43 research outputs found

    Joint transceiver design and power optimization for wireless sensor networks in underground mines

    Get PDF
    Avec les grands développements des technologies de communication sans fil, les réseaux de capteurs sans fil (WSN) ont attiré beaucoup d’attention dans le monde entier au cours de la dernière décennie. Les réseaux de capteurs sans fil sont maintenant utilisés pour a surveillance sanitaire, la gestion des catastrophes, la défense, les télécommunications, etc. De tels réseaux sont utilisés dans de nombreuses applications industrielles et commerciales comme la surveillance des processus industriels et de l’environnement, etc. Un réseau WSN est une collection de transducteurs spécialisés connus sous le nom de noeuds de capteurs avec une liaison de communication distribuée de manière aléatoire dans tous les emplacements pour surveiller les paramètres. Chaque noeud de capteur est équipé d’un transducteur, d’un processeur de signal, d’une unité d’alimentation et d’un émetteur-récepteur. Les WSN sont maintenant largement utilisés dans l’industrie minière souterraine pour surveiller certains paramètres environnementaux, comme la quantité de gaz, d’eau, la température, l’humidité, le niveau d’oxygène, de poussière, etc. Dans le cas de la surveillance de l’environnement, un WSN peut être remplacé de manière équivalente par un réseau à relais à entrées et sorties multiples (MIMO). Les réseaux de relais multisauts ont attiré un intérêt de recherche important ces derniers temps grâce à leur capacité à augmenter la portée de la couverture. La liaison de communication réseau d’une source vers une destination est mise en oeuvre en utilisant un schéma d’amplification/transmission (AF) ou de décodage/transfert (DF). Le relais AF reçoit des informations du relais précédent et amplifie simplement le signal reçu, puis il le transmet au relais suivant. D’autre part, le relais DF décode d’abord le signal reçu, puis il le transmet au relais suivant au deuxième étage s’il peut parfaitement décoder le signal entrant. En raison de la simplicité analytique, dans cette thèse, nous considérons le schéma de relais AF et les résultats de ce travail peuvent également être développés pour le relais DF. La conception d’un émetteur/récepteur pour le relais MIMO multisauts est très difficile. Car à l’étape de relais L, il y a 2L canaux possibles. Donc, pour un réseau à grande échelle, il n’est pas économique d’envoyer un signal par tous les liens possibles. Au lieu de cela, nous pouvons trouver le meilleur chemin de la source à la destination qui donne le rapport signal sur bruit (SNR) de bout en bout le plus élevé. Nous pouvons minimiser la fonction objectif d’erreur quadratique moyenne (MSE) ou de taux d’erreur binaire (BER) en envoyant le signal utilisant le chemin sélectionné. L’ensemble de relais dans le chemin reste actif et le reste des relais s’éteint, ce qui permet d’économiser de l’énergie afin d’améliorer la durée de vie du réseau. Le meilleur chemin de transmission de signal a été étudié dans la littérature pour un relais MIMO à deux bonds mais est plus complexe pour un ...With the great developments in wireless communication technologies, Wireless Sensor Networks (WSNs) have gained attention worldwide in the past decade and are now being used in health monitoring, disaster management, defense, telecommunications, etc. Such networks are used in many industrial and consumer applications such as industrial process and environment monitoring, among others. A WSN network is a collection of specialized transducers known as sensor nodes with a communication link distributed randomly in any locations to monitor environmental parameters such as water level, and temperature. Each sensor node is equipped with a transducer, a signal processor, a power unit, and a transceiver. WSNs are now being widely used in the underground mining industry to monitor environmental parameters, including the amount of gas, water, temperature, humidity, oxygen level, dust, etc. The WSN for environment monitoring can be equivalently replaced by a multiple-input multiple-output (MIMO) relay network. Multi-hop relay networks have attracted significant research interest in recent years for their capability in increasing the coverage range. The network communication link from a source to a destination is implemented using the amplify-and-forward (AF) or decode-and-forward (DF) schemes. The AF relay receives information from the previous relay and simply amplifies the received signal and then forwards it to the next relay. On the other hand, the DF relay first decodes the received signal and then forwards it to the next relay in the second stage if it can perfectly decode the incoming signal. For analytical simplicity, in this thesis, we consider the AF relaying scheme and the results of this work can also be developed for the DF relay. The transceiver design for multi-hop MIMO relay is very challenging. This is because at the L-th relay stage, there are 2L possible channels. So, for a large scale network, it is not economical to send the signal through all possible links. Instead, we can find the best path from source-to-destination that gives the highest end-to-end signal-to-noise ratio (SNR). We can minimize the mean square error (MSE) or bit error rate (BER) objective function by sending the signal using the selected path. The set of relay in the path remains active and the rest of the relays are turned off which can save power to enhance network life-time. The best path signal transmission has been carried out in the literature for 2-hop MIMO relay and for multiple relaying it becomes very complex. In the first part of this thesis, we propose an optimal best path finding algorithm at perfect channel state information (CSI). We consider a parallel multi-hop multiple-input multiple-output (MIMO) AF relay system where a linear minimum mean-squared error (MMSE) receiver is used at the destination. We simplify the parallel network into equivalent series multi-hop MIMO relay link using best relaying, where the best relay ..

    Outage Probability of Multi-hop Networks with Amplify-and-Forward Full-duplex Relaying

    Get PDF
    abstract: Full-duplex communication has attracted significant attention as it promises to increase the spectral efficiency compared to half-duplex. Multi-hop full-duplex networks add new dimensions and capabilities to cooperative networks by facilitating simultaneous transmission and reception and improving data rates. When a relay in a multi-hop full-duplex system amplifies and forwards its received signals, due to the presence of self-interference, the input-output relationship is determined by recursive equations. This thesis introduces a signal flow graph approach to solve the problem of finding the input-output relationship of a multi-hop amplify-and-forward full-duplex relaying system using Mason's gain formula. Even when all links have flat fading channels, the residual self-interference component due to imperfect self-interference cancellation at the relays results in an end-to-end effective channel that is an all-pole frequency-selective channel. Also, by assuming the relay channels undergo frequency-selective fading, the outage probability analysis is performed and the performance is compared with the case when the relay channels undergo frequency-flat fading. The outage performance of this system is performed assuming that the destination employs an equalizer or a matched filter. For the case of a two-hop (single relay) full-duplex amplify-and-forward relaying system, the bounds on the outage probability are derived by assuming that the destination employs a matched filter or a minimum mean squared error decision feedback equalizer. For the case of a three-hop (two-relay) system with frequency-flat relay channels, the outage probability analysis is performed by considering the output SNR of different types of equalizers and matched filter at the destination. Also, the closed-form upper bounds on the output SNR are derived when the destination employs a minimum mean squared error decision feedback equalizer which is used in outage probability analysis. It is seen that for sufficiently high target rates, full-duplex relaying with equalizers is always better than half-duplex relaying in terms of achieving lower outage probability, despite the higher RSI. In contrast, since full-duplex relaying with MF is sensitive to RSI, it is outperformed by half-duplex relaying under strong RSI.Dissertation/ThesisMasters Thesis Electrical Engineering 201

    Mathematical optimization and signal processing techniques for cooperative wireless networks

    Get PDF
    The rapid growth of mobile users and emergence of high data rate multimedia and interactive services have resulted in a shortage of the radio spectrum. Novel solutions are therefore required for future generations of wireless networks to enhance capacity and coverage. This thesis aims at addressing this issue through the design and analysis of signal processing algorithms. In particular various resource allocation and spatial diversity techniques have been proposed within the context of wireless peer-to-peer relays and coordinated base station (BS) processing. In order to enhance coverage while providing improvement in capacity, peer-to-peer relays that share the same frequency band have been considered and various techniques for designing relay coefficients and allocating powers optimally are proposed. Both one-way and two-way amplify and forward (AF) relays have been investigated. In order to maintain fairness, a signal-to-interference plus noise ratio (SINR) balancing criterion has been adopted. In order to improve the spectrum utilization further, the relays within the context of cognitive radio network are also considered. In this case, a cognitive peer-to-peer relay network is required to achieve SINR balancing while maintaining the interference leakage to primary receiver below a certain threshold. As the spatial diversity techniques in the form of multiple-input-multipleoutput (MIMO) systems have the potential to enhance capacity significantly, the above work has been extended to peer-to-peer MIMO relay networks. Transceiver and relay beamforming design based on minimum mean-square error (MSE) criterion has been proposed. Establishing uplink downlink MSE duality, an alternating algorithm has been developed. A scenario where multiple users are served by both the BS and a MIMO relay is considered and a joint beamforming technique for the BS and the MIMO relay is proposed. With the motivation of optimising the transmission power at both the BS and the relay, an interference precoding design is presented that takes into account the knowledge of the interference caused by the relay to the users served by the BS. Recognizing joint beamformer design for multiple BSs has the ability to reduce interference in the network significantly, cooperative multi-cell beamforming design is proposed. The aim is to design multi-cell beamformers to maximize the minimum SINR of users subject to individual BS power constraints. In contrast to all works available in the literature that aimed at balancing SINR of all users in all cells to the same level, the SINRs of users in each cell is balanced and maximized at different values. This new technique takes advantage of the fact that BSs may have different available transmission powers and/or channel conditions for their users

    Advanced Signal Processing Techniques for Two-Way Relaying Networks and Full-Duplex Communication Systems

    Get PDF
    Sehr hohe Datenraten und ständig verfügbare Netzabdeckung in zukünftigen drahtlosen Netzwerken erfordern neue Algorithmen auf der physischen Schicht. Die Nutzung von Relais stellt ein vielversprechendes Verfahren dar, da die Netzabdeckung gesteigert werden kann. Zusätzlich steht hierdurch im Vergleich zu Kupfer- oder Glasfaserleitungen eine preiswerte Lösung zur Anbindung an die Netzinfrastruktur zur Verfügung. Traditionelle Einwege-Relais-Techniken (One-Way Relaying [OWR]) nutzen Halbduplex-Verfahren (HD-Verfahren), welche das Übertragungssystem ausbremst und zu spektralen Verlusten führt. Einerseits erlauben es Zweiwege-Relais-Techniken (Two-Way Relaying [TWR]), simultan sowohl an das Relais zu senden als auch von diesem zu empfangen, wodurch im Vergleich zu OWR das Spektrum effizienter genutzt wird. Aus diesem Grunde untersuchen wir Zweiwege-Relais und im Speziellen TWR-Systeme für den Mehrpaar-/Mehrnutzer-Betrieb unter Nutzung von Amplify-and-forward-Relais (AF-Relais). Derartige Szenarien leiden unter Interferenzen zwischen Paaren bzw. zwischen Nutzern. Um diesen Interferenzen Herr zu werden, werden hochentwickelte Signalverarbeitungsalgorithmen – oder in anderen Worten räumliche Mehrfachzugriffsverfahren (Spatial Division Multiple Access [SDMA]) – benötigt. Andererseits kann der spektrale Verlust durch den HD-Betrieb auch kompensiert werden, wenn das Relais im Vollduplexbetrieb arbeitet. Nichtsdestotrotz ist ein FD-Gerät in der Praxis aufgrund starker interner Selbstinterferenz (SI) und begrenztem Dynamikumfang des Tranceivers schwer zu realisieren. Aus diesem Grunde sollten fortschrittliche Verfahren zur SI-Ünterdrückung entwickelt werden. Diese Dissertation trägt diesen beiden Zielen Rechnung, indem optimale und/oder effiziente algebraische Lösungen entwickelt werden, welche verschiedenen Nutzenfunktionen, wie Summenrate und minimale Sendeleistung, maximieren.Im ersten Teil studieren wir zunächst Mehrpaar-TWR-Netzwerke mit einem einzelnen Mehrantennen-AF-Relais. Dieser Anwendungsfall kann auch so betrachtet werden, dass sich mehrere verschiedene Dienstoperatoren Relais und Spektrum teilen, wobei verschiedene Nutzerpaare zu verschiedenen Dienstoperatoren gehören. Aktuelle Ansätzen zielen auf Interferenzunterdrückung ab. Wir schlagen ein auf Projektion basiertes Verfahren zur Trennung mehrerer Dienstoperatoren (projection based separation of multiple operators [ProBaSeMO]) vor. ProBaSeMO ist leicht anpassbar für den Fall, dass jeder Nutzer mehrere Antennen besitzt oder unterschiedliche Systemdesignkriterien angewendet werden müssen. Als Bewertungsmaßstab für ProBaSeMO entwickeln wir optimale Algorithmen zur Maximierung der Summenrate, zur Minimierung der Sendeleistung am Relais oder zur Maximierung des minimalen Signal-zu-Interferenz-und-Rausch-Verhältnisses (Signal to Interference and Noise Ratio [SINR]) am Nutzer. Zur Maximierung der Summenrate wurden spezifische gradientenbasierte Methoden entwickelt, die unabhängig davon sind, ob ein Nutzer mit einer oder mehr Antennen ausgestattet ist. Um im Falle eines „Worst-Case“ immer noch eine polynomielle Laufzeit zu garantieren, entwickelten wir einen Algorithmus mit polynomieller Laufzeit. Dieser ist inspiriert von der „Polynomial Time Difference of Convex Functions“-Methode (POTDC-Methode). Bezüglich der Summenrate des Systems untersuchen wir zuletzt, welche Bedingungen erfüllt sein müssen, um einen Gewinn durch gemeinsames Nutzen zu erhalten. Hiernach untersuchen wir die Maximierung der Summenrate eines Mehrpaar-TWR-Netzwerkes mit mehreren Einantennen-AF-Relais und Einantennen-Nutzern. Das daraus resultierende Problem der Summenraten-Maximierung, gebunden an eine bestimmte Gesamtsendeleistung aller Relais im Netzwerk, ist ähnlich dem des vorangegangenen Szenarios. Dementsprechend kann eine optimale Lösung für das eine Szenario auch für das jeweils andere Szenario genutzt werden. Weiterhin werden basierend auf dem Polynomialzeitalgorithmus global optimale Lösungen entwickelt. Diese Lösungen sind entweder an eine maximale Gesamtsendeleistung aller Relais oder an eine maximale Sendeleistung jedes einzelnen Relais gebunden. Zusätzlich entwickeln wir suboptimale Lösungen, die effizient in ihrer Laufzeit sind und eine Approximation der optimalen Lösung darstellen. Hiernach verlegen wir unser Augenmerk auf ein Mehrpaar-TWR-Netzwerk mit mehreren Mehrantennen-AF-Relais und mehreren Repeatern. Solch ein Szenario ist allgemeiner, da die vorherigen beiden Szenarien als spezielle Realisierungen dieses Szenarios aufgefasst werden können. Das Interferenz-Management in diesem Szenario ist herausfordernder aufgrund der vorhandenen Repeater. Interferenzneutralisierung (IN) stellt eine Lösung dar, um diese Art Interferenz zu handhaben. Im Zuge dessen werden notwendige und ausreichende Bedingungen zur Aufhebung der Interferenz hergeleitet. Weiterhin wird ein Framework entwickelt, dass verschiedene Systemnutzenfunktionen optimiert, wobei IN im jeweiligen Netzwerk vorhanden sein kann oder auch nicht. Dies ist unabhängig davon, ob die Relais einer maximalen Gesamtsendeleistung oder einer individuellen maximalen Sendeleistung unterliegen. Letztendlich entwickeln wir ein Übertragungsverfahren sowie ein Vorkodier- und Dekodierverfahren für Basisstationen (BS) in einem TWR-assistierten Mehrbenutzer-MIMO-Downlink-Kanal. Im Vergleich mit dem Mehrpaar-TWR-Netzwerk leidet dieses Szenario unter Interferenzen zwischen den Kanälen. Wir entwickeln drei suboptimale Algorithmen, welche auf Kanalinversion basieren. ProBaSeMO und „Zero-Forcing Dirty Paper Coding“ (ZFDPC), welche eine geringe Zeitkomplexität aufweisen, schaffen eine Balance zwischen Leistungsfähigkeit und Komplexität. Zusätzlich gibt es jeweils nur geringe Einbrüche in stark beanspruchten Kommunikationssystemen.Im zweiten Teil untersuchen wir Techniken zur SI-Unterdrückung, um den FD-Gewinn in einem Punkt-zu-Punkt-System auszunutzen. Zunächst entwickeln wir ein Übertragungsverfahren, dass auf SI Rücksicht nimmt und die SI-Unterdrückung gegen den Multiplexgewinn abwägt. Die besten Ergebnisse werden durch die perfekte Kenntnis des Kanals erzielt, was praktisch nicht genau der Fall ist. Aus diesem Grund werden Übertragungstechniken für den „Worst Case“ entwickelt, die den Kanalschätzfehlern Rechnung tragen. Diese Fehler werden deterministisch modelliert und durch Ellipsoide beschränkt. In praktischen Szenarien ist der HF-Schaltkreise nicht perfekt. Dies hat Einfluss auf die Verfahren zur SI-Unterdrückung und führt zu einer Restselbstinterferenz. Wir entwickeln effiziente Übertragungstechniken mittels Beamforming, welche auf dem Signal-zu-Verlust-und-Rausch-Verhältnis (signal to leakage plus noise ratio [SLNR]) aufbauen, um Unvollkommenheiten der HF-Schaltkreise auszugleichen. Zusätzlich können alle Designkonzepte auf FD-OWR-Systeme erweitert werden.To enable ultra-high data rate and ubiquitous coverage in future wireless networks, new physical layer techniques are desired. Relaying is a promising technique for future wireless networks since it can boost the coverage and can provide low cost wireless backhauling solutions, as compared to traditional wired backhauling solutions via fiber and copper. Traditional one-way relaying (OWR) techniques suffer from the spectral loss due to the half-duplex (HD) operation at the relay. On one hand, two-way relaying (TWR) allows the communication partners to transmit to and/or receive from the relay simultaneously and thus uses the spectrum more efficiently than OWR. Therefore, we study two-way relays and more specifically multi-pair/multi-user TWR systems with amplify-and-forward (AF) relays. These scenarios suffer from inter-pair or inter-user interference. To deal with the interference, advanced signal processing algorithms, in other words, spatial division multiple access (SDMA) techniques, are desired. On the other hand, if the relay is a full-duplex (FD) relay, the spectral loss due to a HD operation can also be compensated. However, in practice, a FD device is hard to realize due to the strong loop-back self-interference and the limited dynamic range at the transceiver. Thus, advanced self-interference suppression techniques should be developed. This thesis contributes to the two goals by developing optimal and/or efficient algebraic solutions for different scenarios subject to different utility functions of the system, e.g., sum rate maximization and transmit power minimization. In the first part of this thesis, we first study a multi-pair TWR network with a multi-antenna AF relay. This scenario can be also treated as the sharing of the relay and the spectrum among multiple operators assuming that different pairs of users belong to different operators. Existing approaches focus on interference suppression. We propose a projection based separation of multiple operators (ProBaSeMO) scheme, which can be easily extended when each user has multiple antennas or when different system design criteria are applied. To benchmark the ProBaSeMO scheme, we develop optimal relay transmit strategies to maximize the system sum rate, minimize the required transmit power at the relay, or maximize the minimum signal to interference plus noise ratio (SINR) of the users. Specifically for the sum rate maximization problem, gradient based methods are developed regardless whether each user has a single antenna or multiple antennas. To guarantee a worst-case polynomial time solution, we also develop a polynomial time algorithm which has been inspired by the polynomial time difference of convex functions (POTDC) method. Finally, we analyze the conditions for obtaining the sharing gain in terms of the sum rate. Then we study the sum rate maximization problem of a multi-pair TWR network with multiple single antenna AF relays and single antenna users. The resulting sum rate maximization problem, subject to a total transmit power constraint of the relays in the network, yields a similar problem structure as in the previous scenario. Therefore the optimal solution for one scenario can be used for the other. Moreover, a global optimal solution, which is based on the polyblock approach, and several suboptimal solutions, which are more computationally efficient and approximate the optimal solution, are developed when there is a total transmit power constraint of the relays in the network or each relay has its own transmit power constraint. We then shift our focus to a multi-pair TWR network with multiple multi-antenna AF relays and multiple dumb repeaters. This scenario is more general because the previous two scenarios can be seen as special realizations of this scenario. The interference management in this scenario is more challenging due to the existence of the repeaters. Interference neutralization (IN) is a solution for dealing with this kind of interference. Thereby, necessary and sufficient conditions for neutralizing the interference are derived. Moreover, a general framework to optimize different system utility functions in this network with or without IN is developed regardless whether the AF relays in the network have a total transmit power limit or individual transmit power limits. Finally, we develop the relay transmit strategy as well as base station (BS) precoding and decoding schemes for a TWR assisted multi-user MIMO (MU-MIMO) downlink channel. Compared to the multi-pair TWR network, this scenario suffers from the co-channel interference. We develop three suboptimal algorithms which are based on channel inversion, ProBaSeMO and zero-forcing dirty paper coding (ZFDPC), which has a low computational complexity, provides a balance between the performance and the complexity, and suffers only a little when the system is heavily loaded, respectively.In the second part of this thesis, we investigate self-interference (SI) suppression techniques to exploit the FD gain for a point-to-point MIMO system. We first develop SI aware transmit strategies, which provide a balance between the SI suppression and the multiplexing gain of the system. To get the best performance, perfect channel state information (CSI) is needed, which is imperfect in practice. Thus, worst case transmit strategies to combat the imperfect CSI are developed, where the CSI errors are modeled deterministically and bounded by ellipsoids. In real word applications, the RF chain is imperfect. This affects the performance of the SI suppression techniques and thus results in residual SI. We develop efficient transmit beamforming techniques, which are based on the signal to leakage plus noise ratio (SLNR) criterion, to deal with the imperfections in the RF chain. All the proposed design concepts can be extended to FD OWR systems

    Resource allocation and optimization techniques in wireless relay networks

    Get PDF
    Relay techniques have the potential to enhance capacity and coverage of a wireless network. Due to rapidly increasing number of smart phone subscribers and high demand for data intensive multimedia applications, the useful radio spectrum is becoming a scarce resource. For this reason, two way relay network and cognitive radio technologies are required for better utilization of radio spectrum. Compared to the conventional one way relay network, both the uplink and the downlink can be served simultaneously using a two way relay network. Hence the effective bandwidth efficiency is considered to be one time slot per transmission. Cognitive networks are wireless networks that consist of different types of users, a primary user (PU, the primary license holder of a spectrum band) and secondary users (SU, cognitive radios that opportunistically access the PU spectrum). The secondary users can access the spectrum of the licensed user provided they do not harmfully affect to the primary user. In this thesis, various resource allocation and optimization techniques have been investigated for wireless relay and cognitive radio networks

    MIMO communications over relay channels

    Get PDF

    Channel estimation and parameters acquisition systems employing cooperative diversity

    Get PDF
    Doutoramento em Engenharia Eletrotécnica e TelecomunicaçõesThis work investigates new channel estimation schemes for the forthcoming and future generation of cellular systems for which cooperative techniques are regarded. The studied cooperative systems are designed to re-transmit the received information to the user terminal via the relay nodes, in order to make use of benefits such as high throughput, fairness in access and extra coverage. The cooperative scenarios rely on OFDM-based systems employing classical and pilot-based channel estimators, which were originally designed to pointto-point links. The analytical studies consider two relaying protocols, namely, the Amplifyand-Forward and the Equalise-and-Forward, both for the downlink case. The relaying channels statistics show that such channels entail specific characteristics that comply to a proper filter and equalisation designs. Therefore, adjustments in the estimation process are needed in order to obtain the relay channel estimates, refine these initial estimates via iterative processing and obtain others system parameters that are required in the equalisation. The system performance is evaluated considering standardised specifications and the International Telecommunication Union multipath channel models.Este trabalho tem por objetivo o estudo de novos esquemas de estimação de canal para sistemas de comunicação móvel das próximas gerações, para os quais técnicas cooperativa são consideradas. Os sistemas cooperativos investigados neste trabalho estão projetados para fazerem uso de terminais adicionais a fim de retransmitir a informação recebida para o utilizador final. Desta forma, pode-se usurfruir de benefícios relacionados às comunicações cooperativas tais como o aumento do rendimento do sistema, fiabilidade e extra cobertura. Os cenários são basedos em sistemas OFDM que empregam estimadores de canal que fazem uso de sinais piloto e que originalmente foram projetados para ligações ponto a ponto. Os estudos analíticos consideram dois protocolos de encaminhamento, nomeadamente, Amplify-and-Forward e Equalise-and-Forward, ambos para o caso downlink. As estatísticas dos canais em estudo mostram que tais canais ocasionam características específicas para as quais o filtro do estimador e a equalisação devem ser apropridamente projetados. Estas características requerem ajustes que são necessários no processo de estimação a fim de estimar os canais, refinar as estimativas iniciais através de processos iterativos e ainda obter outros parâmetros do sistema que são necessários na equalização. O desempenho dos esquemas propostos são avaliados tendo em consideração especificações padronizadas e modelos de canal descritos na International Telecommunication Union
    corecore