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ABSTRACT: 

The European COPERNICUS program provides an unprecedented breakthrough in the broad use and application of satellite remote 

sensing data. Maintained on a sustainable basis, the COPERNICUS system is operated on a free-and-open data policy. Its guaranteed 

availability in the long term attracts a broader community to remote sensing applications. In general, the increasing amount of satellite 

remote sensing data opens the door to the diverse and advanced analysis of this data for earth system science.  

However, the preparation of the data for dedicated processing is still inefficient as it requires time-consuming operator interaction 

based on advanced technical skills. Thus, the involved scientists have to spend significant parts of the available project budget rather 

on data preparation than on science. In addition, the analysis of the rich content of the remote sensing data requires new concepts for 

better extraction of promising structures and signals as an effective basis for further analysis.  

In this paper we propose approaches to improve the preparation of satellite remote sensing data by a geo-database. Thus the time 

needed and the errors possibly introduced by human interaction are minimized. In addition, it is recommended to improve data quality 

and the analysis of the data by incorporating Artificial Intelligence methods. A use case for data preparation and analysis is presented 

for earth surface deformation analysis in the Upper Rhine Valley, Germany, based on Persistent Scatterer Interferometric Synthetic 

Aperture Radar data. Finally, we give an outlook on our future research. 

1. INTRODUCTION

During the last decades satellite remote sensing has become an 

important tool both in scientific earth observation and in data 

provision for informed decisions in politics and public 

administration. For this purpose, the European Commission 

established the COPERNICUS® programme in 2014. For the first 

time, a multitude of satellite remote sensing data are available - 

free and open - on a long-term perspective. This allows the full 

coverage of the earth’s surface with a high temporal resolution. 

Using, e.g., SENTINEL-1 radar data it is both possible to derive 

a highly resolved digital terrain model of the earth as well as 

precise information about surface deformation. 

The mentioned features of the COPERNICUS program are 

highly attractive for a multitude of possible users in science as 

well as in the public and in the private sector. Access to the data 

is provided by means of the Data and Information Access 

Services (DIAS), which provide basic functionalities to 

download the data and to process them to some degree. However, 

typical data preparation sequences consist of many single steps 

and correspondingly advanced skills in data handling are still 

needed, e.g. for the manual extraction of data for a given region 

in subsequent scenes. These steps are expensive in operator time 

and hinder a fast exploitation of the data for the respective 

application.  

One of the main issues that we know about big spatio-temporal 

raster data is a lack of new tools to use available metadata without 
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the problems mentioned before. The new concept should be 

efficient in terms of required run-time and effective in a way that 

the interesting parts of an investigation area are automatically 

selected. Obviously, data analytics should be improved by fitting 

Artificial Intelligence and supervised machine learning methods. 

Then characteristic phenomena can be searched across different 

regions and for different time steps. This refers, e.g., to the 

automatic selection of model components in data processing such 

as for the description of changes for interesting regions.   

In this contribution we describe tailored geo-database operations 

for data preparation. Furthermore, we propose enhanced Machine 

Learning methods to analyse satellite remote sensing data. The 

paper is structured as follows: In section 2 we refer to related 

work followed by section 3 describing our approaches for data 

preparation. In section 4 a use-case is introduced focusing on the 

preparation and analysis of SENTINEL-1 radar data to monitor 

the earth surface deformation in the Upper Rhine Valley, 

Germany. Finally, section 5 summarizes the paper and gives an 

outlook on our future research. 

2. RELATED WORK

In the context of big data analysis as well as 3D geo-information 

science the improvement of data preparation and analysis for 

spatio-temporal data has been extensively discussed (Breunig 

and Zlatanova, 2011; Chen et al., 2014; Lee and Kang, 2015; 

Laney, 2001; Liu et al., 2009; Li et al., 2016; Mazroob et al., 

2018). In particular, parallel query support (Hahn et al., 2002) 
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based on parallel hardware and software architectures (Xiaoqiang 

and Yuejin, 2010; Sugumaran et al., 2012; Lenka et al., 2017; 

IBM big data and analytics hub, 2019; SpatialHadoop, 2019) has 

been investigated. Intensive research has also been carried out in 

the field of raster databases focusing on the efficient storage of 

raster data (Baumann et al., 1997) and services to improve the 

access on raster data for applications in the geosciences (Zhong 

et al., 2011; Ouyang et al., 2013; Hu et al., 2018). The 

appropriateness of existing database management systems to 

handle geospatial big data, has been examined by several authors 

(Amirian et al., 2014; Mazroob et al., 2018). A tailored approach 

for raster data management in geoscientific applications 

considering special requirements, among other things, 

heterogeneous data models, has been introduced by (Baumann et 

al., 2015). Baumann et al (Baumann et al., 2018) have proven 

data cubes as a suitable concept to provide raster data for spatial 

and temporal data analysis, so the code “shipped to the data” is 

used to minimize the communication effort when transporting the 

data from one tool to another. 

As an example of a scalable geospatial data analytics cloud 

platform, Physical Analytics Integrated Repository and Services 

(PAIRS) homogenizes archived and real-time spatial data (Klein 

et al., 2015). It is empowered by Hadoop® and holds a 

parallelized structure by MapReduce (Klein et al., 2015). With 

the aid of distributed file systems such as HDFS® and 

XtreemFS®, the data can be classified for storage and access and 

then the parallel system architectures such as Hadoop® and 

Spark® distribute the computation actions to different 

computers. They work on the basis of the Map-Reduce model 

(Dean et al., 2008), which automatically distributes (Map) the 

calculation steps to the existing computers to execute there and 

merge (Reduce) the intermediate results of the map step into a 

solution (Geospatial World, 2019). The “Divide and Recombine” 

concept parallelizes data processing methods to significantly 

reduce the runtime of methods. The process begins with dividing 

a large amount of data into smaller subsets and with calculating 

the partial result for each subset in parallel. After all, these partial 

results will be recombined to a global result.  

In the fields of geoscience and remote sensing, Artificial 

Intelligence is a pregnant technology to support data handling 

(Mathieu and Aubrecht, 2018). Supervised or unsupervised 

machine learning algorithms, especially neural networks (NNs), 

have been frequently used for regression and classification 

(Haykin, 1994; Bishop, 1995), image recognition and object 

detection (LeCun et al., 2015). Used for classification 

applications such algorithms are usually combined with Support 

Vector Machines (SVMs) (Vapnik, 1998) learning from training 

datasets. For geoscience and remote sensing Lary identified three 

application themes to use AI: code acceleration, empirical 

learning, and classification (Lary, 2010; Lary et al., 2016). 

Multiple radar applications, ground- and satellite-based have 

been proven to work with neural networks (NNs) (Qin et al., 

2004; Alipour Fard et al., 2014; Lombacher et al., 2016). Also, 

geoscientific applications such as the monitoring of landslides 

have been supported by machine-learning methods and produced 

promising results (Korup and Stolle, 2014). Zhu et al. use 

machine learning methods to develop algorithms from signal 

processing and Artificial Intelligence to improve the extraction 

of geoinformation from satellite data (Zhu et al., 2017). 

However, until the present time, the preparation and analysis of 

even small-scale satellite data for scientific use and data analysis 

are very time-consuming processes.  

 

 

3. DATABASE-SUPPORTED PREPARATION AND     

AI-BASED ANALYSIS OF RASTER DATA                                                 

Generally, we can distinguish between two different types of 

applications dealing with big spatio-temporal raster data: 

1) Applications dealing with very large data stores that 

need to be processed as a whole or at least very big 

parts of them at one time in a batch process. In this type 

of applications data are static, but database queries may 

change dynamically, e.g. formulated in the declarative 

Structured Query Language (SQL). 

 

2) Applications dealing with very large data streams to be 

processed in small pieces, but in a real time or near to 

real time. In this type of applications database queries 

are static, i.e. constant during an à priori determined 

period of time, but the data are dynamically changing. 

 

Examples of the first type are applications analysing the earth 

system a posteriori by interpreting big sets of satellite data. An 

example for the second type of applications is real time 

monitoring of extreme events such as volcanic eruptions or 

landslides. Because of their complexity, geospatial big data 

stream systems demand particular techniques and algorithms 

such as distributed computing and interactive analysis (Amirian 

et al., 2014; Beilschmidt et al., 2017).  

In this paper we will concentrate on the first type of applications.  

 

3.1 Improving data preparation 

So far, geoscientists and remote sensing experts have to pass 

through a long process chain across several geo-software systems 

to spatially or/and temporally select especially interesting regions 

or time intervals out of big raster data (see also section 4). 

Furthermore, data errors are detected manually. To automate and 

shorten the process of data preparation significantly, a geo-

database should provide spatial, temporal, and spatio-temporal 

operations on raster data such as: 

 

- “Seamless cutting-out” of an arbitrary region. 

- Intersecting the same region at different time steps (e.g. 

intersection of regions from 25 scenes). 

- Determining the differences of the pixel attributes for 

a region between two time steps. 

- Overlaying raster data from different sources and 

semantics for the same region (e.g. SENTINEL and 

weather data). 

- Automatically checking geometric, topological, and 

temporal constraints on raster data to detect data errors. 

To cut out a region seamlessly means that the data have to be 

selected spatially independent of stripes (into which the satellite 

data is divided) or other - à priori fixed - partitions of the data. 

E.g. queries across several stripes have to be provided 

simultaneously. Furthermore, the temporal selection of the same 

region for several time steps has to be supported by a database 

operation. Another important database query should compute the 

differences between two images of the same region generated at 

two different time steps. Note that the overlay of raster data from 

different sources has to be executed carefully considering 

different semantics and data models. Thus the generation of 

“integrated models” is a sophisticated task that has to be designed 

in detail considering a variety of geometric, topological, and 

temporal constraints. The automatic checking of phase errors in 

interferometric synthetic aperture (InSAR) radar data can be 

executed by setting data constraints such as “the phase must not 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B4-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B4-2020-485-2020 | © Authors 2020. CC BY 4.0 License.

 
486



 

be greater than 2π” up to complex algorithms such as unwrapping 

algorithms. 

The implementation of the mentioned geo-database operations 

requires compliance with additional constraints using meta data 

such as the associated reference system: 

- The reference system of the data for each region has to 

be known. 

- The reference systems of overlaid regions have to be 

equivalent to each other or to be transformed to be 

equivalent. 

- The boundaries of cut out regions must not change 

within a given reference system, i.e. the boundaries 

must be “stable” before inserting the regions again into 

the geo-database after external editing. 

Thus geodetic knowledge about different coordinate systems is 

indispensable for data integration. 

 

3.2 Improving the data analysis 

Using Geo-data cleansing 

Geo-data cleansing - seen as the procedure of correcting 

inaccurate, redundant and corrupt geo-data - can be interpreted as 

the last step of data preparation as well as the first step of data 

analysis. Adapting the workflow of Nelder and Wedderburn 

(1972) we propose to execute the following steps of geo-data 

cleansing: 

- Remove unwanted data including duplicate, redundant, 

and irrelevant data.   

- Verify which version of the results has to be adopted.  

- Predict missing values - categorical or numerical, 

because data analysis algorithms mainly do not accept 

missing data: To manage missing data 

for categorical features, a class is added and this 

handles the case of no missing values. As for 

missing numeric data, the observation should be 

indicated and replaced with a “0” to satisfy the model’s 

algorithm requirement of no missing values enabling it 

to predict the best estimate for missing values rather 

than just the mean (Lee and Nelder, 2002).  

- Delete unwanted observations as irrelevant data: 

Outliers can negatively distort data models, in 

particular linear regression models in comparison with 

decision trees. Therefore, removing outliers will help 

model performance. Irrelevant data usually includes 

duplicate records, missing or incorrect information and 

poorly formatted data sets.  

Using pattern recognition and classification 

AI techniques utilize algorithmic models to analyse data. The 

presence of spatial relationships in satellite pictures is known, 

and a rising method for displaying these relationships is to adjust 

existing AI calculations demonstrated to be powerful for 

investigating spatio-temporal data. Of a few techniques in AI that 

we can use in pattern analysis for remote sensing radar data are 

artificial neural networks (ANNs) and kernel methods such as 

support vector machines (SVM), which utilize kernels to 

complete nonlinear regression or pattern classification (Haworth 

et al. 2014). Another classification method we can utilize is 

Random Forest (RF), because it joins various decision trees 

through bootstrapping (Cutler et al., 2007). 

Other suitable knowledge detection (KD) undertakings to find 

patterns in radar data, is clustering as type of unsupervised 

learning. This method is preferred to reveal unclear or hidden 

structures in a data set and to identify hot spots (Nakaya and 

Yano, 2010) and anomalies in the data. This procedure involves 

finding irregular occasions or examples in data and it requires the 

definition of regular and anomalous occasions and examples, 

which, as the case in spatio-temporal procedures, may develop 

and change after some time. For the analysis of patterns in 

satellite data in general and InSAR data in particular, spatio-

temporal clustering (STC) strategies such as ST-DBSCAN and 

space-time scan statistics (STSS) (Kulldorff et al., 2005) can be 

used to search for spatio-temporal clusters. In case of nonlinearity 

in spatial data, and multi-scale issue and heterogeneity (Foresti et 

al., 2011), KD and STDM strategies are to be used. An advantage 

is that the calculation in Kernel techniques such as Hadoop® 

kernel over extensive informational collections requires only 

moderately high registering resources particularly on an account 

of measurable properties of a space-time arrangement changing 

after some time. Substantial informational collections require the 

use of strategies conveying sets of effectively held information 

models to data streams. Parallel and network calculation can 

likewise be utilized to improve the success of pattern recognition 

techniques (Harris et al., 2010). Be that as it may, there are data 

issues that can't be enhanced with improvements of 

computational proficiency alone. For instance, the problem in 

STC is to display how clusters develop, change, move and 

disperse/vanish in time. This can be accomplished reflectively 

yet is extremely hard to evaluate in time basic applications.  

 

Using Artificial Neural Networks  

The use of artificial neural networks (ANN) in classification of 

remotely sensed data is utilized to perceive designs in 

environments patterns specifically the regulated Multilayer 

Perception (MLP) and the unsupervised self-Organizing 

Mapping (SOM) (Babu, 1997). In the classification procedure is 

an item occurrence division process that will profit by using 

single or multilayer perceptrons to survey the commitment to out-

put associations (Kanellopoulos et al., 1997). MLP does a back 

propagation (BP) computation process utilizing a lot of covered 

up and yield layers (Rumelhart et al, 1986). The delta rule utilized 

in BP to invigorate the loads is known to be conflicting in its 

exhibition when managing numerous operational segments 

including the size and nature of the planning educational list, sort 

out building, getting ready parameters, and over-fitting issues 

which can be difficult (Cuiying et al, 2009). SOM frameworks 

may be well used as they were observed to be progressively 

steady in separating complex multivariate data (Wellar et al., 

2006). This is brought about by SOM using an info layer that can 

get multi input sources and a multi measurements yield layer 

actualizing Euclidean separation to choose the triumphant hub 

with the nearest weight vector which can be refreshed and its 

neighbouring hubs amid preparing the system. This empowers 

the SOM system to hold the topological connections in the 

information, by which comparable picture characterization 

purposes of information are assembled as the neighbouring hubs 

in the aggressive layer (Chen, 1999).  

To join estimations to shape a persistent time arrangement of 

detected information to 2006 it is important to represent the 

inclinations between informational collections. ANN is used to 

take in the mapping from one lot of estimations onto another as a 

capacity. These estimations are then utilized to create normal 

profiles. The reason for the NN mapping of remotely detected 

information is essentially to get familiar with the inclination as 

an element of area. So utilizing neural systems enables us to: 

Form a consistent record of information utilizing perceptions 

from a few space-borne instruments utilizing neural systems. 

Persevering predisposition between informational indexes can be 

taken care of by improving grouping calculations by utilizing 
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SVM to improve the relationship coefficient between 

informational indexes by permitting the AI calculations to 'right' 

the inclination brought about by for instance the surface sort and 

the presentation of other auxiliary factors that clarify the 

fluctuation between informational collections (Lary et al., 2009). 

Using Support Vector Machines  

To prepare Support vector machines (SVMs), which are known 

for great speculation execution, a quadratic programming (QP) 

process should be carried out, which is costly on memory 

prerequisites and preparing time for Big Data applications 

(Cristanini et al., 2000). The SVM choice capacity sends support 

vectors, which are a little piece of preparing data that is used to 

tackle a QP. Consequently, knowing the required example for the 

help vector ahead of time we can utilize a prepared set of answers 

for arrangement with a lot littler QP issues.  

Advancements in SVM preparations have delivered an 

assortment of strategies for classifications of remotely sensed 

data, for example, choosing designs dependent on neighbourhood 

properties close the choice limit (Joachims, 1999), k-implies 

bunching to pick designs from the preparation set (Shin and Cho, 

2003), a β-skeleton calculation to distinguish bolster vectors 

(Zhang and King, 2002), Mahalanobis separation to evaluate 

limit focuses (Abe and Inoue, 2001), and a subset of preparing 

precedents utilizing arbitrary testing in the decreased SVM 

(RSVM) setting (Lee and Mangasarian, 2001). Different systems 

were acquainted with lessen preparing set size, for example, to 

base the choice of a preparation of data on a factual certainty 

measure, and to utilize the insignificant separation from a 

preparation guide to the preparation instances of an alternate 

class as a model to choose designs close to the choice limit. A 

similar investigation of the outcomes acquired by the SVM 

classifiers prepared with information chosen by arbitrary 

inspecting, and by information chose on the separation from a 

preparation guide to the ideal isolating hyper-plane demonstrated 

that a size of preparing information can be essentially diminished 

without debasing the presentation of the subsequent SVM 

classifier. The correlation likewise demonstrated that arbitrary 

inspecting performs well with practically identical outcomes 

those acquired by the technique dependent on the ideal SVM 

yields and that consolidating the class appropriation data in the 

preparation set frequently improves the proficiency of the 

information determination strategies (Wang et al., 2006).  

According to the Karush– Kuhn– Tucker (KKT) optimality 

conditions, the help vector decides the last isolating hyper-plane. 

In all actuality, the quantity of help vectors is required to be a lot 

littler than the absolute number of preparing precedents. It will 

improve the speed of SVM preparing altogether if the 

arrangement of help vectors is utilized for preparing, which will 

influence the answer for be actually equivalent to if the entire 

preparing set was utilized.  

To recognize the help vectors, which are preparing precedents 

that are near choice limits, the full QP issue should be 

comprehended. Hence, the speed of SVM preparing will be 

improved without debasing the speculation execution in the event 

that we can locate a decent calculation strategy to locate a little 

arrangement of preparing information with high likelihood that it 

contains the ideal help vectors. The measure of the diminished 

preparing set can even now be bigger than the arrangement of 

wanted help vectors. The SVM preparing pace will be essentially 

improved if its size is a lot less than the extent of the all out 

preparing set. For a little preparing set, standard QP solvers, for 

example, MATLAB QP®, LOQO®, MINOS® and CPLEX®, 

schedules, can be used to get the arrangement. In any case, for an 

expansive preparing set, issues brought about by substantial 

memory necessities make arrangements obstinate. To stay away 

from this issue, various arrangements have been proposed 

utilizing SVM arrangement and the (KKT) conditions, for 

example, piecing which tackles a QP issue comprising of non-

zero Lagrange multipliers αi from the last advance and a portion 

of the αi that damage the KKT conditions. The measure of the 

QP issue fluctuates however at long last equivalents the quantity 

of non-zero Lagrange multipliers. At the last advance, the whole 

arrangement of non-zero Lagrange multipliers are distinguished 

and the QP issue is unravelled (Huang and Lee, 2004).  

Another arrangement, breaks the QP issue into a lot of littler 

arrangements of QP sub-issues which dependably has at any rate 

one precedent that abuses KKT conditions which will prompt the 

ideal arrangement (Vapink, 1984). Finally, sequential minimal 

optimization (SMO) is another technique - proposed to iteratively 

take care of QP sub-issues of size 2 - which can be unraveled 

systematically without summoning a quadratic streamlining 

agent. This strategy performed quicker by numerous requests of 

extent than the piecing technique. 

Using Data Fusion 

Data Fusion – seen as the processes of associating, correlating, 

and combining multiple resources of acquired data - may 

improve the quality of geo-data significantly. In remote sensing, 

often sensors provide multiple sources of data and require an 

automatic data management system to configure the sequencing, 

scheduling and to evaluate the reliability of the data sources. 

Thus the data fusion system detects the characteristic parameters 

of the received data as an entity and also detects the noise data 

caused by transmission. It then proceeds to estimate the 

classification of model parameters. The numerical model of the 

infused data incorporates the data estimations of varying sources 

of data of similar applications and removes redundant and 

conflicting observations data to optimize the system’s 

performance. The multisensory data can then be used at all levels 

of the data processing system such as data Layer and decision 

layer (Han, 2018). 

 

4. USE CASE: SENTINEL-1 RADAR DATA  

4.1 Data description 

The European Copernicus satellites produce one of the largest 

datasets in the world in the scale of a daily volume of nearby 20 

terabytes. The evaluation of these datasets is more and more a 

technological obstacle for space research and technology and one 

of the main challenges by some organizations such as the German 

Aerospace Center (DLR), European Space Agency (ESA) and 

the European Union Satellite Centre (GISPoint, 2019).  

In our use case we focus on analysis of the Earth’s surface 

deformation based on measurement data of the Sentinel-1 

satellite mission. The Sentinel-1, a Synthetic Aperture Radar 

(SAR) mission of the ESA Copernicus program consists of two 

polar-orbiting satellites (Sentinel-1A and Sentinel-1B) to gain 

continuous C-band radar imagery. Both satellites can map the 

globe together once every 6 days in wide-swath imaging mode. 

All Sentinel-1 SAR data have predefined product types and 

include Level-0, detected Level-1 and Level-2 ocean products. 

Raw Level-0 products commonly have a size of 1GB and Level-

1 data between 1GB and 8GB per product. Sentinel Level-0 and 

Level-1 products are broken into 'slices' of prescribed length 

along a strip, because these stand-alone products are better 

manageable for the end-users (ESA, 2019).  

In our studies, we work with Level-1 Single Look Complex 

(SLC) products with a size between 4GB and 5GB. Using 

StaMPS® (Stanford Method for PS) for Persistent Scatterer (PS) 

analysis, at least 12 interferograms are required (Hooper et al., 
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2007), which results in datasets of at least 50GB. Because of the 

interferometric wide swath acquisition mode, one data slice 

consists of three swaths, which are themselves divided into eight 

to ten bursts. 

 

4.2 Data structure 

A variation of Standard Archive Format for Europe (SAFE) is 

applied to distribute and archive SENTINEL data, which 

includes binary image data and XML product metadata. In 

Table 1 and also Figure 1 we have a look into a SENTINEL 

product data structure (ESA, 2019). First issue regarding 

metadata to be addressed here is that SENTINEL metadata 

contains information about the geographical coverage of the 

entire scene, the number of bursts, their start of recording time, 

and their end of recording time. However, the metadata does not 

provide information about the direct relationship between burst 

number and geographic coverage. 

 
File or Folder Content 

manifest.safe General product information and characteristics of 
the measurement data in XML 

Measurements 

folder 

Measurement data and Image data in various 

binary format 

Preview folder Quicklooks in KML, PNG, HTML 

Annotation 

folder  

Product and calibration metadata in XML 

Support folder XML schemes about the format of the 

measurement 

Table 1: A SENTINEL product folder 

 

 

Figure 1: File Structure for Level-1 Sentinel-1 products (ESA, 

2019) 

 

4.3 Current manual data preparation 

Our processing is built on the free software-packages SNAP 

(Sentinel Application Platform, ESA) and StaMPS (see 

Figure. 3). Since we work with SLC data, the data is already 

focused, but still exists in the slant-range geometry. 

The use of the SNAP programing interface in Python enables a 

largely automated processing chain. However, since some steps 

require manual intervention, the automation is inevitably 

interrupted, thus increasing the time required for the processing. 

 

Figure 2: Workflow for PS analysis using Sentinel-1 data 

 

The workflow begins with the viewing of the data. It must first 

be checked which bursts are needed to fully cover the area of 

interest. Each scene has to be opened separately in SNAP to 

determine the exact geographic coverage of the scene or 

individual bursts. In addition, if the region of interest is not 

completely covered by one slice, then two or more slices have to 

be joined together. If it is certain which bursts have to be selected, 

they can be separated using the "TOPSAR-Split" step. In our 

workflow the preprocessing also includes the application of the 

precise orbit files and a calibration of the amplitude. Since the 

visual aids in SNAP are limited to determining the correct bursts, 

a visual check of whether the correct bursts have been selected 

for all slices is essential after preprocessing. Without doubt this 

step is critical with respect to possibly undetected errors 

introduced by human interaction.  

A visual check is also required after the "co-registration". This 

step needs a large amount of memory and can therefore cause 

individual scenes not to be correctly or completely stored without 

SNAP generating an error message. 

The application of the step "TOPSAR-Merge" is equally 

depending on the location of the area of interest and the coverage 

of the slice. Here several swaths can be put together before the 

step "Subset", in which the area can be cut out. Again, it is 

recommended to manually check the result of these steps. 

The PS analysis using StaMPS can be divided into three blocks: 

the determination of the PS points, phase unwrapping and the 

separation of the phase components containing the deformation 

signal, such as the estimation of the deformation. 

Phase unwrapping is a crucial problem in the PS processing 

chain. Only the unwrapped phase relates to the Earth’s surface 

deformation signal. However, the interferometric phase is only 

determined modulo 2. The resolving of these phase ambiguities 

is highly prone to errors (Hanssen, R. F., 2001, Hooper, 2010). 

In our workflow, we carry out visual checks after each of these 

blocks, adjust the parameters based on this and, if necessary, 

repeat the steps already taken. 
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Both when working with SNAP and when working with StaMPS, 

most of the time is spent performing visual checks and adjusting 

parameters based on experience. In addition, errors, e.g., due to 

problems with unwrapping, still occur and can only be found by 

visually reviewing the results. 

 

4.4 Improving data preparation 

There are some weaknesses in raster data platforms such as 

SNAP, which we face by a new workflow. The aim of this 

research is to design and develop a platform to improve the 

management and processing of big raster data focusing on the 

data from the Sentinel-1 mission.  

 

4.4.1 Visualization of the datasets and bursts 

To access a specific spatial region in the downloaded dataset in 

SNAP, the user cannot see the bursts in a visualized map to select 

them from there. Therefore, one of our missions is to visualize 

the data bursts on a map and prepare the possibility for the user 

to select the desired dataset of a desired location independent of 

the bursts. The user should be able to select specific datasets by 

individual filters such as characters, spatial locations, data 

sources or missions, time, applications, etc. 

 

4.4.2 Integration of various datasets 

The integration of various datasets and the ability to compare 

them in requested time stamps or time intervals reduces the 

conflicts of out-of-platform's comparison of various data sources 

and will increase the total speed of many user requests. The 

storage of heterogeneous data together needs a mutual 

georeferencing because of different databases, origins and 

imaging methods. Artificial neural network methods can be used 

to transform the coordinates of datasets and automatization of 

georeferencing process. 

 

4.5 Improving data analysis  

By the analysis of different satellite observation data, we faced 

heterogeneity in the data, because of the different sensor 

specifications of the different satellite systems and also variations 

in the data resolution or imaging geometry. Therefore, it is 

necessary to homogenize these various satellite data for the 

efficient and fast processing of a large amount of data (Sips et al., 

2018). To homogenize the input data, with consideration of 

geometric reference unifier, all satellite data has to be adjusted to 

the specifications, which the user defines. In parallel, the 

accuracy for each dataset has to be calculated to guaranty the data 

quality. This accuracy weighting can be used for different 

applications to find the best data sources for data analysis. The 

datasets should be stored in a mature way, therefore to the 

partitioning of geo-data we can split them based on spatial 

nearness to reduce the number of items passing through a query 

process. 

One of the obstacles to facing the analysis of big raster data is 

that the runtime required by an analysis method increases rapidly 

with the size of the input data. For example, to classify land use 

in low spatial resolution satellite data, the Random Forest 

algorithm (Breiman, 2001) needs only a few minutes to run but 

high spatial resolution data such as Sentinel 2 data needs weeks 

to classify through this algorithm. Therefore, it is necessary to 

adjust scalable analysis methods to handle large amounts of 

geodata efficiently (Sips et al., 2018). To decrease query 

processing time, the high frequency queried areas must be 

partitioned more than the less required areas.  

As mentioned in section 4.3, there are some improvements 

needed in our workflow which can gain benefits from Artificial 

Intelligence methods such as Support Vector Machines, Mean-

shift-clustering and neural networks. We need to provide datasets 

only from bursts which fully cover the queried area, otherwise 

the joined dataset from two or more bursts has to be generated, 

which exactly includes the area. The correction process and 

calibrations of the amplitude, the phase unwrapping errors and 

the estimation of the deformation has to be automized by AI 

methods instead of executing visual checks.  

 
5. CONCLUSIONS AND OUTLOOK  

In this paper we presented approaches to improve the preparation 

of spatio-temporal satellite remote sensing data by operations of 

a geo-database. Furthermore, proposals for the advancement of 

data analysis by AI methods have been presented and concreted 

by a use case for earth surface deformation analysis of the Upper 

Rhine Valley, Germany, using SENTINEL-1 raster data. In our 

future research we are going to overcome the difficulties in data 

preparation mentioned in section 4.3. We will identify typical 

data errors such as unwrapping errors automatically with the aid 

of artificial neural networks and other AI techniques. Finally, it 

is our goal to apply some of the introduced methods to support 

for earth observation applications in the United Arab Emirates. 
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