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Abstract—In this paper, a 200MHz 6-bit Flash analog-to-digital
converter (ADC) is presented. The principal objective is to obtain
a digital-friendly converter. Hence, small and simple latched
comparators are used and redundancy allows reducing the offset
down to an acceptable level. This obviously requires calibration
but reduces power consumption, since small size transistors can
be used and the unused comparators are powered down. The
proposed ADC is designed in UMC 0.18µm CMOS technology.
Full electrical simulations show that the ADC reaches an effective
number of bits (ENOB) of 5.3 associated to a signal-to-noise-and-
distortion ratio (SNDR) is 33dB. The converter consumes only
1.56mW and has figure-of-merit (FoM) of 0.2 pJ / conversion
step.

I. INTRODUCTION

Analog-to-Digital Converter (ADC) can be considered as
one of the main blocks in a lot of systems, since they are
mandatory to make the link between the analog outside world
and the evermore ubiquitous digital computer world. Flash
architecture is the most popular converter for its simplicity and
low latency. It is mostly used for high speed low resolution
converters [1].

Reducing the product cost, and meeting time-to-market
requirements are essential instruments in the competition
between IC manufacturers. These demands force the design-
ers to integrate the overall systems in the same die and
digital-compatible analog designs are definitely an asset [2].
Ever-deeper submicron technology increases the relevance of
process variability poses major challenges for analog circuit
design. Though systematic variability can be handled with
careful layout practices, random variability is unavoidable. To
overcome this problem, transistor sizing is considered as the
simplest solution [3] but it is expensive in terms of power con-
sumption. Another option is to use offset cancellation method
[4], [5]. Capacitors are used to store the offset voltages in one
half cycle and cancel it in the other half cycle. Unfortunately,
switched capacitor circuits face difficulties with modern tech-
nologies [6]. Auto-zeroing [7] and averaging [8] techniques
are other available options. Recently, redundancy has been
proposed as an alternative. The idea is to use comparators with
minimal dimensions and thus large random offsets. If several
of them are implemented for each trip-point of the converter, a
suitable calibration algorithm allows selecting the closest one
to the ideal trip-point. The unselected comparators can then
be turned-off reducing power consumption.

-

+

-

+

-

+

.

.

.

.

Analog 
InputVmax

Vmin

Encoder

Digital 
output

.

.

.

Fig. 1. block diagram of flash converter.

This paper is organized as follows: the ADC architecture
is detailed in section II. Calibration choices are explained in
section III. Section IV presents simulations results and section
V closes the paper with concluding remarks.

II. ADC ARCHITECTURE

As known, flash converters divide the full-scale into fixed
levels. each level has specific binary code. The conversion is
done by determining the closest level for the analog signal at
sampling instant. These levels are generated using reference
ladder which can be implemented using capacitors [9] or re-
sistors. A comparator array is then used to determine between
which levels the analog signal is at the sampling time. Finally,
the digital code is generated using encoder circuit. Figure 1
shows the block diagram of the Flash converter.

A. Comparator array

Latched comparator can be divided to three main groups as
follows [10]:

• Static latched comparators. As it can be expected from the
group name, the static consumption is large. Moreover,
it is not suitable for high speed applications due to the
slow regeneration process. On the other hand, it has good
immunity to the kick-back noise. Some applications of
this architecture can be found in references [11], [12].
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Fig. 2. schematic diagram of dynamic latch.

TABLE I
COMPARATOR DIMENSION

Transistor number of fingers

M1 30
M2 1
M3 2
M4 4
M5 2
M6 1

• Class-AB latched comparators. This group improve the
power efficiency and the speed of the regeneration pro-
cess at the cost of higher kick-back noise. Examples of
this architecture can be found in references [13]–[15]

• Dynamic latched comparators. In this group, static power
consumption is approximately null (except that due to the
leakage current). Power efficiency and speed are maxi-
mized. However, kickback noise can become a serious
design issue. Different designs have been developed in
the literature. The interested reader can find some of these
architectures in references [16]–[18].

Comparator offset and kick-back noise are the main limita-
tion to FLASH ADC performance. The offset, principally due
to mismatch effects, affects the static non-linearity of the ADC.
The converter trip-points are displaced, generating INL and
DNL errors. Kickback noise, on the other hand, is a dynamic
effect: The comparator decision – a fast switching mechanism
– is fold back to the ADC input and the resistive reference
ladder through capacitive coupling. We deal with comparator
offset using redundancy, and try to minimize kickback by
design reducing transistor sizes and optimizing the resistive
ladder, as shown in the next subsection.

One of our objectives in this work is to simplify the design
as much as possible to make it digital-friendly. So a simple
latch architecture is implemented using standard transistors
with minimum size fingers (240nm/180nm). No analog offset
canceling techniques are used. Figure 2 shows the schematic
diagram of the dynamic latch. The transistors used in the
comparator circuit have dimensions shown in table I.

B. Reference ladder

The operation of the comparator circuit can be divided to
two main phases. The first is the tracking/reset phase: both
the input voltage and the reference are connected to the input
transistors so the parasitic input capacitors are charged to the
value to be compared. During this phase, the dynamic latch is
disconnected such that it does not consume any current. The
output nodes are tied to the power supply in order to avoid
memory effects related to parasitic capacitors which could
induce signal dependent comparison threshold. The second
phase is the comparison phase in which the dynamic latch is
enabled and performs the comparison between the input and
the reference voltage. The switching between these two phases
produces noise at the inputs of the comparator circuit through
the coupling capacitance. This is known as kickback noise.
Razavi defines the kickback noise as the power of the transient
noise observed at the comparator input due to switching of
the latch [19]. It generates a common-mode error but also
a differential error that may corrupt the input signal if it is
not taken into account during the circuit design. Kickback
noise is particularly relevant for the reference voltage since
it is generated from resistive ladder. Attempts to solve this
problem already exist in the literature [10]. The simplest
solution is to use low resistance value in the reference ladder.
Another solution is to use preamplifier to isolate the input
signals from the latch circuit. The circuit design will not be
as simple as single stage comparator and other constrains
must be taken into account. Using of class-AB comparator
is an alternative in which the isolation is done using switches.
This also increases the power consumption. Another way to
isolate the input signal is to connect it to the comparator
circuit through switches. These switches will be opened in the
comparison phase and the signals to be compared are held on
the input capacitors. Hence, this prevents the kickback noise
from affecting the input signal but increases comparator offset
due to charge injection mismatch. The main goal of this paper
is to simplify the circuit as much as possible to save the design
effort. We thus adopted the simplest solution for the kickback
noise problem and maximized the ladder resistance value while
keeping the kickback noise to an acceptable level. Fig. 3 shows
the FoM of the ADC as a function in the resistance value of
the reference ladder. The figure shows that for small resistance
ladder value, the improvement in the kickback noise (which
means improvement in ENOB of the ADC), will be canceled
by the increase of the ladder power consumption. On the other
hand, for the large resistance value the reduction in the power
consumption will canceled by the significant kickback noise
effect (reduction in ENOB of the ADC). The optimum value
has been determined to be 206 ohm.

C. Encoder

Encoders have been studied in the literature. The most
known encoder circuits are ROM based encoder, wallace-
tree encoder, folded wallace-tree encoder, logic based encoder,
multiplexer based encoder, fat-tree encoder, XOR based en-
coder, and priority look-ahead encoder. Since the sampling
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Fig. 3. Impact of the ladder unit resistor on the ADC Figure of Merit.
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Fig. 4. logic based encoder block diagram.

frequency of our converter is 200MHz, timing accuracy is
not a very limiting factor as in designs like [8]. The main
design criterion has thus been to minimize static power.
According to reference [20], logic-based encoder is the most
suitable type for lowering the overall power consumption. The
encoding process is done in two steps [19]: a conversion from
thermometer code to Gray code followed by a conversion from
Gray code to binary code, as shown in Figure 4.

The Gray code minimizes the bubble error in the thermome-
ter code [21], [22]. Schematic diagram of each block of this
encoder are shown in Figure 5 and Figure 6, respectively.
The encoder circuit has been optimized and synthesized using
standard digital cells.

III. CALIBRATION

As explained in previous section, we use a very simple dy-
namic latch structure for the comparators and almost minimum
size transistors. This has great benefits in terms of compactness
and power consumption, but the downside is obviously its
sensitivity to offset. Instead of correcting each comparator
offset – for instance using a look-up table – we opted to
implement comparator redundancy as proposed in [6]. Several
comparators are associated to each trip point. The external cal-
ibration algorithm measures the offset of each comparator and
the one that is closer to the ideal trip-point is selected while the
remaining ones are powered down. Notice that deviations in
the reference voltages defined by the ladder are also corrected
whenever the calibration relies on an independent reference.
Typically, a static DAC with a resolution above 8bit should
be sufficient. From a hardware viewpoint, a memory array
is needed to store the proper comparator address for each
trip-point. A straightforward implementation of redundancy
consists in implementing a sufficient number of comparators
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at each trip point such that the standard deviation of the
minimum offset is sufficiently reduced, as sketched in Fig.
7. This is the path followed in [23] and it makes sense when
the comparator offset is relatively small. However, if it is large
the amount of required redundancy greatly increases. In such
a case the solution proposed in [6] is a better option. In this
configuration, for a given trip point, the comparator can be
selected not only among the comparators physically connected
to that particular level but also among the adjacent levels, as
shown in Fig. 8. For instance, a comparator with an offset
of exactly -3 LSB would be perfect for the trip point that is
located 3LSB below the one it was designed for. In our case,
the standard deviation of the offset varies across the input
range, but the worst case is in the order of 160mV which
is much larger than an LSB. The straightforward redundancy
implementation would require close to 128 comparators per
level, which is clearly impractical. However, if we allow the
comparators to be selected among 16 levels, we can reduce
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the required redundancy to a factor 8.

IV. SIMULATIONS RESULTS

The ADC has been designed in UMC 0.18µm technology.
All transistors used in this design are the nominal transistors
(no special transistors used). Moreover, the supply voltage is
1.8V.

The complete ADC has been simulated, including the
configuration switches that are mandatory to select the active
comparators. However, electrical simulation of the calibration
routine is still to be done and the results presented here do
not include mismatch.

A 4000 samples FFT of the ADC output is performed to
calculate the Signal to Noise and Distortion Ratio (SNDR) and
deduce the Effective Number Of Bits (ENOB). For a full-scale
1MHz input sine-wave, the converter consumes only 1.56mW
(1.37mW for the comparator array, 0.05mW for the reference
ladder and 0.131mW for the encoder). Figure 9 shows the
power spectrum of the output signal, that gives a SNDR of
33.1dB which corresponds to an ENOB of 5.3. Thus, the
resulting FoM is 0.20 pJ/conversion step. Simulation of higher
frequency sine-waves show little degradation up to 50MHz, as
can bee seen in Fig. 10
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Fig. 9. Output power spectrum for a 1MHz full-scale input.
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Fig. 10. SNDR of the ADC across the Nyquist bandwidth.

voltage has also been done and table II gathers the obtained
results. Performance degradation is most significant in the
slow-slow corner. This is mainly due to the power supply
reduction, since simulation at the same process corner but at
nominal power supply voltage gives an ENOB of 5.1. The
reason is that we have maximized the input range of the
converter and the comparator input transistors are close to
subthreshold operation in the extremities.

Although the converter is not in the state-of-art from
speed point of view for FLASH converters, the FoM is
quite competitive with other works, as can be seen in Table
III. Provided that this result is obtained with a very simple
digital-friendly comparator structure, it shows that digitally-
assisted low precision flash ADCs can be a good candidate
for integration in System-on-Chip (SoCs).

V. CONCLUSION

In this paper, 6-bit flash ADC has been implemented and
simulated. Analog circuit design is relaxed by using com-
parator redundancy and calibration. In this way, a digital-
friendly structure is obtained that relies on standard transistors
with almost minimum size transistors. The ADC operates at
a sampling frequency of 200MHz and reaches an ENOB of
5.3 for a power consumption of only 1.56mW. The obtained



TABLE II
CONVERTER CHARACTERISTICS AT PROCESS CORNERS

Process typical fast-fast slow-slow fast-N slow-P slow-N fast-P

ENOB(bits) 5.3 4.9 4.75 5.17 4.8
SNDR(dB) 33.1 31.2 30.0 32.6 30.3
IADC (in µA) 764 845 668 781 698
Iladder (in µA) 62 84 48 62 62

TABLE III
STATE-OF-ART

Reference [24] [25] [26] [2] [27] [28] [29] This work

Resolution (bits) 4 6 6 8 4 6 4 6
Technology (nm) 90 180 90 65 90 180 180 180
Supply voltage (V) 1.2 0.4 1.2 1 1.2 1.8 1.8
Power (mW) 30.2 0.00166 30 35 2.5 550 43 1.56
Area (mm2) 0.04 1.96 0.5 0.033 1.96 0.06
ENOB (bits) 4 5.05 3.94 5.8 3.7 5.1 3.71 5.3
SNDR (dB) 32.5 25.5 37 23.8 32.5 33.1
INL (LSB) 0.72/ -0.9 0.54 1.32 <0.15 <1.1 -0.26
DNL (LSB) 1.23/ -0.9 0.48 1.23 <0.2 <1 ¡0.35
DR (V) 0.110 1.06 0.2 1.6
Fin (MHz) 1 0.001526 640 7 10 1
Fs (GHz) 2.5 4e−4 2.5 1.5 1.25 1 4 0.2
FoM (pJ/conv. Step) 0.76 0.125 0.79 0.42 0.16 16 0.82 0.2

Figure of Merit is 0.2 pJ/conversion step, which is within the
state-of-the-art of FLASH converter efficiency.
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