1,270 research outputs found

    Long-tail Relation Extraction via Knowledge Graph Embeddings and Graph Convolution Networks

    Full text link
    We propose a distance supervised relation extraction approach for long-tailed, imbalanced data which is prevalent in real-world settings. Here, the challenge is to learn accurate "few-shot" models for classes existing at the tail of the class distribution, for which little data is available. Inspired by the rich semantic correlations between classes at the long tail and those at the head, we take advantage of the knowledge from data-rich classes at the head of the distribution to boost the performance of the data-poor classes at the tail. First, we propose to leverage implicit relational knowledge among class labels from knowledge graph embeddings and learn explicit relational knowledge using graph convolution networks. Second, we integrate that relational knowledge into relation extraction model by coarse-to-fine knowledge-aware attention mechanism. We demonstrate our results for a large-scale benchmark dataset which show that our approach significantly outperforms other baselines, especially for long-tail relations.Comment: To be published in NAACL 201

    Revisiting Unsupervised Relation Extraction

    Full text link
    Unsupervised relation extraction (URE) extracts relations between named entities from raw text without manually-labelled data and existing knowledge bases (KBs). URE methods can be categorised into generative and discriminative approaches, which rely either on hand-crafted features or surface form. However, we demonstrate that by using only named entities to induce relation types, we can outperform existing methods on two popular datasets. We conduct a comparison and evaluation of our findings with other URE techniques, to ascertain the important features in URE. We conclude that entity types provide a strong inductive bias for URE.Comment: 8 pages, 1 figure, 2 tables. Accepted in ACL 202

    Distantly Labeling Data for Large Scale Cross-Document Coreference

    Full text link
    Cross-document coreference, the problem of resolving entity mentions across multi-document collections, is crucial to automated knowledge base construction and data mining tasks. However, the scarcity of large labeled data sets has hindered supervised machine learning research for this task. In this paper we develop and demonstrate an approach based on ``distantly-labeling'' a data set from which we can train a discriminative cross-document coreference model. In particular we build a dataset of more than a million people mentions extracted from 3.5 years of New York Times articles, leverage Wikipedia for distant labeling with a generative model (and measure the reliability of such labeling); then we train and evaluate a conditional random field coreference model that has factors on cross-document entities as well as mention-pairs. This coreference model obtains high accuracy in resolving mentions and entities that are not present in the training data, indicating applicability to non-Wikipedia data. Given the large amount of data, our work is also an exercise demonstrating the scalability of our approach.Comment: 16 pages, submitted to ECML 201

    Deep learning methods for knowledge base population

    Get PDF
    Knowledge bases store structured information about entities or concepts of the world and can be used in various applications, such as information retrieval or question answering. A major drawback of existing knowledge bases is their incompleteness. In this thesis, we explore deep learning methods for automatically populating them from text, addressing the following tasks: slot filling, uncertainty detection and type-aware relation extraction. Slot filling aims at extracting information about entities from a large text corpus. The Text Analysis Conference yearly provides new evaluation data in the context of an international shared task. We develop a modular system to address this challenge. It was one of the top-ranked systems in the shared task evaluations in 2015. For its slot filler classification module, we propose contextCNN, a convolutional neural network based on context splitting. It improves the performance of the slot filling system by 5.0% micro and 2.9% macro F1. To train our binary and multiclass classification models, we create a dataset using distant supervision and reduce the number of noisy labels with a self-training strategy. For model optimization and evaluation, we automatically extract a labeled benchmark for slot filler classification from the manual shared task assessments from 2012-2014. We show that results on this benchmark are correlated with slot filling pipeline results with a Pearson's correlation coefficient of 0.89 (0.82) on data from 2013 (2014). The combination of patterns, support vector machines and contextCNN achieves the best results on the benchmark with a micro (macro) F1 of 51% (53%) on test. Finally, we analyze the results of the slot filling pipeline and the impact of its components. For knowledge base population, it is essential to assess the factuality of the statements extracted from text. From the sentence "Obama was rumored to be born in Kenya", a system should not conclude that Kenya is the place of birth of Obama. Therefore, we address uncertainty detection in the second part of this thesis. We investigate attention-based models and make a first attempt to systematize the attention design space. Moreover, we propose novel attention variants: External attention, which incorporates an external knowledge source, k-max average attention, which only considers the vectors with the k maximum attention weights, and sequence-preserving attention, which allows to maintain order information. Our convolutional neural network with external k-max average attention sets the new state of the art on a Wikipedia benchmark dataset with an F1 score of 68%. To the best of our knowledge, we are the first to integrate an uncertainty detection component into a slot filling pipeline. It improves precision by 1.4% and micro F1 by 0.4%. In the last part of the thesis, we investigate type-aware relation extraction with neural networks. We compare different models for joint entity and relation classification: pipeline models, jointly trained models and globally normalized models based on structured prediction. First, we show that using entity class prediction scores instead of binary decisions helps relation classification. Second, joint training clearly outperforms pipeline models on a large-scale distantly supervised dataset with fine-grained entity classes. It improves the area under the precision-recall curve from 0.53 to 0.66. Third, we propose a model with a structured prediction output layer, which globally normalizes the score of a triple consisting of the classes of two entities and the relation between them. It improves relation extraction results by 4.4% F1 on a manually labeled benchmark dataset. Our analysis shows that the model learns correct correlations between entity and relation classes. Finally, we are the first to use neural networks for joint entity and relation classification in a slot filling pipeline. The jointly trained model achieves the best micro F1 score with a score of 22% while the neural structured prediction model performs best in terms of macro F1 with a score of 25%

    Answering Complex Questions by Joining Multi-Document Evidence with Quasi Knowledge Graphs

    No full text
    Direct answering of questions that involve multiple entities and relations is a challenge for text-based QA. This problem is most pronounced when answers can be found only by joining evidence from multiple documents. Curated knowledge graphs (KGs) may yield good answers, but are limited by their inherent incompleteness and potential staleness. This paper presents QUEST, a method that can answer complex questions directly from textual sources on-the-fly, by computing similarity joins over partial results from different documents. Our method is completely unsupervised, avoiding training-data bottlenecks and being able to cope with rapidly evolving ad hoc topics and formulation style in user questions. QUEST builds a noisy quasi KG with node and edge weights, consisting of dynamically retrieved entity names and relational phrases. It augments this graph with types and semantic alignments, and computes the best answers by an algorithm for Group Steiner Trees. We evaluate QUEST on benchmarks of complex questions, and show that it substantially outperforms state-of-the-art baselines

    Knowledge Base Population using Semantic Label Propagation

    Get PDF
    A crucial aspect of a knowledge base population system that extracts new facts from text corpora, is the generation of training data for its relation extractors. In this paper, we present a method that maximizes the effectiveness of newly trained relation extractors at a minimal annotation cost. Manual labeling can be significantly reduced by Distant Supervision, which is a method to construct training data automatically by aligning a large text corpus with an existing knowledge base of known facts. For example, all sentences mentioning both 'Barack Obama' and 'US' may serve as positive training instances for the relation born_in(subject,object). However, distant supervision typically results in a highly noisy training set: many training sentences do not really express the intended relation. We propose to combine distant supervision with minimal manual supervision in a technique called feature labeling, to eliminate noise from the large and noisy initial training set, resulting in a significant increase of precision. We further improve on this approach by introducing the Semantic Label Propagation method, which uses the similarity between low-dimensional representations of candidate training instances, to extend the training set in order to increase recall while maintaining high precision. Our proposed strategy for generating training data is studied and evaluated on an established test collection designed for knowledge base population tasks. The experimental results show that the Semantic Label Propagation strategy leads to substantial performance gains when compared to existing approaches, while requiring an almost negligible manual annotation effort.Comment: Submitted to Knowledge Based Systems, special issue on Knowledge Bases for Natural Language Processin

    Product Question Answering in E-Commerce: A Survey

    Full text link
    Product question answering (PQA), aiming to automatically provide instant responses to customer's questions in E-Commerce platforms, has drawn increasing attention in recent years. Compared with typical QA problems, PQA exhibits unique challenges such as the subjectivity and reliability of user-generated contents in E-commerce platforms. Therefore, various problem settings and novel methods have been proposed to capture these special characteristics. In this paper, we aim to systematically review existing research efforts on PQA. Specifically, we categorize PQA studies into four problem settings in terms of the form of provided answers. We analyze the pros and cons, as well as present existing datasets and evaluation protocols for each setting. We further summarize the most significant challenges that characterize PQA from general QA applications and discuss their corresponding solutions. Finally, we conclude this paper by providing the prospect on several future directions

    SANTA: Separate Strategies for Inaccurate and Incomplete Annotation Noise in Distantly-Supervised Named Entity Recognition

    Full text link
    Distantly-Supervised Named Entity Recognition effectively alleviates the burden of time-consuming and expensive annotation in the supervised setting. But the context-free matching process and the limited coverage of knowledge bases introduce inaccurate and incomplete annotation noise respectively. Previous studies either considered only incomplete annotation noise or indiscriminately handle two types of noise with the same strategy. In this paper, we argue that the different causes of two types of noise bring up the requirement of different strategies in model architecture. Therefore, we propose the SANTA to handle these two types of noise separately with (1) Memory-smoothed Focal Loss and Entity-aware KNN to relieve the entity ambiguity problem caused by inaccurate annotation, and (2) Boundary Mixup to alleviate decision boundary shifting problem caused by incomplete annotation and a noise-tolerant loss to improve the robustness. Benefiting from our separate tailored strategies, we confirm in the experiment that the two types of noise are well mitigated. SANTA also achieves a new state-of-the-art on five public datasets.Comment: Findings of ACL202
    corecore