872 research outputs found

    Quantum Programs as Kleisli Maps

    Get PDF
    Furber and Jacobs have shown in their study of quantum computation that the category of commutative C*-algebras and PU-maps (positive linear maps which preserve the unit) is isomorphic to the Kleisli category of a comonad on the category of commutative C*-algebras with MIU-maps (linear maps which preserve multiplication, involution and unit). [Furber and Jacobs, 2013] In this paper, we prove a non-commutative variant of this result: the category of C*-algebras and PU-maps is isomorphic to the Kleisli category of a comonad on the subcategory of MIU-maps. A variation on this result has been used to construct a model of Selinger and Valiron's quantum lambda calculus using von Neumann algebras. [Cho and Westerbaan, 2016]Comment: In Proceedings QPL 2016, arXiv:1701.0024

    Generic Trace Semantics via Coinduction

    Get PDF
    Trace semantics has been defined for various kinds of state-based systems, notably with different forms of branching such as non-determinism vs. probability. In this paper we claim to identify one underlying mathematical structure behind these "trace semantics," namely coinduction in a Kleisli category. This claim is based on our technical result that, under a suitably order-enriched setting, a final coalgebra in a Kleisli category is given by an initial algebra in the category Sets. Formerly the theory of coalgebras has been employed mostly in Sets where coinduction yields a finer process semantics of bisimilarity. Therefore this paper extends the application field of coalgebras, providing a new instance of the principle "process semantics via coinduction."Comment: To appear in Logical Methods in Computer Science. 36 page

    Coalgebraic Trace Semantics for Continuous Probabilistic Transition Systems

    Full text link
    Coalgebras in a Kleisli category yield a generic definition of trace semantics for various types of labelled transition systems. In this paper we apply this generic theory to generative probabilistic transition systems, short PTS, with arbitrary (possibly uncountable) state spaces. We consider the sub-probability monad and the probability monad (Giry monad) on the category of measurable spaces and measurable functions. Our main contribution is that the existence of a final coalgebra in the Kleisli category of these monads is closely connected to the measure-theoretic extension theorem for sigma-finite pre-measures. In fact, we obtain a practical definition of the trace measure for both finite and infinite traces of PTS that subsumes a well-known result for discrete probabilistic transition systems. Finally we consider two example systems with uncountable state spaces and apply our theory to calculate their trace measures

    Breaking a monad-comonad symmetry between computational effects

    Full text link
    Computational effects may often be interpreted in the Kleisli category of a monad or in the coKleisli category of a comonad. The duality between monads and comonads corresponds, in general, to a symmetry between construction and observation, for instance between raising an exception and looking up a state. Thanks to the properties of adjunction one may go one step further: the coKleisli-on-Kleisli category of a monad provides a kind of observation with respect to a given construction, while dually the Kleisli-on-coKleisli category of a comonad provides a kind of construction with respect to a given observation. In the previous examples this gives rise to catching an exception and updating a state. However, the interpretation of computational effects is usually based on a category which is not self-dual, like the category of sets. This leads to a breaking of the monad-comonad duality. For instance, in a distributive category the state effect has much better properties than the exception effect. This remark provides a novel point of view on the usual mechanism for handling exceptions. The aim of this paper is to build an equational semantics for handling exceptions based on the coKleisli-on-Kleisli category of the monad of exceptions. We focus on n-ary functions and conditionals. We propose a programmer's language for exceptions and we prove that it has the required behaviour with respect to n-ary functions and conditionals.Comment: arXiv admin note: substantial text overlap with arXiv:1310.060

    Patterns for computational effects arising from a monad or a comonad

    Full text link
    This paper presents equational-based logics for proving first order properties of programming languages involving effects. We propose two dual inference system patterns that can be instanciated with monads or comonads in order to be used for proving properties of different effects. The first pattern provides inference rules which can be interpreted in the Kleisli category of a monad and the coKleisli category of the associated comonad. In a dual way, the second pattern provides inference rules which can be interpreted in the coKleisli category of a comonad and the Kleisli category of the associated monad. The logics combine a 3-tier effect system for terms consisting of pure terms and two other kinds of effects called 'constructors/observers' and 'modifiers', and a 2-tier system for 'up-to-effects' and 'strong' equations. Each pattern provides generic rules for dealing with any monad (respectively comonad), and it can be extended with specific rules for each effect. The paper presents two use cases: a language with exceptions (using the standard monadic semantics), and a language with state (using the less standard comonadic semantics). Finally, we prove that the obtained inference system for states is Hilbert-Post complete

    Generic Trace Logics

    Get PDF
    We combine previous work on coalgebraic logic with the coalgebraic traces semantics of Hasuo, Jacobs, and Sokolova

    Notions of Monad Strength

    Full text link
    Over the past two decades the notion of a strong monad has found wide applicability in computing. Arising out of a need to interpret products in computational and semantic settings, different approaches to this concept have arisen. In this paper we introduce and investigate the connections between these approaches and also relate the results to monad composition. We also introduce new methods for checking and using the required laws associated with such compositions, as well as provide examples illustrating problems and issues that arise.Comment: In Proceedings Festschrift for Dave Schmidt, arXiv:1309.455

    New Directions in Categorical Logic, for Classical, Probabilistic and Quantum Logic

    Get PDF
    Intuitionistic logic, in which the double negation law not-not-P = P fails, is dominant in categorical logic, notably in topos theory. This paper follows a different direction in which double negation does hold. The algebraic notions of effect algebra/module that emerged in theoretical physics form the cornerstone. It is shown that under mild conditions on a category, its maps of the form X -> 1+1 carry such effect module structure, and can be used as predicates. Predicates are identified in many different situations, and capture for instance ordinary subsets, fuzzy predicates in a probabilistic setting, idempotents in a ring, and effects (positive elements below the unit) in a C*-algebra or Hilbert space. In quantum foundations the duality between states and effects plays an important role. It appears here in the form of an adjunction, where we use maps 1 -> X as states. For such a state s and a predicate p, the validity probability s |= p is defined, as an abstract Born rule. It captures many forms of (Boolean or probabilistic) validity known from the literature. Measurement from quantum mechanics is formalised categorically in terms of `instruments', using L\"uders rule in the quantum case. These instruments are special maps associated with predicates (more generally, with tests), which perform the act of measurement and may have a side-effect that disturbs the system under observation. This abstract description of side-effects is one of the main achievements of the current approach. It is shown that in the special case of C*-algebras, side-effect appear exclusively in the non-commutative case. Also, these instruments are used for test operators in a dynamic logic that can be used for reasoning about quantum programs/protocols. The paper describes four successive assumptions, towards a categorical axiomatisation of quantitative logic for probabilistic and quantum systems
    • …
    corecore