27,114 research outputs found

    Inertial range turbulence in kinetic plasmas

    Full text link
    The transfer of turbulent energy through an inertial range from the driving scale to dissipative scales in a kinetic plasma followed by the conversion of this energy into heat is a fundamental plasma physics process. A theoretical foundation for the study of this process is constructed, but the details of the kinetic cascade are not well understood. Several important properties are identified: (a) the conservation of a generalized energy by the cascade; (b) the need for collisions to increase entropy and realize irreversible plasma heating; and (c) the key role played by the entropy cascade--a dual cascade of energy to small scales in both physical and velocity space--to convert ultimately the turbulent energy into heat. A strategy for nonlinear numerical simulations of kinetic turbulence is outlined. Initial numerical results are consistent with the operation of the entropy cascade. Inertial range turbulence arises in a broad range of space and astrophysical plasmas and may play an important role in the thermalization of fusion energy in burning plasmas.Comment: 11 pages, 2 figures, submitted to Physics of Plasmas, DPP Meeting Special Issu

    Three Dimensional Pseudo-Spectral Compressible Magnetohydrodynamic GPU Code for Astrophysical Plasma Simulation

    Full text link
    This paper presents the benchmarking and scaling studies of a GPU accelerated three dimensional compressible magnetohydrodynamic code. The code is developed keeping an eye to explain the large and intermediate scale magnetic field generation is cosmos as well as in nuclear fusion reactors in the light of the theory given by Eugene Newman Parker. The spatial derivatives of the code are pseudo-spectral method based and the time solvers are explicit. GPU acceleration is achieved with minimal code changes through OpenACC parallelization and use of NVIDIA CUDA Fast Fourier Transform library (cuFFT). NVIDIAs unified memory is leveraged to enable over-subscription of the GPU device memory for seamless out-of-core processing of large grids. Our experimental results indicate that the GPU accelerated code is able to achieve upto two orders of magnitude speedup over a corresponding OpenMP parallel, FFTW library based code, on a NVIDIA Tesla P100 GPU. For large grids that require out-of-core processing on the GPU, we see a 7x speedup over the OpenMP, FFTW based code, on the Tesla P100 GPU. We also present performance analysis of the GPU accelerated code on different GPU architectures - Kepler, Pascal and Volta

    Spatio-temporal evolution of the nonresonant instability in shock precursors of young supernova remnants

    Full text link
    A nonresonant cosmic-ray-current-driven instability may operate in the shock precursors of young supernova remnants and be responsible for magnetic-field amplification, plasma heating and turbulence. Earlier simulations demonstrated magnetic-field amplification, and in kinetic studies a reduction of the relative drift between cosmic rays and thermal plasma was observed as backreaction. However, all published simulations used periodic boundary conditions, which do not account for mass conservation in decelerating flows and only allow the temporal development to be studied. Here we report results of fully kinetic Particle-In-Cell simulations with open boundaries that permit inflow of plasma on one side of the simulation box and outflow at the other end, hence allowing an investigation of both the temporal and the spatial development of the instability. Magnetic-field amplification proceeds as in studies with periodic boundaries and, observed here for the first time, the reduction of relative drifts causes the formation of a shock-like compression structure at which a fraction of the plasma ions are reflected. Turbulent electric field generated by the nonresonant instability inelastically scatters cosmic rays, modifying and anisotropizing their energy distribution. Spatial CR scattering is compatible with Bohm diffusion. Electromagnetic turbulence leads to significant nonadiabatic heating of the background plasma maintaining bulk equipartition between ions and electrons. The highest temperatures are reached at sites of large-amplitude electrostatic fields. Ion spectra show supra-thermal tails resulting from stochastic scattering in the turbulent electric field. Together, these modifications in the plasma flow will affect the properties of the shock and particle acceleration there.Comment: Accepted for publication in MNRAS. 16 pages, 15 figure

    Acoustic wave propagation in the solar sub-photosphere with localised magnetic field concentration: effect of magnetic tension

    Get PDF
    Aims: We analyse numerically the propagation and dispersion of acoustic waves in the solar-like sub-photosphere with localised non-uniform magnetic field concentrations, mimicking sunspots with various representative magnetic field configurations. Methods: Numerical simulations of wave propagation through the solar sub-photosphere with a localised magnetic field concentration are carried out using SAC, which solves the MHD equations for gravitationally stratified plasma. The initial equilibrium density and pressure stratifications are derived from a standard solar model. Acoustic waves are generated by a source located at the height corresponding approximately to the visible surface of the Sun. By means of local helioseismology we analyse the response of vertical velocity at the level corresponding to the visible solar surface to changes induced by magnetic field in the interior. Results: The results of numerical simulations of acoustic wave propagation and dispersion in the solar sub-photosphere with localised magnetic field concentrations of various types are presented. Time-distance diagrams of the vertical velocity perturbation at the level corresponding to the visible solar surface show that the magnetic field perturbs and scatters acoustic waves and absorbs the acoustic power of the wave packet. For the weakly magnetised case, the effect of magnetic field is mainly thermodynamic, since the magnetic field changes the temperature stratification. However, we observe the signature of slow magnetoacoustic mode, propagating downwards, for the strong magnetic field cases

    Simulating AIA observations of a flux rope ejection

    Get PDF
    Extreme ultraviolet (EUV) images from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamic Observatory (SDO) are providing new insights into the early phase of CME evolution. Observations now show the ejection of magnetic flux ropes from the solar corona and how they evolve into CMEs. These observations are difficult to interpret in terms of basic physical mechanisms and quantities. To fully understand CMEs we need to compare equivalent quantities derived from both observations and theoretical models. To this end we aim to produce synthesised AIA observations from simluations of a flux rope ejection. To carry this out we include the role of thermal conduction and radiative losses, both of which are important for determining the temperature distribution of the solar corona during a CME. We perform a simulation where a flux rope is ejected from the solar corona. From the density and temperature of the plasma in the simulation we synthesise AIA observations. The emission is then integrated along the line of sight using the instrumental response function of AIA. We sythesise observations of AIA in the channels at 304 A, 171 A, 335 A, and 94 A. The synthesised observations show a number of features similar to actual observations and in particular reproduce the general development of CMEs in the low corona as observed by AIA. In particular we reproduce an erupting and expanding arcade in the 304 A and 171 A channels with a high density core. The ejection of a flux rope reproduces many of the features found in the AIA observations. This work is therefore a step forward in bridging the gap between observations and models, and can lead to more direct interpretations of EUV observations in terms of flux rope ejections. We plan to improve the model in future studies in order to perform a more quantitative comparison

    Polarized Light from the Transportation of a Matter-Antimatter Beam in a Plasma

    No full text
    A relativistic electron-positron beam propagating through a magnetized electron-ion plasma is shown to generate both circularly and linearly polarized synchrotron radiation. The degrees of circular and linear polarizations depend both on the density ratio of pair beam to background plasma and initial magnetization, and a maximum degree of circular polarization Pcirc18%\langle P_\textrm{circ}\rangle \approx 18\% is found to occur for a tenuous pair beam. We demonstrate that the generation of circularly polarized radiation is intrinsically linked to asymmetric energy dissipation of the pair beam during the filamentation instability dynamics in the electron-ion plasma. These results can help in understanding the recent observations of circularly polarized radiation from gamma-ray-bursts
    corecore