
Purdue University
Purdue e-Pubs

Open Access Dissertations Theses and Dissertations

Fall 2013

Transition Faults and Transition Path Delay Faults:
Test Generation, Path Selection, and Built-In
Generation of Functional Broadside Tests
Bo Yao
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/open_access_dissertations

Part of the Computer Engineering Commons

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Recommended Citation
Yao, Bo, "Transition Faults and Transition Path Delay Faults: Test Generation, Path Selection, and Built-In Generation of Functional
Broadside Tests" (2013). Open Access Dissertations. 25.
https://docs.lib.purdue.edu/open_access_dissertations/25

https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/etd?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations/25?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages

Graduate School ETD Form 9
(Revised 12/07)

PURDUE UNIVERSITY
GRADUATE SCHOOL

Thesis/Dissertation Acceptance

This is to certify that the thesis/dissertation prepared

By

Entitled

For the degree of

Is approved by the final examining committee:

 Chair

To the best of my knowledge and as understood by the student in the Research Integrity and
Copyright Disclaimer (Graduate School Form 20), this thesis/dissertation adheres to the provisions of
Purdue University’s “Policy on Integrity in Research” and the use of copyrighted material.

Approved by Major Professor(s): ____________________________________

Approved by:
 Head of the Graduate Program Date

Bo Yao

 Transition Faults and Transition Path Delay Faults: Test Generation, Path Selection, and Built-In
 Generation of Functional Broadside Tests

Doctor of Philosophy

IRITH POMERANZ

ANAND RAGHUNATHAN

RAYMOND A. DECARLO

YUNG-HSIANG LU

IRITH POMERANZ

M. R. Melloch 11-21-2013

TRANSITION FAULTS AND TRANSITION PATH DELAY FAULTS: TEST
GENERATION, PATH SELECTION, AND BUILT-IN GENERATION OF

FUNCTIONAL BROADSIDE TESTS

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Bo Yao

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

December 2013

Purdue University

West Lafayette, Indiana

 ii

This dissertation is dedicated to my parents for their unconditional love and support.

 iii

ACKNOWLEDGMENTS

First of all, I would like to express my gratitude to my advisor, Professor Irith

Pomeranz, for her inspiration, encouragement and guidance throughout my PhD study.

Without her support and help, the work cannot be accomplished. I also would like to

thank Professor Raymond Decarlo, Professor Anand Raghunathan and Professor Yung-

Hsiang Lu for serving on my Advisory Committee. Particularly, I would like to thank

Professor Sudhakar M. Reddy from University of Iowa, Dr. Arani Sinha, Dr. Srikanth

Venkataraman, Dr. Enamul Amyeen and Mr. Carlston Lim from Intel for their

contributions to this work. In addition, I would like to thank Semiconductor Research

Corporation (SRC) for providing the grants to support the work.

iv

TABLE OF CONTENTS

 Page

LIST OF TABLES ... vi

LIST OF FIGURES .. vii

ABSTRACT ... ix

1. INTRODUCTION .. 1

1.1. Delay Fault Models ...1

1.2. Tests for Delay Faults ...3

1.3. Scan-Based Tests for Delay Faults ...5

1.4. Contributions ..9

1.5. Organization..11

2. DETERMINISTIC BROADSIDE TEST GENERATION FOR TRANSITION PATH

DELAY FAULTS ... 12

2.1. Introduction ...12

2.2. The Transition Path Delay Fault Model ...14

2.3. Test Generation Procedure..15

2.3.1. Test Generation for Transition Faults ... 15

2.3.2. Preprocessing Procedure ... 16

2.3.3. Fault Simulation .. 17

2.3.4. Dynamic Compaction Heuristic Procedure .. 17

2.3.5. Branch-and-Bound Procedure ... 19

2.4. Experimental Results ..21

3. PATH SELECTION BASED ON STATIC TIMING ANALYSIS CONSIDERING

INPUT NECESSARY ASSIGNMNETS ... 26

v

Page

3.1. Introduction .. 26

3.2. Input Necessary Assignments .. 29

3.3. Path Selection Procedure ... 31

3.3.1. Static Timing Analysis Considering Input Necessary Assignments 32

3.3.2. Path Selection ... 32

3.4. Experimental Results ... 37

4. BUILT-IN GENERATION OF FUNCTIONAL BROADSIDE TESTS

CONSIDERING PRIMARY INPUT CONSTRAINTS ... 42

4.1. Introduction .. 42

4.2. Generic Built-in Test Generation ... 46

4.3. Built-in Generation of Functional Broadside Tests with Unconstrained Primary

Input Sequences .. 48

4.4. Built-in Generation of Functional Broadside Tests with Constrained Primary

Inputs ... 53

4.5. Built-in Test Generation with State Holding ... 57

4.5.1. State Holding .. 57

4.5.2. Set Selection for State Holding ... 59

4.6. Experimental Results ... 61

5. CONCLUSIONS... 71

5.1. Future Work ... 72

LIST OF REFERENCES .. 74

A. IMPLEMENTATION OF THE DEVELOPED METHODS 83

VITA ... 86

vi

LIST OF TABLES

Table Page

2.1 Results of test generation (enumerate all paths) ... 22

2.2 Results of test generation (at least 1000 det. faults) ... 22

2.3 Number of detected faults for sub-procedures (enumerate all paths) 23

2.4 Number of detected faults for sub-procedures (at least 1000 det. faults) 23

2.5 Run time comparison of sub-procedures (enumerate all paths) 24

2.6 Run time comparison of sub-procedures (at least 1000 det. faults) 24

3.1 Path selection in s13207 .. 35

3.2 Path group size comparison .. 38

3.3 Number of different path delay faults ... 39

3.4 Path delay comparison of s13207 ... 39

3.5 Path delay comparison .. 40

4.1 Example of primary input subsequence selection ... 54

4.2 Parameters for benchmark circuits .. 62

4.3 Results of built-in test generation considering primary input constraints 68

4.4 Results of built-in test generation with state holding .. 70

A.1 List of used commercial tools .. 83

vii

LIST OF FIGURES

Figure Page

1.1 Example of a transition fault ... 1

1.2 Example of a path delay fault ... 2

1.3 A test for the slow-to-rise transition fault at c .. 3

1.4 A test for the path delay fault associated with path a-c-e-g .. 3

1.5 A non-robust test for the path delay fault associated with path a-c-e-g 4

1.6 A non-robust test for the path delay fault associated with path b-d-f-h 5

1.7 A transition fault under a non-robust test for a path delay fault 5

1.8 A circuit before and after scan insertion ... 6

1.9 Timing waveform for a skewed-load test ... 7

1.10 Timing waveform for a broadside test .. 8

2.1 Example of finding necessary assignments .. 17

2.2 Dynamic compaction heuristic procedure .. 19

2.3 Branch-and-bound procedure .. 20

3.1 Path selection procedure ... 34

4.1 Example of an embedded block .. 45

4.2 Generic built-in test generation architecture ... 47

4.3 An n-stage LFSR... 48

4.4 An n-stage MISR .. 48

4.5 Built-in generation of functional broadside tests .. 49

4.6 Clock cycle counter and test apply signal generation in [73] 50

4.7 The TPG logic in [73] ... 51

4.8 The TPG logic in the developed method .. 52

4.9 The multi-segment primary input sequence construction procedure 56

viii

Figure Page

4.10 Implementation of state holding ... 58

4.11 Holding enable signal generation .. 58

4.12 Full and complete binary tree for set selection ... 60

4.13 Set selection signal generation .. 61

ix

ABSTRACT

Yao, Bo. Ph.D., Purdue University, December 2013. Transition Faults and Transition
Path Delay Faults: Test Generation, Path Selection, and Built-In Generation of Functional
Broadside Tests. Major Professor: Irith Pomeranz.

As the clock frequency and complexity of digital integrated circuits increase rapidly,

delay testing is indispensable to guarantee the correct timing behavior of the circuits. In

this dissertation, we describe methods developed for three aspects of delay testing in

scan-based circuits: test generation, path selection and built-in test generation.

We first describe a deterministic broadside test generation procedure for a path delay

fault model named the transition path delay fault model, which captures both large and

small delay defects. Under this fault model, a path delay fault is detected only if all the

individual transition faults along the path are detected by the same test. To reduce the

complexity of test generation, sub-procedures with low complexity are applied before a

complete branch-and-bound procedure. Next, we describe a method based on static

timing analysis to select critical paths for test generation. Logic conditions that are

necessary for detecting a path delay fault are considered to refine the accuracy of static

timing analysis, using input necessary assignments. Input necessary assignments are input

values that must be assigned to detect a fault. The method calculates more accurate path

delays, selects paths that are critical during test application, and identifies undetectable

path delay faults. These two methods are applicable to off-line test generation. For large

circuits with high complexity and frequency, built-in test generation is a cost-effective

method for delay testing. For a circuit that is embedded in a larger design, we developed

a method for built-in generation of functional broadside tests to avoid excessive power

dissipation during test application and the overtesting of delay faults, taking the

x

functional constraints on the primary input sequences of the circuit into consideration.

Functional broadside tests are scan-based two-pattern tests for delay faults that create

functional operation conditions during test application. To avoid the potential fault

coverage loss due to the exclusive use of functional broadside tests, we also developed an

optional DFT method based on state holding to improve fault coverage. High delay fault

coverage can be achieved by the developed method for benchmark circuits using simple

hardware.

1

1. INTRODUCTION

The correct operation of a digital integrated circuit requires not only correct

functional behavior but also correct operation at the desired clock frequency. As the

manufacturing technology allows smaller feature size and the complexity of circuit

increases, imperfection and random variations in process parameters are more likely to

cause propagation delays to exceed the clock period. To guarantee the correctness of the

circuit, it is necessary to perform delay testing.

1.1. Delay Fault Models

Defects that cause the faulty timing behavior of a circuit are modeled by delay faults.

Two types of delay fault models are commonly used: the transition fault model [1] and

the path delay fault model [2]-[4].

a
b

eslow-to-rise
d

a
b
d

c

e

1
0

t1 t2

c

Delayed by a
large amount

0
1

0

0

1

1

Fig. 1.1 Example of a transition fault

2

The transition fault model captures delay defects that cause a slow-to-rise transition

or a slow-to-fall transition at a specific line in the circuit. Under this fault model, it is

assumed that the extra delay caused by a transition fault on a line is large enough so that

the delay of every path passing through this line exceeds the clock period. Fig. 1.1 shows

an example of a slow-to-rise transition fault at line c in a 3-input circuit. Input b and d

have constant values. The value of input a changes from 0 to 1 at time point t1, i.e. a

rising transition occurs at a, and the transition propagates through the circuit. If the circuit

is fault free, the value of output e is 1 at the required time point t2, where t2-t1 is the clock

period. However, due to the slow-to-rise transition fault at line c, the value of output e

remains 0 at t2. Therefore, the circuit cannot operate correctly.

a
b

e

d

c

f
g

a
b
d

c

1
0

t1 t2

f 0

e

g

Delayed by a
small amount

Delayed by a
large amount

0

0

0

0

1

1

1

1

Fig. 1.2 Example of a path delay fault

Different from the transition fault model which only captures single large delay at a

specific line, the path delay fault model captures small extra delays whose cumulative

effect along a path from inputs to outputs may result in faulty behavior of the circuit,

although each small extra delay by itself may not fail the circuit. Fig. 1.2 shows an

example of a path delay fault associated with path a-c-e-g and a rising transition at its

source a in a 4-input circuit. Input b, d and f have constant values. A rising transition

occurs at input a at time point t1, and the transition propagates along path a-c-e-g. If the

3

circuit is fault free, the value of output g is 1 at the required time point t2, where t2-t1 is

the clock period. However, due to the path delay fault along path a-c-e-g, the value of

output g remains 0 at t2. As a result, the circuit cannot operate correctly.

1.2. Tests for Delay Faults

Both a transition fault and a path delay fault are detected by a two-pattern test <p1,

p2>. For a transition fault, the first pattern p1 assigns the initial transition value at the

faulty line. The second pattern p2 assigns the final transition value at the faulty line and

propagates the fault effect to the outputs. To detect the transition fault in Fig. 1.1, a test

<001, 101> is applied to “abd” as shown in Fig. 1.3. The value of a line under p1(p2) is

shown on the left(right) of the arrow. The value shown on the left of the slash is the

expected value under p2 if the circuit is fault free, and the value on the right of the slash is

the faulty value under p2 if a fault exists. The transition fault can be detected if a 0 instead

of a 1 is observed at output e at the required time point. For a path delay fault, p1 and p2

create a transition at the source of the target path, and p2 propagates it along the path. To

detect the path delay fault in Fig. 1.2, a test <0010, 1010> is applied to “abdf” as shown

in Fig. 1.4. The path delay fault can be detected if a 0 instead of a 1 is observed at output

g at the required time point.

a
b ec

0à0

0à1 0à1/0

1à1

0à1/0

d

Fig. 1.3 A test for the slow-to-rise transition fault at c

a
b e

d
c

f g

0à1

0à0

0à1 0à1

1à1 0à0

0à1/0

Fig. 1.4 A test for the path delay fault associated with path a-c-e-g

4

Based on the propagation conditions used for the detection of path delay faults, tests

for path delay faults can be categorized as robust and non-robust [5]-[7]. A robust test

guarantees the detection of a path delay fault regardless of the delays in the rest of the

circuit. For example, the test shown in Fig. 1.4 is a robust test for the path delay fault. A

non-robust test requires that the desired transition is created at the source of the target

path and p2 statically sensitizes the path to enable the propagation of the transition along

the path. A non-robust test detects a path delay fault if none of the off-path input signals

arrive late. Otherwise, the test may be invalid. A non-robust test <0011, 1010> for the

path delay fault in Fig. 1.2 is applied to “abdf” as shown in Fig. 1.5. Different from the

robust test in Fig. 1.4, a falling transition occurs at off-path input f. If the transition at f

does not arrive late, the path delay fault is detected if a 0 instead of a 1 is observed at g at

the required time point. Otherwise, the value of g will always be 1 at the required time

point even if the delay of path a-c-e-g exceeds the clock period. In this case, the test is not

valid for the path delay fault.

a
b e

d
c

f g

0à1

0à0

0à1 0à1

1à1 1à0

1à1/0

Fig. 1.5 A non-robust test for the path delay fault associated with path a-c-e-g

Non-robust tests can be further categorized as strong non-robust and weak non-

robust [7]. Under a strong non-robust test, there is a transition that matches the transition

at the source of the path on every line along the path, and every off-path input has a non-

controlling value for the gate it drives under p2. Under a weak non-robust test, it is only

required that every off-path input has a non-controlling value for the gate it drives under

p2. A robust test for a path delay fault can detect all the transition faults along the path.

However, a non-robust test for a path delay fault does not necessarily detect the transition

faults along the path [8]. Fig. 1.6 shows a non-robust test for the path delay fault

5

associated with path b-d-f-h and a rising transition at its source b. The rising transition

fault at b is then targeted under the non-robust test, as shown in Fig. 1.7. Under the test, a

0 is observed at output h in both the faulty and fault free circuit. Therefore, the rising

transition fault at b cannot be detected by the non-robust test.

a

b

c

d

e

f

g
h

1à1

0à10à1

0à1

1à0

1à0

1à1

1à0

Fig. 1.6 A non-robust test for the path delay fault associated with path b-d-f-h

a

b

c

d

e

f

g
h

1à1

0à1/0
0à1/0

0à1/0

1à0

1à0/1

1à1/0

1à0/0

Fig. 1.7 A transition fault under a non-robust test for a path delay fault

1.3. Scan-Based Tests for Delay Faults

Sequential circuits contain sequential elements (or storage elements) such as latches

and flip-flops. In order to improve the testability of a sequential circuit, scan structure is

inserted by replacing the sequential elements with scannable sequential elements (scan

cells) and then stitching the scan cells into scan chains [9]. Fig. 1.8 shows a D flip-flop

based sequential circuit before and after scan insertion. The scan cell in Fig. 1.8 can be

implemented by inserting a multiplexer in front of the data input of a regular flip-flop.

When the scan enable signal SE is 0, the scan cell works as a regular flip-flop. When SE

is 1, the scan chain works as a shift register, allowing arbitrary values to be shifted in and

6

applied to the flip-flops. The values of the flip-flops can be shifted out as well. As a result,

the scan cells are considered as the inputs and outputs of the circuit. The controllability

and observability of the circuit are therefore improved. The inputs of the original circuit

are called primary inputs, and the outputs of the original circuit are called primary

outputs.

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D
0
1

0
1

0
1

a

b

c
d

clk

a

b

c
d

clk

SE

Before scan insertion

After scan insertion

scan outscan in

scan cell

regular flip-flop

primary inputs primary output

Fig. 1.8 A circuit before and after scan insertion

For a scan-based circuit, each pattern pi under the two-pattern test <p1, p2> has the

form <si, vi>, where si denotes the values of the state variables (or the scan cells), and vi

denotes the values applied to the primary inputs. The test <p1, p2> can be rewritten as <s1,

v1, s2, v2>. s1 is usually shifted into scan chains. According to the way by which s2 is

obtained, scan-based tests for delay faults can be categorized into three types: enhanced

scan tests [10], skewed-load tests [11] and broadside tests [12].

7

Under an enhanced scan test, s1 and s2 are independent. Both s1 and s2 are shifted

into scan chains simultaneously. Among the three types of scan-based tests for delay

faults, enhanced scan tests can achieve the highest fault coverage. However, special scan

cells that can hold two bits of state values are required for applying the tests.

Under a skewed-load test, s2 is obtained by a single shift of s1. The timing waveform

is shown in Fig. 1.9. During the application of a skewed-load test, SE is first set to 1 so

that s1 can be shifted into scan chains. v1 is applied to the primary inputs once s1 is

completely loaded and the circuit is under <s1, v1>. By triggering the launch clock edge,

s1 is shifted by one bit and s2 is obtained. v2 is applied concurrently and the circuit

operates under < s2, v2>. SE is then set to 0, and the capture clock edge is triggered one

clock cycle after the launch clock edge to capture the response of the circuit to <s2, v2>

into scan chains. SE is then set back to 1 so that the captured response can be shifted out.

The response unloaded from scan chains and the response observed at the primary

outputs are compared with the expected values. A fault is detected if a mismatch is

identified. The clock for shifting is usually slower than that for capture. It can be

observed from Fig. 1.9 that under a skewed-load test, SE must be changed between the

launch and capture clock edges.

… …

clk

SE

shift launch capture shift

one shift

loading scan-in state unloading response

Fig. 1.9 Timing waveform for a skewed-load test

Under a broadside test, s2 is determined by the response of the circuit to <s1, v1>.

The timing waveform is shown in Fig. 1.10. During the application of a broadside test,

SE is first set to 1 so that s1 can be shifted into scan chains. v1 is applied to the primary

8

inputs once s1 is completely loaded and the circuit is under <s1, v1>. SE is set to 0 and

then the launch clock edge is triggered. The response of the circuit to <s1, v1> is captured

into scan chains and s2 is therefore obtained. v2 is applied concurrently and the circuit

operates under <s2, v2>. The response of the circuit to <s2, v2> is captured into scan

chains when the capture clock edge is triggered one clock cycle after the launch clock

edge. SE is then set back to 1 so that the captured response can be shifted out. The

unloaded response and the response observed at the primary outputs are compared with

the expected values. A fault is detected if a mismatch is identified. It can be observed

from Fig. 1.10 that under a broadside test, SE needs to be changed between the last shift

and the launch clock edge. Since shifting clock is usually slower than capture clock, SE

has a larger amount of time to change under a broadside test than a skewed-load test.

… …

clk

SE

shift
launch capture

shift

unloading responseloading scan-in state

Fig. 1.10 Timing waveform for a broadside test

To guarantee that the circuit can operate at its designed speed, at-speed testing [13],

which requires the launch and capture clock edges to be triggered at the designed clock

rate, can be performed. This implies that SE must be changed very fast within a single

designed clock period under a skewed-load test. Since it is expensive to implement such a

high-speed SE, skewed-load tests are not always considered in practice even though they

usually achieve higher fault coverage than broadside tests. In this dissertation, we only

consider broadside tests for delay faults in scan-based circuits.

9

1.4. Contributions

This dissertation describes methods developed for three aspects of delay testing in

scan-based circuits: deterministic test generation for a new path delay fault model, path

selection, and built-in generation of functional broadside tests.

To address the issue that the transition fault model only captures single large delay

and the path delay fault model only captures distributed small extra delays along a path, a

new fault model named transition path delay fault model was proposed in [14]. Under

this fault model, a path delay fault is detected only if all the individual transition faults

along the path are detected by the same test. Therefore, both small and large delay defects

can be captured. We developed a deterministic broadside test generation procedure for

transition path delay faults. To reduce the complexity of test generation, the procedure

consists of five sub-procedures: a deterministic test generation procedure for transition

faults, a preprocessing procedure that identifies undetectable transition path delay faults

without performing test generation, a fault simulation procedure that identifies transition

path delay faults that can be detected by the tests for transition faults, a heuristic

procedure similar to dynamic test compaction for transition faults that generates tests

without backtracking on decisions made for previously detected faults, and a complete

branch-and-bound procedure. Experimental results show that for most of the transition

path delay faults in benchmark circuits, either a test is found or the fault is identified as

undetectable.

Under the path delay fault model, it is not practical to target all the paths in a circuit

for test generation since the number of paths can be exponential in the number of lines

throughout the circuit. As a result, a subset of critical paths is usually selected for test

generation. Various path selection methods can be used for path selection. One common

method is to select the critical paths identified by static timing analysis [15]. Static timing

analysis computes the path delays and identifies paths with the largest delays as critical

paths. However, static timing analysis, by itself, can be inaccurate as it does not take into

consideration logic conditions that are necessary for detecting path delay faults. We

developed a path selection method that takes these conditions into account during static

timing analysis. The logic conditions are captured as what are called input necessary

10

assignments [16]. By providing the static timing analysis process with the input necessary

assignments for a selected path, the static timing analysis process can estimate more

accurate path delays that are closer to those obtained during test application. It can also

identify additional paths whose delays are at least as high as those of the selected paths.

Feeding back the input necessary assignments to the static timing analysis process

enhances the correlation between static timing analysis and actual timing of tests on

silicon. The result of the method is a set of potentially detectable path delay faults

associated with critical paths based on more accurate estimates of the path delays that can

be exhibited by a test set, compared with the set that would be obtained by static timing

analysis alone.

Both the deterministic test generation method and path selection method are

applicable to off-line test generation, where tests are generated before being applied via

an external tester. For large circuits with high clock frequency and complexity, it can be

expensive to perform delay testing especially at-speed testing via an external tester, since

a large amount of memory is required in the tester for storing the tests and the tests need

to be applied at a high speed. For such circuits, built-in test generation is a cost-effective

method for delay testing as it reduces test data volume by generating tests on-chip, and

facilitates at-speed test application by avoiding the delivery of tests from an external

tester. Many built-in test generation techniques allow arbitrary states to be scanned in

during the application of the two-pattern tests, which may bring the circuit into non-

functional operation conditions. As a result, excessive power dissipation during test

application and the overtesting of delay faults may occur [17]-[20]. These issues can be

addressed by using functional broadside tests that create functional operation conditions

during test application [21].

We developed a method for built-in generation of functional broadside tests for a

circuit that is embedded in a larger design, taking functional constraints on its primary

input sequences into account. The constraints are captured by functional input sequences

of the design. Specifically, the peak switching activity in the circuit under the functional

input sequences is used to bound the switching activity during on-chip test generation.

The exclusive use of functional broadside tests may cause fault coverage loss, i.e. faults

11

that can be detected by unrestricted broadside tests may not be detected by functional

broadside tests. Such undetected faults may affect the reliability of the circuit in long-

term. To address this issue, we also developed an optional DFT method based on state

holding to improve fault coverage. By keeping the values of some state variables from

changing at certain clock cycles during on-chip test generation, unreachable states can be

introduced to detect faults that cannot be detected by functional broadside tests.

Experimental results show that using simple hardware, the developed method can achieve

high transition fault coverage for benchmark circuits.

1.5. Organization

The dissertation is organized as follows. In chapter 2, the deterministic broadside test

generation method for transition path delay faults is described. Chapter 3 describes the

path selection method based on static timing analysis with input necessary assignments

considered. Chapter 4 describes the built-in generation method for functional broadside

tests considering primary input constraints. Chapter 5 concludes the dissertation and

discusses future work.

12

2. DETERMINISTIC BROADSIDE TEST GENERATION FOR
TRANSITION PATH DELAY FAULTS

In this chapter, a deterministic broadside test generation procedure for transition path

delay faults is described. The entire procedure consists of five sub-procedures: test

generation for transition faults, preprocessing procedure, fault simulation, dynamic

compaction heuristic procedure and branch-and-bound procedure. Experimental results

show that most of the transition path delay faults associated with long paths in benchmark

circuits can be detected or identified as undetectable.

2.1. Introduction

Delay faults are used to model defects that affect the timing behavior of a circuit.

Two commonly used delay fault models, the transition fault model and the path delay

fault model, have been introduced in chapter 1. In addition to these two fault models, the

gate delay fault model [22] captures defects that cause small or large rising and falling

transition delays from the input to the output of a logic gate. Variations of these three

models include the double transition fault model [23] and the segment fault model

[24][25].

Since distributed small extra delays caused by process variations can lead to the

malfunction of a circuit only when they are accumulated along a path, it is important to

apply tests for path delay faults. Robust tests are the highest quality tests for path delay

faults. However, for most path delay faults, robust tests do not exist. Therefore, non-

robust tests must be used. A non-robust test for a path delay fault may not detect the

existence of a transition fault on the path, as shown in Fig. 1.6 and Fig. 1.7. As a result,

the following was noted in [14]. Suppose that the accumulation of small extra delays

along a subpath that ends at an internal line g is sufficient to cause the circuit to fail. A

13

non-robust test for a path delay fault that includes the subpath may not detect this

situation since the test does not detect the transition fault on g. To address this issue, a

different path delay fault model named the transition path delay fault model was

proposed in [14]. Under this new path delay fault model, a path delay fault is detected if

an only if all the individual transition faults along the path are detected by the same test.

This guarantees that the cumulative propagation delay in the situation mentioned above

can be detected by detecting a transition fault at the end of the subpath. Therefore, both

small and large delay defects are detected by the test.

Test generation for a transition path delay fault requires the generation of a test that

detects all the individual transition faults along the path. There is similarity between this

requirement and the way dynamic compaction procedures produce compact test sets [26]-

[28]. These procedures also try to generate a test that detects a subset of faults. However,

in a dynamic compaction procedure, if test generation for a target fault fails when the

current test is partially specified based on faults targeted earlier, the fault will be dropped

and another fault will be selected to expand the subset of faults detected by the current

test. The dropped faults will be considered later under different tests. In the test

generation procedure for a transition path delay fault, all the transition faults along the

path must be detected by the same test. Thus, there is no flexibility in deciding on the

subset of faults that will be detected by the test. This implies that if test generation for a

target transition fault fails when the current test is partially specified, it is necessary to

backtrack on decisions made based on faults considered earlier until either a test that

detects all the transition faults is found, or the path delay fault is shown to be

undetectable. As a result, a complete test generation procedure for transition path delay

faults can have a high computational complexity. To reduce this complexity, we use

several sub-procedures. (1) A deterministic test generation procedure for transition faults

is used to generate tests for transition faults and identify undetectable transition faults.

The undetectable transition faults are used for identifying undetectable transition path

delay faults. (2) A preprocessing procedure is used to identify undetectable transition

path delay faults without performing test generation for them. (3) A fault simulation

procedure is used to identify transition path delay faults that can be detected by the tests

14

generated in (1) for transition faults. (4) A heuristic procedure similar to dynamic test

compaction is used to generate tests for transition path delay faults without backtracking

on decisions made for transition faults detected earlier. (5) A complete branch-and-bound

procedure is used to process the remaining undetected transition path delay faults.

2.2. The Transition Path Delay Fault Model

It has been shown in Fig. 1.6 and Fig. 1.7 that a non-robust test for a path delay fault

may not detect a transition fault on the path. This occurs in a very common situation

where different paths with opposite inversion polarities reconverge at a gate along the

path. A non-robust test only requires the off-path input lines to have non-controlling

values under the second pattern of a test in the fault free circuit. Therefore, the fault

effects of the transition fault, which propagate along different paths with opposite

inversion polarities, may counteract each other when the paths reconverge. As a result,

the transition fault is not detected. Robust tests prohibit the reconvergence of fault effects

in this case and remain valid for transition faults along the paths. However, they only

exist for a small number of path delay faults. Therefore, it is common that a test can

detect a path delay fault but cannot detect a transition fault along the path.

This issue is important for the following reason. Consider a path p=g1-g2-g3-g4-g5

and a non-robust test t for the path delay fault associated with p. Suppose that the

cumulative small extra delays along subpath g1-g2-g3 are sufficient to cause the circuit to

fail. This can be detected by t if it is a test for the transition fault at g3. However, since t

may not detect transition faults along p, the fault effect may not be captured.

The issue can be resolved if a path delay fault is detected by detecting all the

transition faults along the path. This is the requirement for detecting a transition path

delay fault in [14]. The relevant transition faults are defined in [14] as follows. Let us

consider a transition path delay fault associated with a path p=g1-g2-…-gk and a transition

v1àv’1 on g1. When the v1àv’1 transition is propagated from g1 along the path, let the

transition on gi be viàv’i . We have vi=v1 if the number of inverters between g1 and gi is

even, and vi=v’1 if the number of inverters between g1 and gi is odd. To detect the fault

15

associated with p and v1àv’1, it is required in [14] that the viàv’i transition fault on line

gi should be detected by the same test, for 1≤i≤k.

As discussed in [14], tests for transition path delay faults are strong non-robust tests

for the standard path delay faults. A strong non-robust test creates a transition on each

line along the path and assigns non-controlling value to every off-path input under the

second pattern. Test sets for transition path delay faults detect all or almost all the

detectable transition faults. In addition, they detect all or almost all the standard path

delay faults that can be detected by strong non-robust tests. Therefore, the transition path

delay fault model can be an alternative to the path delay fault model.

A simulation based test generation procedure was proposed in [14]. Given a target

transition path delay fault, the procedure tries to generate a test by combining tests for

transition faults along the path. Compared with a deterministic test generation procedure,

this procedure has lower computational complexity. However, it does not guarantee that

every detectable transition path delay fault can be detected, and it cannot tell whether a

transition path delay fault is detectable or not. For this, a deterministic test generation

procedure is needed.

2.3. Test Generation Procedure

In this section, a deterministic broadside test generation procedure for transition path

delay faults is described. For convenience, we use fp to symbolize a transition path delay

fault associated with path p, and use TR(fp)={tr1(fp), tr2(fp), …, trk(fp)} to symbolize the

set of transition faults along path p, where k is the length of the path and tri(fp) (1≤i≤k) is

a single transition fault along the path.

2.3.1. Test Generation for Transition Faults

The first sub-procedure is a deterministic test generation procedure for transition

faults. It achieves two goals. (1) Tests for transition faults sometimes detect transition

path delay faults. We will simulate the tests under transition path delay faults as

described later. (2) The procedure identifies undetectable transition faults. This

information will be used in the following sub-procedure.

16

2.3.2. Preprocessing Procedure

The preprocessing procedure identifies as many undetectable transition path delay

faults as possible without performing test generation. A transition path delay fault fp is

detected if and only if all the transition faults in TR(fp) are detected. If a transition fault

tri(fp)∈TR(fp) has been identified as undetectable, fp is undetectable and no further

processing of fp is needed.

We also consider conflicts between the necessary assignments [29] of the transition

faults in TR(fp). The necessary assignments for a fault are the assignments that must be

made in order to find a test for the fault. For the vàv’ transition fault on line g, we use

g=v under the first pattern and g=v’ under the second pattern as necessary assignments.

In addition, we use the simple forward and backward implications of these assignments

as necessary assignments. We find necessary assignments for each transition fault in

TR(fp). If a conflict exists between the necessary assignments of the faults in TR(fp), we

identify fp as undetectable. Otherwise, we keep the necessary assignments on input lines

for use in later sub-procedures.

Fig. 2.1 shows an example. We consider the path c-d-e with the 0à1 transition at its

source. The transition path delay fault associated with this path consists of three transition

faults: a 0à1 transition fault on c, a 1à0 transition fault on d, and a 0à1 transition fault

on e. To detect the 0à1 transition fault on e, e should be 0 under the first pattern and 1

under the second pattern. Under a broadside test, e=0 under the first pattern implies c=0

under the second pattern. To detect the 0à1 transition fault on c, c should be 0 under the

first pattern and 1 under the second pattern. A conflict occurs on c under the second

pattern. Therefore, the transition path delay fault is undetectable. To identify such

conflicts, we use implications to find all the necessary assignments of the 0à1 transition

fault on e and the 0à1 transition fault on c. For the 0à1 transition fault on e, we have

e=0 under the first pattern and c=0, e=1 under the second pattern. For the 0à1 transition

fault on c, we have c=0, e=1 under the first pattern and c=1, d=0 under the second pattern.

The necessary assignments of these two transition faults are compared. Since conflicts

are identified on e under the first pattern and on c under the second pattern, the two

17

transition faults cannot be detected by the same test, i.e. the transition path delay fault is

undetectable.

Q

QSET

CLR

D

a b

ce

d 1à0/10à1/0

0à1/0

Fig. 2.1 Example of finding necessary assignments

2.3.3. Fault Simulation

After identifying undetectable transition path delay faults in the preprocessing

procedure, we identify the transition path delay faults that can be detected by tests for

transition faults. For this, we perform fault simulation of transition path delay faults

under the test set computed in section 2.3.1.

2.3.4. Dynamic Compaction Heuristic Procedure

The dynamic compaction heuristic procedure is applied next to all the transition path

delay faults that were not identified as undetectable or detected by the transition fault test

set. For a transition path delay fault fp, the dynamic compaction heuristic procedure

attempts to generate a test that detects all the transition faults in TR(fp). The transition

faults in TR(fp) are targeted one after the other by using unspecified bits remaining after

the detection of the transition faults targeted earlier. We refer to this procedure as

heuristic since it cannot guarantee that all the faults in TR(fp) will be detected by the

same test.

The heuristic procedure is applied several times to each transition path delay fault fp.

Every time the procedure is applied, the transition faults in TR(fp) are considered in a

different order. The order is such that faults, which are more difficult to detect, are

considered earlier. As additional test generation attempts are made, new faults are

identified as difficult to detect and the order changes. This is implemented as follows. We

associate a parameter called “number of failures” with every transition fault tri(fp) in

18

TR(fp). The parameter records the number of times test generation for tri(fp) fails. The

initial value of the number of failures for each transition fault is 0. Every time when test

generation for tri(fp) fails, we increase the parameter by 1. The transition fault with the

higher number of failures, i.e. the transition fault for which test generation is more

difficult, should be targeted earlier so that there will be more unspecified bits to use for

generating the test.

Using the terminology from [26], we refer to the first transition fault which is used to

generate a test as a primary target fault and denote it by trprim(fp). We refer to any

transition fault targeted after the primary target fault as a secondary target fault and

denote it by trsec(fp). To distinguish between the secondary target faults, we denote the ith

fault by trsec(i)(fp). A parameter named “detect status” is associated with every transition

fault tri(fp) in TR(fp). If a transition fault tri(fp) is detected by the current test, its detect

status is “detected”. Otherwise, its detect status is “undetected”. A label named “used” is

used to mark a fault trprim(fp) whose detection is followed by the failure of the test

generation for trsec(1)(fp). Since trsec(1)(fp) can be detected individually, the failure should

be caused by the detection of trprim(fp). A transition fault in TR(fp) which has been marked

as “used” will not be selected as a primary target fault again because its detection will

cause the test generation for some secondary target fault to fail.

The heuristic procedure proceeds as shown in Fig. 2.2. We randomly select a fault

from the undetected unused transition faults that have the highest number of failures as

trprim(fp). We attempt to generate a test for trprim(fp). If trprim(fp) is not detected, we stop

attempting to generate a test for fp. Otherwise, we select the transition fault tri(fp) which

has the highest number of failures as a secondary target fault and attempt to expand the

test by using the remaining unspecified bits. If a choice exists, we randomly select one of

the faults. If the test generation for a secondary target fault trsec(i)(fp) fails, we increase the

number of failures of trsec(i)(fp) by 1 and check whether trsec(i)(fp) is the first selected

secondary target fault trsec(1)(fp). If so, we mark the current primary target fault trprim(fp) as

used, discard the current test and start the procedure again. If trsec(i)(fp) is detected, we

first check whether fp can be detected by the current test. If so, a test for fp is found.

Otherwise, we continue to consider other secondary target faults. The procedure runs

19

until fp is detected or the run time exceeds a predetermined limit. To accelerate the

procedure, we apply the necessary assignments on input lines stored in the preprocessing

procedure for fp before the procedure starts.

Fig. 2.2 Dynamic compaction heuristic procedure

2.3.5. Branch-and-Bound Procedure

The dynamic compaction heuristic procedure does not backtrack on decisions made

based on transition faults in TR(fp) that were targeted earlier. Once the detection of a

transition fault tri(fp) in TR(fp) fails, it discards the current test and starts to generate a

new one. The branch-and-bound procedure described in this section is a complete

deterministic procedure that backtracks on previously made decisions if the detection of a

transition fault in TR(fp) fails.

20

Fig. 2.3 Branch-and-bound procedure

The branch-and-bound procedure proceeds as shown in Fig. 2.3. At the beginning of

the procedure for a transition path delay fault fp, we apply the necessary assignments on

input lines stored for fp. We then select the transition fault that has the highest number of

failures from the heuristic procedure to start generating the test. Next, we select one

undetected transition fault as a secondary target fault to expand the test. If test generation

for a transition fault fails, we backtrack on the assignments made earlier and get a new

partially specified test where the last decision for which other options exist is reversed.

Before continuing test generation, we check the validity of the new test by checking

whether all the undetected transition faults under the new test are potentially detectable.

21

We first imply all the specified bits of the test, and then check whether any conflict exists

between the line values and the necessary assignments of each undetected transition fault.

If no conflict is found, we select an undetected transition fault to expand the test.

Otherwise we keep backtracking. This branch-and-bound procedure runs until one of the

following situations occurs. (1) A test is found and fp is detected. (2) All the previously

made decisions have been backtracked on and fp is undetectable. (3) The run time limit

for the branch-and-bound procedure is reached and fp is aborted. (4) Since a test

generator for transition faults is used in the branch-and-bound procedure, if the

backtracking limit for transition faults is reached during test generation, fp is aborted.

2.4. Experimental Results

The deterministic broadside test generation procedure described in section 2.3 was

implemented in C++ on top of an existing test generation procedure for transition faults.

Experiments were conducted on ISCAS89 benchmark circuits using a Sun Microsystems

workstation which has two 450MHz CPUs, a 1024MB memory and a Solaris operating

system. The run time limit for test generation for each transition path delay fault is 1

minute in the dynamic compaction heuristic procedure, and 2 minutes in the branch-and-

bound procedure. The backtracking limit during test generation for transition faults is 128.

We enumerated all the paths for smaller circuits to generate the transition path delay

fault list. The results for these circuits are shown in Table 2.1. For circuits with larger

numbers of paths, we considered faults from the longest paths to the shorter ones until at

least 1000 detected faults were found. The results for these circuits are shown in Table

2.2. In both Table 2.1 and Table 2.2, the first column identifies the circuit by name. The

second to the sixth column show the number of transition path delay faults in the fault list,

the number of detected faults, the number of undetectable faults, the number of aborted

faults, and the total run time.

In considering the numbers of detected faults, it should be noted that they are similar

to the numbers of conventional path delay faults that can be detected by strong non-

robust tests. We verified that the numbers are identical for several of the circuits in Table

22

2.1. Therefore, there is no or little loss in fault coverage due to the use of transition path

delay faults instead of conventional path delay faults [14].

Table 2.1 Results of test generation (enumerate all paths)

Circuit No. of
faults

No. of
Det.

No. of
Undet.

No. of
Abr.

Run
time

s27 56 25 31 0 00:00:00
s298 462 127 335 0 00:00:02
s344 710 259 451 0 00:00:23
s349 730 259 471 0 00:00:22
s382 800 165 635 0 00:00:04
s386 414 153 261 0 00:00:08
s444 1070 166 904 0 00:00:11
s510 738 197 541 0 00:00:22
s526 820 147 673 0 00:00:06
s641 3488 1121 2367 0 00:07:13
s713 43624 1090 42460 74 03:18:45
s820 984 369 615 0 00:00:52
s832 1012 369 643 0 00:01:22
s953 2312 961 1351 0 00:03:34
s1196 6196 3402 2793 1 00:49:15
s1238 7118 3363 3752 3 00:51:37
s1488 1924 722 1202 0 00:06:51
s1494 1952 723 1229 0 00:06:58

Table 2.2 Results of test generation (at least 1000 det. faults)

Circuit No. of
faults

No. of
Det.

No. of
Undet.

No. of
Abr.

Run time

s1423 42782 1055 39746 1981 77:31:46
s5378 1948 1282 393 273 12:46:29
s9234 263916 1027 262757 132 08:57:07
s13207 735800 1244 734296 260 30:08:05
s35932 254400 1008 253300 92 07:21:07
s38417 70928 1227 64121 5580 225:56:15
s38584 1211890 1071 1210085 734 64:13:52

23

Table 2.3 Number of detected faults for sub-procedures (enumerate all paths)

Circuit Prep.
Proc.

FSim
Proc.

Heur.
Proc.

Bran.
Proc.

s27 25 19 6 0
s298 163 104 22 1
s344 340 153 86 20
s349 340 158 82 19
s382 213 125 39 1
s386 231 138 13 2
s444 262 129 35 2
s510 377 170 27 0
s526 203 135 12 0
s641 1509 289 810 22
s713 1483 254 664 172
s820 580 316 50 3
s832 588 316 49 4
s953 1310 624 327 10
s1196 4535 1032 2216 154
s1238 4510 1153 2117 93
s1488 1495 588 127 7
s1494 1500 617 98 8

Table 2.4 Number of detected faults for sub-procedures (at least 1000 det. faults)

Circuit Prep.
Proc.

FSim
Proc.

Heur.
Proc.

Bran.
Proc.

s1423 6063 0 106 949
s5378 1634 101 207 974
s9234 2418 6 273 748
s13207 6271 1 60 1183
s35932 2464 272 709 27
s38417 8871 1 183 1043
s38584 7637 220 238 613

24

Table 2.5 Run time comparison of sub-procedures (enumerate all paths)

Circuit TG for
Tran.

Prep.
Proc.

FSim
Proc.

Heur.
Proc.

Bran.
Proc.

s27 0:00 0:00 0:00 0:00 00:00:00
s298 0:01 0:00 0:00 0:01 00:00:00
s344 0:00 0:01 0:00 0:07 00:00:15
s349 0:01 0:00 0:00 0:06 00:00:15
s382 0:00 0:01 0:00 0:01 00:00:02
s386 0:01 0:01 0:00 0:02 00:00:04
s444 0:01 0:01 0:00 0:02 00:00:07
s510 0:02 0:01 0:00 0:06 00:00:13
s526 0:01 0:01 0:00 0:01 00:00:03
s641 0:00 0:02 0:00 0:33 00:06:38
s713 0:01 0:02 0:01 1:13 03:17:28
s820 0:06 0:02 0:01 0:11 00:00:32
s832 0:06 0:02 0:02 0:14 00:00:58
s953 0:03 0:06 0:02 1:39 00:01:44
s1196 0:02 0:07 0:04 4:32 00:44:29
s1238 0:03 0:08 0:04 4:57 00:46:24
s1488 0:13 0:07 0:03 1:34 00:04:54
s1494 0:13 0:07 0:03 1:40 00:04:54

Table 2.6 Run time comparison of sub-procedures (at least 1000 det. faults)

Circuit TG for
Tran.

Prep.
Proc.

FSim
Proc.

Heur.
Proc.

Bran.
Proc.

s1423 0:04 0:27 1:59 04:41:14 72:47:46
s5378 0:25 0:13 2:38 00:38:41 12:04:31
s9234 03:10 01:45 00:40:15 01:04:21 07:04:12
s13207 03:08 12:04 00:48:17 09:00:58 19:34:27
s35932 18:15 37:20 00:18:50 01:03:45 04:56:58
s38417 08:32 09:24 08:26:17 25:23:10 191:48:27
s38584 44:11 15:06 09:03:16 15:10:42 37:42:17

It can be seen from Table 2.1 and Table 2.2 that most of the transition path delay

faults in the fault list are proven to be detected or undetectable. The number of aborted

faults can be reduced by increasing the run time limit for the branch-and-bound

procedure and the backtracking limit during test generation for transition faults. Given

enough time, all the aborted faults should be identified as either detected or undetectable.

25

The sub-procedures of the developed test generation procedure are compared as

follows. Table 2.3 and Table 2.4 show the number of detected transition path delay faults

in each sub-procedure. The first column identifies the circuit by name. The second

column shows the upper bound on the number of detectable transition path delay faults

after undetectable faults were identified by the preprocessing procedure. The third to the

fifth column show the number of detected transition path delay faults for the fault

simulation procedure, the number of detected transition path delay faults for the dynamic

compaction heuristic procedure, and the number of detected transition path delay faults

for the branch-and-bound procedure.

Table 2.5 and Table 2.6 show the comparison of run time of each sub-procedure. The

first column identifies the circuit by name. The second to the sixth column show the run

time of test generation for transition faults, the run time of the preprocessing procedure,

the run time of fault simulation, the run time of the heuristic procedure, and the run time

of the branch-and-bound procedure.

Several observations can be made from Table 2.3, 2.4, 2.5 and 2.6. First, a large

number of undetectable transition path delay faults are identified during the

preprocessing procedure, and this procedure is more important for large circuits. Second,

part of the detectable transition path delay faults can be detected by tests for transition

faults, although the number may decrease for larger circuits. Third, the fault simulation

procedure and dynamic compaction heuristic procedure contribute significantly to the

final number of detected transition path delay faults while the total run time of these sub-

procedures is much shorter than that of the branch-and-bound procedure. All of these

show the efficiency of the developed procedure, compared with a pure complete

deterministic test generation procedure.

26

3. PATH SELECTION BASED ON STATIC TIMING ANALYSIS
CONSIDERING INPUT NECESSARY ASSIGNMENTS

In this chapter, a static timing analysis based path selection method is described.

Fault detection conditions are taken into consideration during static timing analysis by

using input necessary assignments. The arrival times of signals are refined during static

timing analysis, and more accurate path delays that are closer to those obtained during

test application can be obtained. The correlation between static timing analysis and

timing of tests on silicon is therefore enhanced. Using input necessary assignments can

also identify undetectable faults. As a result, a set of potentially detectable path delay

faults, which are associated with critical paths based on more accurate estimates of the

path delays that can be exhibited by a test set, is obtained.

3.1. Introduction

Since the number of paths throughout a circuit can be exponential in the number of

lines, it is impractical to enumerate all the paths for test generation in large circuits. As a

result, when the deterministic test generation procedure for transition path delay faults

was performed on larger circuits in section 2.4, we only targeted a subset of the paths by

considering the transition path delay faults from the longest paths to the shorter ones until

at least 1000 detected faults were found. In addition, the number of undetectable faults

can be very high, as shown in Table 2.2. To address these two issues, path selection

procedures [30]-[45] select a subset of critical paths for test generation. Using the unit

delay model, it is possible to select the longest paths in the circuit [30]. This method was

used in section 2.4. It is also possible to consider every line in the circuit and select one

of the longest paths going through the line [31][32]. To avoid selecting undetectable path

delay faults, several path selection procedures that identify undetectable path delay faults

27

were described in [33]-[36]. Procedures that estimate path delays through timing analysis

were described in [37]-[45]. Since both the delay difference between gates of different

types and the interconnect delays are taken into account, more accurate path delay is

obtained and so is the critical path identification. Possible variations in operating

conditions such as voltage and temperature were taken into account during path selection

in [37]. Statistical timing analysis techniques were used to incorporate information about

deep sub-micron manufacturing defects, process variations and noise effects during path

selection in [38]-[43], path correlations were considered in [43], and multiple input

transitions were considered in [44]. To address the issue of false paths, several false path

aware timing analysis procedures were proposed in [45]-[48].

Dynamic timing analysis can achieve more accurate estimates of path delays than

static timing analysis because a set of input patterns is simulated to exercise all the paths

in the circuit, as described in [38] and [49]. However, the computational complexity of

generating such input patterns can be very high and the simulation is time-consuming for

large circuits. Therefore, static timing analysis is preferred due to its fast run time and

acceptable accuracy as mentioned in [44]. However, two limitations should be considered

when static timing analysis is used for path selection. The first limitation is that the delay

of a target path can be overestimated compared with the delay obtained during test

application on silicon. During static timing analysis, the delay of a target path is

calculated with all the lines in the circuit unspecified. During test application, values are

assigned to all the lines in the circuit by a test for the path delay fault associated with the

target path. These values propagate a transition along the path in a way that the

corresponding path delay fault is considered as detected. The propagation conditions can

be robust, strong non-robust, weak non-robust, and so on. Even with non-robust tests, the

delay of a path may be smaller than the delay estimated when detection conditions are not

considered. As a result, static timing analysis may not select path delay faults whose

delays are the highest during test application, given that delays are modified due to the

logic values assigned in order to satisfy the detection conditions of the faults. The second

limitation is that static timing analysis cannot identify undetectable path delay faults.

28

The procedure described in this chapter addresses the inaccuracy of static timing

analysis in predicting delays during test application without incurring the increased

runtime of dynamic timing analysis. In general, we use the conditions necessary for fault

detection to refine the static timing analysis process. Feeding these conditions back to the

static timing analysis tool enhances the correlation between static timing analysis and

actual timing of tests on silicon. The correlation may be further enhanced by considering

process variations, but this issue will not be discussed.

Specifically, the procedure uses an existing static timing analysis tool to perform

selection of the most critical path delay faults, allowing it to use a state-of-the-art process

for estimating path delays. It addresses the limitations mentioned above and achieves

more accurate timing estimates under the tests for the selected path delay faults by taking

into account the conditions that need to be satisfied in order to detect a path delay fault.

To ensure that these conditions can be considered by the static timing analysis tool, they

are represented using what are called input necessary assignments [16]. Input necessary

assignments are input values that must be assigned in order to detect the fault, and they

can be given to the static timing analysis tool as input. They are derived by performing

simple implications, without performing test generation. For a target path delay fault fp

that is identified as critical by traditional static timing analysis, the procedure finds the

input necessary assignments of fp and provides them to the static timing analysis process

for path delay recalculation. The resulting delay is closer to the path delay that will occur

during test application, compared with the delay obtained through traditional static timing

analysis. The procedure also uses static timing analysis to identify other path delay faults

whose delays are at least as high as that of fp under the input necessary assignments of fp.

This information is used for updating the set of selected path delay faults. In addition, as

discussed in [16], during the process of finding input necessary assignments of fp, it is

possible to determine that fp is undetectable. The procedure uses this information to avoid

the selection of undetectable faults.

We use the transition path delay fault model to develop the path selection procedure.

The procedure can also be applied using a conventional path delay fault model, or to

assess path delays when generating timing-aware tests for transition faults.

29

3.2. Input Necessary Assignments

Necessary assignments are values that a test for a fault must assign to lines in the

circuit [29]. Input necessary assignments of a fault indicate the values that a test for the

fault must assign to the input lines [16]. Input necessary assignments were computed in

[16] as part of a broadside test generation process for path delay faults. The input

necessary assignments were computed in polynomial time and provided a unified

framework for identifying undetectable faults and for generating tests for detectable

faults in [16].

To compute input necessary assignments for transition path delay faults in this

chapter, we use a procedure similar to the procedure described in [16] and the

preprocessing procedure described in section 2.3.2. As mentioned in chapter 2, a

transition path delay fault fp is associated with a path p=g1-g2…-gk and a vàv’ transition

on g1. We denote by TR(fp):={tr1(fp), tr2(fp), …, trk(fp)} the set of transition faults

associated with fp. We denote by InNecAssign(fp) the set of input necessary assignments

of fp. Using the terminology from [16], each entry of InNecAssign(fp) has the form q[i]a,

where q is an input of the combinational logic (a primary input or the output of a state

variable), i∈{1,2} is the pattern index (the first or second pattern of a broadside test), and

a∈{0,1} is the value of q. In [16], input necessary assignments are defined for the

primary inputs under both patterns of a broadside test, and for present-state variables only

under the first pattern. This is due to the fact that, in a broadside test, the present-state

variables under the second pattern are implied by the first pattern. Thus, they cannot be

specified arbitrarily under a broadside test. For the discussion in this chapter, we retain

the constraints imposed by a broadside test, but we collect input necessary assignments

corresponding to the primary inputs and the present-state variables under both patterns of

the test. This will be useful when the input necessary assignments are given to a static

timing analysis tool. The procedure for computing input necessary assignments proceeds

in four steps.

Step 1 identifies fp as undetectable if a transition fault in TR(fp) is undetectable. All

the undetectable transition faults are identified by performing deterministic test

30

generation for transition faults. This step is not required if conventional path delay faults

are targeted.

Step 2 finds the necessary assignments of faults in TR(fp). For a transition fault tri(fp)

in TR(fp), a test must assign gi=vi under the first pattern and gi=vi’ under the second

pattern. The simple forward and backward implications of these two assignments are

used as the necessary assignments of tri(fp). Step 2 identifies fp as undetectable if a

conflict exists between the necessary assignments of faults in TR(fp). Otherwise, the

necessary assignments of all the faults in TR(fp) are merged into a set denoted by

DetCon(fp). Each entry in DetCon(fp) has the same form q[i]a as entries in

InNecAssign(fp) except that q can be any line in the circuit. Entries in DetCon(fp) that

assign values to input lines are added to InNecAssign(fp).

Step 3 adds to DetCon(fp) the propagation conditions that off-path inputs of fp must

satisfy. In order to propagate a transition fault on fp from a gate input to a gate output, the

off-path inputs of the gate must assume non-controlling values under the second pattern.

For each gate that p goes through, every input line g of the gate except the one on p adds

to DetCon(fp) an entry of the form g[2]v, where v is the non-controlling value of the gate.

Step 3 identifies fp as undetectable if the implications of entries in the updated set

DetCon(fp) are not compatible with each other. Otherwise, newly specified lines and their

values are added to DetCon(fp) and InNecAssign(fp) is updated.

Step 4 attempts to identify additional input necessary assignments of fp by assigning

both 0 and 1 to every unspecified input q under every pattern of the test. It identifies fp as

undetectable if the implications of both 0 and 1 on q are incompatible with entries in

DetCon(fp). Otherwise, an additional input necessary assignment can be found if only the

implications of one assignment on q is compatible with entries in DetCon(fp). It keeps

performing the process on every unspecified input until fp is identified as undetectable or

no additional input necessary assignments can be found.

After these four steps, we either have fp identified as undetectable or a set of input

necessary assignments for it. In the latter case we refer to fp as potentially detectable. We

use the term potentially detectable since the fault may be undetectable even though its

31

input necessary assignments do not conflict. If an undetectable fault is selected, it will be

identified as undetectable when test generation is performed for it.

3.3. Path Selection Procedure

In this section, a path selection procedure which is based on static timing analysis

and input necessary assignments is described. The procedure consists of the following

steps. It first uses traditional static timing analysis to obtain a set of critical paths. Each

path is associated with a transition at its source, defining a path delay fault. Static timing

analysis thus yields a set of path delay faults denoted by FPo. The procedure computes

input necessary assignments for the faults in FPo and removes from FPo faults that it can

identify as undetectable based on their input necessary assignments. A required number

of path delay faults are selected from the resulting FPo as the initial set of selected path

delay faults. The set of selected path delay faults is denoted by Target_PDF. For each

target path delay fault fp in Target_PDF, the procedure uses static timing analysis to

recalculate the path delay under the input necessary assignments of fp. It also identifies

additional paths whose delays are at least as high as that of fp under the input necessary

assignments of fp. These paths are used to update Target_PDF.

To select N path delay faults, the procedure uses traditional static timing analysis to

select M>N paths. After removing undetectable faults, N faults are selected from the

remaining ones. If fewer than N faults are obtained, M can be increased. With N faults in

the selected set Target_PDF, the procedure updates the set gradually based on more

accurate estimates of path delays.

A similar effect can be achieved by using traditional static timing analysis to select a

set of K>M>N path delay faults, removing undetectable faults and updating the delays of

the remaining faults as described in this chapter (but without adding new faults to the set),

and then selecting the N most critical paths from the set. However, this would require K

to be large enough to accommodate all the possible delay changes that may occur when

input necessary assignments are used. If K is underestimated, the accuracy of the path

selection procedure will be affected, and this will go undetected by the procedure. With

the developed procedure, there is no need to determine K in advance. In addition, the

32

developed procedure that adds faults to Target_PDF computes input necessary

assignments only until it finds N potentially detectable faults. If the set of selected faults

is not updated based on recalculated delays, input necessary assignments must be found

for K>M>N path delay faults.

In this section, we first describe how to perform static timing analysis with input

necessary assignments considered, and then describe the path selection procedure in more

detail. We use paths and path delay faults interchangeably since paths are associated with

specific transitions at their sources.

3.3.1. Static Timing Analysis Considering Input Necessary Assignments

For each path delay fault fp in Target_PDF, we use PrimeTime from Synopsys to

perform static timing analysis and calculate the delay of the path p associated with fp

under the input necessary assignments of fp as follows.

PrimeTime accepts specified input values only if an input is specified under both

patterns of a test. Therefore, of all the input necessary assignments in InNecAssign(fp),

we only consider cases where both q[1]v and q[2]w appear in InNecAssign(fp), for v, w

∈[0,1]. For every such line q, we provide the assignment vw on q to PrimeTime by using

the “set_case_analysis” command. Specifically, we use

set_case_analysis 0 for vw=00,

set_case_analysis rising for vw=01,

set_case_analysis falling for vw=10, and

set_case_analysis 1 for vw=11.

Static timing analysis is then performed in PrimeTime under the input necessary

assignments of fp. A ranked list of paths is produced and each path in the list has its delay

under the input necessary assignments of fp. We run PrimeTime such that it reports

enough critical paths so that the path p associated with fp is also reported. The list is used

as described in section 3.3.2.

3.3.2. Path Selection

As mentioned earlier, the procedure starts by applying traditional static timing

analysis to obtain an initial set of path delay faults FPo of size M, for a constant M. M is

33

selected such that it is large enough to ensure that the required number of path delay

faults can be selected from FPo to initialize Target_PDF. Target_PDF is initialized based

on FPo as follows. Path delay faults in FPo are considered in a decreasing order of their

delays. Every potentially detectable path delay fault fp in FPo is added to Target_PDF

until Target_PDF includes a predetermined number N of faults. Other potentially

detectable path delay faults that have the same delay as the Nth fault added to Target_PDF

are also added to Target_PDF.

Next, we update Target_PDF as follows. For each path delay fault fp in Target_PDF,

we recalculate the path delay under the input necessary assignments of fp as described in

section 3.3.1. From the ranked list of paths produced by PrimeTime based on fp, paths

whose delays are at least as high as that of fp under the input necessary assignments of fp

are obtained. These paths are important since they can be as critical as fp under the tests

that detect fp. To ensure that the most critical paths are selected, we consider every such

fault fp’. If fp’ is potentially detectable, we add it into Target_PDF if it is not already

included. Every newly added path delay fault is processed in the same way as the faults

already included in Target_PDF. We continue processing every path delay fault in

Target_PDF until each path delay fault has its delay under its input necessary

assignments and no new path delay faults are added to Target_PDF. Path delay faults in

Target_PDF are sorted afterwards based on their recalculated delays, and N faults that

have the highest delays can be selected for test generation. Fig. 3.1 shows the flow chart

of the entire path selection procedure.

We take ISCAS89 circuit s13207 as an example to illustrate the procedure. Suppose

that 16 most critical path delay faults in s13207 are expected for test generation. 1500

paths in s13207 are considered during traditional static timing analysis and the

corresponding path delay faults are included in FPo. Most of the faults are identified as

undetectable and removed from consideration. The path delay faults initially included in

Target_PDF are the first 16 faults shown in Table 3.1. The last 8 path delay faults are

added to Target_PDF by the developed procedure as described later.

34

Fig. 3.1 Path selection procedure

In Table 3.1, the columns from left to right list the path delay faults by index, the

delay obtained through traditional static timing analysis of each path delay fault, the

recalculated delay of each path delay fault under the input necessary assignments of the

fault, and newly identified potentially detectable path delay faults whose delays are at

least as high as that of the target fault under the input necessary assignments of the target

fault, where the target fault is the one shown in the leftmost column.

35

Table 3.1 Path selection in s13207

Path delay
faults

orignial
(ns)

final
(ns)

new paths

fp1 4.13 4.12 -
fp2 4.11 4.10 -
fp3 4.03 4.02 -
fp4 4.01 4.00 -
fp5 4.00 4.00 -
fp6 3.93 3.92 -
fp7 3.93 3.87 -
fp8 3.91 3.91 -
fp9 3.91 3.90 -
fp10 3.89 3.86 -
fp11 3.88 3.87 -
fp12 3.88 3.84 -
fp13 3.87 3.86 -
fp14 3.87 3.81 -
fp15 3.85 3.82 fp17, fp18
fp16 3.85 3.82 -
fp17 3.84 3.81 fp19
fp18 3.84 3.80 -
fp19 3.83 3.83 fp20, fp21,

fp22, fp23
fp20 3.84 3.80 fp24
fp21 3.84 3.82 -
fp22 3.83 3.80 -
fp23 3.83 3.80 -
fp24 3.81 3.76 -

After traditional static timing analysis, 16 potentially detectable path delay faults fp1-

fp16 whose delays are among the highest in FPo are included in Target_PDF. The path

delay of each fault fpi (1≤i≤16) is recalculated under its input necessary assignments.

When fp15 is considered, two new potentially detectable path delay faults fp17 and fp18

that have the same delay as fp15 under the input necessary assignments of fp15 are

identified and added to Target_PDF. The path delay of each newly added fault is then

recalculated under its input necessary assignments. A new potentially detectable path

delay fault fp19 that has a larger delay than fp17 under the input necessary assignments of

fp17 is identified and added to Target_PDF. Similarly, four new potentially detectable

path delay faults fp20, fp21, fp22 and fp23 that have larger delays than fp19 under the input

36

necessary assignments of fp19 are identified and added to Target_PDF. When fp20 is

targeted, fp24 is identified and added to Target_PDF since it has the same delay as fp20

under the input necessary assignments of fp20. When fp24 is targeted, no new path delay

faults are identified and the procedure terminates. After the developed procedure, we

have 24 path delay faults in Target_PDF.

Informally, the procedure obtains the transitive closure of the initial set of path delay

faults based on the relations between path delays. Transitivity here implies the following:

if fpi is in the initial set, fpj has a higher delay than fpi under the input necessary

assignments of fpi, and fpk has a higher delay than fpj under the input necessary

assignments of fpj, then fpk is added to the set (fpj is added as well). In addition to the

traditional static timing analysis applied in the beginning, static timing analysis

considering input necessary assignments will be applied a number of times equal to the

number of path delay faults in the set Target_PDF.

It can be observed from Table 3.1 that the delays of most path delay faults decrease

after recalculation (the delays never increase since the use of input necessary assignments

constrains the values that can be assigned to circuit lines). In addition, the rank of a path

delay fault based on its delay changes. Considering two faults, their ranks can change in

three ways. (1) Faults that have the same rank according to traditional static timing

analysis may have different ranks after delay recalculation. For example, fp6 and fp7 have

the same delay according to traditional static timing analysis, but fp6 becomes more

critical than fp7 after delay recalculation. (2) Faults that have different ranks according to

traditional static timing analysis may have the same rank after delay recalculation. For

example, fp14 has a larger delay than fp17 according to traditional static timing analysis,

but they are equally critical after delay recalculation. In this case, fp17 was not included

in the initial set of target faults, but it will be added to the set by the developed procedure.

(3) Faults that have different ranks according to traditional static timing analysis may

reverse their ranks after delay recalculation. For example, fp7 has a larger delay than fp9

according to traditional static timing analysis, but fp9 becomes more critical than fp7 after

delay recalculation. As a result, the developed procedure may remove certain faults from

the set of selected faults.

37

Because the rank of a fault changes and a new fault can be identified as critical after

delay recalculation, the path delay faults selected for test generation through the

developed procedure can be different from those selected through traditional static timing

analysis. To select the 16 most critical and potentially detectable path delay faults in

s13207 for test generation, fp1-fp16 are selected through traditional static timing analysis.

However, through the developed procedure, fp1-fp13, fp15-fp16, fp19 and fp21 should be

selected. fp14 is discarded since it becomes less critical after delay recalculation. Two

new faults fp19 and fp21 are selected instead. fp21 is included since it has the same delay

as fp15 and fp16.

3.4. Experimental Results

The path selection procedure was implemented in C++. PrimeTime and a simplified

TSMC 0.18um technology library were used for static timing analysis. Experiments were

conducted on ISCAS89 and ITC99 benchmark. For every circuit, we applied the

procedure to select 100, 200, …, 1000 most critical path delay faults.

Table 3.2 compares the number of path delay faults in Target_PDF before and after

path delay recalculation when different numbers of path delay faults are expected for test

generation. In Table 3.2, the first column identifies the circuits by names and shows the

size of FPo in parentheses for every circuit. The number of path delay faults in

Target_PDF before delay recalculation is shown in row “original”, and the number of

faults in Target_PDF after delay recalculation is shown in row “final”. Taking s1423 and

column “400” as an example, 400 potentially detectable path delay faults that have the

highest delays are expected for test generation. Through traditional static timing analysis,

413 path delay faults are selected into Target_PDF. The last 13 path delay faults have the

same delay as the 400th fault. After delay recalculation, 425 path delay faults are included

in Target_PDF. It can be observed from Table 3.2 that for many circuits, the final size of

Target_PDF is larger than the corresponding original size. This is because additional path

delay faults that are at least as critical as faults in the initial Target_PDF are identified by

the developed procedure.

38

Table 3.2 Path group size comparison

Circuit 100 200 300 400 500 600 700 800 900 1000
s1423

(54974)
original 101 202 304 413 502 605 707 806 909 1014

final 109 206 325 425 546 707 737 841 941 1071
s5378

(14802)
original 102 219 335 415 511 606 735 820 990 1076

final 102 219 339 575 575 606 853 853 1335 1335
s9234

(27738)
original 107 206 336 439 503 600 730 813 906 1005

final 108 584 668 755 810 852 923 923 923 1005
s13207
(80000)

original 101 202 300 420 501 609 700 808 905 1011
final 173 308 382 841 1152 1232 1281 1404 1458 1532

s38417
(80000)

original 105 205 306 432 511 626 742 812 1001 1001
final 205 359 476 552 626 1001 1324 1517 1845 1845

s38584
(80000)

original 114 209 310 409 548 651 773 874 972 1097
final 114 209 310 426 557 670 773 890 981 1097

b11
(57690)

original 100 210 301 404 505 608 707 805 904 1006
final 100 211 301 410 506 610 713 805 905 1006

b12
(223426)

original 105 200 300 401 506 600 701 800 908 1001
final 113 201 307 405 507 602 701 800 915 1036

N most critical and potentially detectable path delay faults can be selected based on

the recalculated path delays from the expanded Target_PDF. As mentioned in section

3.3.2, due to the newly identified path delay faults and the change of the ranks of path

delay faults based on their delays, these N selected path delay faults may differ from

those selected by traditional static timing analysis. For each circuit in Table 3.2, when i×

100 (1≤i≤10) path delay faults are expected for test generation, we select a set of the

i×100 most critical path delay faults from the set Target_PDF obtained through the

developed procedure, and compare these faults with the i×100 potentially detectable and

most critical path delay faults selected based on the path delays obtained through

traditional static timing analysis, i.e. the faults included in Target_PDF before delay

recalculation. We exclude faults that can be identified as undetectable from comparison

to show how the accuracy of path delay calculation affects the set of selected path delay

faults. Some faults appear in both sets, while other faults are unique to one set. We count

only the faults that are unique to one set. Table 3.3 shows this number. For example, if

500 path delay faults are selected for s1423, the developed method will select 15 path

delay faults that are not selected by traditional static timing analysis with faults identified

39

as undetectable excluded. It can be observed from Table 3.3 that for most circuits, a

different set of path delay faults is obtained through the developed procedure compared

with the one obtained through traditional static timing analysis. The difference between

the two sets is more significant for some circuits.

Table 3.3 Number of different path delay faults

Circuit 100 200 300 400 500 600 700 800 900 1000
s1423 1 1 6 13 15 6 2 5 1 13
s5378 0 6 11 6 11 0 26 10 8 13
s9234 1 8 2 9 3 36 3 4 1 0
s13207 3 20 19 20 35 37 37 54 83 65
s38417 46 38 4 4 3 14 18 55 32 110
s38584 0 0 0 1 1 1 0 1 2 0

b11 0 2 1 4 4 2 3 4 1 0
b12 4 1 0 5 1 2 0 0 7 19

Table 3.4 Path delay comparison of s13207

Path
delay(ns)

fp7 fp10 fp12 fp14 fp15 fp18 fp31 fp36 fp39 fp42

original 3.93 3.89 3.88 3.87 3.85 3.84 3.83 3.82 3.81 3.81
final 3.87 3.86 3.84 3.81 3.82 3.80 3.77 3.78 3.76 3.77

after TG 3.87 3.85 3.83 3.81 3.81 3.79 3.77 3.78 3.76 3.77
diff 0.06 0.03 0.04 0.06 0.03 0.04 0.06 0.04 0.05 0.04

diff_unit 2 1 1.3 2 1 1.3 2 1.3 1.7 1.3

To show how the developed procedure improves the accuracy of path delay

calculation, we select a few critical path delay faults in s13207, generate a test for each

selected fault, and compare its delay under the test with the delay obtained through

traditional static timing analysis and the delay recalculated by the developed method. The

result is shown in Table 3.4. In Table 3.4, the row “original” lists the path delay

calculated by traditional static timing analysis for each path delay fault. The row “final”

lists the delay recalculated by static timing analysis under the input necessary

assignments of the fault. The row “after TG” lists the delay obtained by using static

40

timing analysis under a test for the fault. The row “diff” shows the difference between the

path delays in rows “original” and “final”. The delay is shown in ns. In addition, for the

technology considered, the lowest delay of any gate is the rising delay of an inverter, and

it is equal to 0.03ns. Considering this as a unit delay, the row “diff_unit” shows the delay

in the form of the number of inverters. It can be observed from Table 3.4 that for each

path delay fault, the “original” delay is always larger than the “after TG” delay and the

“final” delay is between the two delays. For all these 10 faults, the “final” delays are

closer to the “after TG” delays. Taking fp14 for example, the “final” delay is 0.06ns

closer to the “after TG” delay than the “original” delay, i.e., the developed procedure

improved the accuracy of the path delay of fp14. For the technology considered, 0.06ns is

equivalent to two inverter delays. Therefore, the delay of the path decreases by two

inverter delays, which demonstrates the impact of the developed method on path delay.

Table 3.5 Path delay comparison

Circuit Pct. 1
%

Pct. 2
%

s1423 83.9 78.9
s5378 32.4 39.2
s9234 38.1 61.15
s13207 98.9 86.34
s38417 64.2 29.44
s38584 14.3 21.68

b11 38 56.32
b12 85.75 88.82

For each circuit listed in Table 3.2, we select 1000 most critical paths by applying

the developed procedure and compare the “original” delay, “final” delay and “after TG”

delay for each path. The results are shown in Table 3.5. The first column identifies the

circuits by names. The second column shows the percentage of path delay faults whose

“original” delays are different from the “after TG” delays. Out of such faults, the

percentage of faults whose “final” delays are closer to “after TG” delays is shown in the

third column (We ignore faults whose “original” delays are the same as the “after TG”

delays since the developed procedure cannot improve the accuracy of delay calculation in

41

such a case). It can be observed from Table 3.5 that for a large portion of the selected

paths in a circuit, the developed procedure achieves estimates of path delays that are

closer to the delays under tests for the path delay faults.

42

4. BUILT-IN GENERATION OF FUNCTIONAL BROADSIDE TESTS
CONSIDERING PRIMARY INPUT CONSTRAINTS

This chapter describes a built-in functional broadside test generation method for a

circuit that is embedded in a larger design. The functional constraints on the primary

input sequences of the circuit are taken into consideration by using the functional input

sequences of the design. The switching activity during built-in test generation is bounded

within the peak switching activity that can occur in the circuit under the functional input

sequences. An optional DFT approach based on state holding for improving fault

coverage is also described. Experimental results show that the method can achieve high

transition fault coverage for benchmark circuits using simple hardware.

4.1. Introduction

The deterministic broadside test generation method and path selection method

described in previous chapters are applicable to off-line test generation, where tests are

generated before test application. Typically, the tests are stored in an external tester and

applied to the circuit by the tester. For large circuits with high clock frequency and

complexity, delay testing via external tester can be expensive due to the following

reasons. (1) In order to capture the delay defects that may fail the circuit during

functional operation using a broadside test, the launch and capture clock edges should be

triggered very fast especially for at-speed testing. As a result, the tester is required to

provide a high-speed and accurate test clock. However, it is expensive to implement such

a tester. One solution is to use on-chip clock source to provide a high-speed test clock as

discussed in [50]-[54], so that the tester only needs to provide slower shifting clock and

control signals. (2) Tests are stored in the memory of the tester before being applied.

Considering that each pattern of a broadside test contains the values of all state variables

43

in the circuit, the test volume can be tremendous and may exceed the capability of the

memory especially for large circuits. To address this issue, test compression techniques

were proposed in [55]-[58] to alleviate the memory requirement in external testers. Built-

in test generation [59], a design-for-test technique in which a circuit can be tested by

extra test logic added to it, is a cost-effective solution to address both the issues. Using

built-in test generation has the following advantages. (1) It facilitates at-speed testing.

The added test logic is implemented using the same technology as the circuit, and it can

share the functional clock of the circuit. Accurate timing behavior can be achieved during

test application so that the circuit can be tested at its real operation speed. (2) It reduces

test data volume. All the tests are generated on-chip by the test logic. The amount of

memory required in the tester for storing test data is reduced. (3) It improves test quality.

It is easy to apply a large number of tests with built-in test generation so that more detects,

modeled or un-modeled, can be detected. N-detection [60] is naturally achieved and

better test quality can be obtained.

Built-in test generation techniques were described in [61]-[68] to generate scan-

based two-pattern tests for delay faults. In these techniques, arbitrary states can be

scanned in during the application of the two-pattern tests. This makes it possible to bring

the circuit into states that cannot be reached during functional operation. Although high

fault coverage may be achieved since lines can be exercised under non-functional

operation conditions, overtesting may occur due to the following reasons. (1) The

switching activity in the circuit may be significantly higher than that under functional

operation conditions. The excessive switching activity during non-functional operation

conditions requires higher current which may cause the power supply voltage to drop and

thus fail the circuit [18][19]. It also leads to higher power dissipation during test

application than normal, which may cause permanent damage to the circuit. The problem

can be severe under built-in test generation since the circuit operates at its real operation

speed during test application. (2) Slow propagation paths that are never exercised during

functional operation conditions can be sensitized under non-functional operation

conditions and fail the circuit, as described in [20]. Due to overtesting, a circuit that

44

operates correctly under functional operation cannot pass the test, which results in

unnecessary yield loss.

Several low-power built-in test generation techniques were described in [69]-[72] to

reduce the power dissipation during test application. However, these methods do not

guarantee that the power dissipation during test application would match the power

dissipation that is possible during functional operation. Both higher and lower power

dissipation are undesirable. To address the power dissipation as well as overtesting issues

by creating functional operation conditions, a built-in test generation method was

described in [73] to generate what are called functional broadside tests. Assuming that the

primary inputs are unconstrained, a functional broadside test is a broadside test whose

scan-in state is a reachable state, or a state that the circuit can enter during functional

operation [21]. Under a broadside test, the state under the second pattern is the next-state

obtained in response to the first pattern. Therefore, the state under the second pattern of a

functional broadside test is also a reachable state. As a result, delay faults are detected

under functional operation conditions when functional broadside tests are applied.

Overtesing is therefore eliminated, and the power dissipation during the clock cycles

where delay faults are detected is bounded within that possible during functional

operation. In the method from [73], primary input sequences are generated on-chip and

applied to the circuit starting from a known reachable state. The circuit traverses only

reachable states, and functional broadside tests can be obtained from these primary input

sequences and the corresponding reachable states.

A circuit is typically embedded in a larger design that constrains its primary input

sequences. Fig. 4.1 shows two connected blocks B1 and B2 that may be part of a larger

design. B2 is the target circuit, and its primary inputs are driven by part of the primary

outputs of B1. During functional operation of the design, certain functional constraints

can be imposed by B1 on the primary inputs of B2. Such functional constraints can affect

the set of reachable states and the state-transitions that B2 can make during functional

operation. Without considering these constraints, certain state-transitions that cannot

occur during functional operation may be allowed during test application by the method

in [73]. As a result, the switching activity during test application may exceed that

45

possible during functional operation, and overtesting may occur. Ignoring primary input

constraints is acceptable when the circuit is designed to operate correctly as a stand-alone

circuit. When this is not the case, it is necessary to consider the primary input constraints

for built-in generation of functional broadside tests.

B1 B2

Fig. 4.1 Example of an embedded block

In this chapter, we extend the built-in functional broadside test generation method

from [73] to address the issue of primary input constraints for a circuit that is embedded

in a larger design. To take primary input constraints into account, it is possible to first

extract the constraints imposed on the circuit as described in [74][75], and then extend

the primary input sequence generation logic to incorporate the functional constraints.

However, it is typically not possible to completely represent the functional constraints in

closed form and synthesize simple hardware to satisfy them [76]. To avoid the effort for

constraint extraction and the synthesis of complex hardware, we use functional input

sequences of the complete design to capture the constraints. Functional input sequences

may be generated for other purposes such as speed binning or design verification. If they

are not available, they can also be derived using high level simulations of application

programs. Functional broadside tests can be extracted from functional input sequences for

embedded logic blocks, as described in [76][77]. In this chapter, the primary input

constraints captured by functional input sequences are taken into account by using the

peak switching activity that can occur in the circuit under these sequences. Among the

state-transitions that can be used for on-chip test generation in [73], only those whose

switching activities are no higher than the peak switching activity under the functional

input sequences are eligible for use. The developed method generates primary input

46

sequences that only allow the circuit to make eligible state-transitions starting from a

reachable state.

By avoiding the use of unreachable states, functional broadside tests may not detect

delay faults that can be detected by unrestricted broadside tests. Although such delay

faults may not cause the circuit to fail during functional operation, they may accelerate

the deterioration of the circuit and affect its long-term reliability. In addition, detecting

such faults can be important for failure diagnosis and process improvement. In this

chapter, we provide an optional DFT method based on state holding to detect such faults

and improve fault coverage. State holding keeps the values of some state variables from

changing in certain clock cycles during on-chip test generation. As a result, gates in the

fanout cones of the unchanging state variables are likely to keep their values, and the

switching activity may be reduced. State holding was used to reduce the power

dissipation during the application of structural scan-based tests in [78]-[80] and to

improve delay fault coverage in [80]. In this chapter, it is used to introduce unreachable

states to detect faults that cannot be detected by functional broadside tests. Although high

switching activity may be caused by the introduced unreachable states, it may be

compensated by state holding to some extent. To avoid excessive switching activity, only

tests whose switching activities are no higher than the peak switching activity under the

functional input sequences can be generated on-chip. A simple simulation-based

procedure is described to select sets of state variables for holding. Experimental results

show that for benchmark circuits, the developed built-in test generation method can

achieve high transition fault coverage using simple hardware.

4.2. Generic Built-in Test Generation

This section reviews the generic built-in test generation method, which typically

requires three additional logic blocks for a circuit: a test pattern generator (TPG), an

output response analyzer (ORA), and a controller, as shown in Fig. 4.2. The TPG logic

generates test patterns for the primary inputs and scan chains. The ORA logic compacts

and analyzes the test responses observed at the primary outputs and scan chains to

determine the correctness of the circuit. The control logic controls the circuit, the TPG

47

and the ORA logic so that test application and response analysis can be conducted

properly.

Scan Chains
…

…

…

… O
R
A

Primary
Outputs

Primary
Inputs

T
P
G

CTRL

…

CUT
Data In

…

…

…

Fig. 4.2 Generic built-in test generation architecture

The TPG logic is usually implemented based on a linear feedback shift register

(LFSR) [59] whose states are used as pseudo-random patterns. An n-stage LFSR is

constructed from n D flip-flops and a number of modulo-2 adders (XOR gates), as shown

in Fig. 4.3. Ci implies whether there is a connection between Qn and the modulo-2 adder,

for 1≤i<n. If Ci=1, Qn is connected to the modulo-2 adder. Otherwise, the modulo-2 adder

can be considered as an interconnect wire. Under a particular combination of the values

of Ci for 1≤i<n, the LFSR can cycle through all possible 2n-1 states except the all-0 state.

The probability that 0 or 1 appears on each LFSR bit is 1/2. Various techniques such as

LFSR-reseeding [81], bit fixing [82], bit flipping [83], and weighted random pattern

generation [84]-[87] were developed for LFSR based TPG logic so that the pseudo-

random patterns generated by the TPG logic can achieve higher fault coverage.

48

D D D
Q1 Q2

…
Qn-1 Qn

Cn-1 Cn-2 C1Cn-1

Fig. 4.3 An n-stage LFSR

The ORA logic is usually implemented by using a multiple-input signature register

(MISR) [59]. A MISR is derived from an LFSR as shown in Fig. 4.4. Di is an input of the

MISR, and Ci implies the connection between Qn and the modulo-2 adder, for 1≤i≤n.

The test response of the circuit is captured by the MISR and compacted into its next-state

value. The final state of the MISR is compared with the expected value after test

application. Faults are detected if a mismatch is identified.

D D D
Q1 Q2

…
Qn-1

Qn

Cn-1 Cn-2 C1Cn

D1 D2 D3 Dn

Fig. 4.4 An n-stage MISR

4.3. Built-in Generation of Functional Broadside Tests with Unconstrained Primary

Input Sequences

This section reviews the built-in functional broadside test generation method from

[73]. The architecture of the method is shown in Fig. 4.5. Different from the generic

built-in test generation architecture shown in Fig. 4.2, the TPG logic in this method only

generates test patterns for the primary inputs of the circuit.

49

Scan Chains
…

…

…

… M
I
S
R

Primary
Outputs

Primary
Inputs

T
P
G

CTRL

CUT
Data In

…

…

…

LFSR
seeds

Fig. 4.5 Built-in generation of functional broadside tests

In this method, the circuit is first initialized into a reachable state sinitial. The TPG

logic generates a primary input sequence P of a fixed length L. Let P=p(0)p(1)p(2)…p(L-

1), where p(i) is the primary input vector at clock cycle i, for 0≤i<L. P is applied to the

circuit in functional mode and takes it through a state sequence S=s(0)s(1)s(2)…s(L),

where s(0)=sinitial and s(i) is the next-state the circuit enters when its primary inputs are

driven by p(i-1) and its present state is s(i-1), for 0<i≤L. A functional broadside test can

be defined by any two consecutive time units from the primary input sequence P and its

corresponding state sequence S. The test that starts at clock cycle i is denoted by

t(i)=<s(i), p(i), s(i+1), p(i+1)>. The final state of t(i) is s(i+2).

The application of t(i) takes the circuit through states s(i), s(i+1) and s(i+2). The

application of t(i+1) takes the circuit through states s(i+1), s(i+2) and s(i+3). An overlap

of s(i+1) and s(i+2) occurs between t(i) and t(i+1). In order to apply t(i+1) after t(i) is

applied, special hardware is needed to bring the circuit back to s(i+1) from s(i+2). To

avoid such hardware, it is required in this method that there is no overlap between any

two tests. Tests are applied every 2q clock cycles, where q≥1. A log2L-bit clock cycle

counter is used to track the current clock cycle during the application of P, and its

rightmost q bits are fed into a q-input NOR gate to generate an apply signal that indicates

50

when to apply the tests, as shown in Fig. 4.6. In this chapter, we have q=1 so that the

largest number of functional broadside tests can be obtained. The rightmost bit of the

clock cycle counter is used as the test apply signal and no extra NOR gate is needed.

… q-1 0…

clock cycle couner

apply

Fig. 4.6 Clock cycle counter and test apply signal generation in [73]

When t(i) is applied at clock cycle i, the primary output vector y(i+1) produced by

the circuit in response to <s(i+1), p(i+1)> at clock cycle i+1 and the final state of the test

s(i+2) at clock cycle i+2 are captured by the MISR. s(i+2) is shifted into the MISR over a

number of clock cycles equal to the length of the longest scan chain. The circuit is

brought back to s(i+2) by using circular shift so that the test application process can be

continued.

The TPG logic in this method is implemented by using an LFSR whose states are

used as pseudo-random vectors for the primary inputs of the circuit. The pseudo-random

primary input sequence is modified by inserting additional logic gates based on a primary

input cube C to avoid what is called repeated synchronization [88]. Repeated

synchronization occurs when a primary input value causes a state variable to have a

certain value. This value is repeated every time the primary input value appears in the

primary input sequence, potentially preventing faults from being detected. The value C(i)

of primary input i under C is the value that should appear more often on input i, and it is

calculated by a software procedure in the following way. A specified value 0(1) is

assigned to input i with all the other inputs and the present-state variables unspecified.

51

The number of specified next-state variables is then counted. If assigning 0(1) to input i

synchronizes fewer state variables than assigning 1(0), we have C(i)=0(1). Otherwise, we

have C(i)=x.

d dd ….
m m

... ...
LFSR

To primary inputs

Fig. 4.7 The TPG logic in [73]

Fig. 4.7 shows the TPG logic in the method from [73]. To reduce the correlation

between adjacent primary inputs, a distinct set of d LFSR bits is used to determine the

values for each primary input. The number of LFSR bits is denoted by NLFSR. For a

circuit with NPI primary inputs, we have NLFSR=d·NPI in this method. According to the

primary input cube C, if C(i)=0(1), m out of the d bits allocated for primary input i are

used to bias the probabilities of 0 and 1 on input i to avoid repeated synchronization,

where 2≤m≤d. If C(i)=0, the m bits are fed into an m-input AND gate. In this case, a 0

is more likely to appear on input i, and the probability for a 0 is 1-1/2m. If C(i)=1, the m

bits are fed into an m-input OR gate. In this case, a 1 is more likely to appear on input i,

and the probability for a 1 is 1-1/2m. If C(i)=x, no logic gate is inserted and one of the d

bits is used to drive input i directly.

To avoid using an LFSR whose length is proportional to the number of primary

inputs, we use the following approach in this chapter. An LFSR with a fixed number of

bits is used for the TPG logic. The LFSR drives a shift register whose states are used for

driving the primary inputs of the circuit, as shown in Figure 4.8.

52

1 ….m m

... ... Shift Register

LFSR

To primary inputs

Fig. 4.8 The TPG logic in the developed method

For an input i, if C(i)=0(1), a distinct set of m shift register bits is used to determine

the values for it. All the m bits are fed into an m-input AND(OR) gate so that 0(1) is

more likely to appear on input i. If C(i)=x, a single shift register bit is used to determine

the values for input i. The shift register contains m•NSP + (NPI-NSP) bits, where NSP is the

number of primary inputs whose values under C are specified. After the LFSR is

initialized, it takes a number of clock cycles equal to the size of the shift register to

initialize the shift register before primary input sequence generation.

Multiple primary input sequences are applied in [73] by using different LFSR seeds.

A simulation-based seed selection procedure selects useful seeds among random seeds.

For a random seed, the procedure computes the primary input sequence obtained from it,

and checks whether the resulting tests can detect additional faults. If so, the seed is

selected. Otherwise, the seed is discarded and a new random seed is considered. The

procedure continues until the last U sequences cannot detect additional faults for a

constant U. The number of selected seeds is then reduced. We reduce the number of

selected seeds by using a procedure similar to reverse order fault simulation called

forward-looking fault simulation [89].

53

4.4. Built-in Generation of Functional Broadside Tests with Constrained Primary

Inputs

This section describes the developed built-in functional broadside test generation

method that considers primary input constraints for on-chip test generation.

As discussed earlier, primary input constraints affect the set of state-transitions that

the circuit can make during functional operation. Since the constraints cannot be

represented in closed form and satisfied by using simple hardware, functional input

sequences are used in this paper to capture them. The peak switching activity that can

occur in the circuit under the functional input sequences is used to bound the switching

activities of the functional broadside tests generated on-chip. The circuit may traverse

states that it cannot traverse during functional operation with constrained primary inputs.

However, the states are not arbitrary in the sense that the circuit can traverse them with

unconstrained primary inputs during functional operation. In addition, the switching

activity will match the switching activity that is possible during functional operation with

constrained primary inputs. This alleviates overtesting caused by excessive switching

activity. The peak switching activity obtained under the functional input sequences is

denoted by SWAfunc.

For a TPG sequence P=p(0)p(1)p(2)…p(L-1), we use SWA(i) to denote the

switching activity during clock cycle i. SWA(i) is defined as the percentage of lines

whose values in clock cycle i are different from their values in clock cycle i-1. SWA(0) is

undefined. It is possible to identify subsequences of P such that the switching activities of

the corresponding functional broadside tests do not exceed SWAfunc. Let S=s(0)s(1)

s(2)…s(L) be the state sequence the circuit traverses starting from s(0) under P. A

subsequence Pk,w=p(k)p(k+1)…p(w-1) (0≤k<w≤L) of P yields functional broadside

tests t(k), t(k+2), t(k+4), …. The tests are considered as acceptable if SWA(i)≤SWAfunc,

for k<i<w. Although not all the clock cycles are important for test application in terms of

the switching activity, for simplicity, it is required that all would satisfy the switching

activity bound.

Table 4.1 shows an example. The columns in Table 4.1 show the state s(i), the

primary input vector p(i), and the switching activity SWA(i) during clock cycle i. The

54

switching activity that is higher than SWAfunc is marked in bold. To avoid the excessive

switching activity at clock cycles j+1 and u+1, it is possible to use P0,j, Pj+1,u and Pu+1,L for

application of functional broadside tests. Note that p(j) and p(u) are avoided in order to

avoid the transitions from s(j) to s(j+1) and from s(u) to s(u+1). When a subsequence Pk,w

is applied for on-chip test generation, a new LFSR seed should be loaded so that the TPG

logic can generate the subsequence starting from p(k). In addition, the circuit must be

initialized into s(k). This can be done by shifting s(k) into the scan chains. However,

extra memory is required for storing the scan-in state. The amount of memory due to

storage of scan-in states can be large if the number of state variables and the number of

stored scan-in states are high.

Table 4.1 Example of primary input subsequence selection

Clock
cycle i

s(i) p(i) SWA(i)

0 s(0) p(0) -
1 s(1) p(1) SWA(1)
… … … …
j-1 s(j-1) p(j-1) SWA(j-1)
j s(j) p(j) SWA(j)

j+1 s(j+1) p(j+1) SWA(j+1)
j+2 s(j+2) p(j+2) SWA(j+2)
… … … …
u-1 s(u-1) p(u-1) SWA(u-1)
u s(u) p(u) SWA(u)

u+1 s(u+1) p(u+1) SWA(u+1)
u+2 s(u+2) p(u+2) SWA(u+2)
… … … …
L-1 s(L-1) p(L-1) SWA(L-1)
L s(L) - SWA(L)

Several different reachable states can be used as initial states if the amount of

required memory for storing these states is not a concern. We only use one reachable

state sinitial to initialize the circuit in this chapter. We attempt to find primary input

sequences so that when they are applied to the circuit starting from sinitial, the switching

55

activity during each clock cycle does not exceed SWAfunc and the fault coverage is as

high as possible. In the example of Table 4.1, we only use P0,j and discard other

subsequences. To avoid the potential loss in fault coverage, we extend P0,j as described

next.

We construct a primary input sequence from segments where each segment is

obtained through the TPG logic using a different LFSR seed. We use

Pmulti=Pseg(0)Pseg(1)…Pseg(Nseg-1) to denote a multi-segment primary input sequence,

where Pseg(i) is a primary input segment for 0≤i<Nseg, and Nseg is the number of segments

included in the entire sequence. During the application of Pmulti to a circuit starting from

sinitial, different LFSR seeds are loaded at certain clock cycles to generate the primary

input segments. The state of the circuit is held by deactivating the clock driving the

circuit when a new LFSR seed is loaded, so that the application of the new primary input

segment can start from the final state of the previous segment. The primary input

segments are selected so that during the application of Pmulti, the switching activity in

each clock cycle is no higher than SWAfunc.

A simulation-based procedure selects Pseg(i) and constructs Pmulti as follows. Initially

we have Pmulti=Ø. A primary input sequence P of length L is generated using the TPG

logic based on a random LFSR seed. The procedure applies P to the circuit starting from

state sstart through logic simulation. If i=0, sstart=sinitial. Otherwise, sstart is the final state of

Pseg(i-1). The procedure examines the switching activity in each clock cycle under P until

the first violation SWA(j+1)>SWAfunc is identified at clock cycle j+1. Since the tests are

obtained every two consecutive clock cycles, we have Pseg(i)=P0,j if j is even, or

Pseg(i)=P0,j-1 if j is odd, so that the final state of Pseg(i) is the final state of the last test

obtained from P0,j. Then the procedure checks whether the tests obtained from Pseg(i)

detect additional faults. If so, Pseg(i) is concatenated to Pmulit and the procedure starts

selecting Pseg(i+1). Otherwise, the current seed fails and a new seed is considered for

selecting Pseg(i) again. The procedure stops constructing Pmulti if the last R seeds fail to

select Pseg(i) for a constant R. To obtain more tests, the procedure attempts to construct

multiple multi-segment primary input sequences. An attempt fails if Pseg(0) cannot be

selected. The procedure stops constructing new multi-segment primary input sequences

56

when the last Q attempts fail for a constant Q. Figure 4.9 shows the flow chart of the

entire construction procedure.

Fig. 4.9 The multi-segment primary input sequence construction procedure

Using multi-segment primary input sequences, the circuit only needs to be initialized

into sinitial before a new multi-segment primary input sequence is applied. To apply the

multi-segment primary input sequences on-chip, a log2Lmax-bit clock cycle counter tracks

the current clock cycle and generates the test apply signal every two clock cycles, where

Lmax is the length of the longest primary input segment. A log2Lsc-bit shift counter tracks

the number of shift operations during circular shifting, where Lsc is the length of the

57

longest scan chain. A log2Nsegmax-bit segment counter tracks the number of applied

segments, where Nsegmax is the largest number of segments contained in a multi-segment

primary input sequence. A log2Nmulti-bit sequence counter tracks the number of applied

multi-segment primary input sequences, where Nmulti is the number of sequences. The

clocks for the TPG logic, the counters and the circuit are gated and controlled by a finite

state machine, so that the TPG logic and the counters can operate simultaneously or not

with the circuit under different operation modes such as seed loading, shift register

initialization, circuit initialization, primary input sequence application, and circular

shifting. For example, when the clock cycle counter reaches the length of the current

segment and a new segment needs to be applied, the clock that drives the circuit is

disabled so that the state of the circuit is held. The clock for the TPG logic is still enabled

so that a new LFSR seed can be loaded and the shift register can be initialized. The clock

for the circuit is then enabled again so that the circuit can operate simultaneously with the

TPG logic for the application of the new segment.

4.5. Built-in Test Generation with State Holding

This section describes an optional DFT method based on state holding for fault

coverage improvement. The method can be used after applying the functional broadside

tests generated on-chip if necessary. By keeping the values of some state variables from

changing in certain clock cycles during on-chip test generation, state holding may

introduce unreachable states that can be used to detect faults that cannot be detected by

functional broadside tests.

4.5.1. State Holding

State holding can be implemented by the structure shown in Fig. 4.10. A latch-based

clock gating cell is used to gate the clock for a state variable. When the state holding

enable signal Hold_en is high, the clock input of the state variable is 0 when a clock edge

arrives and no data can be captured. The value of the state variable is therefore held.

Multiple state variables can be held simultaneously by sharing the same gated clock

signal.

58

A state variable can be held over arbitrary number of consecutive clock cycles as

long as the holding enable signal is high. However, in order to define a broadside test

t(i)=<s(i), p(i), s(i+1), p(i+1)> based on the state sequence resulting from state holding,

we require that no state variable is held during the transition from s(i+1) to s(i+2) to

avoid potential fault coverage loss. The reason is that the fault effects activated by

<s(i+1), p(i+1)> are expected to be captured by the state variables during the transition

from s(i+1) to s(i+2). If state holding is performed, the fault effects may not be captured

and the fault will not be detected.

Q

QSET

CLR

D

Hold_en

gtd_clock

0
1

Scan_en

Scan_in
Data_inLD LQ

Latch

clock

clock gating

Fig. 4.10 Implementation of state holding

… h-1 0…

clock cycle counter

Hold_en

Fig. 4.11 Holding enable signal generation

State holding can be performed periodically during on-chip test generation. In this

chapter, we perform state holding every 2h clock cycles, where h≥1. The clock cycle

59

counter is used to generate the holding enable signal by inserting an h-input NOR gate at

its rightmost h bits as shown in Fig. 4.11, so that state holding can be performed in the

next clock cycle. Given a predetermined value for h and a set of state variables for

holding, the multi-segment sequence construction procedure described in section 4.4 is

used to construct the multi-segment primary input sequences and select LFSR seeds for

the given set. The impact of holding state variables in the given set during on-chip test

generation is taken into account when the state sequence under a primary input sequence

is computed via logic simulation. SWAfunc is used to ensure that the switching activity in

each clock cycle under the multi-segment primary input sequences is no higher than it, so

that possible excessive switching activity caused by unreachable states can be avoided.

4.5.2. Set Selection for State Holding

Multiple sets of state variables can be used for holding. State variables in different

sets are controlled by different holding enable signals. In this chapter, a new set is used

only after all the multi-segment primary input sequences for the current set have been

applied.

We use a simulation-based set selection procedure to select the sets of state variables

for holding. Let Setini be the set containing all the state variables in the circuit, and let Fr

be the set of faults that cannot be detected by the functional broadside tests generated in

section 4.4. The procedure selects a number of subsets of Setini. Each selected subset can

help detect additional faults in Fr. A state variable can be included in different selected

subsets. However, compared with the case where the state variable is included in only

one selected subset, more gating logic is needed on the clock of the state variable so that

it can be held properly every time a subset it belongs to is enabled for holding. Such

gating logic may affect the performance of the clock network under functional mode. To

avoid this issue, the procedure only considers non-overlapping subsets of Setini.

The set selection procedure first partitions Setini into non-overlapping subsets, and

then selects the subsets that can help detect additional faults in Fr. We use Det to denote

the detecting ability of a subset, i.e. the number of faults in Fr detected by tests resulting

from holding the subset during on-chip test generation. In order to partition Setini in a way

such that more faults in Fr are likely to be detected by holding the resulting subsets, the

60

procedure first examines the detecting abilities of different subsets of Setini from larger

ones to smaller ones in the following way. Fig. 4.12 shows a full and complete binary

tree with a height of H, where each node represents a subset Seti,j of Setini. We have the

root Set0,0=Setini. A pair of child nodes Seti+1,2j and Seti+1,2j+1 are obtained by randomly

partitioning their parent node Seti,j into halves. The detecting ability of every subset is

examined from the root node to the leaf nodes until each node Seti,j has its Deti,j

associated with it. To compute Deti,j, the procedure first constructs multi-segment

primary input sequences for Seti,j, and then simulates the tests obtained from the multi-

segment sequences on Fr. The number of detected faults in Fr is the value of Deti,j.

… …

...
...

...
...

Set0,0

Set1,0
Set1,1

Set2,0 Set2,1 Set2,2 Set2,3

H

Fig. 4.12 Full and complete binary tree for set selection

After obtaining the detecting ability for each node, the procedure checks all the

nodes from the leaves to the root to decide whether a subset should be partitioned or not.

Take node Seti,j for example. If Seti,j is a leaf node, Seti,j is set to Ø if Deti,j=0, and Seti,j

remains the same if Deti,j>0. If Seti,j is a parent node, its two child nodes Seti+1,2j and

Seti+1,2j+1 are checked as follows. If Deti,j≤max{Deti+1,2j, Deti+1,2j+1}, which indicates that

more faults can be detected if Seti+1,2j and Seti+1,2j+1 are held separately, we have

Seti,j={Seti+1,2j, Seti+1,2j+1}, i.e. Seti,j is partitioned into Seti+1,2j and Seti+1,2j+1, and

Deti,j=max{Deti+1,2j, Deti+1,2j+1}. If Deti,j>max{Deti+1,2j, Deti+1,2j+1}, which indicates that

more faults can be detected if Seti+1,2j and Seti+1,2j+1 are held together, Seti,j and Deti,j

remain the same. Note that Seti,j=Seti+1,2j∪Seti+1,2j+1 is not used in this case since it may

61

cause Seti,j=Seti+1,2j if Seti+1,2j+1 is already updated to Ø. By performing the operations on

each node, Setini can be partitioned into a number of non-overlapping subsets after Set0,0

is processed. Then for each of such subsets, the procedure constructs multi-segment

primary input sequences for it, and selects the subset if its resulting tests can detect

additional faults in Fr.

By using the set selection procedure, Nh non-overlapping sets of state variables can

be selected for holding. In order to perform on-chip test generation with the Nh sets to

hold, extra hardware is required in addition to that required for applying multi-segment

primary input sequences as described in section 4.4. We use a log2Nh-bit set counter to

track the number of used sets and a log2Nh to Nh decoder to select a set, as shown in Fig.

4.13. A new set of state variables is enabled for holding when the sequence counter

reaches the number of multi-segment primary input sequences for the current set. The on-

chip test generation with state holding terminates when the set counter reaches Nh.

decoder

01...

...

...

set
counter

Hold_en_0Hold_en_1Hold_en_2...

Hold_en

Fig. 4.13 Set selection signal generation

4.6. Experimental Results

The developed built-in test generation method was implemented and applied to

ISCAS89, ITC99 and IWLS2005 benchmark circuits. Fastscan from Mentor Graphics

was used for logic and fault simulation. The method was implemented using Perl, Tcl,

and CShell scripts.

62

Table 4.2 lists the benchmark circuits used for the experiments and shows the

parameters of the circuits. The columns from left to right show the name of the

benchmark circuit, the number of primary outputs NPO, the number of primary inputs NPI,

the number of primary inputs NSP whose values are specified in the primary input cube C

(or the number of logic gates inserted to avoid repeated synchronization), and the number

of state variables NSV.

We implemented the hardware required for the developed method in Verilog. The

MISR and the shift register on the primary inputs were not included. Primary inputs of an

embedded block are typically driven by registers, and the registers can be reused by the

developed method. Extra shift register bits may be needed for a primary input whose

value is specified in the primary input cube C to avoid repeated synchronization.

However, the number of such primary inputs is small, as shown in Table 4.2. The extra

logic gates inserted to avoid repeated synchronization were included for area calculation.

Table 4.2 Parameters for benchmark circuits

Circuit NPO Nin Np NSV
s35932 320 35 1 1728
s38584 278 12 2 1164

b14 54 32 0 215
b20 22 32 0 430
spi 45 45 3 229

wb_dma 215 215 17 523
systemcaes 129 258 1 670
systemcdes 65 130 1 190

des_area 64 239 0 128
aes_core 129 258 2 530

wb_conmax 1416 1128 8 770
des_perf 64 233 0 8808

In order to evaluate the area overhead, the benchmark circuits and the hardware for

the developed method were logic synthesized by using Design Compiler from Synopsys

and a 0.18um generic library. As a result, the transition fault coverage achieved for a

benchmark circuit may be different from that achieved in other works. For a small circuit,

the area overhead of built-in test generation in general, considered as a percentage of the

63

circuit area, may be high. Only larger benchmark circuits where the area overhead of

built-in test generation is acceptable are listed in Table 4.2.

Primary input constraints are created for benchmark circuits by connecting pairs of

circuits such that all the primary inputs of one circuit are driven by the primary outputs of

the other. The target circuit is the one whose primary inputs are constrained [76][77].

When two circuits are paired, it is ensured that the number of primary outputs of the

driving block is no less than the number of primary inputs of the target circuit. We

consider all possible combinations of the benchmark circuits listed in Table 4.2. We also

allow the driving block to be a duplication of the target circuit if it does not have more

primary inputs than primary outputs. In addition, we consider the case where there are no

primary input constraints by using a block named “buffers”, which is a group of buffers

placed at the primary inputs of the target circuit, as the driving block for comparison. We

assume that all the benchmark circuits can be initialized into the all-0 state. The

initialization can be performed by shifting in the all-0 state or asserting a global reset if it

is available.

To determine the value of SWAfunc, the complete design is simulated under 30

functional input sequences of length 30000 generated by the TPG logic. For simplicity, if

the target circuit is not driven by “buffers”, we use the TPG logic designed for the driving

block as the TPG logic for the complete design. Otherwise, the TPG logic for the target

circuit is used. In this case, the value of SWAfunc indicates the peak switching activity in

the target circuit when there are no primary input constraints. After the simulation of

functional input sequences, the target circuit is considered alone with its own TPG logic.

We have NLFSR=32 and m=3 for the LFSR and shift register configuration. For the

built-in generation of functional broadside tests considering primary input constraints, the

multi-segment primary input sequence construction procedure stops constructing a

sequence when it consecutively fails 3 times to select a segment, i.e. R=3. It stops

constructing new sequences when the last 5 attempts fail, i.e. Q=5. The value of L is

selected so that it is suitable for the target circuit. The number of state variables in the

benchmark circuits varies from 128 to 8808. We assume that a circuit can have no more

64

than 10 scan chains and the length of a scan chain should be at least 100. All the scan

chains are of approximately equal length.

Table 4.3 shows the results of the built-in generation of functional broadside tests

considering primary input constraints. The first column shows the name of the target

circuit and the total number of transition faults after fault collapsing in parentheses. The

second column shows the length of the longest scan chain. The third column shows the

name of the driving block. In addition to “buffers”, the driving blocks that cause the

highest and lowest SWAfunc are listed for every target circuit in order to show a range of

possible results under primary input constraints. For wb_conmax, only the case where it

is driven by a duplication of itself is listed since other circuits have fewer primary outputs

than its primary inputs. When “buffers” is the driving block, the multi-segment primary

input sequences are constructed with no constraint on the switching activity. Therefore,

each primary input segment is of length L.

The fourth column shows the number of multi-segment primary input sequences

Nmulti. The fifth column shows the maximum number of segments contained in a multi-

segment sequence. The sixth column shows the length of the longest primary input

segment. The seventh column shows the value of SWAfunc. The switching activity is

given as a percentage of switching lines in the circuit during a state-transition. The eighth

to the tenth column shows the number of selected LFSR seeds, the number of applied

tests, and the peak switching activity during test application. The eleventh column shows

the achieved transition fault coverage. The lowest fault coverage is obtained in the case

where SWAfunc is the lowest, and this case is included for every circuit. The twelfth

column shows the area of the hardware required for on-chip test generation. The

thirteenth column shows the area overhead, given as a percentage of the hardware in the

circuit.

It can be observed from Table 4.3 that for the benchmark circuits, SWAfunc is lower

when the target circuit is driven by a block other than “buffers”. This demonstrates the

influence of primary input constraints on the switching activity during functional

operation. Tests whose switching activities exceed SWAfunc are not acceptable when

primary input constraints are considered. In cases where SWAfunc does not decrease much

65

under primary input constraints, compared with the peak switching activity in the case of

no primary input constraints, there is no or a small loss of fault coverage. One reason is

that tests whose switching activities are higher than SWAfunc may not necessarily detect

additional faults. The exclusion of such tests does not affect the fault coverage. Another

reason is that multi-segment primary input sequences use more LFSR seeds and allow the

circuit to traverse longer state sequences to compensate for the potential fault coverage

loss, such as the case where b14 is driven by systemcdes. However, when SWAfunc

decreases much, such as the case where s35932 is driven by spi, a noticeable fault

coverage loss may occur. The reason is that many tests that can improve the fault

coverage are excluded because of higher switching activity.

The number of applied tests varies from hundreds to hundreds of thousands for

different target circuits. This is because the primary input sequences are based on random

pattern generation and the target circuits have different numbers of random pattern

resistant faults. It can also be observed that the area of the required hardware does not

change much for different target circuits, and the area overhead is smaller for larger

circuits.

To show how the fault coverage is improved by using state holding, we consider the

cases in Table 4.3 where the fault coverage achieved by functional broadside tests is

lower than 90%. The set selection procedure in section 4.5.2 was used to select the

subsets of state variables for state holding first. A full and complete binary tree with a

height of 6 was used for each target circuit during set selection. We have R=Q=1 when

the multi-segment sequence construction procedure was used to compute the detecting

ability for a subset, and we have R=3 and Q=5 when it was used to construct primary

input sequences for a selected subset. State holding was performed every 4 clock cycles

during on-chip test generation.

The results of built-in test generated with state holding are shown in Table 4.4. The

first column shows the name of the target circuit. The second column shows the name of

the driving block. The third to the twelfth column show the number of sets of state

variables selected for holding, the total number of state variables included in the selected

sets, the number of multi-segment primary input sequences applied, the maximum

66

number of segments contained in a multi-segment primary input sequence, the length of

the longest primary input segment, the number of selected LFSR seeds, the number of

tests applied on-chip, the peak switching activity during test application, the additional

transition fault coverage contributed by using state holding, and the final transition fault

coverage. The thirteenth column shows the area of the hardware required for performing

both the built-in generation of functional broadside tests and the built-in test generation

with state holding. The fourteenth column shows the area overhead, given as a percentage

of the hardware in the circuit.

It can be observed from Table 4.4 that by using state holding, a noticeable fault

coverage improvement can be achieved. Although unreachable states may be introduced

by state holding, the switching activity during test application is always bounded within

SWAfunc. In addition, the area overhead does not increase much when state holding is

also performed, compared with that when only the built-in generation of functional

broadside tests is performed, i.e. the extra area overhead caused by state holding is small.

In summary, the developed method can achieve high fault coverage and bounded

switching activity during test application for the benchmark circuits using simple

hardware. However, several limitations should be considered when using the developed

method. (1) The method uses switching activity to evaluate the deviations of a state-

transition during on-chip test generation from the state-transitions that can occur during

functional operation. Although overtesting caused by excessive switching activity can be

alleviated since state-transitions whose switching activities exceed that possible during

functional operation are excluded, certain state-transition that can never occur during

functional operation may still be allowed during on-chip test generation. As a result,

overtesting caused by slow paths sensitized by non-functional operation conditions may

occur. (2) The set selection procedure described in section 4.5.2 does not guarantee that

the highest fault coverage improvement can be achieved by holding the selected sets, and

unnecessary state variables can be included in the selected subsets. (3) All the benchmark

circuits used in this chapter are single-clock-domain designs, in which it is

straightforward to obtain functional broadside tests every two consecutive clock cycles

from the primary input sequences and the corresponding state sequences. However, for

67

circuits with multiple clock domains, the method cannot be directly applied since the

frequency difference between clock domains needs to be taken into account, which may

complicate the test application strategy and control logic.

Table 4.3 Results of built-in test generation considering primary input constraints

Circuit Lsc Driving
block

Nmulti Nsegmax Lmax SWAfunc
%

Nseeds Ntests SWA
%

FC
%

HW
Area
(um2)

Area
Over.

%
s35932
(22698)

173 buffers 1 1 6000 43.48 1 3000 39.93 94.94 12455 1.73
aes_core 1 1 6000 43.33 1 3000 39.93 94.94 12455 1.73

spi 19 6 44 23.08 48 254 23.08 87.33 12599 1.75
s38584
(30844)

117 buffers 22 50 18000 35.46 104 936000 33.70 84.65 14252 2.53
des_area 22 50 18000 34.21 104 936000 33.70 84.65 14252 2.53

wb_conmax 63 25 1996 30.61 194 38134 30.61 82.38 13674 2.43
b14

(20236)
108 buffers 10 12 12000 42.65 33 198000 41.76 80.72 13652 5.68

systemcdes 15 16 12000 41.63 37 222000 41.12 80.72 13652 5.68
aes_core 16 18 12000 39.44 49 274591 39.44 80.23 13795 5.73

b20
(45126)

108 buffers 32 44 6000 39.66 118 354000 37.21 79.05 13924 2.77
aes_core 32 44 6000 39.53 118 354000 37.21 79.05 13924 2.77

spi 62 19 1884 31.91 147 40911 31.91 78.23 13641 2.71
spi

(10970)
115 buffers 126 8 18000 23.34 188 1692000 23.26 93.20 14035 9.24

wb_conmax 118 8 18000 21.58 159 1341126 21.47 92.66 14035 9.24
wb_dma 83 8 18000 15.58 221 832220 15.58 90.13 14035 9.24

wb_dma
(13842)

105 buffers 24 16 18000 23.28 66 594000 22.44 70.36 14421 5.61
wb_conmax 16 18 12596 18.26 52 90583 18.26 68.75 14273 5.55

s35932 13 22 12498 17.82 61 49845 17.82 68.33 14273 5.55

68

2

Table 4.3 Results of built-in test generation considering primary input constraints (cont.)

Circuit Lsc Driving
block

Nmulti Nsegmax Lmax SWAfunc
%

Nseeds Ntests SWA
%

FC
%

HW
Area
(um2)

Area
Over.

%
systemcaes

(29272)

112

buffers 18 1 18000 19.62 18 162000 19.49 75.86 13401 3.18
wb_conmax 20 1 18000 19.39 20 180000 19.27 75.84 13401 3.18

s35932 15 11 18000 18.10 43 76267 18.10 74.46 13826 3.27
systemcdes

(10222)
100 buffers 1 5 1000 42.97 5 2500 40.69 99.77 12309 9.15

wb_dma 1 5 1000 42.43 5 2500 40.69 99.77 12309 9.15
s38584 1 5 1000 40.87 5 2500 40.69 99.77 12309 9.15

des_area
(17800)

128 buffers 1 4 1000 39.99 4 2000 39.83 99.84 12096 7.28
wb_conmax 1 5 1000 39.79 5 2500 39.42 99.84 12273 7.37

des_area 119 9 22 29.96 288 578 29.96 98.97 12747 7.64
aes_core
(79316)

106 buffers 2 8 1000 32.83 9 4500 31.42 99.94 12475 1.76
wb_conmax 2 8 1000 32.74 9 4500 31.42 99.94 12475 1.76

s35932 2 8 1000 31.46 9 4500 31.42 99.94 12475 1.76
wb_conmax

(146970)
110 buffers 71 10 18000 17.69 131 1179000 16.87 92.03 14367 1.28

wb_conmax 29 15 18000 15.76 143 384086 15.76 90.17 14076 1.25
des_perf
(318412)

881 buffers 1 3 1000 37.46 3 1500 36.74 99.99 12676 0.27
wb_conmax 3 11 470 35.74 16 1434 35.74 99.99 13118 0.27

s38584 21 8 62 32.03 51 1049 32.03 97.86 12972 0.27

69

3

Table 4.4 Results of built-in test generation with state holding

Circuit Driving
block

Nh Nbits Nmulti Nsegmax Lmax Nseeds Ntests SWA
%

FC
Imp.

%

Final
FC
%

HW
Area
(um2)

Area
Over.

%
s35932 spi 1 1728 6 6 56 27 286 23.08 5.62 92.95 12760 1.77
s38584 buffers 2 1164 27 13 18000 69 621000 32.90 5.27 89.92 14755 2.62

des_area 2 1164 27 13 18000 69 621000 32.90 5.27 89.92 14755 2.62
systemcaes 2 1164 65 25 18000 118 342442 30.61 5.65 88.03 14899 2.64

b14 buffers 4 22 16 13 12000 33 198000 41.33 13.45 94.17 14753 6.11
systemcdes 4 27 20 12 12000 43 258000 41.01 13.40 94.12 14915 6.17
systemcaes 6 33 32 12 12000 58 284372 39.44 13.83 94.06 15603 6.44

b20 buffers 1 430 7 18 6000 27 81000 36.99 10.70 89.75 14085 2.80
spi 1 430 7 18 6000 27 81000 36.99 10.70 89.75 14085 2.80

s38584 1 430 26 14 6000 51 72498 31.91 10.55 88.78 14092 2.80
wb_dma buffers 6 507 20 10 18000 56 504000 22.38 6.49 76.85 16082 6.21

wb_dma 6 507 46 14 18000 97 275198 18.26 8.01 76.76 16405 6.33
s35932 6 507 28 6 18000 74 145768 17.82 7.85 76.18 16242 6.27

systemcaes buffers 2 670 29 1 18000 29 261000 20.05 7.25 83.11 13905 3.29
wb_conmax 2 670 30 1 18000 30 270000 19.39 7.27 83.11 13905 3.29

s35932 2 670 40 5 18000 70 302386 18.09 8.31 82.77 14648 3.46

70

71

5. CONCLUSIONS

The rapid increase in clock frequency and complexity of digital integrated circuits

necessitates delay testing. This dissertation presented methods for three aspects of delay

testing in scan-based circuits: deterministic test generation for a new path delay fault

model, path selection for test generation, and built-in generation of functional broadside

tests.

We first described a deterministic broadside test generation procedure for transition

path delay faults. The transition path delay fault model captures both small and large

delays along a path. The detection of a transition path delay fault requires that all the

individual transition faults along the path are detected by the same test. To reduce the

computational complexity of test generation, five sub-procedures were used: a

deterministic test generation procedure that generates tests for transition faults and

identifies undetectable transition faults, a preprocessing procedure that identifies

undetectable transition path delay faults without performing test generation, a fault

simulation procedure that identifies transition path delay faults that can be detected by the

tests for transition faults, a dynamic compaction heuristic procedure that generates tests

without backtracking on decisions made for previously detected faults, and a complete

branch-and-bound procedure that backtracks on previously made decisions. Experimental

results showed that for most of the transition path delay faults in benchmark circuits,

either a test is found or the fault is identified as undetectable.

Next, we described a procedure based on static timing analysis to select critical paths

for test generation. The procedure considers input necessary assignments during static

timing analysis to obtain path delays that are closer to those that can be obtained under

tests for path delay faults. This is based on the observation that traditional static timing

analysis process does not take into consideration logic conditions that are necessary for

72

detecting a path delay fault. Such conditions are important since they may affect the path

delays. The input necessary assignments are a subset of these logic conditions. Using

input necessary assignments to refine arrival times of signals enhances the correlation

between static timing analysis and timing of tests on silicon. Input necessary assignments

can also be used for identifying undetectable faults. For a set of path delay faults obtained

through traditional static timing analysis, the procedure calculates more accurate path

delays, which are closer to the delays that can be obtained under tests that detect them. It

also identifies path delay faults, whose delays are at least as high as the selected path

delay faults under the input necessary assignments of the selected faults, in order to

ensure that the most critical paths during test application can be selected.

Finally, a built-in test generation method for functional broadside tests was described

for a circuit embedded in a larger design, taking the primary input constraints on the

circuit into consideration. Functional input sequences for the design are used to capture

the primary input constraints. Primary input sequences are generated on-chip and applied

to the circuit starting from a reachable initial state. Tests are obtained from the primary

input sequences and the corresponding state sequences. The primary input constraints are

satisfied by ensuring that the peak switching activity that can occur under the primary

input sequences is no higher than that possible under the functional input sequences. An

optional DFT method based on state holding was also described to improve fault

coverage. The method introduces unreachable states by keeping the values of some state

variables from changing in certain clock cycles during on-chip test generation. As a result,

faults that cannot be detected by functional broadside tests may be detected.

Experimental results showed that high transition fault coverage can be achieved by the

developed method for benchmark circuits using simple hardware.

5.1. Future Work

For the developed built-in functional broadside test generation method, there are

several directions we can work on in the future to improve the method.

In the developed method, switching activity is used as a metric to evaluate the

deviations of a state-transition during on-chip test generation from the state-transitions

73

under functional operation conditions. The primary input constraints are satisfied by

bounding the switching activity during on-chip test generation within the peak switching

activity that can occur in the target circuit under the functional input sequences for the

design. Overtesting caused by excessive switching activity can therefore be alleviated.

However, overtesting caused by slow paths sensitized by non-functional operation

conditions may still occur. An alternative metric to evaluate the deviations is pattern of

signal-transitions [90]. Pattern of signal-transitions was defined in [90] as a set of the

switching lines during a state-transition, and each line in the set is associated with a

specific transition. The size of the set is the switching activity during the state-transition.

Using pattern of signal-transitions, we can require that a state-transition is allowed during

on-chip test generation only if its pattern of signal-transitions is a subset of the pattern of

signal-transitions of a state-transition that occurs under the functional input sequences.

This requirement not only guarantees that the switching activity of the state-transition is

no higher than that possible during functional operation, but also guarantees that only

signal transitions that can occur during functional operation are allowed. As a result,

overtesting caused by both excessive switching activity and slow paths sensitized by non-

functional operation conditions can be alleviated.

Since the set selection procedure in the developed method cannot guarantee to

achieve the highest fault coverage improvement and unnecessary state variables may be

included in the select sets, an advanced procedure can be developed so that the achieved

fault coverage improvement is the highest and no unnecessary state variable is selected.

The developed method was applied on single-clock-domain designs. For circuits

with multiple clock domains, the frequency difference between clock domains must be

taken into account during on-chip test generation. The clock domains should operate at

their own speeds so that reachable states can be obtained properly. In addition, multi-

cycle tests may be needed to detect both intra-clock-domain and inter-clock-domain

faults. This implies more complicated test application strategy and built-in test generation

control logic. Investigations are needed so that the method can be applied on multi-clock-

domain circuits.

LIST OF REFERENCES

74

LIST OF REFERENCES

[1] J.A. Waicukauski, E. Lindbloom, B. Rosen and V. Iyengar, “Transition Fault
Simulation”, IEEE Design and Test, Apr. 1987, pp.32-38.

[2] J. P. Lesser and J. J. Shedletsky, “An Experimental delay test generator for LSI
logic”, IEEE Trans. on Computers, March, 1980, pp.235-248.

[3] G. L. Smith, “Model for delay faults based upon paths”, Proc. Int. Test Conf.,
1985, pp. 342-349.

[4] C. J. Lin and S. M. Reddy, “On Delay Fault Testing in Logic Circuits”, IEEE
Trans. Computer-Aided Design, Vol. 6, No. 5, Sept. 1987, pp.694-703.

[5] S. M. Reddy, M. K. Reddy, and V. D. Agrawal, “Robust tests for stuck-open faults
in CMOS combinational logic circuits”, Proc. Int. Symp. on Fault-Tolerant
Computing, 1984, pp.44-49.

[6] E. S. Park and M. R. Mercer, “Robust and nonrobust tests for path delay faults in
combinational circuits”, Proc. Int. Test Conf., 1987, pp.1027-1034.

[7] N. Jha and S. Gupta, “Testing of digital systems” (Cambridge University Press,
2003)

[8] Y. Shao, I. Pomeranz, and S. M. Reddy, “On generating high quality tests for
transition faults”, Proc. Asian Test Symp., 2002, pp.1-8.

[9] E. B. Eichelberger and T. W. Williams, “A Logic Design Structure for LSI
Testability”, J. of Des. Autom. and Fault Tolerant Comput., 1978, Vol. 2, pp.165-
178.

[10] S.Dasgupta, R. G. Walther, T. W. Williams, and E. B. Eichelberger, “An
enhancement to LSSD and Some Applications of LSSD in Reliability, Availability
and Serviceability”, Proc. Fault-Tolerant Compt. Symp., 1981, pp.880-885.

75

[11] S. Patil and J. Savir, “Skewed Load Transition Test: Part I, Calculus”, Proc. Int.
Test Conference, 1992, pp.705-713.

[12] J. Savir and S. Patil, “On Broad-Side Delay Test”, Proc. VLSI Test Symp., 1994,
pp.284-290.

[13] Xijiang Lin, Ron Press, J. Rajski, P. Reuter, T. Rinderknecht, B. Swanson, and N.
Tamarapalli, “High-frequency, at-speed scan testing”, IEEE Design & Test of
Computers, Vol. 20 , No. 5, 2003, pp.17-25.

[14] I. Pomeranz and S. M. Reddy, “Transition Path Delay Faults: A New Path Delay
Fault Model for Small and Large Delay Defects”, IEEE Trans. VLSI Syst., Vol. 16,
No. 1, January 2008, pp.98-107.

[15] S. Hassoun and T. Sasao, Logic Synthesis and Verification, Springer, 2002.

[16] I. Pomeranz and S. M. Reddy, “Input Necessary Assignments for Testing of Path
Delay Faults in Standard-Scan Circuits”, IEEE Trans. VLSI Syst., Vol. 19, No. 2,
November 2009, pp. 333-337.

[17] X. Wen, Y. Yamashita, S. Kajihara, L.-T. Wang, K. K. Saluja, and K. Kinoshita,
“On low-capture-power test generation for scan testing”, Proc. VLSI Test Symp.,
2005, pp.265-270.

[18] J. Saxena, K. M. Butler, V. B. Jayaram, S. Kundu, N. V. Arvind, P. Sreeprakash,
and M. Hachinger, “A Case Study of IR-Drop in Structured At-Speed Testing”,
Proc. Int. Test Conf., 2003, pp.1098-1104.

[19] S. Sde-Paz and E. Salomon, “Frequency and Power Correlation between At-Speed
Scan and Functional Tests”, Proc. Int. Test Conf., 2008, pp.1-9.

[20] J. Rearick, “Too much delay fault coverage is a bad thing”, Proc. Int. Test Conf.,
2001, pp. 624–633.

[21] I. Pomeranz and S. M. Reddy, “Generation of functional broadside tests for
transition faults”, IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol.
25, no. 10, Oct. 2006, pp. 2207-2218.

[22] J. L. Carter, V. S. Iyengar, and B. K. Rosen, “Efficient test coverage determination
for delay faults”, Proc. Int. Test Conf., 1987, pp.418-427.

http://www.barnesandnoble.com/c/tsutomu-sasao

76

[23] I. Pomeranz, S. M. Reddy, and J. H. Patel, “On double transition faults as a delay
fault model”, Proc. Great Lakes Symp. VLSI, 1996, pp.282-287.

[24] K. Heragu, J. H. Patel, and V. D. Agrawal, “Segment delay faults: A new fault
model”, Proc. 14th VLSI Test Symp., 1996, pp.32-39.

[25] M. Sharma and J. H. Patel, “Testing of critical paths for delay faults”, Proc. Int.
Test Conf., 2001, pp.634-641.

[26] P. Goel and B. C. Rosales, “Test Generation and Dynamic Compaction of Tests”,
Digest of Papers 1979 Test Conf., 1979, pp.189-192.

[27] M. Abramovici, J. J. Kulikowski, P. R. Menon, and D. T. Miller, “SMART and
FAST: Test Generation for VLSI Scan-Design Circuits”, IEEE Design & Test of
Computers, Vol. 3, No. 4, 1986, pp.43-54.

[28] I. Pomeranz, L. N. Reddy, and S. M. Reddy, “COMPACTEST: A Method to
Generate Compact Test Sets for Combinational Circuits”, Proc. Int. Test Conf.,
1991, pp.194-203.

[29] J. Rajski and H. Cox, “A method to calculate necessary assignments in algorithmic
test pattern generation”, Proc. Int. Test Conf., 1990, pp.25-34.

[30] M. H. Schultz, K. Fuchs, and F. Fink, “Advanced automatic test pattern generation
techniques for path delay faults”, Proc. Int. Symp. Fault-Tolerant Comput., 1989,
pp.44-51.

[31] W.-N. Li, S. M. Reddy, and S. K. Sahni, “On path selection in combinational logic
circuits”, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 8, no. 1, Jan.
1989, pp.56-63.

[32] W. Qiu, J. Wang, D.M.H. Walker, D. Reddy, et al, “K longest paths per gate
(KLPG) test generation for scan-based sequential circuits”, Proc. Int. Test Conf.,
2004, pp.223-231.

[33] A. Murakami, S. Kajihara, T. Sasao, I. Pomeranz, and S. M. Reddy, “Selection of
potentially testable path delay faults for test generation”, Proc. Int. Test Conf.,
2000, pp.376-384.

77

[34] Y. Shao, S. M. Reddy, I. Pomeranz, and S. Kajihara, “On selecting testable paths
in scan designs”, J. Electron. Testing-Theory Appl., Aug. 2003, pp.447-456.

[35] S. Padmanaban and S. Tragoudas, “A critical path selection method for delay
testing”, Proc. Int. Test Conf., 2004, pp.232-241.

[36] S. Padmanaban and S. Tragoudas, “Efficient Identification of (Critical) Testable
Path Delay Faults Using Decision Diagrams”, IEEE Trans. Comput. Aided Des.of
IC and Syst., Vol. 24, 2005, pp.77-87.

[37] B. Seshadri, I. Pomeranz, S.M. Reddy, and S. Kundu, “On Path Selection for
Delay Fault Testing considering Operating Conditions”, Proc. Europ. Test
Workshop, 2003, pp.141-146.

[38] J.-J. Liou, A. Krstic, Y.-M. Jiang, and K.-T. Cheng, “Path selection and pattern
generation for dynamic timing analysis considering power supply noise effects”,
Proc. Int. Conf. Comput. Aided Des., 2000, pp.493-496.

[39] J.-J. Liou, K.-T. Cheng, and D.A.Mukherjee, “Path Selection for Delay Testing of
Deep Sub-Micron devices using Statistical Performance Sensitivity Analysis”,
Proc. VLSI Test Symp., 2000, pp.97-104.

[40] J.-J. Liou, A. Krstic, L-C. Wang, and K.-T. Cheng, “False-Path-Aware Statistical
Timing Analysis and Efficient Path Selection for Delay Testing and Timing
Validation”, Design Autom. Conf., 2002, pp.566-569.

[41] L.-C. Wang, J.-J. Liou, and K.-T. Cheng, “Critical Path Selection for Delay Fault
Testing Based Upon a Statistical Timing Model”, IEEE Trans. Comput. Aided Des.
of IC and Syst., VOL. 23, Nov. 2004, pp.1550-1565.

[42] V. Iyengar, J. Xiong, S. Venkatesan, V. Zolotov, et al, “Variation-aware
performance verification using at-speed structural test and statistical timing”, Proc.
Int .Conf. Comput. Aided Des., 2007, pp.405-412.

[43] Z. He, T. Lv, H. Li, and X. Li, “Fast path selection for testing of small delay
defects considering path correlations”, Proc. VLSI Test Symp., 2010, pp.3-8.

[44] S. Tsai and C.-Y. Huang, “A false-path aware Formal Static Timing Analyzer
considering simultaneous input transitions”, Design Autom. Conf., 2009, pp.25-30.

78

[45] I-D. Huang and S. K. Gupta, “Selection of Paths for Delay Testing”, Asian Test
Symp., 2005, pp.208-215.

[46] Y. Kukimoto and R. K. Brayton, “Timing-Safe False Path Removal for
Combinational Modules”, Proc. Int. Conf. Comput. Aided Des., 1999, pp.544-549.

[47] E. Goldberg and A. Saldanha, “Timing Analysis with Implicitly Specified False
Paths”, Proc. Int. Conf. VLSI Design, 2000, pp.518-522.

[48] S. Zhou, B. Yao, H. Chen, Y. Zhu, M. Hutton, T. Collins, and S. Srinivasan,
“Improving the Efficiency of Static Timing Analysis with False Paths”, Proc. Int.
Conf. Comput. Aided Des., 2005, pp.527-531.

[49] M.Muraoka, H.Iida, H.Kikuchihara, M. Murakami, and K. Hirakawa, “ACTAS:
An Accurate Timing Analysis System for VLSI”, Des. Auto. Conf. 1985, pp.152-
158.

[50] M. Beck, O. Barondeau, O. Barondeau, F. Poehl, X. Lin, and R. Press, “Logic
Design for On-Chip Test Clock Generation-Implementation Details and Impact on
Delay Test Quality”, Proc. Conf. on Des., Autom. and Test in Europe, 2005,
pp.56-61.

[51] H. Furukawa, X. Wen, L.-T. Wang, B. Sheu, Z. Jiang, and S. Wu, “A Novel and
Practical Control Scheme for Inter-Clock At-Speed Testing”, Proc. IEEE Int. Test
Conference, 2006, pp.1-10.

[52] X. Fan, Y. Hu, and L.-T. Wang, “An On-Chip Test Clock Control Scheme for
Multi-Clock At-Speed Testing”, Proc. IEEE Asian Test Symp., 2007, pp.341-348.

[53] X. Lin and M. Kassab, “Test Generation for Designs with On-Chip Clock
Generators”, Proc. IEEE Asian Test Symp., 2009, pp.411-417.

[54] B. Keller, K. Chakravadhanula, B. Foutz, and et.al., “Low cost at-speed testing
using On-Product Clock Generation compatible with test compression”, Proc.
IEEE Int. Test Conference, 2010, pp.1-10.

[55] A. Jas, J. Ghosh-Dastidar, Mom-Eng Ng, and N. A. Touba, “An efficient test
vector compression scheme using selective Huffman coding”, IEEE Trans.
Comput. Aided Design of IC and Syst., 2003, pp.797-806.

79

[56] A. Wurtenberger, C. S. Tautermann, and S. Hellebrand, “Data compression for
multiple scan chains using dictionaries with corrections”, Proc. of Int. Test Conf.,
2004, pp.926-935.

[57] N. A. Touba, “Survey of Test Vector Compression Techniques”, IEEE Design &
Testing of Computers, 2006, pp.294-303.

[58] H. Fang, C. Tong, B. Yao, X. Song, and X. Cheng, “CacheCompress: A Novel
Approach for Test Data Compression with Cache for IP Embedded Cores”, Proc.
Int. Conf. on Comp. Aided Des., 2007, pp.509-512.

[59] M. Abramovici, M. Breuer, and A. Friedman, Digital System Testing and Testable
Design, IEEE Press, Piscataway, NJ, 1990.

[60] I. Pomeranz and S.M. Reddy, “On n-detection test sets and variable n-detection
test sets for transition faults”, Proc. VLSI Test Symp., 1999, pp.173-180.

[61] C.A. Chen and S.K. Gupta, “BIST test pattern generators for two-pattern testing-
theory and design algorithms”, IEEE Trans. on Comput., 1996, pp. 257-269.

[62] P. Girard, C. Landrault, V. Moreda, and S. Pravossoudovitch, “An optimized BIST
test pattern generator for delay testing”, Proc. VLSI Test Symp., 1997, pp. 94-100.

[63] C.A. Chen and S.K. Gupta, “Efficient BIST TPG Design and Test Set Compaction
for Delay Testing via Input Reduction”, Proc. Intl. Conf. on Comp. Design, 1998,
pp. 32-39.

[64] N. Mukherjee, T.J. Chakraborty, and S. Bhawmik, “A BIST scheme for the
detection of path-delay faults”, Proc. Intl. Test Conf., 1998, pp. 422-432.

[65] W. Li, C. Yu, S.M. Reddy, and I. Pomeranz, “A scan BIST generation method
using a markov source and partial bit-fixing”, Proc. Design Auto. Conf., 2003, pp.
554-559.

[66] S. Pateras, “Achieving At-Speed Structural Test”, IEEE Design & Test of Comput.,
Vol. 20, Issue 5, 2003, pp. 26-33.

[67] H. Lee, I. Pomeranz, and S. M. Reddy, “Scan BIST Targeting Transition Faults
Using a Markov Source”, Proc. Intl. Symp. on Quality Electronic Design, 2004, pp.
497-502.

80

[68] V. Gherman, H.-J. Wunderlich, J. Schloeffel, and M. Garbers, “Deterministic
Logic BIST for Transition Fault Testing”, Proc. Euro. Test Symp., 2006, pp. 123-
130.

[69] P. Girard, “Survey of Low-Power Testing of VLSI Circuits”, IEEE Design & Test
of Computers, May/June 2002, pp. 80-90.

[70] P. Rosinger, B. M. Al-Hashimi, and N. Nicolici, “Dual Multiple-Polynomial LFSR
for Low-Power Mixed-Mode BIST”, IEEE Proc.-Computers and Digital Tech.,
Vol. 150, Issue 4, 2003, pp. 209-217.

[71] J. Lee and N. A. Touba, “Low Power BIST based on Scan Partitioning”, Proc.
Symp. on Defect and Fault Tolerance in VLSI Syst., 2005, pp. 33-41.

[72] S. Wang, “A BIST TPG for Low Power Dissipation and High Fault Coverage”,
IEEE Trans. on VLSI Syst., July 2007, pp. 777-789.

[73] I. Pomeranz, “Built-In Generation of Functional Broadside Tests Using a Fixed
Hardware Structure”, IEEE Trans. on VLSI Systems, Jan. 2013, pp. 124-132.

[74] V.M.Vedula and J.A. Abraham, “FACTOR: a hierarchical methodology for
functional test generation and testability analysis”, Proc. Design, Autom. and Test
in Europe Conf., 2002, pp. 730-734.

[75] S.K.S. Hari, V.V.R. Konda, V. Kamakoti, V.M. Vedula, and K.S. Maneperambil,
“Automatic constraint based test generation for behavioral HDL models”, IEEE
Trans. VLSI Syst., 2008, pp. 408-421.

[76] I. Pomeranz, “Generation of Functional Broadside Tests for Logic Blocks With
Constrained Primary Input Sequences”, IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 32, no. 3, Mar. 2013, pp. 442-452.

[77] I. Pomeranz, “Functional broadside tests for embedded logic blocks”, IET Comput.
Digit. Tech., 2012, pp. 223-231.

[78] L. Whetsel, “Adapting scan architectures for low power operation”, Proc. Int. Test
Conf., 2000, pp. 863-872.

81

[79] P. M. Rosinger, B. M. Al-Hashimi, and N. Nicolici, “Scan Architecture with
Mutually Exclusive Scan Segment Activation for Shift and Capture Power
Reduction”, IEEE Trans. on Comput.-Aided Design, July 2004, pp. 1142-1153.

[80] Z. Zhang, S.M. Reddy, I. Pomeranz, J. Rajski, and B.M. Al-Hashimi, “Enhancing
delay fault coverage through low-power segmented scan”, IEEE European Test
Symp., 2006, pp. 21-28.

[81] S. Venkataraman, J. Rajski, S. Hellebrand, and S. Tarnick, “An Efficient BIST
Scheme Based on Reseeding of Multiple Polynomial Linear Feedback Shift
Registers”, Proc. of Int. Conf. on Comput.-Aided Design, 1993, pp.572-577.

[82] N. Touba and E. McCluskey, “Altering a Pseudo-random Bit Sequence for Scan-
based BIST”, Proc. of Int. Test Conf., 1996, pp.167-175.

[83] H. J. Wunderlich and G. Kiefer, “Bit-flipping BIST”, Proc. of Int. Conf. on
Comput.-Aided Design, 1996, pp.337-345.

[84] H.J. Wunderlich, “Multiple Distributions for Biased Random Test Patterns”, IEEE
Trans. on Comput.-Aided Design, 1990, pp.584-593.

[85] F. Muradali, V.K. Agarwal, and B. Nadeu-Dostie, “A New Procedure for
Weighted Random Built-in Self Test”, Proc. of Int. Test Conf., 1990, pp.660-669.

[86] B. Reeb and H.J. Wunderlich, “Deterministic Pattern Generation for Weighted
Random Pattern Testing”, Proc. of Europ. Design and Test Conf., 1996, pp.30-36.

[87] H.S. Kim, J. Lee, and S. Kang, “A New Multiple Weight Set Calculation
Algorithm”, Proc. of Int. Test Conf., 2001, pp.878-884.

[88] I. Pomeranz and S. M. Reddy, “Primary Input Vectors to Avoid in Random Test
Sequences for Synchronous Sequential Circuits”, IEEE Trans. on Comput.-Aided
Design, Jan. 2008, pp.193-197.

[89] I. Pomeranz and S. M. Reddy, “Forward-Looking Fault Simulation for Improved
Static Compaction”, IEEE Trans. on Comput.-Aided Design, Oct. 2001, pp.1262-
1265.

82

[90] I. Pomeranz, “Signal-Transition Patterns of Functional Broadside Tests”, IEEE
Trans. on Computers, 2012, pp.1-8.

APPENDIX

83

A. IMPLEMENTATION OF THE DEVELOPED METHODS

This section briefly describes how the major steps of the developed methods were

implemented and the experiments were conducted. All the benchmark circuits used for

the experiments are standard benchmark circuits. The benchmark circuits in different

formats, such as bench format and RTL VHDL/Verilog format, are available online.

The deterministic broadside test generation method for transition path delay faults

was implemented based on an existing self-developed software package for test

generation. The five sub-procedures of the developed method were implemented in C++

on top of the test generator and fault simulator for transition faults included in the

package. The test generator and fault simulator for transition faults only accept circuits in

a special format called the MIX format. In order to conduct the experiment, a format

convertor, which was also included in the package, was used to translate the benchmark

circuits from bench format into MIX format first. Then the developed method can be

applied to the circuits.

Table A.1 List of used commercial tools

Name Vender Use
Design Compiler Synopsys Logic synthesis

PrimeTime Synopsys Static timing analysis
DFTAdvisor Mentor Graphics Scan insertion

Fastscan Mentor Graphics Logic/fault simulation
Modelsim Mentor Graphics RTL logic simulation

The implementation of the path selection method and the built-in functional

broadside test generation method involves some commercial tools. Table A.1 lists the

commercial tools used in this dissertation, the vendor names, and the uses of the tools.

84

In the path selection method, PrimeTime was used to perform static timing analysis,

and the process for finding input necessary assignments was implemented in C++ based

on the self-developed software package. A Perl script was used to translate a circuit from

Verilog format, which can be accepted by PrimeTime, into MIX format. The mapping

information between the netlists of different formats was also provided by the script so

that given a path in one format, it is easy to find the same path in the other format. A

CShell script was used to stitch the static timing analysis process and the process for

finding input necessary assignments so that the developed path selection method can be

performed correctly.

To conduct the experiment, Design Compiler was first used to logic synthesize a

benchmark circuit in Verilog format from RTL into gate level, using a simplified

technology library. Then the netlist was translated into MIX format. After performing

static timing analysis using PrimeTime, a ranked list of critical paths can be reported in a

text file with the most critical path on the top. A Perl script was used to extract the critical

paths from the text file and translate them from Verilog format into MIX format. Such

critical paths were then fed into the process for finding input necessary assignments if

they were never processed. For each such critical path, the process computed the input

necessary assignments of its corresponding path delay fault and reported them in a text

file if the fault was potentially detectable. These input necessary assignments were then

translated into Verilog format and fed into PrimeTime so that the path delay can be

recalculated.

In the built-in test generation method, the behavior of the TPG logic was simulated

by a simulator written in C++. The fault list generation, logic simulation, and fault

simulation were accomplished via Fastscan. For a primary input sequence generated by

the TPG simulator, its corresponding state sequence was obtained by simulating the

primary input sequence cycle by cycle using Fastscan controlled by a Tcl script for state

sequence calculation. Both the primary input sequences and the corresponding state

sequences were given in text files. A Perl script was used to extract functional broadside

tests every two consecutive clock cycles from the primary input sequences and the state

sequences. The obtained functional broadside tests were then simulated by Fastscan on

85

the fault list. The switching activity of each test can also be reported into a text file by

Fastscan. A Perl script was used to check the switching activity of every test and extract

the primary input segment under which the switching activity in every clock cycle does

not exceed SWAfunc. A CShell script was used to stitch the TPG simulator, Fastscan calls

and Perl scripts so that the developed built-in test generation method can be performed

correctly.

To conduct the experiment, Design Compiler was first used to logic synthesize a

benchmark circuit in Verilog format from RTL into gate level, using a simplified

technology library. Then DFTAdvisor was used to insert scan structure into the circuit.

The primary input cube C can be calculated through logic simulation using Fastscan

controlled by a Tcl script for primary input cube calculation. To obtain the value of

SWAfunc, 30 sequences of length 30000 were computed by the TPG simulator. The

driving block was simulated under these sequences using Fastscan, and 30 corresponding

sequences can be obtained at the primary outputs of the driving block. The target circuit

was then simulated under the primary output sequences of the driving block, and the peak

switching activity can be reported by Fastscan. After that, the CShell script was invoked

to perform the developed built-in test generation method. To evaluate the area overhead,

the built-in test generation logic was implemented in Verilog. The correctness of the

Verilog code was verified through simulation by using Modelsim. The Verilog code was

then logic synthesized into gate level by using Design Compiler which can also report the

area of the logic.

VITA

86

VITA

Bo Yao received his B.S. degree in Electronics Engineering from Tsinghua

University, Beijing, China in 2005, and his M.S. degree in Electrical Engineering and

Computer Science from Peking University, Beijing, China in 2008. Since 2008, he has

been at the school of Electrical and Computer Engineering, Purdue University, pursuing a

Ph.D. degree.

From March 2012 to February 2013, he was a visiting researcher at Intel Corporation,

Hillsboro, OR, USA. His research interests include fault models, test generation, design-

for-test, and design verification.

	Purdue University
	Purdue e-Pubs
	Fall 2013

	Transition Faults and Transition Path Delay Faults: Test Generation, Path Selection, and Built-In Generation of Functional Broadside Tests
	Bo Yao
	Recommended Citation

	1. INTRODUCTION
	1.1. Delay Fault Models
	1.2. Tests for Delay Faults
	1.3. Scan-Based Tests for Delay Faults
	1.4. Contributions
	1.5. Organization

	2. deterministic broadside test generation for transition path delay faults
	2.1. Introduction
	2.2. The Transition Path Delay Fault Model
	2.3. Test Generation Procedure
	2.3.1. Test Generation for Transition Faults
	2.3.2. Preprocessing Procedure
	2.3.3. Fault Simulation
	2.3.4. Dynamic Compaction Heuristic Procedure
	2.3.5. Branch-and-Bound Procedure

	2.4. Experimental Results

	3. path selection based on static timing analysis considering input necessary assignments
	3.1. Introduction
	3.2. Input Necessary Assignments
	3.3. Path Selection Procedure
	3.3.1. Static Timing Analysis Considering Input Necessary Assignments
	3.3.2. Path Selection

	3.4. Experimental Results

	4. Built-in generation of functional broadside tests Considering Primary Input Constraints
	4.1. Introduction
	4.2. Generic Built-in Test Generation
	4.3. Built-in Generation of Functional Broadside Tests with Unconstrained Primary Input Sequences
	4.4. Built-in Generation of Functional Broadside Tests with Constrained Primary Inputs
	4.5. Built-in Test Generation with State Holding
	4.5.1. State Holding
	4.5.2. Set Selection for State Holding

	4.6. Experimental Results

	5. conclusions
	5.1. Future Work

	A. IMPLementation of the developed methods

