(fp) an entry of the form g[2]v, where v is the non-controlling value of the gate. 

Step 3 identifies fp as undetectable if the implications of entries in the updated set 

DetCon(fp) are not compatible with each other. Otherwise, newly specified lines and their 

values are added to DetCon(fp) and InNecAssign(fp) is updated. 

Step 4 attempts to identify additional input necessary assignments of fp by assigning 

both 0 and 1 to every unspecified input q under every pattern of the test. It identifies fp as 

undetectable if the implications of both 0 and 1 on q are incompatible with entries in 

DetCon(fp). Otherwise, an additional input necessary assignment can be found if only the 

implications of one assignment on q is compatible with entries in DetCon(fp). It keeps 

performing the process on every unspecified input until fp is identified as undetectable or 

no additional input necessary assignments can be found. 

After these four steps, we either have fp identified as undetectable or a set of input 

necessary assignments for it. In the latter case we refer to fp as potentially detectable. We 

use the term potentially detectable since the fault may be undetectable even though its 
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input necessary assignments do not conflict. If an undetectable fault is selected, it will be 

identified as undetectable when test generation is performed for it. 

 

3.3. Path Selection Procedure 

In this section, a path selection procedure which is based on static timing analysis 

and input necessary assignments is described. The procedure consists of the following 

steps. It first uses traditional static timing analysis to obtain a set of critical paths. Each 

path is associated with a transition at its source, defining a path delay fault. Static timing 

analysis thus yields a set of path delay faults denoted by FPo. The procedure computes 

input necessary assignments for the faults in FPo and removes from FPo faults that it can 

identify as undetectable based on their input necessary assignments. A required number 

of path delay faults are selected from the resulting FPo as the initial set of selected path 

delay faults. The set of selected path delay faults is denoted by Target_PDF. For each 

target path delay fault fp in Target_PDF, the procedure uses static timing analysis to 

recalculate the path delay under the input necessary assignments of fp. It also identifies 

additional paths whose delays are at least as high as that of fp under the input necessary 

assignments of fp. These paths are used to update Target_PDF. 

To select N path delay faults, the procedure uses traditional static timing analysis to 

select M>N paths. After removing undetectable faults, N faults are selected from the 

remaining ones. If fewer than N faults are obtained, M can be increased. With N faults in 

the selected set Target_PDF, the procedure updates the set gradually based on more 

accurate estimates of path delays. 

A similar effect can be achieved by using traditional static timing analysis to select a 

set of K>M>N path delay faults, removing undetectable faults and updating the delays of 

the remaining faults as described in this chapter (but without adding new faults to the set), 

and then selecting the N most critical paths from the set. However, this would require K 

to be large enough to accommodate all the possible delay changes that may occur when 

input necessary assignments are used. If K is underestimated, the accuracy of the path 

selection procedure will be affected, and this will go undetected by the procedure. With 

the developed procedure, there is no need to determine K in advance. In addition, the 
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developed procedure that adds faults to Target_PDF computes input necessary 

assignments only until it finds N potentially detectable faults. If the set of selected faults 

is not updated based on recalculated delays, input necessary assignments must be found 

for K>M>N path delay faults. 

In this section, we first describe how to perform static timing analysis with input 

necessary assignments considered, and then describe the path selection procedure in more 

detail. We use paths and path delay faults interchangeably since paths are associated with 

specific transitions at their sources. 

3.3.1. Static Timing Analysis Considering Input Necessary Assignments 

For each path delay fault fp in Target_PDF, we use PrimeTime from Synopsys to 

perform static timing analysis and calculate the delay of the path p associated with fp 

under the input necessary assignments of fp as follows. 

PrimeTime accepts specified input values only if an input is specified under both 

patterns of a test. Therefore, of all the input necessary assignments in InNecAssign(fp), 

we only consider cases where both q[1]v and q[2]w appear in InNecAssign(fp), for v, w

∈[0,1]. For every such line q, we provide the assignment vw on q to PrimeTime by using 

the “set_case_analysis” command. Specifically, we use 

set_case_analysis 0 for vw=00, 

set_case_analysis rising for vw=01, 

set_case_analysis falling for vw=10, and 

set_case_analysis 1 for vw=11. 

Static timing analysis is then performed in PrimeTime under the input necessary 

assignments of fp. A ranked list of paths is produced and each path in the list has its delay 

under the input necessary assignments of fp. We run PrimeTime such that it reports 

enough critical paths so that the path p associated with fp is also reported. The list is used 

as described in section 3.3.2. 

3.3.2. Path Selection 

As mentioned earlier, the procedure starts by applying traditional static timing 

analysis to obtain an initial set of path delay faults FPo of size M, for a constant M. M is 
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selected such that it is large enough to ensure that the required number of path delay 

faults can be selected from FPo to initialize Target_PDF. Target_PDF is initialized based 

on FPo as follows. Path delay faults in FPo are considered in a decreasing order of their 

delays. Every potentially detectable path delay fault fp in FPo is added to Target_PDF 

until Target_PDF includes a predetermined number N of faults. Other potentially 

detectable path delay faults that have the same delay as the Nth fault added to Target_PDF 

are also added to Target_PDF. 

Next, we update Target_PDF as follows. For each path delay fault fp in Target_PDF, 

we recalculate the path delay under the input necessary assignments of fp as described in 

section 3.3.1. From the ranked list of paths produced by PrimeTime based on fp, paths 

whose delays are at least as high as that of fp under the input necessary assignments of fp 

are obtained. These paths are important since they can be as critical as fp under the tests 

that detect fp. To ensure that the most critical paths are selected, we consider every such 

fault fp’. If fp’ is potentially detectable, we add it into Target_PDF if it is not already 

included. Every newly added path delay fault is processed in the same way as the faults 

already included in Target_PDF. We continue processing every path delay fault in 

Target_PDF until each path delay fault has its delay under its input necessary 

assignments and no new path delay faults are added to Target_PDF. Path delay faults in 

Target_PDF are sorted afterwards based on their recalculated delays, and N faults that 

have the highest delays can be selected for test generation. Fig. 3.1 shows the flow chart 

of the entire path selection procedure. 

We take ISCAS89 circuit s13207 as an example to illustrate the procedure. Suppose 

that 16 most critical path delay faults in s13207 are expected for test generation. 1500 

paths in s13207 are considered during traditional static timing analysis and the 

corresponding path delay faults are included in FPo. Most of the faults are identified as 

undetectable and removed from consideration. The path delay faults initially included in 

Target_PDF are the first 16 faults shown in Table 3.1. The last 8 path delay faults are 

added to Target_PDF by the developed procedure as described later. 
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Fig. 3.1 Path selection procedure 

In Table 3.1, the columns from left to right list the path delay faults by index, the 

delay obtained through traditional static timing analysis of each path delay fault, the 

recalculated delay of each path delay fault under the input necessary assignments of the 

fault, and newly identified potentially detectable path delay faults whose delays are at 

least as high as that of the target fault under the input necessary assignments of the target 

fault, where the target fault is the one shown in the leftmost column. 
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Table 3.1 Path selection in s13207 

Path delay 
faults 

orignial 
(ns) 

final 
(ns) 

new paths 

fp1 4.13 4.12 - 
fp2 4.11 4.10 - 
fp3 4.03 4.02 - 
fp4 4.01 4.00 - 
fp5 4.00 4.00 - 
fp6 3.93 3.92 - 
fp7 3.93 3.87 - 
fp8 3.91 3.91 - 
fp9 3.91 3.90 - 
fp10 3.89 3.86 - 
fp11 3.88 3.87 - 
fp12 3.88 3.84 - 
fp13 3.87 3.86 - 
fp14 3.87 3.81 - 
fp15 3.85 3.82 fp17, fp18 
fp16 3.85 3.82 - 
fp17 3.84 3.81 fp19 
fp18 3.84 3.80 - 
fp19 3.83 3.83 fp20, fp21, 

fp22, fp23 
fp20 3.84 3.80 fp24 
fp21 3.84 3.82 - 
fp22 3.83 3.80 - 
fp23 3.83 3.80 - 
fp24 3.81 3.76 - 

 

After traditional static timing analysis, 16 potentially detectable path delay faults fp1-

fp16 whose delays are among the highest in FPo are included in Target_PDF. The path 

delay of each fault fpi (1≤i≤16) is recalculated under its input necessary assignments. 

When fp15 is considered, two new potentially detectable path delay faults fp17 and fp18 

that have the same delay as fp15 under the input necessary assignments of fp15 are 

identified and added to Target_PDF. The path delay of each newly added fault is then 

recalculated under its input necessary assignments. A new potentially detectable path 

delay fault fp19 that has a larger delay than fp17 under the input necessary assignments of 

fp17 is identified and added to Target_PDF. Similarly, four new potentially detectable 

path delay faults fp20, fp21, fp22 and fp23 that have larger delays than fp19 under the input 
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necessary assignments of fp19 are identified and added to Target_PDF. When fp20 is 

targeted, fp24 is identified and added to Target_PDF since it has the same delay as fp20 

under the input necessary assignments of fp20. When fp24 is targeted, no new path delay 

faults are identified and the procedure terminates. After the developed procedure, we 

have 24 path delay faults in Target_PDF. 

Informally, the procedure obtains the transitive closure of the initial set of path delay 

faults based on the relations between path delays. Transitivity here implies the following: 

if fpi is in the initial set, fpj has a higher delay than fpi under the input necessary 

assignments of fpi, and fpk has a higher delay than fpj under the input necessary 

assignments of fpj, then fpk is added to the set (fpj is added as well). In addition to the 

traditional static timing analysis applied in the beginning, static timing analysis 

considering input necessary assignments will be applied a number of times equal to the 

number of path delay faults in the set Target_PDF. 

It can be observed from Table 3.1 that the delays of most path delay faults decrease 

after recalculation (the delays never increase since the use of input necessary assignments 

constrains the values that can be assigned to circuit lines). In addition, the rank of a path 

delay fault based on its delay changes. Considering two faults, their ranks can change in 

three ways. (1) Faults that have the same rank according to traditional static timing 

analysis may have different ranks after delay recalculation. For example, fp6 and fp7 have 

the same delay according to traditional static timing analysis, but fp6 becomes more 

critical than fp7 after delay recalculation. (2) Faults that have different ranks according to 

traditional static timing analysis may have the same rank after delay recalculation. For 

example, fp14 has a larger delay than fp17 according to traditional static timing analysis, 

but they are equally critical after delay recalculation. In this case, fp17 was not included 

in the initial set of target faults, but it will be added to the set by the developed procedure. 

(3) Faults that have different ranks according to traditional static timing analysis may 

reverse their ranks after delay recalculation. For example, fp7 has a larger delay than fp9 

according to traditional static timing analysis, but fp9 becomes more critical than fp7 after 

delay recalculation. As a result, the developed procedure may remove certain faults from 

the set of selected faults. 
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Because the rank of a fault changes and a new fault can be identified as critical after 

delay recalculation, the path delay faults selected for test generation through the 

developed procedure can be different from those selected through traditional static timing 

analysis. To select the 16 most critical and potentially detectable path delay faults in 

s13207 for test generation, fp1-fp16 are selected through traditional static timing analysis. 

However, through the developed procedure, fp1-fp13, fp15-fp16, fp19 and fp21 should be 

selected. fp14 is discarded since it becomes less critical after delay recalculation. Two 

new faults fp19 and fp21 are selected instead. fp21 is included since it has the same delay 

as fp15 and fp16. 

 

3.4. Experimental Results 

The path selection procedure was implemented in C++. PrimeTime and a simplified 

TSMC 0.18um technology library were used for static timing analysis. Experiments were 

conducted on ISCAS89 and ITC99 benchmark. For every circuit, we applied the 

procedure to select 100, 200, …, 1000 most critical path delay faults. 

Table 3.2 compares the number of path delay faults in Target_PDF before and after 

path delay recalculation when different numbers of path delay faults are expected for test 

generation. In Table 3.2, the first column identifies the circuits by names and shows the 

size of FPo in parentheses for every circuit. The number of path delay faults in 

Target_PDF before delay recalculation is shown in row “original”, and the number of 

faults in Target_PDF after delay recalculation is shown in row “final”. Taking s1423 and 

column “400” as an example, 400 potentially detectable path delay faults that have the 

highest delays are expected for test generation. Through traditional static timing analysis, 

413 path delay faults are selected into Target_PDF. The last 13 path delay faults have the 

same delay as the 400th fault. After delay recalculation, 425 path delay faults are included 

in Target_PDF. It can be observed from Table 3.2 that for many circuits, the final size of 

Target_PDF is larger than the corresponding original size. This is because additional path 

delay faults that are at least as critical as faults in the initial Target_PDF are identified by 

the developed procedure. 
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Table 3.2 Path group size comparison 

Circuit  100 200 300 400 500 600 700 800 900 1000 
s1423 

(54974) 
original 101 202 304 413 502 605 707 806 909 1014 

final 109 206 325 425 546 707 737 841 941 1071 
s5378 

(14802) 
original 102 219 335 415 511 606 735 820 990 1076 

final 102 219 339 575 575 606 853 853 1335 1335 
s9234 

(27738) 
original 107 206 336 439 503 600 730 813 906 1005 

final 108 584 668 755 810 852 923 923 923 1005 
s13207 
(80000) 

original 101 202 300 420 501 609 700 808 905 1011 
final 173 308 382 841 1152 1232 1281 1404 1458 1532 

s38417 
(80000) 

original 105 205 306 432 511 626 742 812 1001 1001 
final 205 359 476 552 626 1001 1324 1517 1845 1845 

s38584 
(80000) 

original 114 209 310 409 548 651 773 874 972 1097 
final 114 209 310 426 557 670 773 890 981 1097 

b11 
(57690) 

original 100 210 301 404 505 608 707 805 904 1006 
final 100 211 301 410 506 610 713 805 905 1006 

b12 
(223426) 

original 105 200 300 401 506 600 701 800 908 1001 
final 113 201 307 405 507 602 701 800 915 1036 

 

N most critical and potentially detectable path delay faults can be selected based on 

the recalculated path delays from the expanded Target_PDF. As mentioned in section 

3.3.2, due to the newly identified path delay faults and the change of the ranks of path 

delay faults based on their delays, these N selected path delay faults may differ from 

those selected by traditional static timing analysis. For each circuit in Table 3.2, when i×

100 (1≤i≤10) path delay faults are expected for test generation, we select a set of the 

i×100 most critical path delay faults from the set Target_PDF obtained through the 

developed procedure, and compare these faults with the i×100 potentially detectable and 

most critical path delay faults selected based on the path delays obtained through 

traditional static timing analysis, i.e. the faults included in Target_PDF before delay 

recalculation. We exclude faults that can be identified as undetectable from comparison 

to show how the accuracy of path delay calculation affects the set of selected path delay 

faults. Some faults appear in both sets, while other faults are unique to one set. We count 

only the faults that are unique to one set. Table 3.3 shows this number. For example, if 

500 path delay faults are selected for s1423, the developed method will select 15 path 

delay faults that are not selected by traditional static timing analysis with faults identified 
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as undetectable excluded. It can be observed from Table 3.3 that for most circuits, a 

different set of path delay faults is obtained through the developed procedure compared 

with the one obtained through traditional static timing analysis. The difference between 

the two sets is more significant for some circuits. 

Table 3.3 Number of different path delay faults 

Circuit 100 200 300 400 500 600 700 800 900 1000 
s1423 1 1 6 13 15 6 2 5 1 13 
s5378 0 6 11 6 11 0 26 10 8 13 
s9234 1 8 2 9 3 36 3 4 1 0 
s13207 3 20 19 20 35 37 37 54 83 65 
s38417 46 38 4 4 3 14 18 55 32 110 
s38584 0 0 0 1 1 1 0 1 2 0 

b11 0 2 1 4 4 2 3 4 1 0 
b12 4 1 0 5 1 2 0 0 7 19 

Table 3.4 Path delay comparison of s13207 

Path 
delay(ns) 

fp7 fp10 fp12 fp14 fp15 fp18 fp31 fp36 fp39 fp42 

original 3.93 3.89 3.88 3.87 3.85 3.84 3.83 3.82 3.81 3.81 
final 3.87 3.86 3.84 3.81 3.82 3.80 3.77 3.78 3.76 3.77 

after TG 3.87 3.85 3.83 3.81 3.81 3.79 3.77 3.78 3.76 3.77 
diff 0.06 0.03 0.04 0.06 0.03 0.04 0.06 0.04 0.05 0.04 

diff_unit 2 1 1.3 2 1 1.3 2 1.3 1.7 1.3 
 

To show how the developed procedure improves the accuracy of path delay 

calculation, we select a few critical path delay faults in s13207, generate a test for each 

selected fault, and compare its delay under the test with the delay obtained through 

traditional static timing analysis and the delay recalculated by the developed method. The 

result is shown in Table 3.4. In Table 3.4, the row “original” lists the path delay 

calculated by traditional static timing analysis for each path delay fault. The row “final” 

lists the delay recalculated by static timing analysis under the input necessary 

assignments of the fault. The row “after TG” lists the delay obtained by using static 
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timing analysis under a test for the fault. The row “diff” shows the difference between the 

path delays in rows “original” and “final”. The delay is shown in ns. In addition, for the 

technology considered, the lowest delay of any gate is the rising delay of an inverter, and 

it is equal to 0.03ns. Considering this as a unit delay, the row “diff_unit” shows the delay 

in the form of the number of inverters. It can be observed from Table 3.4 that for each 

path delay fault, the “original” delay is always larger than the “after TG” delay and the 

“final” delay is between the two delays. For all these 10 faults, the “final” delays are 

closer to the “after TG” delays. Taking fp14 for example, the “final” delay is 0.06ns 

closer to the “after TG” delay than the “original” delay, i.e., the developed procedure 

improved the accuracy of the path delay of fp14. For the technology considered, 0.06ns is 

equivalent to two inverter delays. Therefore, the delay of the path decreases by two 

inverter delays, which demonstrates the impact of the developed method on path delay. 

Table 3.5 Path delay comparison 

Circuit Pct. 1 
% 

Pct. 2 
% 

s1423 83.9 78.9 
s5378 32.4 39.2 
s9234 38.1 61.15 
s13207 98.9 86.34 
s38417 64.2 29.44 
s38584 14.3 21.68 

b11 38 56.32 
b12 85.75 88.82 

 

For each circuit listed in Table 3.2, we select 1000 most critical paths by applying 

the developed procedure and compare the “original” delay, “final” delay and “after TG” 

delay for each path. The results are shown in Table 3.5. The first column identifies the 

circuits by names. The second column shows the percentage of path delay faults whose 

“original” delays are different from the “after TG” delays. Out of such faults, the 

percentage of faults whose “final” delays are closer to “after TG” delays is shown in the 

third column (We ignore faults whose “original” delays are the same as the “after TG” 

delays since the developed procedure cannot improve the accuracy of delay calculation in 
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such a case). It can be observed from Table 3.5 that for a large portion of the selected 

paths in a circuit, the developed procedure achieves estimates of path delays that are 

closer to the delays under tests for the path delay faults. 
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4. BUILT-IN GENERATION OF FUNCTIONAL BROADSIDE TESTS 
CONSIDERING PRIMARY INPUT CONSTRAINTS 

This chapter describes a built-in functional broadside test generation method for a 

circuit that is embedded in a larger design. The functional constraints on the primary 

input sequences of the circuit are taken into consideration by using the functional input 

sequences of the design. The switching activity during built-in test generation is bounded 

within the peak switching activity that can occur in the circuit under the functional input 

sequences. An optional DFT approach based on state holding for improving fault 

coverage is also described. Experimental results show that the method can achieve high 

transition fault coverage for benchmark circuits using simple hardware. 

 

4.1. Introduction 

The deterministic broadside test generation method and path selection method 

described in previous chapters are applicable to off-line test generation, where tests are 

generated before test application. Typically, the tests are stored in an external tester and 

applied to the circuit by the tester. For large circuits with high clock frequency and 

complexity, delay testing via external tester can be expensive due to the following 

reasons. (1) In order to capture the delay defects that may fail the circuit during 

functional operation using a broadside test, the launch and capture clock edges should be 

triggered very fast especially for at-speed testing. As a result, the tester is required to 

provide a high-speed and accurate test clock. However, it is expensive to implement such 

a tester. One solution is to use on-chip clock source to provide a high-speed test clock as 

discussed in [50]-[54], so that the tester only needs to provide slower shifting clock and 

control signals. (2) Tests are stored in the memory of the tester before being applied. 

Considering that each pattern of a broadside test contains the values of all state variables 
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in the circuit, the test volume can be tremendous and may exceed the capability of the 

memory especially for large circuits. To address this issue, test compression techniques 

were proposed in [55]-[58] to alleviate the memory requirement in external testers. Built-

in test generation [59], a design-for-test technique in which a circuit can be tested by 

extra test logic added to it, is a cost-effective solution to address both the issues. Using 

built-in test generation has the following advantages. (1) It facilitates at-speed testing. 

The added test logic is implemented using the same technology as the circuit, and it can 

share the functional clock of the circuit. Accurate timing behavior can be achieved during 

test application so that the circuit can be tested at its real operation speed. (2) It reduces 

test data volume. All the tests are generated on-chip by the test logic. The amount of 

memory required in the tester for storing test data is reduced. (3) It improves test quality. 

It is easy to apply a large number of tests with built-in test generation so that more detects, 

modeled or un-modeled, can be detected. N-detection [60] is naturally achieved and 

better test quality can be obtained.  

Built-in test generation techniques were described in [61]-[68] to generate scan-

based two-pattern tests for delay faults. In these techniques, arbitrary states can be 

scanned in during the application of the two-pattern tests. This makes it possible to bring 

the circuit into states that cannot be reached during functional operation. Although high 

fault coverage may be achieved since lines can be exercised under non-functional 

operation conditions, overtesting may occur due to the following reasons. (1) The 

switching activity in the circuit may be significantly higher than that under functional 

operation conditions. The excessive switching activity during non-functional operation 

conditions requires higher current which may cause the power supply voltage to drop and 

thus fail the circuit [18][19]. It also leads to higher power dissipation during test 

application than normal, which may cause permanent damage to the circuit. The problem 

can be severe under built-in test generation since the circuit operates at its real operation 

speed during test application. (2) Slow propagation paths that are never exercised during 

functional operation conditions can be sensitized under non-functional operation 

conditions and fail the circuit, as described in [20]. Due to overtesting, a circuit that 
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operates correctly under functional operation cannot pass the test, which results in 

unnecessary yield loss. 

Several low-power built-in test generation techniques were described in [69]-[72] to 

reduce the power dissipation during test application. However, these methods do not 

guarantee that the power dissipation during test application would match the power 

dissipation that is possible during functional operation. Both higher and lower power 

dissipation are undesirable. To address the power dissipation as well as overtesting issues 

by creating functional operation conditions, a built-in test generation method was 

described in [73] to generate what are called functional broadside tests. Assuming that the 

primary inputs are unconstrained, a functional broadside test is a broadside test whose 

scan-in state is a reachable state, or a state that the circuit can enter during functional 

operation [21]. Under a broadside test, the state under the second pattern is the next-state 

obtained in response to the first pattern. Therefore, the state under the second pattern of a 

functional broadside test is also a reachable state. As a result, delay faults are detected 

under functional operation conditions when functional broadside tests are applied. 

Overtesing is therefore eliminated, and the power dissipation during the clock cycles 

where delay faults are detected is bounded within that possible during functional 

operation. In the method from [73], primary input sequences are generated on-chip and 

applied to the circuit starting from a known reachable state. The circuit traverses only 

reachable states, and functional broadside tests can be obtained from these primary input 

sequences and the corresponding reachable states. 

A circuit is typically embedded in a larger design that constrains its primary input 

sequences. Fig. 4.1 shows two connected blocks B1 and B2 that may be part of a larger 

design. B2 is the target circuit, and its primary inputs are driven by part of the primary 

outputs of B1. During functional operation of the design, certain functional constraints 

can be imposed by B1 on the primary inputs of B2. Such functional constraints can affect 

the set of reachable states and the state-transitions that B2 can make during functional 

operation. Without considering these constraints, certain state-transitions that cannot 

occur during functional operation may be allowed during test application by the method 

in [73]. As a result, the switching activity during test application may exceed that 
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possible during functional operation, and overtesting may occur. Ignoring primary input 

constraints is acceptable when the circuit is designed to operate correctly as a stand-alone 

circuit. When this is not the case, it is necessary to consider the primary input constraints 

for built-in generation of functional broadside tests. 

B1 B2
 

Fig. 4.1 Example of an embedded block 

In this chapter, we extend the built-in functional broadside test generation method 

from [73] to address the issue of primary input constraints for a circuit that is embedded 

in a larger design. To take primary input constraints into account, it is possible to first 

extract the constraints imposed on the circuit as described in [74][75], and then extend 

the primary input sequence generation logic to incorporate the functional constraints. 

However, it is typically not possible to completely represent the functional constraints in 

closed form and synthesize simple hardware to satisfy them [76]. To avoid the effort for 

constraint extraction and the synthesis of complex hardware, we use functional input 

sequences of the complete design to capture the constraints. Functional input sequences 

may be generated for other purposes such as speed binning or design verification. If they 

are not available, they can also be derived using high level simulations of application 

programs. Functional broadside tests can be extracted from functional input sequences for 

embedded logic blocks, as described in [76][77]. In this chapter, the primary input 

constraints captured by functional input sequences are taken into account by using the 

peak switching activity that can occur in the circuit under these sequences. Among the 

state-transitions that can be used for on-chip test generation in [73], only those whose 

switching activities are no higher than the peak switching activity under the functional 

input sequences are eligible for use. The developed method generates primary input 
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sequences that only allow the circuit to make eligible state-transitions starting from a 

reachable state.  

By avoiding the use of unreachable states, functional broadside tests may not detect 

delay faults that can be detected by unrestricted broadside tests. Although such delay 

faults may not cause the circuit to fail during functional operation, they may accelerate 

the deterioration of the circuit and affect its long-term reliability. In addition, detecting 

such faults can be important for failure diagnosis and process improvement. In this 

chapter, we provide an optional DFT method based on state holding to detect such faults 

and improve fault coverage. State holding keeps the values of some state variables from 

changing in certain clock cycles during on-chip test generation. As a result, gates in the 

fanout cones of the unchanging state variables are likely to keep their values, and the 

switching activity may be reduced. State holding was used to reduce the power 

dissipation during the application of structural scan-based tests in [78]-[80] and to 

improve delay fault coverage in [80]. In this chapter, it is used to introduce unreachable 

states to detect faults that cannot be detected by functional broadside tests. Although high 

switching activity may be caused by the introduced unreachable states, it may be 

compensated by state holding to some extent. To avoid excessive switching activity, only 

tests whose switching activities are no higher than the peak switching activity under the 

functional input sequences can be generated on-chip. A simple simulation-based 

procedure is described to select sets of state variables for holding. Experimental results 

show that for benchmark circuits, the developed built-in test generation method can 

achieve high transition fault coverage using simple hardware. 

 

4.2. Generic Built-in Test Generation 

This section reviews the generic built-in test generation method, which typically 

requires three additional logic blocks for a circuit: a test pattern generator (TPG), an 

output response analyzer (ORA), and a controller, as shown in Fig. 4.2. The TPG logic 

generates test patterns for the primary inputs and scan chains. The ORA logic compacts 

and analyzes the test responses observed at the primary outputs and scan chains to 

determine the correctness of the circuit. The control logic controls the circuit, the TPG 
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and the ORA logic so that test application and response analysis can be conducted 

properly. 
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Fig. 4.2 Generic built-in test generation architecture 

The TPG logic is usually implemented based on a linear feedback shift register 

(LFSR) [59] whose states are used as pseudo-random patterns. An n-stage LFSR is 

constructed from n D flip-flops and a number of modulo-2 adders (XOR gates), as shown 

in Fig. 4.3. Ci implies whether there is a connection between Qn and the modulo-2 adder, 

for 1≤i<n. If Ci=1, Qn is connected to the modulo-2 adder. Otherwise, the modulo-2 adder 

can be considered as an interconnect wire. Under a particular combination of the values 

of Ci for 1≤i<n, the LFSR can cycle through all possible 2n-1 states except the all-0 state. 

The probability that 0 or 1 appears on each LFSR bit is 1/2. Various techniques such as 

LFSR-reseeding [81], bit fixing [82], bit flipping [83], and weighted random pattern 

generation [84]-[87] were developed for LFSR based TPG logic so that the pseudo-

random patterns generated by the TPG logic can achieve higher fault coverage.  
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D D D
Q1 Q2

…
Qn-1 Qn

Cn-1 Cn-2 C1Cn-1

 

Fig. 4.3 An n-stage LFSR 

The ORA logic is usually implemented by using a multiple-input signature register 

(MISR) [59]. A MISR is derived from an LFSR as shown in Fig. 4.4. Di is an input of the 

MISR, and Ci implies the connection between Qn and the modulo-2 adder, for 1≤i≤n. 

The test response of the circuit is captured by the MISR and compacted into its next-state 

value. The final state of the MISR is compared with the expected value after test 

application. Faults are detected if a mismatch is identified.  

D D D
Q1 Q2

…
Qn-1

Qn

Cn-1 Cn-2 C1Cn

D1 D2 D3 Dn

 

Fig. 4.4 An n-stage MISR 

 

4.3. Built-in Generation of Functional Broadside Tests with Unconstrained Primary 

Input Sequences 

This section reviews the built-in functional broadside test generation method from 

[73]. The architecture of the method is shown in Fig. 4.5. Different from the generic 

built-in test generation architecture shown in Fig. 4.2, the TPG logic in this method only 

generates test patterns for the primary inputs of the circuit. 



 

 

49 

Scan Chains
…

…

…

… M
I
S
R

Primary 
Outputs

Primary 
Inputs

T
P
G

CTRL

CUT
Data In

…

…

…

LFSR 
seeds

 

Fig. 4.5 Built-in generation of functional broadside tests 

In this method, the circuit is first initialized into a reachable state sinitial. The TPG 

logic generates a primary input sequence P of a fixed length L. Let P=p(0)p(1)p(2)…p(L-

1), where p(i) is the primary input vector at clock cycle i, for 0≤i<L. P is applied to the 

circuit in functional mode and takes it through a state sequence S=s(0)s(1)s(2)…s(L), 

where s(0)=sinitial and s(i) is the next-state the circuit enters when its primary inputs are 

driven by p(i-1) and its present state is s(i-1), for 0<i≤L. A functional broadside test can 

be defined by any two consecutive time units from the primary input sequence P and its 

corresponding state sequence S. The test that starts at clock cycle i is denoted by 

t(i)=<s(i), p(i), s(i+1), p(i+1)>. The final state of t(i) is s(i+2).  

The application of t(i) takes the circuit through states s(i), s(i+1) and s(i+2). The 

application of t(i+1) takes the circuit through states s(i+1), s(i+2) and s(i+3). An overlap 

of s(i+1) and s(i+2) occurs between t(i) and t(i+1). In order to apply t(i+1) after t(i) is 

applied, special hardware is needed to bring the circuit back to s(i+1) from s(i+2). To 

avoid such hardware, it is required in this method that there is no overlap between any 

two tests. Tests are applied every 2q clock cycles, where q≥1. A log2L-bit clock cycle 

counter is used to track the current clock cycle during the application of P, and its 

rightmost q bits are fed into a q-input NOR gate to generate an apply signal that indicates 
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when to apply the tests, as shown in Fig. 4.6. In this chapter, we have q=1 so that the 

largest number of functional broadside tests can be obtained. The rightmost bit of the 

clock cycle counter is used as the test apply signal and no extra NOR gate is needed. 

… q-1 0…

clock cycle couner

apply
 

Fig. 4.6 Clock cycle counter and test apply signal generation in [73] 

When t(i) is applied at clock cycle i, the primary output vector y(i+1) produced by 

the circuit in response to <s(i+1), p(i+1)> at clock cycle i+1 and the final state of the test 

s(i+2) at clock cycle i+2 are captured by the MISR. s(i+2) is shifted into the MISR over a 

number of clock cycles equal to the length of the longest scan chain. The circuit is 

brought back to s(i+2) by using circular shift so that the test application process can be 

continued. 

The TPG logic in this method is implemented by using an LFSR whose states are 

used as pseudo-random vectors for the primary inputs of the circuit. The pseudo-random 

primary input sequence is modified by inserting additional logic gates based on a primary 

input cube C to avoid what is called repeated synchronization [88]. Repeated 

synchronization occurs when a primary input value causes a state variable to have a 

certain value. This value is repeated every time the primary input value appears in the 

primary input sequence, potentially preventing faults from being detected. The value C(i) 

of primary input i under C is the value that should appear more often on input i, and it is 

calculated by a software procedure in the following way. A specified value 0(1) is 

assigned to input i with all the other inputs and the present-state variables unspecified. 
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The number of specified next-state variables is then counted. If assigning 0(1) to input i 

synchronizes fewer state variables than assigning 1(0), we have C(i)=0(1). Otherwise, we 

have C(i)=x. 

d dd ….
m m

... ...
LFSR

To primary inputs
 

Fig. 4.7 The TPG logic in [73] 

Fig. 4.7 shows the TPG logic in the method from [73]. To reduce the correlation 

between adjacent primary inputs, a distinct set of d LFSR bits is used to determine the 

values for each primary input. The number of LFSR bits is denoted by NLFSR. For a 

circuit with NPI primary inputs, we have NLFSR=d·NPI in this method. According to the 

primary input cube C, if C(i)=0(1), m out of the d bits allocated for primary input i are 

used to bias the probabilities of 0 and 1 on input i to avoid repeated synchronization, 

where 2≤m≤d. If C(i)=0, the m bits are fed into an m-input AND gate. In this case, a 0 

is more likely to appear on input i, and the probability for a 0 is 1-1/2m. If C(i)=1, the m 

bits are fed into an m-input OR gate. In this case, a 1 is more likely to appear on input i, 

and the probability for a 1 is 1-1/2m. If C(i)=x, no logic gate is inserted and one of the d 

bits is used to drive input i directly. 

To avoid using an LFSR whose length is proportional to the number of primary 

inputs, we use the following approach in this chapter. An LFSR with a fixed number of 

bits is used for the TPG logic. The LFSR drives a shift register whose states are used for 

driving the primary inputs of the circuit, as shown in Figure 4.8. 
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... ... Shift Register

LFSR

To primary inputs  

Fig. 4.8 The TPG logic in the developed method 

For an input i, if C(i)=0(1), a distinct set of m shift register bits is used to determine 

the values for it. All the m bits are fed into an m-input AND(OR) gate so that 0(1) is 

more likely to appear on input i. If C(i)=x, a single shift register bit is used to determine 

the values for input i. The shift register contains m•NSP + (NPI-NSP) bits, where NSP is the 

number of primary inputs whose values under C are specified. After the LFSR is 

initialized, it takes a number of clock cycles equal to the size of the shift register to 

initialize the shift register before primary input sequence generation. 

Multiple primary input sequences are applied in [73] by using different LFSR seeds. 

A simulation-based seed selection procedure selects useful seeds among random seeds. 

For a random seed, the procedure computes the primary input sequence obtained from it, 

and checks whether the resulting tests can detect additional faults. If so, the seed is 

selected. Otherwise, the seed is discarded and a new random seed is considered. The 

procedure continues until the last U sequences cannot detect additional faults for a 

constant U. The number of selected seeds is then reduced. We reduce the number of 

selected seeds by using a procedure similar to reverse order fault simulation called 

forward-looking fault simulation [89]. 
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4.4. Built-in Generation of Functional Broadside Tests with Constrained Primary 

Inputs 

This section describes the developed built-in functional broadside test generation 

method that considers primary input constraints for on-chip test generation. 

As discussed earlier, primary input constraints affect the set of state-transitions that 

the circuit can make during functional operation. Since the constraints cannot be 

represented in closed form and satisfied by using simple hardware, functional input 

sequences are used in this paper to capture them. The peak switching activity that can 

occur in the circuit under the functional input sequences is used to bound the switching 

activities of the functional broadside tests generated on-chip. The circuit may traverse 

states that it cannot traverse during functional operation with constrained primary inputs. 

However, the states are not arbitrary in the sense that the circuit can traverse them with 

unconstrained primary inputs during functional operation. In addition, the switching 

activity will match the switching activity that is possible during functional operation with 

constrained primary inputs. This alleviates overtesting caused by excessive switching 

activity. The peak switching activity obtained under the functional input sequences is 

denoted by SWAfunc. 

For a TPG sequence P=p(0)p(1)p(2)…p(L-1), we use SWA(i) to denote the 

switching activity during clock cycle i. SWA(i) is defined as the percentage of lines 

whose values in clock cycle i are different from their values in clock cycle i-1. SWA(0) is 

undefined. It is possible to identify subsequences of P such that the switching activities of 

the corresponding functional broadside tests do not exceed SWAfunc. Let S=s(0)s(1) 

s(2)…s(L) be the state sequence the circuit traverses starting from s(0) under P. A 

subsequence Pk,w=p(k)p(k+1)…p(w-1) (0≤k<w≤L) of P yields functional broadside 

tests t(k), t(k+2), t(k+4), …. The tests are considered as acceptable if SWA(i)≤SWAfunc, 

for k<i<w. Although not all the clock cycles are important for test application in terms of 

the switching activity, for simplicity, it is required that all would satisfy the switching 

activity bound. 

Table 4.1 shows an example. The columns in Table 4.1 show the state s(i), the 

primary input vector p(i), and the switching activity SWA(i) during clock cycle i. The 
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switching activity that is higher than SWAfunc is marked in bold. To avoid the excessive 

switching activity at clock cycles j+1 and u+1, it is possible to use P0,j, Pj+1,u and Pu+1,L for 

application of functional broadside tests. Note that p(j) and p(u) are avoided in order to 

avoid the transitions from s(j) to s(j+1) and from s(u) to s(u+1). When a subsequence Pk,w 

is applied for on-chip test generation, a new LFSR seed should be loaded so that the TPG 

logic can generate the subsequence starting from p(k). In addition, the circuit must be 

initialized into s(k). This can be done by shifting s(k) into the scan chains. However, 

extra memory is required for storing the scan-in state. The amount of memory due to 

storage of scan-in states can be large if the number of state variables and the number of 

stored scan-in states are high. 

Table 4.1 Example of primary input subsequence selection 

Clock 
cycle i 

s(i) p(i) SWA(i) 

0 s(0) p(0) - 
1 s(1) p(1) SWA(1) 
… … … … 
j-1 s(j-1) p(j-1) SWA(j-1) 
j s(j) p(j) SWA(j) 

j+1 s(j+1) p(j+1) SWA(j+1) 
j+2 s(j+2) p(j+2) SWA(j+2) 
… … … … 
u-1 s(u-1) p(u-1) SWA(u-1) 
u s(u) p(u) SWA(u) 

u+1 s(u+1) p(u+1) SWA(u+1) 
u+2 s(u+2) p(u+2) SWA(u+2) 
… … … … 
L-1 s(L-1) p(L-1) SWA(L-1) 
L s(L) - SWA(L) 

 

Several different reachable states can be used as initial states if the amount of 

required memory for storing these states is not a concern. We only use one reachable 

state sinitial to initialize the circuit in this chapter. We attempt to find primary input 

sequences so that when they are applied to the circuit starting from sinitial, the switching 
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activity during each clock cycle does not exceed SWAfunc and the fault coverage is as 

high as possible. In the example of Table 4.1, we only use P0,j and discard other 

subsequences. To avoid the potential loss in fault coverage, we extend P0,j as described 

next. 

We construct a primary input sequence from segments where each segment is 

obtained through the TPG logic using a different LFSR seed. We use 

Pmulti=Pseg(0)Pseg(1)…Pseg(Nseg-1) to denote a multi-segment primary input sequence, 

where Pseg(i) is a primary input segment for 0≤i<Nseg, and Nseg is the number of segments 

included in the entire sequence. During the application of Pmulti to a circuit starting from 

sinitial, different LFSR seeds are loaded at certain clock cycles to generate the primary 

input segments. The state of the circuit is held by deactivating the clock driving the 

circuit when a new LFSR seed is loaded, so that the application of the new primary input 

segment can start from the final state of the previous segment. The primary input 

segments are selected so that during the application of Pmulti, the switching activity in 

each clock cycle is no higher than SWAfunc. 

A simulation-based procedure selects Pseg(i) and constructs Pmulti as follows. Initially 

we have Pmulti=Ø. A primary input sequence P of length L is generated using the TPG 

logic based on a random LFSR seed. The procedure applies P to the circuit starting from 

state sstart through logic simulation. If i=0, sstart=sinitial. Otherwise, sstart is the final state of 

Pseg(i-1). The procedure examines the switching activity in each clock cycle under P until 

the first violation SWA(j+1)>SWAfunc is identified at clock cycle j+1. Since the tests are 

obtained every two consecutive clock cycles, we have Pseg(i)=P0,j if j is even, or 

Pseg(i)=P0,j-1 if j is odd, so that the final state of Pseg(i) is the final state of the last test 

obtained from P0,j. Then the procedure checks whether the tests obtained from Pseg(i) 

detect additional faults. If so, Pseg(i) is concatenated to Pmulit and the procedure starts 

selecting Pseg(i+1). Otherwise, the current seed fails and a new seed is considered for 

selecting Pseg(i) again. The procedure stops constructing Pmulti if the last R seeds fail to 

select Pseg(i) for a constant R. To obtain more tests, the procedure attempts to construct 

multiple multi-segment primary input sequences. An attempt fails if Pseg(0) cannot be 

selected. The procedure stops constructing new multi-segment primary input sequences 
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when the last Q attempts fail for a constant Q. Figure 4.9 shows the flow chart of the 

entire construction procedure. 

 

Fig. 4.9 The multi-segment primary input sequence construction procedure 

Using multi-segment primary input sequences, the circuit only needs to be initialized 

into sinitial before a new multi-segment primary input sequence is applied. To apply the 

multi-segment primary input sequences on-chip, a log2Lmax-bit clock cycle counter tracks 

the current clock cycle and generates the test apply signal every two clock cycles, where 

Lmax is the length of the longest primary input segment. A log2Lsc-bit shift counter tracks 

the number of shift operations during circular shifting, where Lsc is the length of the 
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longest scan chain. A log2Nsegmax-bit segment counter tracks the number of applied 

segments, where Nsegmax is the largest number of segments contained in a multi-segment 

primary input sequence. A log2Nmulti-bit sequence counter tracks the number of applied 

multi-segment primary input sequences, where Nmulti is the number of sequences. The 

clocks for the TPG logic, the counters and the circuit are gated and controlled by a finite 

state machine, so that the TPG logic and the counters can operate simultaneously or not 

with the circuit under different operation modes such as seed loading, shift register 

initialization, circuit initialization, primary input sequence application, and circular 

shifting. For example, when the clock cycle counter reaches the length of the current 

segment and a new segment needs to be applied, the clock that drives the circuit is 

disabled so that the state of the circuit is held. The clock for the TPG logic is still enabled 

so that a new LFSR seed can be loaded and the shift register can be initialized. The clock 

for the circuit is then enabled again so that the circuit can operate simultaneously with the 

TPG logic for the application of the new segment. 

 

4.5. Built-in Test Generation with State Holding 

This section describes an optional DFT method based on state holding for fault 

coverage improvement. The method can be used after applying the functional broadside 

tests generated on-chip if necessary. By keeping the values of some state variables from 

changing in certain clock cycles during on-chip test generation, state holding may 

introduce unreachable states that can be used to detect faults that cannot be detected by 

functional broadside tests.  

4.5.1. State Holding 

State holding can be implemented by the structure shown in Fig. 4.10. A latch-based 

clock gating cell is used to gate the clock for a state variable. When the state holding 

enable signal Hold_en is high, the clock input of the state variable is 0 when a clock edge 

arrives and no data can be captured. The value of the state variable is therefore held. 

Multiple state variables can be held simultaneously by sharing the same gated clock 

signal. 
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A state variable can be held over arbitrary number of consecutive clock cycles as 

long as the holding enable signal is high. However, in order to define a broadside test 

t(i)=<s(i), p(i), s(i+1), p(i+1)> based on the state sequence resulting from state holding, 

we require that no state variable is held during the transition from s(i+1) to s(i+2) to 

avoid potential fault coverage loss. The reason is that the fault effects activated by 

<s(i+1), p(i+1)> are expected to be captured by the state variables during the transition 

from s(i+1) to s(i+2). If state holding is performed, the fault effects may not be captured 

and the fault will not be detected.  

Q
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gtd_clock
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Data_inLD LQ
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clock
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Fig. 4.10 Implementation of state holding 

… h-1 0…

clock cycle counter

Hold_en
 

Fig. 4.11 Holding enable signal generation 

State holding can be performed periodically during on-chip test generation. In this 

chapter, we perform state holding every 2h clock cycles, where h≥1. The clock cycle 
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counter is used to generate the holding enable signal by inserting an h-input NOR gate at 

its rightmost h bits as shown in Fig. 4.11, so that state holding can be performed in the 

next clock cycle. Given a predetermined value for h and a set of state variables for 

holding, the multi-segment sequence construction procedure described in section 4.4 is 

used to construct the multi-segment primary input sequences and select LFSR seeds for 

the given set. The impact of holding state variables in the given set during on-chip test 

generation is taken into account when the state sequence under a primary input sequence 

is computed via logic simulation. SWAfunc is used to ensure that the switching activity in 

each clock cycle under the multi-segment primary input sequences is no higher than it, so 

that possible excessive switching activity caused by unreachable states can be avoided. 

4.5.2. Set Selection for State Holding 

Multiple sets of state variables can be used for holding. State variables in different 

sets are controlled by different holding enable signals. In this chapter, a new set is used 

only after all the multi-segment primary input sequences for the current set have been 

applied. 

We use a simulation-based set selection procedure to select the sets of state variables 

for holding. Let Setini be the set containing all the state variables in the circuit, and let Fr 

be the set of faults that cannot be detected by the functional broadside tests generated in 

section 4.4. The procedure selects a number of subsets of Setini. Each selected subset can 

help detect additional faults in Fr. A state variable can be included in different selected 

subsets. However, compared with the case where the state variable is included in only 

one selected subset, more gating logic is needed on the clock of the state variable so that 

it can be held properly every time a subset it belongs to is enabled for holding. Such 

gating logic may affect the performance of the clock network under functional mode. To 

avoid this issue, the procedure only considers non-overlapping subsets of Setini.  

The set selection procedure first partitions Setini into non-overlapping subsets, and 

then selects the subsets that can help detect additional faults in Fr. We use Det to denote 

the detecting ability of a subset, i.e. the number of faults in Fr detected by tests resulting 

from holding the subset during on-chip test generation. In order to partition Setini in a way 

such that more faults in Fr are likely to be detected by holding the resulting subsets, the 
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procedure first examines the detecting abilities of different subsets of Setini from larger 

ones to smaller ones in the following way. Fig. 4.12 shows a full and complete binary 

tree with a height of H, where each node represents a subset Seti,j of Setini. We have the 

root Set0,0=Setini. A pair of child nodes Seti+1,2j and Seti+1,2j+1 are obtained by randomly 

partitioning their parent node Seti,j into halves. The detecting ability of every subset is 

examined from the root node to the leaf nodes until each node Seti,j has its Deti,j 

associated with it. To compute Deti,j, the procedure first constructs multi-segment 

primary input sequences for Seti,j, and then simulates the tests obtained from the multi-

segment sequences on Fr. The number of detected faults in Fr is the value of Deti,j. 

… …

...
...

...
...

Set0,0

Set1,0
Set1,1

Set2,0 Set2,1 Set2,2 Set2,3

H

 

Fig. 4.12 Full and complete binary tree for set selection 

After obtaining the detecting ability for each node, the procedure checks all the 

nodes from the leaves to the root to decide whether a subset should be partitioned or not. 

Take node Seti,j for example. If Seti,j is a leaf node, Seti,j is set to Ø if Deti,j=0, and Seti,j 

remains the same if Deti,j>0. If Seti,j is a parent node, its two child nodes Seti+1,2j and 

Seti+1,2j+1 are checked as follows. If Deti,j≤max{Deti+1,2j, Deti+1,2j+1}, which indicates that 

more faults can be detected if Seti+1,2j and Seti+1,2j+1 are held separately, we have 

Seti,j={Seti+1,2j, Seti+1,2j+1}, i.e. Seti,j is partitioned into Seti+1,2j and Seti+1,2j+1, and 

Deti,j=max{Deti+1,2j, Deti+1,2j+1}. If Deti,j>max{Deti+1,2j, Deti+1,2j+1}, which indicates that 

more faults can be detected if Seti+1,2j and Seti+1,2j+1 are held together, Seti,j and Deti,j 

remain the same. Note that Seti,j=Seti+1,2j∪Seti+1,2j+1 is not used in this case since it may 
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cause Seti,j=Seti+1,2j if Seti+1,2j+1 is already updated to Ø. By performing the operations on 

each node, Setini can be partitioned into a number of non-overlapping subsets after Set0,0 

is processed. Then for each of such subsets, the procedure constructs multi-segment 

primary input sequences for it, and selects the subset if its resulting tests can detect 

additional faults in Fr.  

By using the set selection procedure, Nh non-overlapping sets of state variables can 

be selected for holding. In order to perform on-chip test generation with the Nh sets to 

hold, extra hardware is required in addition to that required for applying multi-segment 

primary input sequences as described in section 4.4. We use a log2Nh-bit set counter to 

track the number of used sets and a log2Nh to Nh decoder to select a set, as shown in Fig. 

4.13. A new set of state variables is enabled for holding when the sequence counter 

reaches the number of multi-segment primary input sequences for the current set. The on-

chip test generation with state holding terminates when the set counter reaches Nh. 

decoder

01...

...

...

set 
counter

Hold_en_0Hold_en_1Hold_en_2...

Hold_en

 

Fig. 4.13 Set selection signal generation 

 

4.6. Experimental Results 

The developed built-in test generation method was implemented and applied to 

ISCAS89, ITC99 and IWLS2005 benchmark circuits. Fastscan from Mentor Graphics 

was used for logic and fault simulation. The method was implemented using Perl, Tcl, 

and CShell scripts. 
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Table 4.2 lists the benchmark circuits used for the experiments and shows the 

parameters of the circuits. The columns from left to right show the name of the 

benchmark circuit, the number of primary outputs NPO, the number of primary inputs NPI, 

the number of primary inputs NSP whose values are specified in the primary input cube C 

(or the number of logic gates inserted to avoid repeated synchronization), and the number 

of state variables NSV. 

We implemented the hardware required for the developed method in Verilog. The 

MISR and the shift register on the primary inputs were not included. Primary inputs of an 

embedded block are typically driven by registers, and the registers can be reused by the 

developed method. Extra shift register bits may be needed for a primary input whose 

value is specified in the primary input cube C to avoid repeated synchronization. 

However, the number of such primary inputs is small, as shown in Table 4.2. The extra 

logic gates inserted to avoid repeated synchronization were included for area calculation. 

Table 4.2 Parameters for benchmark circuits 

Circuit NPO Nin Np NSV 
s35932 320 35 1 1728 
s38584 278 12 2 1164 

b14 54 32 0 215 
b20 22 32 0 430 
spi 45 45 3 229 

wb_dma 215 215 17 523 
systemcaes 129 258 1 670 
systemcdes 65 130 1 190 

des_area 64 239 0 128 
aes_core 129 258 2 530 

wb_conmax 1416 1128 8 770 
des_perf 64 233 0 8808 

 

In order to evaluate the area overhead, the benchmark circuits and the hardware for 

the developed method were logic synthesized by using Design Compiler from Synopsys 

and a 0.18um generic library. As a result, the transition fault coverage achieved for a 

benchmark circuit may be different from that achieved in other works. For a small circuit, 

the area overhead of built-in test generation in general, considered as a percentage of the 
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circuit area, may be high. Only larger benchmark circuits where the area overhead of 

built-in test generation is acceptable are listed in Table 4.2. 

Primary input constraints are created for benchmark circuits by connecting pairs of 

circuits such that all the primary inputs of one circuit are driven by the primary outputs of 

the other. The target circuit is the one whose primary inputs are constrained [76][77]. 

When two circuits are paired, it is ensured that the number of primary outputs of the 

driving block is no less than the number of primary inputs of the target circuit. We 

consider all possible combinations of the benchmark circuits listed in Table 4.2. We also 

allow the driving block to be a duplication of the target circuit if it does not have more 

primary inputs than primary outputs. In addition, we consider the case where there are no 

primary input constraints by using a block named “buffers”, which is a group of buffers 

placed at the primary inputs of the target circuit, as the driving block for comparison. We 

assume that all the benchmark circuits can be initialized into the all-0 state. The 

initialization can be performed by shifting in the all-0 state or asserting a global reset if it 

is available.  

To determine the value of SWAfunc, the complete design is simulated under 30 

functional input sequences of length 30000 generated by the TPG logic. For simplicity, if 

the target circuit is not driven by “buffers”, we use the TPG logic designed for the driving 

block as the TPG logic for the complete design. Otherwise, the TPG logic for the target 

circuit is used. In this case, the value of SWAfunc indicates the peak switching activity in 

the target circuit when there are no primary input constraints. After the simulation of 

functional input sequences, the target circuit is considered alone with its own TPG logic.  

We have NLFSR=32 and m=3 for the LFSR and shift register configuration. For the 

built-in generation of functional broadside tests considering primary input constraints, the 

multi-segment primary input sequence construction procedure stops constructing a 

sequence when it consecutively fails 3 times to select a segment, i.e. R=3. It stops 

constructing new sequences when the last 5 attempts fail, i.e. Q=5. The value of L is 

selected so that it is suitable for the target circuit. The number of state variables in the 

benchmark circuits varies from 128 to 8808. We assume that a circuit can have no more 
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than 10 scan chains and the length of a scan chain should be at least 100. All the scan 

chains are of approximately equal length. 

Table 4.3 shows the results of the built-in generation of functional broadside tests 

considering primary input constraints. The first column shows the name of the target 

circuit and the total number of transition faults after fault collapsing in parentheses. The 

second column shows the length of the longest scan chain. The third column shows the 

name of the driving block. In addition to “buffers”, the driving blocks that cause the 

highest and lowest SWAfunc are listed for every target circuit in order to show a range of 

possible results under primary input constraints. For wb_conmax, only the case where it 

is driven by a duplication of itself is listed since other circuits have fewer primary outputs 

than its primary inputs. When “buffers” is the driving block, the multi-segment primary 

input sequences are constructed with no constraint on the switching activity. Therefore, 

each primary input segment is of length L. 

The fourth column shows the number of multi-segment primary input sequences 

Nmulti. The fifth column shows the maximum number of segments contained in a multi-

segment sequence. The sixth column shows the length of the longest primary input 

segment. The seventh column shows the value of SWAfunc. The switching activity is 

given as a percentage of switching lines in the circuit during a state-transition. The eighth 

to the tenth column shows the number of selected LFSR seeds, the number of applied 

tests, and the peak switching activity during test application. The eleventh column shows 

the achieved transition fault coverage. The lowest fault coverage is obtained in the case 

where SWAfunc is the lowest, and this case is included for every circuit. The twelfth 

column shows the area of the hardware required for on-chip test generation. The 

thirteenth column shows the area overhead, given as a percentage of the hardware in the 

circuit. 

It can be observed from Table 4.3 that for the benchmark circuits, SWAfunc is lower 

when the target circuit is driven by a block other than “buffers”. This demonstrates the 

influence of primary input constraints on the switching activity during functional 

operation. Tests whose switching activities exceed SWAfunc are not acceptable when 

primary input constraints are considered. In cases where SWAfunc does not decrease much 
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under primary input constraints, compared with the peak switching activity in the case of 

no primary input constraints, there is no or a small loss of fault coverage. One reason is 

that tests whose switching activities are higher than SWAfunc may not necessarily detect 

additional faults. The exclusion of such tests does not affect the fault coverage. Another 

reason is that multi-segment primary input sequences use more LFSR seeds and allow the 

circuit to traverse longer state sequences to compensate for the potential fault coverage 

loss, such as the case where b14 is driven by systemcdes. However, when SWAfunc 

decreases much, such as the case where s35932 is driven by spi, a noticeable fault 

coverage loss may occur. The reason is that many tests that can improve the fault 

coverage are excluded because of higher switching activity. 

The number of applied tests varies from hundreds to hundreds of thousands for 

different target circuits. This is because the primary input sequences are based on random 

pattern generation and the target circuits have different numbers of random pattern 

resistant faults. It can also be observed that the area of the required hardware does not 

change much for different target circuits, and the area overhead is smaller for larger 

circuits.  

To show how the fault coverage is improved by using state holding, we consider the 

cases in Table 4.3 where the fault coverage achieved by functional broadside tests is 

lower than 90%. The set selection procedure in section 4.5.2 was used to select the 

subsets of state variables for state holding first. A full and complete binary tree with a 

height of 6 was used for each target circuit during set selection. We have R=Q=1 when 

the multi-segment sequence construction procedure was used to compute the detecting 

ability for a subset, and we have R=3 and Q=5 when it was used to construct primary 

input sequences for a selected subset. State holding was performed every 4 clock cycles 

during on-chip test generation. 

The results of built-in test generated with state holding are shown in Table 4.4. The 

first column shows the name of the target circuit. The second column shows the name of 

the driving block. The third to the twelfth column show the number of sets of state 

variables selected for holding, the total number of state variables included in the selected 

sets, the number of multi-segment primary input sequences applied, the maximum 



 

 

66 

number of segments contained in a multi-segment primary input sequence, the length of 

the longest primary input segment, the number of selected LFSR seeds, the number of 

tests applied on-chip, the peak switching activity during test application, the additional 

transition fault coverage contributed by using state holding, and the final transition fault 

coverage. The thirteenth column shows the area of the hardware required for performing 

both the built-in generation of functional broadside tests and the built-in test generation 

with state holding. The fourteenth column shows the area overhead, given as a percentage 

of the hardware in the circuit.  

It can be observed from Table 4.4 that by using state holding, a noticeable fault 

coverage improvement can be achieved. Although unreachable states may be introduced 

by state holding, the switching activity during test application is always bounded within 

SWAfunc. In addition, the area overhead does not increase much when state holding is 

also performed, compared with that when only the built-in generation of functional 

broadside tests is performed, i.e. the extra area overhead caused by state holding is small. 

In summary, the developed method can achieve high fault coverage and bounded 

switching activity during test application for the benchmark circuits using simple 

hardware. However, several limitations should be considered when using the developed 

method. (1) The method uses switching activity to evaluate the deviations of a state-

transition during on-chip test generation from the state-transitions that can occur during 

functional operation. Although overtesting caused by excessive switching activity can be 

alleviated since state-transitions whose switching activities exceed that possible during 

functional operation are excluded, certain state-transition that can never occur during 

functional operation may still be allowed during on-chip test generation. As a result, 

overtesting caused by slow paths sensitized by non-functional operation conditions may 

occur. (2) The set selection procedure described in section 4.5.2 does not guarantee that 

the highest fault coverage improvement can be achieved by holding the selected sets, and 

unnecessary state variables can be included in the selected subsets. (3) All the benchmark 

circuits used in this chapter are single-clock-domain designs, in which it is 

straightforward to obtain functional broadside tests every two consecutive clock cycles 

from the primary input sequences and the corresponding state sequences. However, for 
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circuits with multiple clock domains, the method cannot be directly applied since the 

frequency difference between clock domains needs to be taken into account, which may 

complicate the test application strategy and control logic.  



 

Table 4.3 Results of built-in test generation considering primary input constraints 

Circuit Lsc Driving 
block 

Nmulti Nsegmax Lmax SWAfunc 
% 

Nseeds Ntests SWA 
% 

FC 
% 

HW 
Area 
(um2) 

Area 
Over. 

% 
s35932 
(22698) 

173 buffers 1 1 6000 43.48 1 3000 39.93 94.94 12455 1.73 
aes_core 1 1 6000 43.33 1 3000 39.93 94.94 12455 1.73 

spi 19 6 44 23.08 48 254 23.08 87.33 12599 1.75 
s38584 
(30844) 

117 buffers 22 50 18000 35.46 104 936000 33.70 84.65 14252 2.53 
des_area 22 50 18000 34.21 104 936000 33.70 84.65 14252 2.53 

wb_conmax 63 25 1996 30.61 194 38134 30.61 82.38 13674 2.43 
b14 

(20236) 
108 buffers 10 12 12000 42.65 33 198000 41.76 80.72 13652 5.68 

systemcdes 15 16 12000 41.63 37 222000 41.12 80.72 13652 5.68 
aes_core 16 18 12000 39.44 49 274591 39.44 80.23 13795 5.73 

b20 
(45126) 

108 buffers 32 44 6000 39.66 118 354000 37.21 79.05 13924 2.77 
aes_core 32 44 6000 39.53 118 354000 37.21 79.05 13924 2.77 

spi 62 19 1884 31.91 147 40911 31.91 78.23 13641 2.71 
spi 

(10970) 
115 buffers 126 8 18000 23.34 188 1692000 23.26 93.20 14035 9.24 

wb_conmax 118 8 18000 21.58 159 1341126 21.47 92.66 14035 9.24 
wb_dma 83 8 18000 15.58 221 832220 15.58 90.13 14035 9.24 

wb_dma 
(13842) 

105 buffers 24 16 18000 23.28 66 594000 22.44 70.36 14421 5.61 
wb_conmax 16 18 12596 18.26 52 90583 18.26 68.75 14273 5.55 

s35932 13 22 12498 17.82 61 49845 17.82 68.33 14273 5.55 
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Table 4.3 Results of built-in test generation considering primary input constraints (cont.) 

Circuit Lsc Driving 
block 

Nmulti Nsegmax Lmax SWAfunc 
% 

Nseeds Ntests SWA 
% 

FC 
% 

HW 
Area 
(um2) 

Area 
Over. 

% 
systemcaes 

(29272) 
 

 
112 

 

buffers 18 1 18000 19.62 18 162000 19.49 75.86 13401 3.18 
wb_conmax 20 1 18000 19.39 20 180000 19.27 75.84 13401 3.18 

s35932 15 11 18000 18.10 43 76267 18.10 74.46 13826 3.27 
systemcdes 

(10222) 
100 buffers 1 5 1000 42.97 5 2500 40.69 99.77 12309 9.15 

wb_dma 1 5 1000 42.43 5 2500 40.69 99.77 12309 9.15 
s38584 1 5 1000 40.87 5 2500 40.69 99.77 12309 9.15 

des_area 
(17800) 

128 buffers 1 4 1000 39.99 4 2000 39.83 99.84 12096 7.28 
wb_conmax 1 5 1000 39.79 5 2500 39.42 99.84 12273 7.37 

des_area 119 9 22 29.96 288 578 29.96 98.97 12747 7.64 
aes_core 
(79316) 

106 buffers 2 8 1000 32.83 9 4500 31.42 99.94 12475 1.76 
wb_conmax 2 8 1000 32.74 9 4500 31.42 99.94 12475 1.76 

s35932 2 8 1000 31.46 9 4500 31.42 99.94 12475 1.76 
wb_conmax 

(146970) 
110 buffers 71 10 18000 17.69 131 1179000 16.87 92.03 14367 1.28 

wb_conmax 29 15 18000 15.76 143 384086 15.76 90.17 14076 1.25 
des_perf 
(318412) 

881 buffers 1 3 1000 37.46 3 1500 36.74 99.99 12676 0.27 
wb_conmax 3 11 470 35.74 16 1434 35.74 99.99 13118 0.27 

s38584 21 8 62 32.03 51 1049 32.03 97.86 12972 0.27 
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Table 4.4 Results of built-in test generation with state holding 

Circuit Driving 
block 

Nh Nbits Nmulti Nsegmax Lmax Nseeds Ntests SWA 
% 

FC 
Imp. 

% 

Final 
FC 
% 

HW 
Area 
(um2) 

Area 
Over. 

% 
s35932 spi 1 1728 6 6 56 27 286 23.08 5.62 92.95 12760 1.77 
s38584 buffers 2 1164 27 13 18000 69 621000 32.90 5.27 89.92 14755 2.62 

des_area 2 1164 27 13 18000 69 621000 32.90 5.27 89.92 14755 2.62 
systemcaes 2 1164 65 25 18000 118 342442 30.61 5.65 88.03 14899 2.64 

b14 buffers 4 22 16 13 12000 33 198000 41.33 13.45 94.17 14753 6.11 
systemcdes 4 27 20 12 12000 43 258000 41.01 13.40 94.12 14915 6.17 
systemcaes 6 33 32 12 12000 58 284372 39.44 13.83 94.06 15603 6.44 

b20 buffers 1 430 7 18 6000 27 81000 36.99 10.70 89.75 14085 2.80 
spi 1 430 7 18 6000 27 81000 36.99 10.70 89.75 14085 2.80 

s38584 1 430 26 14 6000 51 72498 31.91 10.55 88.78 14092 2.80 
wb_dma buffers 6 507 20 10 18000 56 504000 22.38 6.49 76.85 16082 6.21 

wb_dma 6 507 46 14 18000 97 275198 18.26 8.01 76.76 16405 6.33 
s35932 6 507 28 6 18000 74 145768 17.82 7.85 76.18 16242 6.27 

systemcaes buffers 2 670 29 1 18000 29 261000 20.05 7.25 83.11 13905 3.29 
wb_conmax 2 670 30 1 18000 30 270000 19.39 7.27 83.11 13905 3.29 

s35932 2 670 40 5 18000 70 302386 18.09 8.31 82.77 14648 3.46 
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5. CONCLUSIONS 

The rapid increase in clock frequency and complexity of digital integrated circuits 

necessitates delay testing. This dissertation presented methods for three aspects of delay 

testing in scan-based circuits: deterministic test generation for a new path delay fault 

model, path selection for test generation, and built-in generation of functional broadside 

tests. 

We first described a deterministic broadside test generation procedure for transition 

path delay faults. The transition path delay fault model captures both small and large 

delays along a path. The detection of a transition path delay fault requires that all the 

individual transition faults along the path are detected by the same test. To reduce the 

computational complexity of test generation, five sub-procedures were used: a 

deterministic test generation procedure that generates tests for transition faults and 

identifies undetectable transition faults, a preprocessing procedure that identifies 

undetectable transition path delay faults without performing test generation, a fault 

simulation procedure that identifies transition path delay faults that can be detected by the 

tests for transition faults, a dynamic compaction heuristic procedure that generates tests 

without backtracking on decisions made for previously detected faults, and a complete 

branch-and-bound procedure that backtracks on previously made decisions. Experimental 

results showed that for most of the transition path delay faults in benchmark circuits, 

either a test is found or the fault is identified as undetectable. 

Next, we described a procedure based on static timing analysis to select critical paths 

for test generation. The procedure considers input necessary assignments during static 

timing analysis to obtain path delays that are closer to those that can be obtained under 

tests for path delay faults. This is based on the observation that traditional static timing 

analysis process does not take into consideration logic conditions that are necessary for 
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detecting a path delay fault. Such conditions are important since they may affect the path 

delays. The input necessary assignments are a subset of these logic conditions. Using 

input necessary assignments to refine arrival times of signals enhances the correlation 

between static timing analysis and timing of tests on silicon. Input necessary assignments 

can also be used for identifying undetectable faults. For a set of path delay faults obtained 

through traditional static timing analysis, the procedure calculates more accurate path 

delays, which are closer to the delays that can be obtained under tests that detect them. It 

also identifies path delay faults, whose delays are at least as high as the selected path 

delay faults under the input necessary assignments of the selected faults, in order to 

ensure that the most critical paths during test application can be selected. 

Finally, a built-in test generation method for functional broadside tests was described 

for a circuit embedded in a larger design, taking the primary input constraints on the 

circuit into consideration. Functional input sequences for the design are used to capture 

the primary input constraints. Primary input sequences are generated on-chip and applied 

to the circuit starting from a reachable initial state. Tests are obtained from the primary 

input sequences and the corresponding state sequences. The primary input constraints are 

satisfied by ensuring that the peak switching activity that can occur under the primary 

input sequences is no higher than that possible under the functional input sequences. An 

optional DFT method based on state holding was also described to improve fault 

coverage. The method introduces unreachable states by keeping the values of some state 

variables from changing in certain clock cycles during on-chip test generation. As a result, 

faults that cannot be detected by functional broadside tests may be detected. 

Experimental results showed that high transition fault coverage can be achieved by the 

developed method for benchmark circuits using simple hardware. 

 

5.1. Future Work 

For the developed built-in functional broadside test generation method, there are 

several directions we can work on in the future to improve the method.  

In the developed method, switching activity is used as a metric to evaluate the 

deviations of a state-transition during on-chip test generation from the state-transitions 
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under functional operation conditions. The primary input constraints are satisfied by 

bounding the switching activity during on-chip test generation within the peak switching 

activity that can occur in the target circuit under the functional input sequences for the 

design. Overtesting caused by excessive switching activity can therefore be alleviated. 

However, overtesting caused by slow paths sensitized by non-functional operation 

conditions may still occur. An alternative metric to evaluate the deviations is pattern of 

signal-transitions [90]. Pattern of signal-transitions was defined in [90] as a set of the 

switching lines during a state-transition, and each line in the set is associated with a 

specific transition. The size of the set is the switching activity during the state-transition. 

Using pattern of signal-transitions, we can require that a state-transition is allowed during 

on-chip test generation only if its pattern of signal-transitions is a subset of the pattern of 

signal-transitions of a state-transition that occurs under the functional input sequences. 

This requirement not only guarantees that the switching activity of the state-transition is 

no higher than that possible during functional operation, but also guarantees that only 

signal transitions that can occur during functional operation are allowed. As a result, 

overtesting caused by both excessive switching activity and slow paths sensitized by non-

functional operation conditions can be alleviated. 

Since the set selection procedure in the developed method cannot guarantee to 

achieve the highest fault coverage improvement and unnecessary state variables may be 

included in the select sets, an advanced procedure can be developed so that the achieved 

fault coverage improvement is the highest and no unnecessary state variable is selected. 

The developed method was applied on single-clock-domain designs. For circuits 

with multiple clock domains, the frequency difference between clock domains must be 

taken into account during on-chip test generation. The clock domains should operate at 

their own speeds so that reachable states can be obtained properly. In addition, multi-

cycle tests may be needed to detect both intra-clock-domain and inter-clock-domain 

faults. This implies more complicated test application strategy and built-in test generation 

control logic. Investigations are needed so that the method can be applied on multi-clock-

domain circuits. 
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A. IMPLEMENTATION OF THE DEVELOPED METHODS 

This section briefly describes how the major steps of the developed methods were 

implemented and the experiments were conducted. All the benchmark circuits used for 

the experiments are standard benchmark circuits. The benchmark circuits in different 

formats, such as bench format and RTL VHDL/Verilog format, are available online.  

The deterministic broadside test generation method for transition path delay faults 

was implemented based on an existing self-developed software package for test 

generation. The five sub-procedures of the developed method were implemented in C++ 

on top of the test generator and fault simulator for transition faults included in the 

package. The test generator and fault simulator for transition faults only accept circuits in 

a special format called the MIX format. In order to conduct the experiment, a format 

convertor, which was also included in the package, was used to translate the benchmark 

circuits from bench format into MIX format first. Then the developed method can be 

applied to the circuits. 

Table A.1 List of used commercial tools 

Name Vender Use 
Design Compiler Synopsys Logic synthesis 

PrimeTime Synopsys Static timing analysis 
DFTAdvisor Mentor Graphics Scan insertion 

Fastscan Mentor Graphics Logic/fault simulation 
Modelsim Mentor Graphics RTL logic simulation 

 

The implementation of the path selection method and the built-in functional 

broadside test generation method involves some commercial tools. Table A.1 lists the 

commercial tools used in this dissertation, the vendor names, and the uses of the tools. 
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In the path selection method, PrimeTime was used to perform static timing analysis, 

and the process for finding input necessary assignments was implemented in C++ based 

on the self-developed software package. A Perl script was used to translate a circuit from 

Verilog format, which can be accepted by PrimeTime, into MIX format. The mapping 

information between the netlists of different formats was also provided by the script so 

that given a path in one format, it is easy to find the same path in the other format. A 

CShell script was used to stitch the static timing analysis process and the process for 

finding input necessary assignments so that the developed path selection method can be 

performed correctly. 

To conduct the experiment, Design Compiler was first used to logic synthesize a 

benchmark circuit in Verilog format from RTL into gate level, using a simplified 

technology library. Then the netlist was translated into MIX format. After performing 

static timing analysis using PrimeTime, a ranked list of critical paths can be reported in a 

text file with the most critical path on the top. A Perl script was used to extract the critical 

paths from the text file and translate them from Verilog format into MIX format. Such 

critical paths were then fed into the process for finding input necessary assignments if 

they were never processed. For each such critical path, the process computed the input 

necessary assignments of its corresponding path delay fault and reported them in a text 

file if the fault was potentially detectable. These input necessary assignments were then 

translated into Verilog format and fed into PrimeTime so that the path delay can be 

recalculated. 

In the built-in test generation method, the behavior of the TPG logic was simulated 

by a simulator written in C++. The fault list generation, logic simulation, and fault 

simulation were accomplished via Fastscan. For a primary input sequence generated by 

the TPG simulator, its corresponding state sequence was obtained by simulating the 

primary input sequence cycle by cycle using Fastscan controlled by a Tcl script for state 

sequence calculation. Both the primary input sequences and the corresponding state 

sequences were given in text files. A Perl script was used to extract functional broadside 

tests every two consecutive clock cycles from the primary input sequences and the state 

sequences. The obtained functional broadside tests were then simulated by Fastscan on 
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the fault list. The switching activity of each test can also be reported into a text file by 

Fastscan. A Perl script was used to check the switching activity of every test and extract 

the primary input segment under which the switching activity in every clock cycle does 

not exceed SWAfunc. A CShell script was used to stitch the TPG simulator, Fastscan calls 

and Perl scripts so that the developed built-in test generation method can be performed 

correctly. 

To conduct the experiment, Design Compiler was first used to logic synthesize a 

benchmark circuit in Verilog format from RTL into gate level, using a simplified 

technology library. Then DFTAdvisor was used to insert scan structure into the circuit. 

The primary input cube C can be calculated through logic simulation using Fastscan 

controlled by a Tcl script for primary input cube calculation. To obtain the value of 

SWAfunc, 30 sequences of length 30000 were computed by the TPG simulator. The 

driving block was simulated under these sequences using Fastscan, and 30 corresponding 

sequences can be obtained at the primary outputs of the driving block. The target circuit 

was then simulated under the primary output sequences of the driving block, and the peak 

switching activity can be reported by Fastscan. After that, the CShell script was invoked 

to perform the developed built-in test generation method. To evaluate the area overhead, 

the built-in test generation logic was implemented in Verilog. The correctness of the 

Verilog code was verified through simulation by using Modelsim. The Verilog code was 

then logic synthesized into gate level by using Design Compiler which can also report the 

area of the logic. 
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