4,544 research outputs found

    Knowledge-infused and Consistent Complex Event Processing over Real-time and Persistent Streams

    Full text link
    Emerging applications in Internet of Things (IoT) and Cyber-Physical Systems (CPS) present novel challenges to Big Data platforms for performing online analytics. Ubiquitous sensors from IoT deployments are able to generate data streams at high velocity, that include information from a variety of domains, and accumulate to large volumes on disk. Complex Event Processing (CEP) is recognized as an important real-time computing paradigm for analyzing continuous data streams. However, existing work on CEP is largely limited to relational query processing, exposing two distinctive gaps for query specification and execution: (1) infusing the relational query model with higher level knowledge semantics, and (2) seamless query evaluation across temporal spaces that span past, present and future events. These allow accessible analytics over data streams having properties from different disciplines, and help span the velocity (real-time) and volume (persistent) dimensions. In this article, we introduce a Knowledge-infused CEP (X-CEP) framework that provides domain-aware knowledge query constructs along with temporal operators that allow end-to-end queries to span across real-time and persistent streams. We translate this query model to efficient query execution over online and offline data streams, proposing several optimizations to mitigate the overheads introduced by evaluating semantic predicates and in accessing high-volume historic data streams. The proposed X-CEP query model and execution approaches are implemented in our prototype semantic CEP engine, SCEPter. We validate our query model using domain-aware CEP queries from a real-world Smart Power Grid application, and experimentally analyze the benefits of our optimizations for executing these queries, using event streams from a campus-microgrid IoT deployment.Comment: 34 pages, 16 figures, accepted in Future Generation Computer Systems, October 27, 201

    Cannabidiol tweet miner: a framework for identifying misinformation In CBD tweets.

    Get PDF
    As regulations surrounding cannabis continue to develop, the demand for cannabis-based products is on the rise. Despite not producing the psychoactive effects commonly associated with THC, products containing cannabidiol (CBD) have gained immense popularity in recent years as a potential treatment option for a range of conditions, particularly those associated with pain or sleep disorders. However, due to current federal policies, these products have yet to undergo comprehensive safety and efficacy testing. Fortunately, utilizing advanced natural language processing (NLP) techniques, data harvested from social networks have been employed to investigate various social trends within healthcare, such as disease tracking and drug surveillance. By leveraging Twitter data, NLP can offer invaluable insights into public perceptions around CBD, as well as the marketing tactics employed by those marketing such loosely-regulated substances to the general public. Given the lack of comprehensive clinical CBD testing, the various health claims made by CBD sellers regarding their products are highly dubious and potentially perilous, as is evident from the ongoing COVID-19 misinformation. It is therefore critically important to efficiently identify unsupportable claims to guide public health policy and action. To this end, we present our proposed framework, the Cannabidiol Tweet Miner (CBD-TM), which utilizes advanced natural language processing (NLP) techniques, including text mining and sentiment analysis, to analyze the similarities and differences between commercial and personal tweets that mention CBD. CBD-TM enables us to identify conditions typically associated with commercial CBD advertising, or conditions not associated with positive sentiment, that are also absent from personal conversations. Through our technical contributions, including NLP, text mining, and sentiment analysis, we can effectively uncover areas where the public may be misled by CBD sellers. Since the rise in popularity of CBD, advertisements making bold claims about its benefits have become increasingly prevalent. The COVID-19 pandemic created a new opportunity for sellers to promote and sell products that purportedly treat and/or prevent the virus, with CBD being one of them. Although the U.S. Food and Drug Administration issued multiple warnings to CBD sellers, this type of misinformation still persists. In response, we have extended the CBD-TM framework with an additional layer of tweet classification designed to identify tweets that make potentially misleading claims about CBD\u27s efficacy in treating and/or preventing COVID-19. Our approach harnesses modern NLP algorithms, utilizing a transformer-based language model to establish the semantic relationship between statements extracted from the FDA\u27s website that contain false information and tweets conveying similar false claims. Our technical contributions build upon the impressive performance of deep language models in various natural language processing and understanding tasks. Specifically, we employ transfer learning via pre-trained deep language models, enabling us to achieve improved misinformation identification in tweets, even with relatively small training sets. Furthermore, this extension of CBD-TM can be easily adapted to detect other forms of misinformation. Through our innovative use of NLP techniques and algorithms, we can more effectively identify and combat false and potentially harmful claims related to CBD and COVID-19, as well as other forms of misinformation. As the conversations surrounding CBD on Twitter evolve over time, concept drift can occur, leading to changes in the topics being discussed. We observed significant changes within the CBD Twitter data stream with the emergence of COVID-19, introducing a new medical condition associated with CBD that would not have been discussed in conversations prior to the pandemic. These shifts in conversation introduce concept drift into CBD-TM, which has the potential to negatively impact our tweet classification models. Therefore, it is crucial to identify when such concept drift occurs to maintain the accuracy of our models. To this end, we propose an innovative approach for identifying potential changes within social network streams, allowing us to determine how and when these conversations evolve over time. Our approach leverages a BERT-based topic model, which can effectively capture how conversations related to CBD change over time. By incorporating advanced NLP techniques and algorithms, we are able to better understand the changes in topic that occur within the CBD Twitter data stream, allowing us to more effectively manage concept drift in CBD-TM. Our technical contributions enable us to maintain the accuracy and effectiveness of our tweet classification models, ensuring that we can continue to identify and address potentially harmful misinformation related to CBD

    Towards intelligent geo-database support for earth system observation: Improving the preparation and analysis of big spatio-temporal raster data

    Get PDF
    The European COPERNICUS program provides an unprecedented breakthrough in the broad use and application of satellite remote sensing data. Maintained on a sustainable basis, the COPERNICUS system is operated on a free-and-open data policy. Its guaranteed availability in the long term attracts a broader community to remote sensing applications. In general, the increasing amount of satellite remote sensing data opens the door to the diverse and advanced analysis of this data for earth system science. However, the preparation of the data for dedicated processing is still inefficient as it requires time-consuming operator interaction based on advanced technical skills. Thus, the involved scientists have to spend significant parts of the available project budget rather on data preparation than on science. In addition, the analysis of the rich content of the remote sensing data requires new concepts for better extraction of promising structures and signals as an effective basis for further analysis. In this paper we propose approaches to improve the preparation of satellite remote sensing data by a geo-database. Thus the time needed and the errors possibly introduced by human interaction are minimized. In addition, it is recommended to improve data quality and the analysis of the data by incorporating Artificial Intelligence methods. A use case for data preparation and analysis is presented for earth surface deformation analysis in the Upper Rhine Valley, Germany, based on Persistent Scatterer Interferometric Synthetic Aperture Radar data. Finally, we give an outlook on our future research

    Acetylcholine neuromodulation in normal and abnormal learning and memory: vigilance control in waking, sleep, autism, amnesia, and Alzheimer's disease

    Get PDF
    This article provides a unified mechanistic neural explanation of how learning, recognition, and cognition break down during Alzheimer's disease, medial temporal amnesia, and autism. It also clarifies whey there are often sleep disturbances during these disorders. A key mechanism is how acetylcholine modules vigilance control in cortical layer

    Electronic Dance Music in Narrative Film

    Get PDF
    As a growing number of filmmakers are moving away from the traditional model of orchestral underscoring in favor of a more contemporary approach to film sound, electronic dance music (EDM) is playing an increasingly important role in current soundtrack practice. With a focus on two specific examples, Tom Tykwer’s Run Lola Run (1998) and Darren Aronofsky’s Pi (1998), this essay discusses the possibilities that such a distinctive aesthetics brings to filmmaking, especially with regard to audiovisual rhythm and sonic integration

    Dutkat: A Privacy-Preserving System for Automatic Catch Documentation and Illegal Activity Detection in the Fishing Industry

    Get PDF
    United Nations' Sustainable Development Goal 14 aims to conserve and sustainably use the oceans and their resources for the benefit of people and the planet. This includes protecting marine ecosystems, preventing pollution, and overfishing, and increasing scientific understanding of the oceans. Achieving this goal will help ensure the health and well-being of marine life and the millions of people who rely on the oceans for their livelihoods. In order to ensure sustainable fishing practices, it is important to have a system in place for automatic catch documentation. This thesis presents our research on the design and development of Dutkat, a privacy-preserving, edge-based system for catch documentation and detection of illegal activities in the fishing industry. Utilising machine learning techniques, Dutkat can analyse large amounts of data and identify patterns that may indicate illegal activities such as overfishing or illegal discard of catch. Additionally, the system can assist in catch documentation by automating the process of identifying and counting fish species, thus reducing potential human error and increasing efficiency. Specifically, our research has consisted of the development of various components of the Dutkat system, evaluation through experimentation, exploration of existing data, and organization of machine learning competitions. We have also implemented it from a compliance-by-design perspective to ensure that the system is in compliance with data protection laws and regulations such as GDPR. Our goal with Dutkat is to promote sustainable fishing practices, which aligns with the Sustainable Development Goal 14, while simultaneously protecting the privacy and rights of fishing crews

    Being While Doing: An Inductive Model of Mindfulness at Work

    Get PDF
    Mindfulness at work has drawn growing interest as empirical evidence increasingly supports its positive workplace impacts. Yet theory also suggests that mindfulness is a cognitive mode of “Being” that may be incompatible with the cognitive mode of “Doing” that undergirds workplace functioning. Therefore, mindfulness at work has been theorized as “being while doing,” but little is known regarding how people experience these two modes in combination, nor the influences or outcomes of this interaction. Drawing on a sample of 39 semi-structured interviews, this study explores how professionals experience being mindful at work. The relationship between Being and Doing modes demonstrated changing compatibility across individuals and experience, with two basic types of experiences and three types of transitions. We labeled experiences when informants were unable to activate Being mode while engaging Doing mode as Entanglement, and those when informants reported simultaneous co-activation of Being and Doing modes as Disentanglement. This combination was a valuable resource for offsetting important limitations of the typical reliance on the Doing cognitive mode. Overall our results have yielded an inductive model of mindfulness at work, with the core experience, outcomes, and antecedent factors unified into one system that may inform future research and practice. We did a full hour … of [mindfulness] training… My pager went off like three times. … He\u27s telling us to meditate, and everyone\u27s pager was just beeping. It was not very conducive to meditating. –medical residen

    Neotrance and the psychedelic festival

    Get PDF
    This article explores the religio-spiritual characteristics of psytrance (psychedelic trance), attending specifically to the characteristics of what I call neotrance apparent within the contemporary trance event, the countercultural inheritance of the "tribal" psytrance festival, and the dramatizing of participants' "ultimate concerns" within the festival framework. An exploration of the psychedelic festival offers insights on ecstatic (self-transcendent), performative (self-expressive) and reflexive (conscious alternative) trajectories within psytrance music culture. I address this dynamic with reference to Portugal's Boom Festival

    Simulation Intelligence: Towards a New Generation of Scientific Methods

    Full text link
    The original "Seven Motifs" set forth a roadmap of essential methods for the field of scientific computing, where a motif is an algorithmic method that captures a pattern of computation and data movement. We present the "Nine Motifs of Simulation Intelligence", a roadmap for the development and integration of the essential algorithms necessary for a merger of scientific computing, scientific simulation, and artificial intelligence. We call this merger simulation intelligence (SI), for short. We argue the motifs of simulation intelligence are interconnected and interdependent, much like the components within the layers of an operating system. Using this metaphor, we explore the nature of each layer of the simulation intelligence operating system stack (SI-stack) and the motifs therein: (1) Multi-physics and multi-scale modeling; (2) Surrogate modeling and emulation; (3) Simulation-based inference; (4) Causal modeling and inference; (5) Agent-based modeling; (6) Probabilistic programming; (7) Differentiable programming; (8) Open-ended optimization; (9) Machine programming. We believe coordinated efforts between motifs offers immense opportunity to accelerate scientific discovery, from solving inverse problems in synthetic biology and climate science, to directing nuclear energy experiments and predicting emergent behavior in socioeconomic settings. We elaborate on each layer of the SI-stack, detailing the state-of-art methods, presenting examples to highlight challenges and opportunities, and advocating for specific ways to advance the motifs and the synergies from their combinations. Advancing and integrating these technologies can enable a robust and efficient hypothesis-simulation-analysis type of scientific method, which we introduce with several use-cases for human-machine teaming and automated science
    corecore