128 research outputs found

    An Offset Cancelation Technique for Latch Type Sense Amplifiers

    Get PDF
    An offset compensation technique for a latch type sense amplifier is proposed in this paper. The proposed scheme is based on the recalibration of the charging/discharging current of the critical nodes which are affected by the device mismatches. The circuit has been designed in a 65 nm CMOS technology with 1.2 V core transistors. The auto-calibration procedure is fully digital. Simulation results are given verifying the operation for sampling a 5 Gb/s signal dissipating only 360 uW

    A 0.2pJ/conversion-step 6-bit 200MHz flash ADC with redundancy

    Get PDF
    Comunicación presentada al "27th Conference on Design of Circuits and Integrated Systems (DCIS 2012)" celebrada del 28 al 30 de Noviembre del 2012 en Avignon (Francia), organizada por el LIRMM laboratory of Montpellier: http://www.lirmm.fr/dcis2012/index.phpIn this paper, a 200MHz 6-bit Flash analog-to-digital converter (ADC) is presented. The principal objective is to obtain a digital-friendly converter. Hence, small and simple latched comparators are used and redundancy allows reducing the offset down to an acceptable level. This obviously requires calibration but reduces power consumption, since small size transistors can be used and the unused comparators are powered down. The proposed ADC is designed in UMC 0:18m CMOS technology. Full electrical simulations show that the ADC reaches an effective number of bits (ENOB) of 5.3 associated to a signal-to-noise-anddistortion ratio (SNDR) is 33dB. The converter consumes only 1.56mW and has figure-of-merit (FoM) of 0.2 pJ / conversion step.This work has been partially funded by the Junta de Andalucia project P09-TIC-5386, the Ministerio de Economia y Competitividad project TEC2011-28302, both of them cofinanced by the FEDER program.Peer Reviewe

    Design Techniques for High Speed Low Voltage and Low Power Non-Calibrated Pipeline Analog to Digital Converters

    Get PDF
    The profound digitization of modern microelectronic modules made Analog-to- Digital converters (ADC) key components in many systems. With resolutions up to 14bits and sampling rates in the 100s of MHz, the pipeline ADC is a prime candidate for a wide range of applications such as instrumentation, communications and consumer electronics. However, while past work focused on enhancing the performance of the pipeline ADC from an architectural standpoint, little has been done to individually address its fundamental building blocks. This work aims to achieve the latter by proposing design techniques to improve the performance of these blocks with minimal power consumption in low voltage environments, such that collectively high performance is achieved in the pipeline ADC. Towards this goal, a Recycling Folded Cascode (RFC) amplifier is proposed as an enhancement to the general performance of the conventional folded cascode. Tested in Taiwan Semiconductor Manufacturing Company (TSMC) 0.18?m Complementary Metal Oxide Semiconductor (CMOS) technology, the RFC provides twice the bandwidth, 8-10dB additional gain, more than twice the slew rate and improved noise performance over the conventional folded cascode-all at no additional power or silicon area. The direct auto-zeroing offset cancellation scheme is optimized for low voltage environments using a dual level common mode feedback (CMFB) circuit, and amplifier differential offsets up to 50mV are effectively cancelled. Together with the RFC, the dual level CMFB was used to implement a sample and hold amplifier driving a singleended load of 1.4pF and using only 2.6mA; at 200MS/s better than 9bit linearity is achieved. Finally a power conscious technique is proposed to reduce the kickback noise of dynamic comparators without resorting to the use of pre-amplifiers. When all techniques are collectively used to implement a 1Vpp 10bit 160MS/s pipeline ADC in Semiconductor Manufacturing International Corporation (SMIC) 0.18[mu]m CMOS, 9.2 effective number of bits (ENOB) is achieved with a near Nyquist-rate full scale signal. The ADC uses an area of 1.1mm2 and consumes 42mW in its analog core. Compared to recent state-of-the-art implementations in the 100-200MS/s range, the presented pipeline ADC uses the least power per conversion rated at 0.45pJ/conversion-step

    Design of High Speed Comparator

    Get PDF
    A new CMOS dynamic comparator using dual input single output differential amplifier as latch stage suitable for high speed analog - to - digital converters with High Spee d, low power dissipation and immune to. Back - to - back inverter in the latch stage is replaced with dual - input single output differential amplifier. This topology completely removes the noise that is present in the input. The stru cture shows lower power dissipation and higher speed than the conventional comparators. The circuit is simulated with 1V DC supply voltage and 250 MHz clock frequency. The proposed topology is based on two cross coupled differential pairs positive feedback and switchable current source ces, has a lower power dissipation, higher speed, less area, and it is shown to be very robust against transistor mismatch, n oise immunity

    A low kickback fully differential dynamic comparator for pipeline analog-to-digital converters

    Get PDF
    This study presents a fully differential dynamic comparator with low kickback noise, an effect caused by voltage variations in the regeneration nodes of these types of circuit. Given their low power dissipation, dynamic comparators are key circuits in analog-to-digital converters (ADCs), especially in pipelined ADCs. The proposed comparator has been simulated and compared with three other comparator topologies. The value of the kickback noise generated by the proposed circuit is lower than that generated by other conventional dynamic comparators over a wide input range, while simultaneously showing a low offset voltage error. The dynamic comparator has been implemented in a low-resolution ADC with a resolution of 2.5 effective bits, which has been prototyped in a 0.35-m CMOS AMS C35B4 process. Its size is 34 m × 38 m.This work has been partially funded by Spanish government projects TEC2015‐66878‐C3‐2‐R (MINECO/FEDER, UE) and RTI2018‐097088‐B‐C33 (MINECO/FEDER, UE)

    Design Techniques for High Speed Low Voltage and Low Power Non-Calibrated Pipeline Analog to Digital Converters

    Get PDF
    The profound digitization of modern microelectronic modules made Analog-to- Digital converters (ADC) key components in many systems. With resolutions up to 14bits and sampling rates in the 100s of MHz, the pipeline ADC is a prime candidate for a wide range of applications such as instrumentation, communications and consumer electronics. However, while past work focused on enhancing the performance of the pipeline ADC from an architectural standpoint, little has been done to individually address its fundamental building blocks. This work aims to achieve the latter by proposing design techniques to improve the performance of these blocks with minimal power consumption in low voltage environments, such that collectively high performance is achieved in the pipeline ADC. Towards this goal, a Recycling Folded Cascode (RFC) amplifier is proposed as an enhancement to the general performance of the conventional folded cascode. Tested in Taiwan Semiconductor Manufacturing Company (TSMC) 0.18?m Complementary Metal Oxide Semiconductor (CMOS) technology, the RFC provides twice the bandwidth, 8-10dB additional gain, more than twice the slew rate and improved noise performance over the conventional folded cascode-all at no additional power or silicon area. The direct auto-zeroing offset cancellation scheme is optimized for low voltage environments using a dual level common mode feedback (CMFB) circuit, and amplifier differential offsets up to 50mV are effectively cancelled. Together with the RFC, the dual level CMFB was used to implement a sample and hold amplifier driving a singleended load of 1.4pF and using only 2.6mA; at 200MS/s better than 9bit linearity is achieved. Finally a power conscious technique is proposed to reduce the kickback noise of dynamic comparators without resorting to the use of pre-amplifiers. When all techniques are collectively used to implement a 1Vpp 10bit 160MS/s pipeline ADC in Semiconductor Manufacturing International Corporation (SMIC) 0.18[mu]m CMOS, 9.2 effective number of bits (ENOB) is achieved with a near Nyquist-rate full scale signal. The ADC uses an area of 1.1mm2 and consumes 42mW in its analog core. Compared to recent state-of-the-art implementations in the 100-200MS/s range, the presented pipeline ADC uses the least power per conversion rated at 0.45pJ/conversion-step

    Systematic Design Methodology for Successive – Approximation ADCs

    Get PDF
    Successive – Approximation ADCs are widely used in ultra – low – power applications. This paper describes a systematic design procedure for designing Successive – Approximation ADCs for biomedical sensor nodes. The proposed scheme is adopted in the design of a 12 bit 1 kS/s ADC. Implemented in 65 nm CMOS, the ADC consumes 354 nW at a sampling rate of 1 kS/s operating with 1.2 supply voltage. The achieved ENOB is 11.6, corresponding to a FoM of 114 fJ/conversion – step

    Low power dynamic comparator design

    Get PDF
    In many applications there is a growing demand for the development of low voltage and low power circuits and systems. Low power consumption is of great interest because it increases the battery lifetime. One of the main building blocks in many applications is the analogue-to-digital converter (ADC) which serves as an interface between the analogue world and the digital processing unit. In all these designs the comparator of the ADC, which is one the most power hungry blocks, is always on. In order to reduce the power consumption of the ADC it is possible to turn the comparator off when the decision is made and the comparator is not needed until the next clock cycle. This work provides a comprehensive review about a variety of comparator designs - in terms of performance, power and delay. The initial part of the work was working with static comparators architectures with different pre-amplifier modifications .Later part deals with two dynamic comparator architectures. The main components of such comparators are the preamplifier and latch circuit. Preamplifier is used for removing the kickback noise and the dc offset voltage while the latch is required for the comparison. The proposed architectures operate on three phases which are non-overlapping and dissipate 7ìW power when operated on a single 1V supply voltage. The latch is basically a back to back connected inverter circuit which inactivated only during the second phase
    corecore