8 research outputs found

    Scather: programming with multi-party computation and MapReduce

    Full text link
    We present a prototype of a distributed computational infrastructure, an associated high level programming language, and an underlying formal framework that allow multiple parties to leverage their own cloud-based computational resources (capable of supporting MapReduce [27] operations) in concert with multi-party computation (MPC) to execute statistical analysis algorithms that have privacy-preserving properties. Our architecture allows a data analyst unfamiliar with MPC to: (1) author an analysis algorithm that is agnostic with regard to data privacy policies, (2) to use an automated process to derive algorithm implementation variants that have different privacy and performance properties, and (3) to compile those implementation variants so that they can be deployed on an infrastructures that allows computations to take place locally within each participant’s MapReduce cluster as well as across all the participants’ clusters using an MPC protocol. We describe implementation details of the architecture, discuss and demonstrate how the formal framework enables the exploration of tradeoffs between the efficiency and privacy properties of an analysis algorithm, and present two example applications that illustrate how such an infrastructure can be utilized in practice.This work was supported in part by NSF Grants: #1430145, #1414119, #1347522, and #1012798

    Privacy-Preserving Observation in Public Spaces

    Get PDF
    One method of privacy-preserving accounting or billing in cyber-physical systems, such as electronic toll collection or public transportation ticketing, is to have the user present an encrypted record of transactions and perform the accounting or billing computation securely on them. Honesty of the user is ensured by spot checking the record for some selected surveyed transactions. But how much privacy does that give the user, i.e. how many transactions need to be surveyed? It turns out that due to collusion in mass surveillance all transactions need to be observed, i.e. this method of spot checking provides no privacy at all. In this paper we present a cryptographic solution to the spot checking problem in cyber-physical systems. Users carry an authentication device that authenticates only based on fair random coins. The probability can be set high enough to allow for spot checking, but in all other cases privacy is perfectly preserved. We analyze our protocol for computational efficiency and show that it can be efficiently implemented even on plat- forms with limited computing resources, such as smart cards and smart phones

    Domain-Polymorphic Programming of Privacy-Preserving Applications

    Get PDF
    Secure Multiparty Computation (SMC) is seen as one of the main enablers for secure outsourcing of computation. Currently, there are many different SMC techniques (garbled circuits, secret sharing, homomorphic encryption, etc.) and none of them is clearly superior to others in terms of efficiency, security guarantees, ease of implementation, etc. For maximum efficiency, and for obeying the trust policies, a privacy-preserving application may wish to use several different SMC techniques for different operations it performs. A straightforward implementation of this application may result in a program that (i) contains a lot of duplicated code, differing only in the used SMC technique; (ii) is difficult to maintain, if policies or SMC implementations change; and (iii) is difficult to reuse in similar applications using different SMC techniques. In this paper, we propose a programming language with associated compilation techniques for simple orchestration of multiple SMC techniques and multiple protection domains. It is a simple imperative language with function calls where the types of data items are annotated with protection domains and where the function declarations may be domain-polymorphic. This allows most of the program code working with private data to be written in a SMC-technique-agnostic manner. It also allows rapid deployment of new SMC techniques and implementations in existing applications. We have implemented the compiler for the language, integrated it with an existing SMC framework, and are currently using it for new privacy-preserving applications

    L1 - an intermediate language for mixed-protocol secure computation

    Get PDF
    Abstract—Secure Computation (SC) enables secure distributed computation of arbitrary functions of private inputs. It has many useful applications, e.g. benchmarking or auctions. Several general protocols for SC have been proposed and recently been implemented in a number of compilers and frameworks. These compilers or frameworks implement one general SC protocol and then require the programmer to implement the function he wants the protocol to compute. Performance remains a challenge for this approach and it has been realized early on that special protocols for important problems can deliver superior performance. In this paper we propose a new intermediate language (L1) for optimizing SC compilers which enables efficient implementation of special protocols potentially mixing several general SC protocols. We show by three case studies – one for computation of the median, one for weighted average, one for division – that special protocols and mixed-protocol implementations in our language L1 can lead to superior performance. Moreover, we show that only a combined view on algorithm and cryptographic protocol can discover SCs with best run-time performance. Index Terms—Multi-party Computation, Compiler I

    Principles of Security and Trust

    Get PDF
    This open access book constitutes the proceedings of the 8th International Conference on Principles of Security and Trust, POST 2019, which took place in Prague, Czech Republic, in April 2019, held as part of the European Joint Conference on Theory and Practice of Software, ETAPS 2019. The 10 papers presented in this volume were carefully reviewed and selected from 27 submissions. They deal with theoretical and foundational aspects of security and trust, including on new theoretical results, practical applications of existing foundational ideas, and innovative approaches stimulated by pressing practical problems

    Faster Oblivious Transfer Extension and Its Impact on Secure Computation

    Get PDF
    Secure two-party computation allows two parties to evaluate a function on their private inputs while keeping all information private except what can be inferred from the outputs. A major building block and the foundation for many efficient secure computation protocols is oblivious transfer (OT). In an OT protocol a sender inputs two messages (x_{0}, x_{1}) while a receiver with choice bit c wants to receive message x_{c}.The OT protocol execution guarantees that the sender learns no information about c and the receiver learns no information about x_{1−c}. This thesis focuses on the efficient generation of OTs and their use in secure computation. In particular, we show how to compute OTs more efficiently, improve generic secure computation protocols which can be used to securely evaluate any functionality, and develop highly efficient special-purpose protocols for private set intersection (PSI). We outline our contributions in more detail next. More Efficient OT Extensions. The most efficient OT protocols are based on public-key cryptography and require a constant number of exponentiations per OT. However, for many practical applications where millions to billions of OTs need to be computed, these exponentiations become prohibitively slow. To enable these applications, OT extension protocols [Bea96, IKNP03] can be used, which extend a small number of public-key-based OTs to an arbitrarily large number using cheap symmetric-key cryptography only. We improve the computation and communication efficiency of OT extension protocols and show how to achieve security against malicious adversaries, which can arbitrarily deviate from the protocol, at low overhead. Our resulting protocols can compute several million of OTs per second and we show that, in contrast to previous belief, the local computation overhead for computing OTs is so low that the main bottleneck is the network bandwidth. Parts of these results are published in: • G. Asharov, Y. Lindell, T. Schneider, M. Zohner. More Efficient Oblivious Transfer and Extensions for Faster Secure Computation. In 20th ACM Conference on Computer and Communications Security (CCS’13). • G. Asharov, Y. Lindell, T. Schneider, M. Zohner. More Efficient Oblivious Transfer Extensions with Security for Malicious Adversaries. In 34th Advances in Cryptology – EUROCRYPT’15. • G. Asharov, Y. Lindell, T. Schneider, M. Zohner. More Efficient Oblivious Transfer Extensions. To appear in Journal of Cryptology. Online at http://eprint.iacr.org/2016/602. Communication-Efficient Generic Secure Two-Party Computation. Generic secure two-party computation techniques allow to evaluate a function, represented as a circuit of linear (XOR) and non-linear (AND) gates. One of the most prominent generic secure two-party computation protocols is Yao’s garbled circuits [Yao86], for which many optimizations have been proposed. Shortly after Yao’s protocol, the generic secure protocol by Goldreich-Micali-Wigderson (GMW) [GMW87] was introduced. The GMW protocol requires a large number of OTs and was believed to be less efficient for secure two-party computation than Yao’s protocol [HL10, CHK+12]. We improve the efficiency of the GMW protocol and show that it can outperform Yao’s garbled circuits protocol in settings with low bandwidth. Furthermore, we utilize the flexibility of OT and outline special-purpose constructions that can be used within the GMW protocol and which improve its efficiency even further. Parts of these results are published in: • T. Schneider, M. Zohner. GMW vs. Yao? Efficient Secure Two-Party Computation with Low Depth Circuits. In 17th International Conference on Financial Cryptography and Data Security (FC’13). • D. Demmler, T. Schneider, M. Zohner. ABY - A Framework for Efficient Mixed-Protocol Secure Two-Party Computation. In 22th Network and Distributed System Security Symposium (NDSS’15). • G. Dessouky, F. Koushanfar, A.-R. Sadeghi, T. Schneider, S. Zeitouni, M. Zohner. Pushing the Communication Barrier in Secure Computation using Lookup Tables. In 24th Network and Distributed System Security Symposium (NDSS’17). Faster Private Set Intersection (PSI). PSI allows two parties to compute the intersection of their private sets without revealing any element that is not in the intersection. PSI is a well-studied problem in secure computation and many special-purpose protocols have been proposed. However, existing PSI protocols are several orders of magnitude slower than an insecure naive hashing solution that is used in practice. In addition, many protocols were compared in a biased fashion, which makes it difficult to identify the most promising solution for a particular scenario. We systematize the progress made on PSI protocols by reviewing, optimizing, and comparing existing PSI protocols. We then introduce a novel PSI protocol that is based on our efficiency improvements in OT extension protocols and which outperforms existing protocols by up to two orders of magnitude. Parts of these results are published in: • B. Pinkas, T. Schneider, M. Zohner. Faster Private Set Intersection Based on OT Extension. In 23th USENIX Security Symposium (USENIX Security’14). • B. Pinkas, T. Schneider, G. Segev, M. Zohner. Phasing: Private Set Intersection using Permutation-based Hashing. In 24th USENIX Security Symposium (USENIX Security’15). • B. Pinkas, T. Schneider, M. Zohner. Scalable Private Set Intersection Based on OT Extension. Journal paper. In submission. Online at http://iacr.eprint.org/2016/930
    corecore