65 research outputs found

    Funktionelle Rolle Medial Septaler Projektionen zum Parasubiculum

    Get PDF
    Oscillations are a hallmark of brain activity and can be generated by local synchronisation mechanisms. They have been implicated in the communication between brain areas. An important type of oscillations are θ oscillations (4-12 Hz), which are associated with different behaviours, such as movements and navigation, but they also play a crucial role in memory formation and retrieval. One of the major θ rhythm generators in the brain is the medial septum (MS), which with its different types of projecting neurons, innervates many cortical areas and synchronises their activity. I investigated two major projection types of the MS: GABAergic (γ-aminobutyric acid – GABA) and cholinergic (acetylcholine – ACh) projections. Both projections are known to target the medial entorhinal cortex (MEC) and hippocampus. Parvalbumin positive (PV+) projections of the MS, which are GABAergic, are known to synchronise cortical networks via disinhibition often by inhibiting interneurons. In contrast, cholinergic projections of the MS project to a wide range of cell types in the MEC and hippocampus and can have substantially different effects on the target cell (e.g. activation or inhibition). Thus, their function on a network can range from increasing activity through depolarising excitatory cells, to more inhibition of the network by activating interneurons, or even modulating synaptic integration. Previous studies have focussed on identifying projections to the hippocampus and the MEC but did not consider the parasubiculum (PaS), a major input of the MEC. In this study, we electrophysiologically characterised cells in the PaS and demonstrated layer I interneurons to be distinctly different from putative layer II interneurons. The PaS, with its strong θ rhythmic firing cells, was shown to have the highest density of MS PV+ fibres in the parahippocampal formation, suggesting that it is an important target of MS projections and yet MS inputs to the PaS are unknown. Using channelrhodopsin (ChR2), a light sensitive ion channel, expressed in the MS of PV-Cre and ChAT-Cre (choline acetyltransferase) mice in-vivo, I identified GABAergic and cholinergic MS connections to the PaS in-vitro and demonstrated cell type specific projection patterns. I found that PV+ MS projections mainly inhibit interneurons in the PaS, including layer I interneurons, representing a novel cortical target of PV+ MS cells. On the other hand, cholinergic projections depolarise layer I interneurons and have multiple effects on deeper cells of the PaS, leading to a depolarisation or hyperpolarisation. To investigate a potential role of GABAergic projections in θ generation, I recorded local field potentials (LFP) in awake head-fixed mice and entrained oscillations in the PaS by stimulating with light in the MS. In contrast, local stimulation of fibres in the PaS could not entrain oscillation, suggesting that increased activity in the PaS might be required for MS PV+ cells to entrain θ. Taken together, stimulation of PV+ cells in the MS is sufficient to drive oscillations in the PaS, likely via disinhibition in line with other areas as the MEC and hippocampus. However, novel targets in layer I could be involved via cholinergic activation and GABAergic entrainment. Whether cholinergic activation by itself can entrain θ remains to be further investigated.Oszillationen sind ein Kennzeichen von Gehirnaktivität und können durch lokale Synchronisationsmechanismen generiert werden. Sie spielen eine wichtige Rolle bei der Kommunikation zwischen Gehirnarealen. Ein wichtiger Typ von Oszillationen sind θ Oszillationen (4 − 12 Hz), welche mit verschiedenen Verhalten wie Bewegung und Navigation assoziiert sind und eine wichtige Rolle in der Gedächtnisbildung und -abrufung spielen. Einer der wichtigen θ Generatoren im Gehirn ist das Mediale Septum (MS), welches mit seinen verschiedenen projizierenden Neuronen viele kortikale Regionen innerviert. Ich habe zwei Typen von Projektionen des MS untersucht: GABAerge (γ-Aminobuttersäure – GABA) und cholinerge (Acetylcholin – ACh) Projektionen. Beide Typen projizieren zum Medialen Entohinalen Kortex (MEC) und zum Hippocampus. Parvalbumin positive (PV+) Projektionen des MS können kortikale Netzwerke via Disinhibition, durch inhibieren von Interneuronen, synchronisieren. Im Gegensatz dazu projizieren cholinerge Projektionen des MS zu verschiedensten Zelltypen des MEC und des Hippocampus und können unterschiedliche weitreichende Effekte auf Zellen haben (z.B. Aktivierung und Inhibierung). Folglich können die Konsequenzen von Aktivierung des Netzwerkes via Depolarisation von exzitatorischen Zellen, über Inhibierung des Netzwerkes via Aktivierung von Interneuronen bis hin zur Modulation von synaptischer Integration reichen. In der Vergangenheit haben Studien sich auf die Identifizierung von Projektionen zum Hippocampus und MECs fokussiert, jedoch nicht zum Parasubiculum (PaS), eines der bedeutendsten Eingänge des MEC. In dieser Studie haben wir elektrophysiologisch Zellen im PaS charakterisiert und konnten herausstellen, dass Schicht I Zellen sich von anderen vermeintlichen Interneuronen in Schicht II unterscheiden. Das PaS, mit seinen im θ Rhythmus feuernden Zellen, hat die höchste Dichte von MS PV+ Fasern im parahippocampalen Netzwerk, was es als besonderes Ziel für MS Projektionen herausstellt. Dennoch sind Projektionen vom MS zum PaS nicht untersucht worden. Mit Hilfe von Channelrhodopsin (ChR2), einem lichtsensitivem Ionenkanal, welcher im MS von PV-Cre und ChAT-Cre Mäusen exprimiert wurde, konnte ich GABAerge und cholinerge MS Verbindungen zum PaS in-vitro detektieren und Zelltyp-speziefische Projektionen identifizieren. Ich konnte herausstellen, dass PV+ MS Projektionen hauptsächlich Interneurone im PaS inhibieren. Insbesondere Schicht I Interneurone stellen ein neues kortikales Ziel von PV+ MS Zellen dar. Im Gegensatz dazu werden Schicht I Interneurone des PaS durch cholinerge MS Projektionen depolarisiert wohingegen Zellen in tieferen Schichten depolarisiert oder hyperpolarisiert werden können. Um zu zeigen, dass man mit GABAergen Projektionen θ generieren kann, nahm ich das lokale Feldpotential (LFP) in Kopffixierten Mäusen auf und fand, dass man Oszillationen mit MS-Stimulation gleichschalten kann, jedoch eine Stimulation der Fasern im PaS nicht ausreichend ist. Das weist darauf hin, dass eine erhöhte PaS-Aktivität notwendig ist, um θ Oszillationen im PaS zu generieren. Zusammenfassend zeigt sich, dass eine Stimulation der PV+ Zellen im MS ausreichend ist, um im PaS Oszillationen zu generieren. Disinhibierung im PaS ist, ähnlich wie auch im MEC und Hippocampus, ein wahrscheinlicher Mechanismus. Weiterhin könnten jedoch neue Ziele von cholinergen und GABAergen Fasern in Schicht I bei der θ Generierung involviert sein. Ob θ Oszillationen durch cholinerge Projektionen gleichgeschaltet werden kann muss jedoch noch durch weitere Studien gezeigt werden

    Neural synchrony in cortical networks : history, concept and current status

    Get PDF
    Following the discovery of context-dependent synchronization of oscillatory neuronal responses in the visual system, the role of neural synchrony in cortical networks has been expanded to provide a general mechanism for the coordination of distributed neural activity patterns. In the current paper, we present an update of the status of this hypothesis through summarizing recent results from our laboratory that suggest important new insights regarding the mechanisms, function and relevance of this phenomenon. In the first part, we present recent results derived from animal experiments and mathematical simulations that provide novel explanations and mechanisms for zero and nero-zero phase lag synchronization. In the second part, we shall discuss the role of neural synchrony for expectancy during perceptual organization and its role in conscious experience. This will be followed by evidence that indicates that in addition to supporting conscious cognition, neural synchrony is abnormal in major brain disorders, such as schizophrenia and autism spectrum disorders. We conclude this paper with suggestions for further research as well as with critical issues that need to be addressed in future studies

    Neural synchrony in cortical networks : history, concept and current status

    Get PDF
    Following the discovery of context-dependent synchronization of oscillatory neuronal responses in the visual system, the role of neural synchrony in cortical networks has been expanded to provide a general mechanism for the coordination of distributed neural activity patterns. In the current paper, we present an update of the status of this hypothesis through summarizing recent results from our laboratory that suggest important new insights regarding the mechanisms, function and relevance of this phenomenon. In the first part, we present recent results derived from animal experiments and mathematical simulations that provide novel explanations and mechanisms for zero and nero-zero phase lag synchronization. In the second part, we shall discuss the role of neural synchrony for expectancy during perceptual organization and its role in conscious experience. This will be followed by evidence that indicates that in addition to supporting conscious cognition, neural synchrony is abnormal in major brain disorders, such as schizophrenia and autism spectrum disorders. We conclude this paper with suggestions for further research as well as with critical issues that need to be addressed in future studies

    Stimulus and task-dependent gamma activity in monkey V1

    Get PDF
    The single unit doctrine proposes that each one of our percepts and sensations is represented by the activity of specialized high-level cells in the brain. A common criticism applied to this proposal is the one referred to as the "combinatorial problem". We are constantly confronted with unlimited combinations of elements and features, and yet we face no problem in recognizing patterns and objects present in visual scenes. Are there enough neurons in the brain to singly code for each one of our percepts? Or is it the case that perceptions are represented by the distributed activity of different neuronal ensembles? We lack a general theory capable of explaining how distributed information can be efficiently integrated into single percepts. The working hypothesis here is that distributed neuronal ensembles signal relations present in the stimulus by selectively synchronizing their spiking responses. Synchronization is generally associated with oscillatory activity in the brain. Gamma oscillations in particular have been linked to various integrative processes in the visual system. Studies in anesthetized animals have shown a conspicuous increase in power for the gamma frequency band (30 to 60 Hz) in response to visual stimuli. Recently, these observations have been extended to behavioral studies which addressed the role of gamma activity in cognitive processes demanding selective attention. The initial motivation for carrying out this work was to test if the binding-by-synchronization (BBS) hypothesis serves as a neuronal mechanism for perceptual grouping in the visual system. To this aim we used single and superimposed grating stimuli. Superimposed gratings (plaids) are bi-stable stimuli capable of eliciting different percepts depending on their physical characteristics. In this way, plaids can be perceived either as a single moving surface (pattern plaids), or as two segregated surfaces drifting in different directions (component plaids). While testing the BBS hypothesis, we performed various experiments which addressed the role of both stimulus and cortical architecture on the properties of gamma oscillations in the primary visual cortex (V1) of monkeys. Additionally, we investigated whether gamma activity could also be modulated by allocating attention in time. Finally, we report on gamma-phase shifts in area V1, and how they depend on the level of neuronal activation. ...Einleitung: Die visuelle Hirnforschung hat eine große Informationsmenge über die analytischen Fähigkeiten des Nervensystems zusammengetragen. Die Einführung von Einzelzellableitungen ermöglichte eine detaillierte Beschreibung der Eigenschaften rezeptiver Felder im Sehsystem. Konzentrische rezeptive Felder in der Netzhaut antworten optimal auf einen Luminanzkontrast in ihren On- und Off-Regionen. Antworteigenschaften entwickeln sich schrittweise entlang der Sehbahn, indem zunehmend komplexere Eigenschaften des visuellen Reizes extrahiert werden. Die Pionierarbeiten von David Hubel und Torsten Wiesel beschrieben zunächst Orientierung- und Richtungsselektivität von Neuronen in frühen visuellen Kortexarealen. Später fand man Einzelzellen im medialen Temporallappen, die auf komplexe Objekte wie Hände und Gesichter antworten. Die Hirnforschung ist daher lange davon ausgegangen, dass die Repräsentation komplexer Objekte eine natürliche Entfaltung von Konvergenz entlang der Sehbahn darstellt. Zellen, welche auf elementare Merkmale des Stimulus antworteten, bildeten so durch ihr Muster anatomischer Verbindungen schrittweise die spezialisierten Neurone in höheren visuellen Arealen. Diese Sichtweise zeigt allerdings Limitationen auf. Eine beständige Kritik, die an der "Einzelzelldoktrin" geübt wird, ist das sogenannte kombinatorische Problem. Obwohl wir ständig mit einer unbegrenzten Fülle an Kombinationen verschiedener Elemente und Merkmale konfrontiert sind, laufen wir selten Gefahr, Muster und Objekte in einer visuellen Szene nicht zu erkennen. Ist es überhaupt möglich, dass jedes unserer möglichen Perzepte durch die Antwort eines einzelnen hoch spezialisierten Neurons im Hirn kodiert wird? Falls nicht, welcher Mechanismus könnte einen relationalen Code darstellen, der es ermöglicht, die Aktivität verschiedener neuronaler Ensembles zu integrieren? Die Anforderungen an einen solchen Mechanismus treten besonders hervor, wenn man sich die verteilte Struktur der visuellen Verarbeitung verdeutlicht. Die Merkmalsextraktion entlang der Sehbahn führt unvermeidbar zu einer räumlich verstreuten Repräsentation eines visuellen Reizes. Zusätzlich kommen parallele Bahnen neuronaler Verarbeitung im Hirn häufig vor. Es fehlt eine universale Theorie darüber, wie die verteilte Information effizient in eine einzige Wahrnehmung integriert wird. Die Arbeitshypothese hier lautet, dass das Hirn die Zeitdomäne benutzt, um visuelle Informationen zu integrieren und zu verarbeiten. Konkret würden neuronale Ensemble die aus dem Stimulus hervorgehenden Beziehungen durch eine selektive Synchronisation ihrer Aktionspotenziale signalisieren. Synchronisation ist normalerweise mit oszillatorischer Hirnaktivität assoziiert. Besonders die Oszillationen im Gamma Frequenzband sind mit verschiedensten integrativen Prozessen im Sehsystem in Verbindung gebracht worden. Arbeiten an anästhesierten Tieren haben einen auffälligen Anstieg von Energie im Gamma Frequenzband (30-60 Hz) unter visueller Stimulation gezeigt. Kürzlich sind diese Beobachtungen auf Verhaltensstudien ausgeweitet worden, welche die Rolle von Gamma Aktivität bei der für kognitive Prozesse erforderlichen gerichteten Aufmerksamkeit untersuchen. Die ursprüngliche Motivation dieser Arbeit war es, die von Wolf Singer und Mitarbeitern formulierte "binding-bysynchronization (BBS)" Hypothese zu testen. Dies wurde durch die Ableitung neuronaler Antworten in V1 bei Darbietung eines Paars übereinander gelegter Balkengitter ("Plaid" Stimulus) angegangen. Physikalische Manipulationen der Luminanz in Unterregionen des Plaid-Stimulus können die Wahrnehmung zugunsten der Bewegung der Einzelkomponenten (zwei Objekte, die sich übereinander schieben) oder der Bewegung des Gesamtmusters (ein einziges sich in eine gemeinsame Richtung bewegendes Objekt) beeinflussen. Die gleichzeitige Ableitung von zwei Neuronen, die jeweils nur selektiv auf eines der beiden Balkengitter antworteten, ermöglichte es uns, zwei Vorhersagen der BBS Hypothese zu testen. Falls beide V1 Neurone auf dasselbe Balkengitter antworteten, sollten sie ihre Aktivität unabhängig davon, ob das Plaid in Einzelkomponenten oder als Gesamtmuster wahrgenommen würde, synchronisieren. Der Grund dafür wäre, dass beide Neurone auf dasselbe Objekt reagierten. Im zweiten Fall antworten beide Ableitstellen auf jeweils eine der beiden Balkengitterkomponenten. Hier sagt die BBS Hypothese voraus, dass beide ihre Aktivität nur bei Gesamtmusterbewegung synchronisieren würden, da sie nur in dieser Bedingung auf dasselbe Objekt antworten würden. ..

    Possible role of acetylcholine in regulating spatial novelty effects on theta rhythm and grid cells

    Get PDF
    Existing pharmacological and lesion data indicate that acetylcholine plays an important role in memory formation. For example, increased levels of acetylcholine in the hippocampal formation are known to be associated with successful encoding while disruption of the cholinergic system leads to impairments on a range of mnemonic tasks. However, cholinergic signaling from the medial septum also plays a central role in generating and pacing theta-band oscillations throughout the hippocampal formation. Recent experimental results suggest a potential link between these distinct phenomena. Environmental novelty, a condition associated with strong cholinergic drive, has been shown to induce an expansion in the firing pattern of entorhinal grid cells and a reduction in the frequency of theta measured from the LFP. Computational modeling suggests the spatial activity of grid cells is produced by interference between neuronal oscillators; scale being determined by theta-band oscillations impinging on entorhinal stellate cells, the frequency of which is modulated by acetylcholine. Here we propose that increased cholinergic signaling in response to environmental novelty triggers grid expansion by reducing the frequency of the oscillations. Furthermore, we argue that cholinergic induced grid expansion may enhance, or even induce, encoding by producing a mismatch between expanded grid cells and other spatial inputs to the hippocampus, such as boundary vector cells. Indeed, a further source of mismatch is likely to occur between grid cells of different native scales which may expand by different relative amounts

    Psyche, Signals and Systems

    Get PDF
    For a century or so, the multidisciplinary nature of neuroscience has left the field fractured into distinct areas of research. In particular, the subjects of consciousness and perception present unique challenges in the attempt to build a unifying understanding bridging between the micro-, meso-, and macro-scales of the brain and psychology. This chapter outlines an integrated view of the neurophysiological systems, psychophysical signals, and theoretical considerations related to consciousness. First, we review the signals that correlate to consciousness during psychophysics experiments. We then review the underlying neural mechanisms giving rise to these signals. Finally, we discuss the computational and theoretical functions of such neural mechanisms, and begin to outline means in which these are related to ongoing theoretical research

    Neuronal Activity in Rat Hippocampus and Secondary Somatosensory Cortex during a Tactile Working Memory Task

    Get PDF
    A wide variety of cognitive abilities are dependent on a functional working memory (WM) system. Many attempts have been made to understand its underlying mechanism and the areas that subserve it. In the setting of tactile working memory task, two noisy vibratory stimuli separated by a delay, were applied on rats whiskers and rats had to compare the \u3c3 of the Stim1 and Stim2 to make a two-forced choice decision (Fassihi, Akrami et al. 2014). More precisely, in order to solve the task, the rats needed to perceive \u3c31, keep its trace in memory during delay, perceive \u3c32, compare \u3c32 to the trace of \u3c31 and choose an action based on this comparison. Through multi-electrode recordings, we separately explored the activity of two brain areas, SII and hippocampus, to unravel their engagement across different epochs of the parametric working memory task. In rats performing the tactile WM task, a high percentage of SII neurons in our sample showed sensory coding of the stimulus during its presentation. This activity tended to encode the comparison rule late in the presentation of the second stimulus and during the post-stimulus delay, indicating that both Stim1 and Stim2 affected the neuronal firing at this epoch. In the hippocampus of rats, place coding was prevalent among the neurons, as expected by the cognitive map theory. In contrast to SII, in the hippocampal population sensory coding was not observed. However in the hippocampus, we identified neurons with choice-correlated activity during the post-stimulus delay and therefore both the \u3c31 and \u3c32 were factors affecting neuronal response. In conclusion, sensory coding was mainly observed in SII while choice related activity was observed in both areas

    Spatial representation in the mammalian brain

    Get PDF

    26th Annual Computational Neuroscience Meeting (CNS*2017): Part 3 - Meeting Abstracts - Antwerp, Belgium. 15–20 July 2017

    Get PDF
    This work was produced as part of the activities of FAPESP Research,\ud Disseminations and Innovation Center for Neuromathematics (grant\ud 2013/07699-0, S. Paulo Research Foundation). NLK is supported by a\ud FAPESP postdoctoral fellowship (grant 2016/03855-5). ACR is partially\ud supported by a CNPq fellowship (grant 306251/2014-0)

    Oscillatory multiplexing of neural population codes for interval timing and working memory

    Get PDF
    Interval timing and working memory are critical components of cognition that are supported by neural oscillations in prefrontal-striatal-hippocampal circuits. In this review, the properties of interval timing and working memory are explored in terms of behavioral, anatomical, pharmacological, and neurophysiological findings. We then describe the various neurobiological theories that have been developed to explain these cognitive processes - largely independent of each other. Following this, a coupled excitatory - inhibitory oscillation (EIO) model of temporal processing is proposed to address the shared oscillatory properties of interval timing and working memory. Using this integrative approach, we describe a hybrid model explaining how interval timing and working memory can originate from the same oscillatory processes, but differ in terms of which dimension of the neural oscillation is utilized for the extraction of item, temporal order, and duration information. This extension of the striatal beat-frequency (SBF) model of interval timing (Matell and Meck, 2000, 2004) is based on prefrontal-striatal-hippocampal circuit dynamics and has direct relevance to the pathophysiological distortions observed in time perception and working memory in a variety of psychiatric and neurological conditions. (C) 2014 Elsevier Ltd. All rights reserved.</p
    corecore