32 research outputs found

    Big Data Mining and Semantic Technologies: Challenges and Opportunities

    Get PDF
    Big data a term coined due to the explosion in the quantity and diversity of high frequency digital data which is having a potential for valuable insights has drawn the most attention in the area of research and development. Converting big data to actionable insights requires depth understanding of big data, its characteristics, challenges and current technological trends. A rise of big data is changing the existing data storage, management, processing and analytical mechanisms and leads to the new architecture/ecosystems to handle big data applications. This paper covers finding of our research study about big data characteristic, various types of analysis associated with it and basic big data types. First, we are presenting the big data study from data mining and analysis perspective and discuss the challenges and next, we present the result of research study on meaningful use of big data in the context of semantic technologies. Moreover, we discuss various case studies related to social media analysis and recent development trends to identify potential research directions for big data with semantic technologies. DOI: 10.17762/ijritcc2321-8169.150711

    4th. International Conference on Advanced Research Methods and Analytics (CARMA 2022)

    Full text link
    Research methods in economics and social sciences are evolving with the increasing availability of Internet and Big Data sources of information. As these sources, methods, and applications become more interdisciplinary, the 4th International Conference on Advanced Research Methods and Analytics (CARMA) is a forum for researchers and practitioners to exchange ideas and advances on how emerging research methods and sources are applied to different fields of social sciences as well as to discuss current and future challenges. Due to the covid pandemic, CARMA 2022 is planned as a virtual and face-to-face conference, simultaneouslyDoménech I De Soria, J.; Vicente Cuervo, MR. (2022). 4th. International Conference on Advanced Research Methods and Analytics (CARMA 2022). Editorial Universitat Politècnica de València. https://doi.org/10.4995/CARMA2022.2022.1595

    Macro-micro approach for mining public sociopolitical opinion from social media

    Get PDF
    During the past decade, we have witnessed the emergence of social media, which has prominence as a means for the general public to exchange opinions towards a broad range of topics. Furthermore, its social and temporal dimensions make it a rich resource for policy makers and organisations to understand public opinion. In this thesis, we present our research in understanding public opinion on Twitter along three dimensions: sentiment, topics and summary. In the first line of our work, we study how to classify public sentiment on Twitter. We focus on the task of multi-target-specific sentiment recognition on Twitter, and propose an approach which utilises the syntactic information from parse-tree in conjunction with the left-right context of the target. We show the state-of-the-art performance on two datasets including a multi-target Twitter corpus on UK elections which we make public available for the research community. Additionally we also conduct two preliminary studies including cross-domain emotion classification on discourse around arts and cultural experiences, and social spam detection to improve the signal-to-noise ratio of our sentiment corpus. Our second line of work focuses on automatic topical clustering of tweets. Our aim is to group tweets into a number of clusters, with each cluster representing a meaningful topic, story, event or a reason behind a particular choice of sentiment. We explore various ways of tackling this challenge and propose a two-stage hierarchical topic modelling system that is efficient and effective in achieving our goal. Lastly, for our third line of work, we study the task of summarising tweets on common topics, with the goal to provide informative summaries for real-world events/stories or explanation underlying the sentiment expressed towards an issue/entity. As most existing tweet summarisation approaches rely on extractive methods, we propose to apply state-of-the-art neural abstractive summarisation model for tweets. We also tackle the challenge of cross-medium supervised summarisation with no target-medium training resources. To the best of our knowledge, there is no existing work on studying neural abstractive summarisation on tweets. In addition, we present a system for providing interactive visualisation of topic-entity sentiments and the corresponding summaries in chronological order. Throughout our work presented in this thesis, we conduct experiments to evaluate and verify the effectiveness of our proposed models, comparing to relevant baseline methods. Most of our evaluations are quantitative, however, we do perform qualitative analyses where it is appropriate. This thesis provides insights and findings that can be used for better understanding public opinion in social media

    5th International Conference on Advanced Research Methods and Analytics (CARMA 2023)

    Full text link
    Research methods in economics and social sciences are evolving with the increasing availability of Internet and Big Data sources of information. As these sources, methods, and applications become more interdisciplinary, the 5th International Conference on Advanced Research Methods and Analytics (CARMA) is a forum for researchers and practitioners to exchange ideas and advances on how emerging research methods and sources are applied to different fields of social sciences as well as to discuss current and future challenges.Martínez Torres, MDR.; Toral Marín, S. (2023). 5th International Conference on Advanced Research Methods and Analytics (CARMA 2023). Editorial Universitat Politècnica de València. https://doi.org/10.4995/CARMA2023.2023.1700

    A survey of recommender systems for energy efficiency in buildings: Principles, challenges and prospects

    Full text link
    Recommender systems have significantly developed in recent years in parallel with the witnessed advancements in both internet of things (IoT) and artificial intelligence (AI) technologies. Accordingly, as a consequence of IoT and AI, multiple forms of data are incorporated in these systems, e.g. social, implicit, local and personal information, which can help in improving recommender systems' performance and widen their applicability to traverse different disciplines. On the other side, energy efficiency in the building sector is becoming a hot research topic, in which recommender systems play a major role by promoting energy saving behavior and reducing carbon emissions. However, the deployment of the recommendation frameworks in buildings still needs more investigations to identify the current challenges and issues, where their solutions are the keys to enable the pervasiveness of research findings, and therefore, ensure a large-scale adoption of this technology. Accordingly, this paper presents, to the best of the authors' knowledge, the first timely and comprehensive reference for energy-efficiency recommendation systems through (i) surveying existing recommender systems for energy saving in buildings; (ii) discussing their evolution; (iii) providing an original taxonomy of these systems based on specified criteria, including the nature of the recommender engine, its objective, computing platforms, evaluation metrics and incentive measures; and (iv) conducting an in-depth, critical analysis to identify their limitations and unsolved issues. The derived challenges and areas of future implementation could effectively guide the energy research community to improve the energy-efficiency in buildings and reduce the cost of developed recommender systems-based solutions.Comment: 35 pages, 11 figures, 1 tabl

    Algorithmic Reason

    Get PDF
    Are algorithms ruling the world today? Is artificial intelligence making life-and-death decisions? Are social media companies able to manipulate elections? As we are confronted with public and academic anxieties about unprecedented changes, this book offers a different analytical prism to investigate these transformations as more mundane and fraught. Aradau and Blanke develop conceptual and methodological tools to understand how algorithmic operations shape the government of self and other. While disperse and messy, these operations are held together by an ascendant algorithmic reason. Through a global perspective on algorithmic operations, the book helps us understand how algorithmic reason redraws boundaries and reconfigures differences. The book explores the emergence of algorithmic reason through rationalities, materializations, and interventions. It traces how algorithmic rationalities of decomposition, recomposition, and partitioning are materialized in the construction of dangerous others, the power of platforms, and the production of economic value. The book shows how political interventions to make algorithms governable encounter friction, refusal, and resistance. The theoretical perspective on algorithmic reason is developed through qualitative and digital methods to investigate scenes and controversies that range from mass surveillance and the Cambridge Analytica scandal in the UK to predictive policing in the US, and from the use of facial recognition in China and drone targeting in Pakistan to the regulation of hate speech in Germany. Algorithmic Reason offers an alternative to dystopia and despair through a transdisciplinary approach made possible by the authors’ backgrounds, which span the humanities, social sciences, and computer sciences

    Multiscale visualization approaches for Volunteered Geographic Information and Location-based Social Media

    Get PDF
    Today, “zoomable” maps are a state-of-the-art way to explore the world, available to anyone with Internet access. However, the process of creating this visualization has been rather loosely investigated and documented. Nevertheless, with an increasing amount of available data, interactive maps have become a more integral approach to visualizing and exploring big datasets and user-generated data. OpenStreetMap and online platforms such as Twitter and Flickr offer application programming interfaces (APIs) with geographic information. They are well-known examples of this visualization challenge and are often used as examples. In addition, an increasing number of public administrations collect open data and publish their data sets, which makes the task of visualization even more relevant. This dissertation deals with the visualization of user-generated geodata as a multiscale map. The basics of today’s multiscale maps—their history, technologies, and possibilities—are explored and abstracted. This work introduces two new multiscale-focused visualization approaches for point data from volunteered geographic information (VGI) and location-based social media (LBSM). One contribution of this effort is a visualization methodology for spatially referenced information in the form of point geometries, using nominally scaled data from social media such as Twitter or Flickr. Typical for this data is a high number of social media posts in different categories—a post on social media corresponds to a point in a specific category. Due to the sheer quantity and similar characteristics, the posts appear generic rather than unique. This type of dataset can be explored using the new method of micro diagrams to visualize the dataset on multiple scales and resolutions. The data is aggregated into small grid cells, and the numerical proportion is shown with small diagrams, which can visually merge into heterogenous areas through colors depicting a specific category. The diagram sizes allow the user to estimate the overall number of aggregated points in a grid cell. A different visualization approach is proposed for more unique points, considered points of interest (POI), based on the selection method. The goal is to identify more locally relevant points from the data set, considered more important compared to other points in the neighborhood, which are then compared by numerical attribute. The method, derived from topographic isolation and called discrete isolation, is the distance from one point to the next with a higher attribute value. By using this measure, the most essential points can be easily selected by choosing a minimum distance and producing a homogenous spatial of the selected points within the chosen dataset. The two newly developed approaches are applied to multiscale mapping by constructing example workflows that produce multiscale maps. The publicly available multiscale mapping workflows OpenMapTiles and OpenStreetMap Carto, using OpenStreetMap data, are systematically explored and analyzed. The result is a general workflow for multiscale map production and a short overview of the toolchain software. In particular, the generalization approaches in the example projects are discussed and these are classified into cartographic theories on the basis of literature. The workflow is demonstrated by building a raster tile service for the micro diagrams and a vector tile service for the discrete isolation, able to be used with just a web browser. In conclusion, these new approaches for point data using VGI and LBSM allow better qualitative visualization of geodata. While analyzing vast global datasets is challenging, exploring and analyzing hidden data patterns is fruitful. Creating this degree of visualization and producing maps on multiple scales is a complicated task. The workflows and tools provided in this thesis will make map production on a worldwide scale easier.:1 Introduction 1 1.1 Motivation .................................................................................................. 3 1.2 Visualization of crowdsourced geodata on multiple scales ............ 5 1.2.1 Research objective 1: Visualization of point collections ......... 6 1.2.2 Research objective 2: Visualization of points of interest ......... 7 1.2.3 Research objective 3: Production of multiscale maps ............. 7 1.3 Reader’s guide ......................................................................................... 9 1.3.1 Structure ........................................................................................... 9 1.3.2 Related Publications ....................................................................... 9 1.3.3 Formatting and layout ................................................................. 10 1.3.4 Online examples ........................................................................... 10 2 Foundations of crowdsourced mapping on multiple scales 11 2.1 Types and properties of crowdsourced data .................................. 11 2.2 Currents trends in cartography ......................................................... 11 2.3 Definitions .............................................................................................. 12 2.3.1 VGI .................................................................................................. 12 2.3.2 LBSM .............................................................................................. 13 2.3.3 Space, place, and location......................................................... 13 2.4 Visualization approaches for crowdsourced geodata ................... 14 2.4.1 Review of publications and visualization approaches ........... 14 2.4.2 Conclusions from the review ...................................................... 15 2.4.3 Challenges mapping crowdsourced data ................................ 17 2.5 Technologies for serving multiscale maps ...................................... 17 2.5.1 Research about multiscale maps .............................................. 17 2.5.2 Web Mercator projection ............................................................ 18 2.5.3 Tiles and zoom levels .................................................................. 19 2.5.4 Raster tiles ..................................................................................... 21 2.5.5 Vector tiles .................................................................................... 23 2.5.6 Tiling as a principle ..................................................................... 25 3 Point collection visualization with categorized attributes 26 3.1 Target users and possible tasks ....................................................... 26 3.2 Example data ......................................................................................... 27 3.3 Visualization approaches .................................................................... 28 3.3.1 Common techniques .................................................................... 28 3.3.2 The micro diagram approach .................................................... 30 3.4 The micro diagram and its parameters ............................................ 33 3.4.1 Aggregating points into a regular structure ............................ 33 3.4.2 Visualizing the number of data points ...................................... 35 3.4.3 Grid and micro diagrams ............................................................ 36 3.4.4 Visualizing numerical proportions with diagrams .................. 37 3.4.5 Influence of color and color brightness ................................... 38 3.4.6 Interaction options with micro diagrams .................................. 39 3.5 Application and user-based evaluation ............................................ 39 3.5.1 Micro diagrams in a multiscale environment ........................... 39 3.5.2 The micro diagram user study ................................................... 41 3.5.3 Point collection visualization discussion .................................. 47 4 Selection of POIs for visualization 50 4.1 Approaches for point selection .......................................................... 50 4.2 Methods for point selection ................................................................ 51 4.2.1 Label grid approach .................................................................... 52 4.2.2 Functional importance approach .............................................. 53 4.2.3 Discrete isolation approach ....................................................... 54 4.3 Functional evaluation of selection methods .................................... 56 4.3.1 Runtime comparison .................................................................... 56 4.3.2 Use cases for discrete isolation ................................................ 57 4.4 Discussion of the selection approaches .......................................... 61 4.4.1 A critical view of the use cases ................................................. 61 4.4.2 Comparing the approaches ........................................................ 62 4.4.3 Conclusion ..................................................................................... 64 5 Creating multiscale maps 65 5.1 Examples of multiscale map production .......................................... 65 5.1.1 OpenStreetMap Infrastructure ................................................... 66 5.1.2 OpenStreetMap Carto ................................................................. 67 5.1.3 OpenMapTiles ............................................................................... 73 5.2 Methods of multiscale map production ............................................ 80 5.2.1 OpenStreetMap tools ................................................................... 80 5.2.2 Geoprocessing .............................................................................. 80 5.2.3 Database ........................................................................................ 80 5.2.4 Creating tiles ................................................................................. 82 5.2.5 Caching .......................................................................................... 82 5.2.6 Styling tiles .................................................................................... 82 5.2.7 Viewing tiles ................................................................................... 83 5.2.8 The stackless approach to tile creation ................................... 83 5.3 Example workflows for creating multiscale maps ........................... 84 5.3.1 Raster tiles: OGC services and micro diagrams .................... 84 5.3.2 Vector tiles: Slippy map and vector tiles ................................. 87 5.4 Discussion of approaches and workflows ....................................... 90 5.4.1 Map production as a rendering pipeline .................................. 90 5.4.2 Comparison of OpenStreetMap Carto and OpenMapTiles .. 92 5.4.3 Discussion of the implementations ........................................... 93 5.4.4 Generalization in map production workflows .......................... 95 5.4.5 Conclusions ................................................................................. 101 6 Discussion 103 6.1 Development for web mapping ........................................................ 103 6.1.1 The role of standards in map production .............................. 103 6.1.2 Technological development ..................................................... 103 6.2 New data, new mapping techniques? ............................................. 104 7 Conclusion 106 7.1 Visualization of point collections ..................................................... 106 7.2 Visualization of points of interest ................................................... 107 7.3 Production of multiscale maps ........................................................ 107 7.4 Synthesis of the research questions .............................................. 108 7.5 Contributions ....................................................................................... 109 7.6 Limitations ............................................................................................ 110 7.7 Outlook ................................................................................................. 111 8 References 113 9 Appendix 130 9.1 Zoom levels and Scale ...................................................................... 130 9.3 Full information about selected UGC papers ................................ 131 9.4 Timeline of mapping technologies .................................................. 133 9.5 Timeline of map providers ................................................................ 133 9.6 Code snippets from own map production workflows .................. 134 9.6.1 Vector tiles workflow ................................................................. 134 9.6.2 Raster tiles workflow.................................................................. 137Heute sind zoombare Karten Alltag für jeden Internetznutzer. Die Erstellung interaktiv zoombarer Karten ist allerdings wenig erforscht, was einen deutlichen Gegensatz zu ihrer aktuellen Bedeutung und Nutzungshäufigkeit darstellt. Die Forschung in diesem Bereich ist also umso notwendiger. Steigende Datenmengen und größere Regionen, die von Karten abgedeckt werden sollen, unterstreichen den Forschungsbedarf umso mehr. Beispiele für stetig wachsende Datenmengen sind Geodatenquellen wie OpenStreetMap aber auch freie amtliche Geodatensätze (OpenData), aber auch die zunehmende Zahl georeferenzierter Inhalte auf Internetplatformen wie Twitter oder Flickr zu nennen. Das Thema dieser Arbeit ist die Visualisierung eben dieser nutzergenerierten Geodaten mittels zoombarer Karten. Dafür wird die Entwicklung der zugrundeliegenden Technologien über die letzten zwei Jahr-zehnte und die damit verbundene Möglichkeiten vorgestellt. Weitere Beiträge sind zwei neue Visualisierungsmethoden, die sich besonders für die Darstellung von Punktdaten aus raumbezogenen nutzergenerierten Daten und georeferenzierte Daten aus Sozialen Netzwerken eignen. Ein Beitrag dieser Arbeit ist eine neue Visualisierungsmethode für raumbezogene Informationen in Form von Punktgeometrien mit nominal skalierten Daten aus Sozialen Medien, wie beispielsweise Twitter oder Flickr. Typisch für diese Daten ist eine hohe Anzahl von Beiträgen mit unterschiedlichen Kategorien. Wobei die Beiträge, bedingt durch ihre schiere Menge und ähnlicher Ei-genschaften, eher generisch als einzigartig sind. Ein Beitrag in den So-zia len Medien entspricht dabei einem Punkt mit einer bestimmten Katego-rie. Ein solcher Datensatz kann mit der neuen Methode der „micro diagrams“ in verschiedenen Maßstäben und Auflösungen visualisiert und analysiert werden. Dazu werden die Daten in kleine Gitterzellen aggregiert. Die Menge und Verteilung der über die Kategorien aggregierten Punkte wird durch kleine Diagramme dargestellt, wobei die Farben die verschiedenen Kategorien visualisieren. Durch die geringere Größe der einzelnen Diagramme verschmelzen die kleinen Diagramme visuell, je nach der Verteilung der Farben für die Kategorien. Bei genauerem Hinsehen ist die Schätzung der Menge der aggregierten Punkte über die Größe der Diagramme die Menge und die Verteilung über die Kategorien möglich. Für einzigartigere Punkte, die als Points of Interest (POI) angesehen werden, wird ein anderer Visualisierungsansatz vorgeschlagen, der auf einer Auswahlmethode basiert. Ziel ist es dabei lokal relevantere Punkte aus dem Datensatz zu identifizieren, die im Vergleich zu anderen Punkten in der Nachbarschaft des Punktes verglichen nach einem numerischen Attribut wichtiger sind. Die Methode ist von dem geographischen Prinzip der Dominanz von Bergen abgeleitet und wird „discrete isolation“ genannt. Es handelt sich dabei um die Distanz von einem Punkt zum nächsten mit einem höheren Attributwert. Durch die Verwendung dieses Maßes können lokal bedeutende Punkte leicht ausgewählt werden, indem ein minimaler Abstand gewählt und so räumlich gleichmäßig verteilte Punkte aus dem Datensatz ausgewählt werden. Die beiden neu vorgestellten Methoden werden in den Kontext der zoombaren Karten gestellt, indem exemplarische Arbeitsabläufe erstellt werden, die als Er-gebnis eine zoombare Karte liefern. Dazu werden die frei verfügbaren Beispiele zur Herstellung von weltweiten zoombaren Karten mit nutzergenerierten Geo-daten von OpenStreetMap, anhand der Kartenprojekte OpenMapTiles und O-penStreetMap Carto analysiert und in Arbeitsschritte gegliedert. Das Ergebnis ist ein wiederverwendbarer Arbeitsablauf zur Herstellung zoombarer Karten, ergänzt durch eine Auswahl von passender Software für die einzelnen Arbeits-schritte. Dabei wird insbesondere auf die Generalisierungsansätze in den Beispielprojekten eingegangen und diese anhand von Literatur in die kartographische Theorie eingeordnet. Zur Demonstration des Workflows wird je ein Raster Tiles Dienst für die „micro diagrams“ und ein Vektor Tiles Dienst für die „discrete isolation“ erstellt. Beide Dienste lassen sich mit einem aktuellen Webbrowser nutzen. Zusammenfassend ermöglichen diese neuen Visualisierungsansätze für Punkt-daten aus VGI und LBSM eine bessere qualitative Visualisierung der neuen Geodaten. Die Analyse riesiger globaler Datensätze ist immer noch eine Herausforderung, aber die Erforschung und Analyse verborgener Muster in den Daten ist lohnend. Die Erstellung solcher Visualisierungen und die Produktion von Karten in verschiedenen Maßstäben ist eine komplexe Aufgabe. Die in dieser Arbeit vorgestellten Arbeitsabläufe und Werkzeuge erleichtern die Erstellung von Karten in globalem Maßstab.:1 Introduction 1 1.1 Motivation .................................................................................................. 3 1.2 Visualization of crowdsourced geodata on multiple scales ............ 5 1.2.1 Research objective 1: Visualization of point collections ......... 6 1.2.2 Research objective 2: Visualization of points of interest ......... 7 1.2.3 Research objective 3: Production of multiscale maps ............. 7 1.3 Reader’s guide ......................................................................................... 9 1.3.1 Structure ........................................................................................... 9 1.3.2 Related Publications ....................................................................... 9 1.3.3 Formatting and layout ................................................................. 10 1.3.4 Online examples ........................................................................... 10 2 Foundations of crowdsourced mapping on multiple scales 11 2.1 Types and properties of crowdsourced data .................................. 11 2.2 Currents trends in cartography ......................................................... 11 2.3 Definitions .............................................................................................. 12 2.3.1 VGI .................................................................................................. 12 2.3.2 LBSM .............................................................................................. 13 2.3.3 Space, place, and location......................................................... 13 2.4 Visualization approaches for crowdsourced geodata ................... 14 2.4.1 Review of publications and visualization approaches ........... 14 2.4.2 Conclusions from the review ...................................................... 15 2.4.3 Challenges mapping crowdsourced data ................................ 17 2.5 Technologies for serving multiscale maps ...................................... 17 2.5.1 Research about multiscale maps .............................................. 17 2.5.2 Web Mercator projection ............................................................ 18 2.5.3 Tiles and zoom levels .................................................................. 19 2.5.4 Raster tiles ..................................................................................... 21 2.5.5 Vector tiles .................................................................................... 23 2.5.6 Tiling as a principle ..................................................................... 25 3 Point collection visualization with categorized attributes 26 3.1 Target users and possible tasks ....................................................... 26 3.2 Example data ......................................................................................... 27 3.3 Visualization approaches .................................................................... 28 3.3.1 Common techniques .................................................................... 28 3.3.2 The micro diagram approach .................................................... 30 3.4 The micro diagram and its parameters ............................................ 33 3.4.1 Aggregating points into a regular structure ............................ 33 3.4.2 Visualizing the number of data points ...................................... 35 3.4.3 Grid and micro diagrams ............................................................ 36 3.4.4 Visualizing numerical proportions with diagrams .................. 37 3.4.5 Influence of color and color brightness ................................... 38 3.4.6 Interaction options with micro diagrams .................................. 39 3.5 Application and user-based evaluation ............................................ 39 3.5.1 Micro diagrams in a multiscale environment ........................... 39 3.5.2 The micro diagram user study ................................................... 41 3.5.3 Point collection vis

    Information between Data and Knowledge: Information Science and its Neighbors from Data Science to Digital Humanities

    Get PDF
    Digital humanities as well as data science as neighboring fields pose new challenges and opportunities for information science. The recent focus on data in the context of big data and deep learning brings along new tasks for information scientist for example in research data management. At the same time, information behavior changes in the light of the increasing digital availability of information in academia as well as in everyday life. In this volume, contributions from various fields like information behavior and information literacy, information retrieval, digital humanities, knowledge representation, emerging technologies, and information infrastructure showcase the development of information science research in recent years. Topics as diverse as social media analytics, fake news on Facebook, collaborative search practices, open educational resources or recent developments in research data management are some of the highlights of this volume. For more than 30 years, the International Symposium of Information Science has been the venue for bringing together information scientists from the German speaking countries. In addition to the regular scientific contributions, six of the best competitors for the prize for the best information science master thesis present their work

    Algorithmic Reason

    Get PDF
    Are algorithms ruling the world today? Is artificial intelligence making life-and-death decisions? Are social media companies able to manipulate elections? As we are confronted with public and academic anxieties about unprecedented changes, this book offers a different analytical prism to investigate these transformations as more mundane and fraught. Aradau and Blanke develop conceptual and methodological tools to understand how algorithmic operations shape the government of self and other. While disperse and messy, these operations are held together by an ascendant algorithmic reason. Through a global perspective on algorithmic operations, the book helps us understand how algorithmic reason redraws boundaries and reconfigures differences. The book explores the emergence of algorithmic reason through rationalities, materializations, and interventions. It traces how algorithmic rationalities of decomposition, recomposition, and partitioning are materialized in the construction of dangerous others, the power of platforms, and the production of economic value. The book shows how political interventions to make algorithms governable encounter friction, refusal, and resistance. The theoretical perspective on algorithmic reason is developed through qualitative and digital methods to investigate scenes and controversies that range from mass surveillance and the Cambridge Analytica scandal in the UK to predictive policing in the US, and from the use of facial recognition in China and drone targeting in Pakistan to the regulation of hate speech in Germany. Algorithmic Reason offers an alternative to dystopia and despair through a transdisciplinary approach made possible by the authors’ backgrounds, which span the humanities, social sciences, and computer sciences
    corecore