306 research outputs found

    Technology and Management for Sustainable Buildings and Infrastructures

    Get PDF
    A total of 30 articles have been published in this special issue, and it consists of 27 research papers, 2 technical notes, and 1 review paper. A total of 104 authors from 9 countries including Korea, Spain, Taiwan, USA, Finland, China, Slovenia, the Netherlands, and Germany participated in writing and submitting very excellent papers that were finally published after the review process had been conducted according to very strict standards. Among the published papers, 13 papers directly addressed words such as sustainable, life cycle assessment (LCA) and CO2, and 17 papers indirectly dealt with energy and CO2 reduction effects. Among the published papers, there are 6 papers dealing with construction technology, but a majority, 24 papers deal with management techniques. The authors of the published papers used various analysis techniques to obtain the suggested solutions for each topic. Listed by key techniques, various techniques such as Analytic Hierarchy Process (AHP), the Taguchi method, machine learning including Artificial Neural Networks (ANNs), Life Cycle Assessment (LCA), regression analysis, Strength–Weakness–Opportunity–Threat (SWOT), system dynamics, simulation and modeling, Building Information Model (BIM) with schedule, and graph and data analysis after experiments and observations are identified

    Sustainable design guidelines for new and existing schools in Egypt

    Get PDF
    As a global society, we are faced with an ever-growing number of sustainability challenges in the social, environmental and economic sectors. Visions for addressing such challenges have been put forward in international blueprints and policy agreements on advancing sustainable development. In these documents and agreements, education has been identified as a crucial avenue for pushing forward sustainable behaviors. Education is the fundamental element for the development of any nation, and its shortage has a direct effect on the social, environmental and economic development of the country (El Baradei & Baradei, 2004). Turning schools into sustainable schools has been a research and policy focus for years, especially throughout the UN Decade of Education for Sustainable Development. Building codes and practices play an important role in turning schools into places of sustainable learning and behavior. Previous research has addressed the concept of sustainable schools extensively, in the lights of the sustainable school design criteria and the positive impacts of having sustainable physical spaces for education. However, none cater for the Egyptian context, and are simultaneously based on building assessment standards, as well as the integration of appropriate social, environmental, and economic sustainability themes. The research project explores the requirements of Egyptian schools in the implementation of sustainable school designs and architectural changes. The thesis takes a qualitative research method with an inductive approach, in which theory development is based on and evolves with the study\u27s findings. The thesis will make suggestions for the content of a new guideline, based on the available literature as well as on the analysis of detailed data collected based on the observation of school grounds and daily school routines and procedures during a series of school visits. The directing parameters of the guideline are based on sustainable building assessment guidelines, Egypt\u27s pressing social, economic and environmental concerns, pedagogy of educational environments, students\u27 social, psychological, and developmental needs, in order to develop a holistic framework. The guideline is divided into two main sections; new and existing schools. The guideline is further divided into three main sustainability categories: energy, water, and habitat; which is following the same category division adopted by EGGBC in the Tarsheed guidelines. The procedures of the research use a case study approach that focuses on one public school in Cairo, Gamal Abd El-Nasser which is located in Boulaq El Dakrour (BD), one of the poorest informal areas located in the western urban area of Greater Cairo within the boundaries of Giza Governorate. Criteria for selecting the school as a case study included choosing a preparatory school where the overall school infrastructure and conditions were of medium quality standards, making the school a potential candidate for upgrading its school infrastructure and processes to become a sustainable school in the future. The developed guideline is implemented in the case study school to demonstrate the flexibility, affordability and simplicity of attaining the required credits within the guidelines. The school scores a total of 9 out of 26 points in the Energy category, 7 out of 18 points in the Water category, 3 out of 12 points in the Indoor Environmental Quality sub-category, 6 out of 6 points in the Materials sub-category, and 36 out of 41 points in Sustainable Sites sub-category. This provides a sum of 56 out of 100 points, which awards the school a silver rating

    The future of Cybersecurity in Italy: Strategic focus area

    Get PDF
    This volume has been created as a continuation of the previous one, with the aim of outlining a set of focus areas and actions that the Italian Nation research community considers essential. The book touches many aspects of cyber security, ranging from the definition of the infrastructure and controls needed to organize cyberdefence to the actions and technologies to be developed to be better protected, from the identification of the main technologies to be defended to the proposal of a set of horizontal actions for training, awareness raising, and risk management

    Developing a home assessment instrument for the disabled elderly.

    Get PDF
    Senior citizens are a rapidly growing portion of our population. This large group of older people has increased the demand for commercial accessible housing such as nursing homes and assisted living facilities. Due to the inflexible design of older homes, the elderly have been forced to move to in such types of housing. The high price of nursing homes and the strong desire the elderly have to remain in their existing homes support the need for a more cost effective and accessible way to live. Therefore, it was the purpose of this research project to develop an assessment instrument to determine the degree of accessibility of an existing older home in Oklahoma City, Oklahoma which is representative of an older home typically inhabited by the elderly. An assessment instrument was developed to evaluate accessibility in the areas of mobility and visual disability. At the end of this thesis study one can use the results of this assessment instrument to create designs correcting problems relating to these inaccessible areas as they are identified by the instrument. Also included in the development of this instrument were considerations for elements that research has indicated increases the quality of life for the elderly. After using the newly designed assessment instrument on the home utilized for this case study, the noncompliant elements were identified and addressed. New design solutions were drawn in order to illustrate the method used to rectify the problem areas and elements identified as insufficient by the assessment instrument. An effort to create design solutions that were aesthetically pleasing that did not appear institutionalized was also a goal of this research project

    Multiple Criteria Analysis of the Life Cycle of the Built Environment

    Get PDF
    To design and achieve effective the life cycle of the built environment a complex analysis of its stages as well as stakeholders, their aims and potentialities is needed. The effect of micro, meso and macro environmental factors should also be taken into account. A thorough built environment’s life cycle (brief; design; raw material extraction, transport and processing; construction materials production and distribution; construction; use, repair and maintenance; demolition; disposal, reuse, or recycling) analysis is quite difficult to undertake, because a buildings and its environment are a complex system (technical, technological, economical, social, cultural, ecological, etc.), where all sub-systems influence the total efficiency performance and where the interdependence between sub-systems play a significant role. Various stakeholders (clients, users, architects, designers, utilities engineers, economists, contractors, maintenance engineers, built environment material manufacturers, suppliers, contractors, finansing institutions, local government, state and state institutions) are involved in the life cycle of the built environment, trying to satisfy their needs and affecting its efficiency. The level of the efficiency of the life cycle of the built environment depends on a number of variables, at three levels: micro, meso and macro level. The problem is how to define an efficient built environment life cycle when a lot of various parties are involved, the alternative project versions come to hundreds thousand and the efficiency changes with the alterations in the environment conditions and the constituent parts of the process in question. Moreover, the realization of some objectives seems more rational from the economic perspective thought from the other perspectives they have various significance. Therefore, it is considered that the efficiency of a built environment life cycle depends on the rationality of its stages as well as on the ability to satisfy the needs of the stakeholders and the rational character of environment conditions. Formalized presentation of the research shows how changes in the environment and the extent to which the goals pursued by various stakeholders are satisfied cause corresponding changes in the value and utility degree of a built environment life cycle. With this in mind, it is possible to solve the problem of optimization concerning satisfaction of the needs at reasonable expenditures. This requires the analysis of the built environment life cycle versions allowing to find an optimal combination of goals pursued and finances available. References to the most modern world scientific literature sources are presented in the monograph. The monograph is prepared for the researchers, MSc and PhD students of civil engineering, construction management and real estate development. The book may be useful for other researchers, MSc and PhD students of economics, management and other specialities. The edition was recommended by the Committe of Studies of VGTU Faculty of Civil Engineering. The publication of monograph was funded by European Social Fund according to project No. VP1-2.2-ŠMM-07-K-02-060 Development and Implementation of Joint Master’s Study Programme “Sustainable Development of the Built Environment”.The edition was recommended by the Committe of Studies of VGTU Faculty of Civil Engineering. The publication of monograph was funded by European Social Fund according to project No. VP1-2.2-ŠMM-07-K-02-060 Development and Implementation of Joint Master’s Study Programme “Sustainable Development of the Built Environment”

    CIRCULAR ARCHITECTURE: MODELS AND STRATEGIES TO REUSE AND RECYCLE BUILDINGS

    Get PDF
    How we design, construct and live in our houses as well as go to work can mitigate carbon dioxide (CO2) emissions and global climate change. Furthermore, the complex world we live in is in an ongoing transformation process. The housing shortage problem is increasing as the world population and cities are increasingly growing. Thereby, we must think of all the other issues that come along with population growth, such as increased demand for built space, mobility, expansion of cities into green areas, use of resources, and materials scarcity. Various projects from history have used alternatives to solve the problem of social housing, such as increasing density in cities through housing complexes, fast and low-cost constructions with prefabricated methods and materials, and modularisation systems. However, the current architecture is not designed to meet users’ future needs and reduce the environmental impact. A proposal to change this situation would be to go back to the beginning of architecture’s conception and to design it differently. In addition, nowadays, there is an increasing focus on moving towards sustainable and circular living spaces based on shared, adaptable and modular built environments to improve residents’ quality of life. For this reason, the main objective of this thesis is to study the potential of architecture that can reconfigure spatially and temporally, and produce alternative generic models to reuse and recycle architectural elements and spaces for functional flexibility through time. To approach the discussion, a documentary research methodology was applied to study the modular, prefabricated and ecological architectural typologies to address recyclability in buildings. The Atlas with case studies and architectural design strategies emerged from the analyses of projects from Durant to the 21st century. Furthermore, this thesis is a part of the research project Eco-Construction for Sustainable Development (ECON4SD), which is co-funded by the EU in partnership with the University of Luxembourg, and it presents three new generic building typologies. They are named according to their strong characteristics: Prototype 1 - Slab typology, a building designed as a concrete shelf structure in which timber housing units can be plugged in and out; Prototype 2 - Tower typology, a tower building with a flexible floor plan combining working and residential facilities with adjacent multi-purpose facilities; and Prototype 3 - Block typology, a structure characterised by the entire disassembly. The three new typologies combine modularity, prefabrication, flexibility and disassembly strategies to address the increasing demand for multi-use, reusable and resourceefficient housing units. The prototypes continually adapt to the occupants’ needs as the infrastructure incorporates repetition, exposed structure, central core, terrace, open floors, unfinished spaces, prefabrication, combined activities, and have reduced and different housing unit sizes, in which parts can be disassembled. They also densify the region that they are being implemented in. Moreover, the new circular typologies can offer more generous public and shared space for the occupants within the same building size as an ordinary building. The alternative design allows the reconversion of existing buildings or the reconstruction of the same buildings in other places reducing waste and increases its useful lifespan. Once the building is adapted and reused as much as possible, and the life cycle comes to an end, it can be disassembled, and the materials can be sorted for reusable or recyclable resources. The results demonstrate that circular architecture is feasible, realistic, adapts through time, increases material use, avoids unnecessary demolition, reduces construction waste and CO2 emissions and extends the useful life of the buildings

    Transforming our World through Universal Design for Human Development

    Get PDF
    An environment, or any building product or service in it, should ideally be designed to meet the needs of all those who wish to use it. Universal Design is the design and composition of environments, products, and services so that they can be accessed, understood and used to the greatest extent possible by all people, regardless of their age, size, ability or disability. It creates products, services and environments that meet people’s needs. In short, Universal Design is good design. This book presents the proceedings of UD2022, the 6th International Conference on Universal Design, held from 7 - 9 September 2022 in Brescia, Italy.The conference is targeted at professionals and academics interested in the theme of universal design as related to the built environment and the wellbeing of users, but also covers mobility and urban environments, knowledge, and information transfer, bringing together research knowledge and best practice from all over the world. The book contains 72 papers from 13 countries, grouped into 8 sections and covering topics including the design of inclusive natural environments and urban spaces, communities, neighborhoods and cities; housing; healthcare; mobility and transport systems; and universally- designed learning environments, work places, cultural and recreational spaces. One section is devoted to universal design and cultural heritage, which had a particular focus at this edition of the conference. The book reflects the professional and disciplinary diversity represented in the UD movement, and will be of interest to all those whose work involves inclusive design

    An aesthetic for sustainable interactions in product-service systems?

    Get PDF
    Copyright @ 2012 Greenleaf PublishingEco-efficient Product-Service System (PSS) innovations represent a promising approach to sustainability. However the application of this concept is still very limited because its implementation and diffusion is hindered by several barriers (cultural, corporate and regulative ones). The paper investigates the barriers that affect the attractiveness and acceptation of eco-efficient PSS alternatives, and opens the debate on the aesthetic of eco-efficient PSS, and the way in which aesthetic could enhance some specific inner qualities of this kinds of innovations. Integrating insights from semiotics, the paper outlines some first research hypothesis on how the aesthetic elements of an eco-efficient PSS could facilitate user attraction, acceptation and satisfaction

    Diagnóstico de fallos y optimización de la planificación en un marco de e-mantenimiento.

    Get PDF
    324 p.El objetivo principal es demostrar el potencial de mejora que las técnicas y metodologías relacionadas con la analítica prescriptiva, pueden proporcionar en aplicaciones de mantenimiento industrial. Las tecnologías desarrolladas se pueden agrupar en tres ámbitos: - El e-mantenimiento, relacionado fundamentalmente con el desarrollo de plataformas colaborativas e inteligentes que permiten la integración de nuevos sensores, sistemas de comunicaciones, estándares y protocolos, conceptos, métodos de almacenamiento y análisis etc. que entran continuamente en nuestro abanico de posibilidades y nos ofrecen la posibilidad de seguir una tendencia de mejora en la optimización de activos y procesos, y en la interoperabilidad entre sistemas.- Las Redes Bayesianas (Bayesian Networks ¿ BNs) junto con otras metodologías de recogida de información utilizadas en ingeniería nos ofrecen la posibilidad de automatizar la tarea de diagnóstico y predicción de fallos.- La optimización de las estrategias de mantenimiento, mediante simulaciones de fallos y análisis coste-efectividad, que ayudan a la toma de decisiones a la hora de seleccionar una estrategia de mantenimiento adecuada para el activo. Además, mediante el uso de algoritmos de optimización logramos mejorar la planificación del mantenimiento, reduciendo los tiempos y costes para realizar las tareas en un parque de activos
    corecore