3 research outputs found

    Fuzzy closure systems: Motivation, definition and properties

    Get PDF
    The aim of this paper is to extend closure systems from being crisp sets with certain fuzzy properties to proper fuzzy sets. The presentation of the paper shows a thorough discussion on the different alternatives that could be taken to define the desired fuzzy closure systems. These plausible alternatives are discarded if they are proven impossible to be in a bijective correspondence with closure operators. Finally, a definition of fuzzy closure system is established and a one-to-one relation with closure operators is proved.The aim of this paper is to extend closure systems from being crisp sets with certain fuzzy properties to proper fuzzy sets. The presentation of the paper shows a thorough discussion on the different alternatives that could be taken to define the desired fuzzy closure systems. These plausible alternatives are discarded if they are proven impossible to be in a bijective correspondence with closure operators. Finally, a definition of fuzzy closure system is established and a one-to-one relation with closure operators is proved. Funding for open access charge: Universidad de Málaga / CBU

    Neke nove mrežno vrednosne algebarske strukture sa komparativnom analizom različitih pristupa

    Get PDF
    In this work a comparative analysis of several approaches to fuzzy algebraic structures and comparison of previous approaches to the recent one developed at University of  Novi Sad has been done. Special attention is paid to reducts and expansions of algebraic structures in fuzzy settings. Besides mentioning all the relevant algebras and properties developed in this setting, particular new algebras and properties are developed and investigated. Some new structures, in particular Omega Boolean algebras, Omega Boolean lattices and Omega Boolean rings are developed in the framework of omega structures. Equivalences among these structures are elaborated in details. Transfers from Omega groupoids to Omega groups and back are demonstrated. Moreover, normal subgroups are introduced in a particular way. Their connections to congruences are elaborated in this settings. Subgroups, congruences and normal subgroups are investigated for Ω-groups. These are latticevalued algebraic structures, defined on crisp algebras which are not necessarily groups, and in which the classical equality is replaced by a lattice-valued one. A normal Ω-subgroup is defined as a particular class in an Ω-congruence. Our main result is that the quotient groups over cuts of a normal Ω- subgroup of an Ω-group G, are classical normal subgroups of the corresponding quotient groups over G. We also describe the minimal normal Ω-subgroup of an Ω-group, and some other constructions related to Ω-valued congruences.Further results that are obtained are theorems that connect various approaches of fuzzy algebraic structures. A special notion of a generalized lattice valued Boolean algebra is introduced. The universe of this structure is an algebra with two binary, an unary and two nullary operations (as usual), but which is not a crisp Boolean algebra in general. A main element in our approach is a fuzzy  quivalence relation such that the Boolean algebras identities are approximately satisfied related to the considered fuzzy equivalence. Main properties of the new introduced notions are proved, and a connection with the notion of a structure of a generalized fuzzy lattice is provided.Ovaj rad bavi se komparativnom analizom različitih pristupa rasplinutim (fazi) algebarskim strukturama i odnosom tih struktura sa odgovarajućim klasičnim   algebrama. Posebna pažnja posvećena je poredenju postojećih pristupa ovom   problemu sa novim tehnikama i pojmovima nedavno razvijenim na Univerzitetu u Novom Sadu. U okviru ove analize, proučavana su i proširenja kao i redukti algebarskih struktura u kontekstu rasplinutih algebri. Brojne važne konkretne algebarske strukture istraživane su u ovom kontekstu, a neke nove uvedene su i ispitane. Bavili smo se detaljnim istrazivanjima Ω-grupa, sa stanovista kongruencija, normalnih podgrupa i veze sa klasicnim grupama. Nove strukture koje su u radu uvedene u posebnom delu, istrazene su sa aspekta svojstava i medusobne ekvivalentnosti. To su Ω-Bulove algebre, kao i odgo-varajuce mreže i Bulovi prsteni. Uspostavljena je uzajamna ekvivalentnost tih struktura analogno odnosima u klasičnoj algebri. U osnovi naše konstrukcije su mrežno vrednosne algebarske strukture denisane na klasičnim algebrama koje ne zadovoljavaju nužno identitete ispunjene na odgovarajucim klasičnim strukturama (Bulove algebre, prsteni, grupe itd.), već su to samo algebre istog tipa. Klasična jednakost zamenjena je posebnom kompatibilnom rasplinutom (mrežno-vrednosnom) relacijom ekvivalencije. Na navedeni nacin i u cilju koji je u osnovi teze (poredenja sa postojecim pristupima u ovoj naucnoj oblasti) proucavane su (vec denisane)  Ω-grupe. U nasim istraživanju uvedene su odgovarajuće normalne podgrupe. Uspostavljena je i istražena njihova veza sa Ω-kongruencijama. Normalna podgrupa  Ω-grupe definisana je kao posebna  klasa Ω-kongruencije. Jedan od rezultata u ovom delu je da su količničke grupe definisane pomocu nivoa Ω-jednakosti klasične normalne podgrupe odgovarajućih količničkih podgrupa polazne  -grupe. I u ovom slučaju osnovna  struktura na kojoj je denisana Ω-grupa je grupoid, ne nužno grupa. Opisane su osobine najmanje normalne podgrupe u terminima Ω-kongruencija, a date su i neke konstrukcije  Ω-kongruencija. Rezultati koji su izloženi u nastavku povezuju različite pristupe nekim mrežno- vrednosnim strukturama. Ω-Bulova algebra je uvedena na strukturi sa dve binarne, unarnom i dve nularne operacije, ali za koju se ne zahteva ispunjenost klasičnih aksioma. Identiteti za Bulove algebre važe kao mrežno-teoretske formule u odnosu na mrežno-vrednosnu jednakost. Klasicne Bulove algebre ih zadovoljavaju, ali obratno ne vazi: iz tih formula ne slede standardne aksiome za Bulove algebre. Na analogan nacin uveden je i  Ω-Bulov prsten. Glavna svojstva ovih struktura su opisana. Osnovna osobina je da se klasične Bulove algebre odnosno Bulovi prsteni javljaju kao količničke strukture na nivoima Ω -jednakosti. Veza ove strukture sa Ω-Bulovom mrežom je pokazana. Kao ilustracija ovih istraživanja, u radu je navedeno više primera

    Ω-Algebarski sistemi

    No full text
    The research work carried out in this thesis is aimed   at fuzzifying algebraic and relational structures in the framework of Ω-sets, where Ω is a complete lattice. Therefore we attempt to synthesis universal algebra and fuzzy set theory. Our  investigations of Ω-algebraic structures are based on Ω-valued equality, satisability of identities and cut techniques. We introduce Ω-algebras, Ω-valued congruences,  corresponding quotient  Ω-valued-algebras and  Ω-valued homomorphisms and we investigate connections among these notions. We prove that there is an Ω-valued homomorphism from an Ω-algebra to the corresponding quotient Ω-algebra. The kernel of an Ω-valued homomorphism is an Ω-valued congruence. When dealing with cut structures, we prove that an Ω-valued homomorphism determines classical homomorphisms among the corresponding quotient structures over cut  subalgebras. In addition, an  Ω-valued congruence determines a closure system of classical congruences on cut subalgebras. In addition, identities are preserved under Ω-valued homomorphisms. Therefore in the framework of Ω-sets we were able to introduce Ω-attice both as an ordered and algebraic structures. By this Ω-poset is defined as an Ω-set equipped with  Ω-valued order which is  antisymmetric with respect to the corresponding Ω-valued equality. Thus defining the notion of pseudo-infimum and pseudo-supremum we obtained the definition of Ω-lattice as an ordered structure. It is also defined that the an Ω-lattice as an algebra is a bi-groupoid equipped with an Ω-valued equality fulfilling some particular lattice Ω-theoretical formulas. Thus using axiom of choice we proved that the two approaches are equivalent. Then we also introduced the notion of complete Ω-lattice based on Ω-lattice. It was defined as a generalization of the classical complete lattice. We proved results that characterizes Ω-structures and many other interesting results. Also the connection between Ω-algebra and the notion of weak congruences is presented. We conclude with what we feel are most interesting areas for future work.Tema ovog rada je fazifikovanje algebarskih i relacijskih struktura u okviru omega- skupova, gdeje Ω kompletna mreza. U radu se bavimo sintezom oblasti univerzalne algebre i teorije rasplinutih (fazi) skupova. Naša istraživanja omega-algebarskih struktura bazirana su na omega-vrednosnoj jednakosti,zadovoljivosti identiteta i tehnici rada sa nivoima. U radu uvodimo omega-algebre,omega-vrednosne kongruencije, odgovarajuće omega-strukture, i omega-vrednosne homomorfizme i istražujemo veze izmedju ovih pojmova. Dokazujemo da postoji Ω -vrednosni homomorfizam iz Ω -algebre na odgovarajuću količničku Ω -algebru. Jezgro Ω -vrednosnog homomorfizma je Ω- vrednosna kongruencija. U vezi sa nivoima struktura, dokazujemo da Ω -vrednosni homomorfizam odredjuje klasične homomorfizme na odgovarajućim količničkim strukturama preko nivoa podalgebri. Osim toga, Ω-vrednosna kongruencija odredjuje sistem zatvaranja klasične kongruencije na nivo podalgebrama. Dalje, identiteti su očuvani u Ω- vrednosnim homomorfnim slikama.U nastavku smo u okviru Ω-skupova uveli Ω-mreže kao uredjene skupove i kao algebre i dokazali ekvivalenciju ovih pojmova. Ω-poset je definisan kao Ω -relacija koja je antisimetrična i tranzitivna u odnosu na odgovarajuću Ω-vrednosnu jednakost. Definisani su pojmovi pseudo-infimuma i pseudo-supremuma i tako smo dobili definiciju Ω-mreže kao uredjene strukture. Takodje je definisana Ω-mreža kao algebra, u ovim kontekstu nosač te strukture je bi-grupoid koji je saglasan sa Ω-vrednosnom jednakošću i ispunjava neke mrežno-teorijske formule. Koristeći aksiom izbora dokazali smo da su dva pristupa ekvivalentna. Dalje smo uveli i pojam potpune Ω-mreže kao uopštenje klasične potpune mreže. Dokazali smo još neke rezultate koji karakterišu Ω-strukture.Data je i veza izmedju Ω-algebre i pojma slabih kongruencija.Na kraju je dat prikaz pravaca daljih istrazivanja
    corecore