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Abstract

During the past decade, we have witnessed the emergence of social media,

which has prominence as a means for the general public to exchange opinions towards

a broad range of topics. Furthermore, its social and temporal dimensions make it

a rich resource for policy makers and organisations to understand public opinion.

In this thesis, we present our research in understanding public opinion on Twitter

along three dimensions: sentiment, topics and summary.

In the first line of our work, we study how to classify public sentiment on

Twitter. We focus on the task of multi-target-specific sentiment recognition on

Twitter, and propose an approach which utilises the syntactic information from

parse-tree in conjunction with the left-right context of the target. We show the

state-of-the-art performance on two datasets including a multi-target Twitter cor-

pus on UK elections which we make public available for the research community.

Additionally we also conduct two preliminary studies including cross-domain emo-

tion classification on discourse around arts and cultural experiences, and social spam

detection to improve the signal-to-noise ratio of our sentiment corpus.

Our second line of work focuses on automatic topical clustering of tweets.

Our aim is to group tweets into a number of clusters, with each cluster representing

a meaningful topic, story, event or a reason behind a particular choice of senti-

ment. We explore various ways of tackling this challenge and propose a two-stage

hierarchical topic modelling system that is efficient and effective in achieving our

goal.
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Lastly, for our third line of work, we study the task of summarising tweets

on common topics, with the goal to provide informative summaries for real-world

events/stories or explanation underlying the sentiment expressed towards an is-

sue/entity. As most existing tweet summarisation approaches rely on extractive

methods, we propose to apply state-of-the-art neural abstractive summarisation

model for tweets. We also tackle the challenge of cross-medium supervised sum-

marisation with no target-medium training resources. To the best of our knowledge,

there is no existing work on studying neural abstractive summarisation on tweets. In

addition, we present a system for providing interactive visualisation of topic-entity

sentiments and the corresponding summaries in chronological order.

Throughout our work presented in this thesis, we conduct experiments to

evaluate and verify the effectiveness of our proposed models, comparing to relevant

baseline methods. Most of our evaluations are quantitative, however, we do per-

form qualitative analyses where it is appropriate. This thesis provides insights and

findings that can be used for better understanding public opinion in social media.
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CHAPTER 1

Introduction

In April 2013, a global information services company, Experian, reported that of

every hour the British spend online, 13 minutes are on social media - more than en-

tertainment, shopping, checking the news, email or anything else1. Social media has

gained prominence as a means for the general public and high-profile governmental

figures such as the president of the US, to express opinions towards a broad range of

topics, including social and political issues. A 2013 study [3] reported the two major

UK political parties had more Twitter followers than their formal party members.

For those who are not considered as mainstream parties social media has provided

a great and cost-less arena for their voices. Beppe Grillo, a Italian comedian with

no history of politics, utilised social media for his “Five Stars Movement”. In 2013

his party won 25.55% of the vote for the Chamber of Deputies and thus “Five Stars

Movement” became the largest party in the Chamber of Deputies. Therefore we are

witnessing social media as a platform that is fast changing the public discourse in

society and setting trends in topics that range from urban environment and traffic

to politics and entertainment. With the enormity of social media data and its con-

stantly evolving nature, it also provides us the form of collective wisdom that can be

utilised to analyse collective behaviors, understand emerging social, economic and

1https://goo.gl/nZQp9e

1
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political phenomena.

With the explosive growth of user-generated content from social media sites

such as Twitter, in recent years we have seen a rapidly increasing research inter-

est in using this new type of data to understand, analyse, represent and extract

a range of actionable patterns [4]. This includes discovering bursty topics [5, 6],

constructing user profiles [7, 8, 9], recognising sentiments or emotions expressed in

social media posts [10, 11, 12] and even predicting real world outcomes [13, 14, 15].

Although social media mining has become a popular research area, understanding

public opinion towards social-political topics such as election remains a challenge.

Social media posts tend to be short, e.g. tweets have a 140-character limit. They are

also noisy and often contain SMS lingo, misspelling and broken sentences, resulting

in data sparsity issue. Social spam and posts that spreading fake news or misinfor-

mation also contribute greatly to the noisy nature of social media data. With regard

to public opinion on social-political issues, it is also difficult to parse the author’s

attitude towards the object and the real intent behind such sentiment (e.g. Poe’s

law). In addition, the dynamic nature of social media data streams leads to topic or

concept drift, which in turn requires efficient and time-sensitive systems. Therefore,

conventional text mining methods cannot be directly applied to understand social

media data.

Sentiment is a very important element and a key factor in understanding

public opinion, as in the case of political events, where opinions are often expressed

through positive or negative sentiments. In recent years, sentiment analysis has

been applied to detect and track public sentiment from social media [10, 13, 16, 17].

Delving into the field of sentiment analysis, finer-grained sentiment has also been

studied to provide granularity from different angles such as emotion analysis [18, 19]

and target-specific sentiment classification [11, 1, 20]. Clustering of social media

posts is another important research area [21, 22, 23]. By grouping user-generated

posts into thematic topics, not only is it easier for users to digest large volumes of

2



data, but a range of professionals are also able to rely on social media for analysing

public opinion, particularly focusing on specific topics and for instance connecting

sentiment expressed towards a topic to the real-world event. Finally to fully digest

public opinions, text summarisation has also been applied to social media, where a

condensed summary is generated in capturing the narrative surrounding a topic or

event [24, 25, 26]. In addition to the aforementioned research areas, other challenges

in social media mining that are gaining research interest include social spam filter-

ing [27, 28, 29], domain adaptation [30, 31], sarcasm recognition [32] and rumour

detection [33, 34], all of which can also help analyse and quantitatively assess public

opinion through social media.

In this thesis, we continue previous research on social media mining and con-

tribute our work in understanding public opinion on Twitter from three different yet

interconnected directions: sentiment, topics and summary. Our first line of work

is the sentiment classification of tweets. We focus on the problem of target-specific

sentiment recognition and introduce a challenging task of identifying sentiment to-

wards multiple targets in a tweet. Additionally, considering that the language use

varies across domains, we also explore ways to alleviate such domain issue by ex-

ploring domain adaptation for Twitter emotion classification. Our second line of

work focuses on the topical clustering of tweets. Our aim is to assign every tweet of

a large Twitter corpus to the corresponding cluster, with each cluster representing a

thematic topic, story, event or a reason underlying a particular choice of sentiment.

To achieve this, we propose a two-stage hierarchical topic modelling system. Lastly,

our third line of work applies abstractive multi-document summarisation for explain-

ing the reasons behind the sentiment towards particular entities. Additionally, we

present an interactive web interface which provides the visualisation of sentiments

and corresponding extractive summaries in chronological order.

3



1.1 Research Outline and Questions

The main question that motivates the research underlying this thesis is: How can

we better understand public opinion on social media? We propose to analyse public

opinion on Twitter, with respect to specific socio-political issues from both macro

and micro perspectives. By recognising target-specific sentiment and providing pub-

lic sentiment evolution for a socio-political event such as elections, researchers can

analyse such opinion towards different issues and entities and understand how it de-

velops over time, on the macro level. With topical clustering of tweets and opinion

summarisation, we provide a system for adding the explanation and justification

behind why such sentiment is commonly expressed towards a particular entity on

a particular day observed on the macro scale, and thus offers a micro perspective.

Our proposed approach can be used by policy makers and organisations to better

understand public opinion on social media.

This thesis aims to advance the state-of-the-art on all of the aforementioned

research areas. In Chapter 2 we provide the literature review for these areas. In

Chapter 3 we present two preliminary studies including social spam detection for im-

proving the signal-to-noise ratio of our sentiment corpus, and Twitter cross-domain

emotion analysis using domain adaptation. Starting from Chapter 4 we describe

our work on three research questions (RQ1 – RQ3) that we believe are important

for understanding public opinion on social media, and contribute new solutions to

each research challenge.

An important challenge of Twitter sentiment analysis is to distinguish and

detect sentiment expressed towards different targets appearing in the same tweet.

Jiang et al. [11] showed that 40% of classification errors are caused by only con-

sidering the overall sentiment expressed in an entire tweet and ignoring the fact

that often a tweet contains different types of sentiment expressed towards different

targets. To understand public opinion on social media, it is essential to not only

4



analyse the overall public mood, but also to identify sentiment towards different key

issues and entities. In Chapter 4 we address the following question:

RQ1: How can we infer the sentiment towards a specific target as opposed to

tweet-level sentiment? Can we find an effective approach for identifying sentiment

towards multiple targets within a tweet?

In answering this question, we move away from the assumption that each

tweet mentions a single target and introduce a more realistic task of identifying sen-

timent towards multiple targets within a tweet. To tackle this challenge, we build a

multi-target corpus that is far more challenging and contains more diverse opinions

towards different socio-political issues. We investigate different approaches of utilis-

ing syntactic dependencies of the targets, and propose a method that combines such

syntactic information for each target with its left-right context, showing competitive

performance.

While social media is a rich resource to shed light on public sentiment and

to track real-world stories, it is often difficult for humans to digest and keep track

of all the relevant information provided in the large volumes of data. Automatic

topical clustering of tweets can help to produce a manageable list of topics that

is much easier for users to digest, enabling for instance identification of real-world

events among those topics. In contrast to topic detection from newswire articles

or scientific journal documents clustering, to cluster social media posts such as

tweets topically is more difficult. Such user-generated content usually lack context

due to their brevity (e.g. 140 characters for tweets) and are noisy in nature. As

a consequence, traditional document clustering approaches and conventional topic

models fall short of delivering good performance. This motivates us to ask RQ2,

and in Chapter 5 we aim to address such problem by studying and proposing a

state-of-the-art topic modelling system.

RQ2: Can we develop a system to effectively group tweets to a number of

clusters, with each cluster representing a thematic topic?

5



In our last step towards understanding how public opinions are shaped on

Twitter, we study the task of multi-document summarisation for tweets. Contin-

uing our work in Chapter 4 and Chapter 5, in Chapter 6 we present a system for

time-sensitive, topic-based summarisation of sentiment towards different issues and

entities, with the goal of providing explanation and justification behind such senti-

ment. Most existing tweet summarisation approaches rely on extractive methods,

which identify such task as a selection or ranking problem. In our work we also

set out to find an abstractive summarisation model that can resemble how humans

write summaries, which is a more challenging task.

Recently neural sequence-to-sequence learning models (or seq2seq) [35] have

shown success in various NLP tasks including machine translation and abstractive

summarisation for news articles. While seq2seq presents a promising way forward for

abstractive summarisation, extrapolating such approach for social media posts such

as tweets, is not trivial. To the best of our knowledge, there is currently no study

on applying seq2seq on tweets. One key issue here is the lack of or non-existence for

sufficient training data. In Chapter 6, we are motivated to address the challenges

in RQ3, by applying the state-of-the-art neural abstractive summarisation model

with a pretraining step.

RQ3: How can we generate abstractive summaries for opinions towards com-

mon topics expressed on Twitter? Is it possible to generate tweet abstracts from

scratch with limited training resources?

We answer these five research questions in the discussion and conclusion sec-

tions of each individual chapter between Chapter 4 and Chapter 6. In Chapter 7 we

summarise our findings and suggest future research directions. In the next sections,

we list the contributions of this thesis to the research field, and the publications of

each line of work.
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1.2 Main Contributions

In this section we describe our contributions which can be classified in four cate-

gories: introducing new tasks, proposing new models, performing new analyses, and

releasing data and code.

Social spam detection Unlike most existing spammer detection studies which

rely on extensive and expensive user data, we propose to study the cate-

gorisation of a tweet as spam or not from its inherent features that can be

obtained in real time. We compare five classification algorithms over two dif-

ferent datasets, thus providing an important evaluation for future studies.

Twitter emotion classification We evaluate the model-based adaptive-SVM ap-

proach against a set of domain-dependent and domain-independent strategies,

in both classification performance and computation time cost. We also make

our annotated emotion corpus and code available to the public.

Target-specific sentiment recognition We introduce the task of multi-target-

specific sentiment classification for Twitter data. Annotated corpus is im-

portant for the research community to benchmark their systems and further

the performance for multi-target sentiment classification. We construct and

release to the public a new multi-target sentiment corpus that contains far

more target entities (as well as topics) and thus more challenging. We propose

a new target-specific sentiment model that combines context around a tar-

get and its syntactic dependencies. Comparing with both target-independent

and target-dependent approaches in both a single-target and our multi-target

datasets, our proposed model shows state-of-the-art performance. We also

conduct experiment by dividing data into three subsets based on the number

of distinct target sentiment values per tweet. Our analysis provides insight

on how target-independent and target-dependent models perform for each of
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these scenarios, which can be used as a basis for future improvement. The

implementation code for this work is also made available to the public.

Topical clustering of tweets We propose a two-stage hierarchical topic mod-

elling system, in which we leverage a state-of-the-art Twitter topic model, a

topic model incorporating word embeddings and a tweet pooling step without

the use of any metadata. We conduct extensive experiments to evaluate our

system in several metrics on two datasets, showing the best results in both

clustering performance and topic coherence. We also provide a qualitative

analysis of the effectiveness of our system and thus justify its applications.

Twitter Opinion summarisation We present a system for providing interactive

visualisation of topic-entity sentiments in chronological order while providing

fine-grained summaries to give insights into the underlying reasons. We are

the first to apply state-of-the-art abstractive summarisation model used for

traditional news articles, to tweets. We provide insightful evaluation on the

feasibility of cross-medium abstractive summarisation with no target-medium

training resources. Experiments are conducted for both event summarisation

and opinion summarisation, with and without pre-training. We believe our

results and analysis are valuable to the summarisation research community.

1.3 Publications

For each research chapter we list on which publication(s) it is based.

Chapter 3: The first half of this chapter is based on Bo Wang, Arkaitz Zubiaga,

Maria Liakata and Rob Procter [36], “Making the most of tweet-inherent fea-

tures for social spam detection on twitter”. 5th Workshop on Making Sense

of Microposts (#Microposts2015), WWW 2015. The design of the algorithm,

the experiments and paper write-up were mostly contributed by Bo Wang.
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The second half of chapter is based on Bo Wang, Maria Liakata, Arkaitz

Zubiaga, Rob Procter and Eric Jensen [37], “SMILE: Twitter emotion clas-

sification using domain adaptation”. 4th Workshop on Sentiment Analysis

where AI meets Psychology, IJCAI 2016. The design of the algorithm, the

experiments and paper write-up were mostly contributed by Bo Wang.

Chapter 4: This chapter is based on Bo Wang, Maria Liakata, Arkaitz Zubiaga

and Rob Procter [38], “TDParse: Multi-target-specific sentiment recognition

on Twitter”. Proceedings of the 15th Conference of the European Chapter of

the Association for Computational Linguistics (EACL 2017). The design of

the algorithm, the experiments and paper write-up were mostly contributed

by Bo Wang.

A small part of this chapter is also based on Richard Townsend, Adam Tsaka-

lidis, Yiwei Zhou, Bo Wang, Maria Liakata, Arkaitz Zubiaga, Alexandra I

Cristea and Rob Procter [39], “WarwickDCS: From phrase-based to target-

specific sentiment recognition”. Proceedings of the 9th International Work-

shop on Semantic Evaluation (SemEval 2015). The design of the algorithm

and paper write-up were partly contributed by Bo Wang.

Chapter 5: This chapter is based on Bo Wang, Maria Liakata, Arkaitz Zubiaga

and Rob Procter [40], “A Hierarchical Topic Modelling Approach for Tweet

Clustering”. 9th International Conference on Social Informatics (SocInfo

2017). The design of the algorithm, the experiments and paper write-up were

mostly contributed by Bo Wang.

Chapter 6: This chapter is partially based on Bo Wang, Maria Liakata, Adam

Tsakalidis, Spiros Georgakopoulos Kolaitis, Symeon Papadopoulos, Lazaros

Apostolidis, Arkaitz Zubiaga, Rob Procter and Yiannis Kompatsiaris [41],

“TOTEMSS: Topic-based, Temporal Sentiment Summarisation for Twitter”.

Proceedings of the 8th International Joint Conference on Natural Language
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Processing (IJCNLP 2017). The design of the algorithm and paper write-up

were mostly contributed by Bo Wang.

Work on other publications also contributed to the thesis, albeit indirectly:

• Arkaitz Zubiaga, Alex Voss, Rob Procter, Maria Liakata, Bo Wang and Adam

Tsakalidis [42], “Towards real-time, country-level location classification of

worldwide tweets”. Published in IEEE Transactions on Knowledge and Data

Engineering, 2017.

• Arkaitz Zubiaga, Bo Wang, Maria Liakata and Rob Procter [43], “Political

Homophily in Independence Movements: Analysing and Classifying Social

Media Users by National Identity”. Published in IEEE Intelligent Systems,

2018.
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CHAPTER 2

Background

In this chapter, we provide background and literature review for our research work

included in this thesis. We start by introducing two approaches of tackling Twitter

spam in Section 2.1, namely social spammer detection and spam detection, and the

corresponding related work for each approach. In Section 2.2 we detail previous

work on sentiment analysis for Chapter 3 and 4. Specifically, Section 2.2.1 surveys

existing work for sentiment analysis on social media such as Twitter. Section 2.2.2

gives the background material on cross-domain sentiment classification using domain

adaptation. In Section 2.2.3 and 2.2.4 we discuss related work on target-specific

sentiment and aspect-level sentiment classification, as well as the similarity and

difference between the two. This gives an overview of Twitter sentiment analysis as

a whole and different domains within this research area, preparing for Chapter 4.

In order to fully understand the sentiment expressed towards a particular

target, we need to group such opinion into different clusters and generate summary

for each cluster, as described in Chapter 1. Existing work on topical clustering

of tweets is discussed in Section 2.3, where two different approaches are reviewed.

Because our proposed system for tweet clustering is based on topic models, we also

review different evaluation metrics for topic modelling. Finally, we conduct litera-
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ture review for automatic summarisation, which serves as the background material

for Chapter 6. We describe the state-of-art methods in two approaches, namely

extractive summarisation and abstractive summarisation.

2.1 Spam Detection on Twitter

The detection of spam has now been studied for more than a decade since email spam

[44]. In the context of email messages, spam has been widely defined as “unsolicited

bulk email” [45]. The term “spam” has then been extended to other contexts,

including “social spam” in the context of social media. Similarly, social spam can

be defined as the “unwanted content that appears in online social networks”. It is,

after all, the noise produced by users who express a different behavior from what

the system is intended for, and has the goal of grabbing attention by exploiting

the social networks’ characteristics, including for instance the injection of unrelated

tweet content in timely topics, sharing malicious links or fraudulent information.

Social spam hence can appear in many different forms, which poses another challenge

of having to identify very different types of noise for social spam detection systems.

There are two ways of dealing with Twitter spam, namely spammer detection

and directly detecting spam tweets. In the following sections we describe relevant

research on both approaches.

2.1.1 Social Spammer Detection

Most of the previous work in the area has focused on the detection of users that

produce spam content (i.e., spammers), using historical or network features of the

user rather than information inherent to the tweet. Early work by [27], [46] and

[28] put together a set of different features that can be obtained by looking at a

user’s previous behaviour. These include some aggregated statistics from a user’s

past tweets such as average number of hashtags, average number of URL links and
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average number of user mentions that appear in their tweets. They combine these

with other non-historical features, such as number of followers, number of followings

and age of the account, which can be obtained from a user’s basic metadata, also

inherent to each tweet they post. Some of these features, such as the number of

followers, can be gamed by purchasing additional followers to make the user look

like a regular user account.

Lee et al. [47] and Yang et al. [48] employed different techniques for collect-

ing data that includes spam and performed comprehensive studies of the spammers’

behaviour. They both relied on the tweets posted in the past by the users and their

social networks, such as tweeting rate, following rate, percentage of bidirectional

friends and local clustering coefficient of its network graph, aiming to combat spam-

mers’ evasion tactics as these features are difficult or costly to simulate. Ferrara

et al. [49] used network, user, friends, timing, content and sentiment features for

detecting Twitter bots, their performance evaluation is based on the social honey-

pots dataset from [47]. Miller et al. [50] treats spammer detection as an anomaly

detection problem as clustering algorithms are proposed and such clustering model

is built on normal Twitter users with outliers being treated as spammers. They also

propose using 95 uni-gram counts along with user profile attributes as features. The

sets of features utilised in the above works require the collection of historical and

network data for each user, which do not meet the requirements of our scenario for

spam detection.

2.1.2 Social Spam Detection

Few studies have addressed the problem of spam detection. Santos et al. [51]

investigated two different approaches, namely compression-based text classification

algorithms (i.e. Dynamic Markov compression and Prediction by partial matching)

and using “bag of words” language model (also known as uni-gram language model)

for detecting spam tweets. Martinez-Romo and Araujo [29] applied Kullback-Leibler
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Divergence (KLD) and examined the difference of language used in a set of tweets

related to a trending topic, suspicious tweets (i.e. tweets that link to a web page)

and the page linked by the suspicious tweets. These language divergence measures

were used as their features for the classification. They used several URL blacklists

for identifying spam tweets from their crawled dataset, therefore each one of their

labelled spam tweets contains a URL link, and is not able to identify other types of

spam tweets. In our studies we have investigated and evaluated the discriminative

power of four feature sets on two Twitter datasets (which were previously in [47]

and [48]) using five different classifiers. We examine the suitability of each of the

features for the spam classification purposes. Comparing to [29] our proposed system

described in Chapter 3 is able to detect most known types of spam tweet irrespective

of having a link or not. Also our system does not have to analyze a set of tweets

relating to each topic (which [29] did to create part of their proposed features)

or external web page linked by each suspicious tweet, therefore its computation

cost does not increase dramatically when applied for mass spam detection with

potentially many different topics in the data stream.

The few works that have dealt with spam detection are mostly limited in

terms of the sets of features that they studied, and the experiments have been

only conducted in a single dataset (except in the case of [29], where very limited

evaluation was conducted on a new and smaller set of tweets), which does not

allow for generalisability of the results. In Chapter 3, we evaluate a wide range

of tweet-inherent features (namely user, content, n-gram and sentiment features)

over two different datasets, obtained from [47] and [48] and with more than 10,000

tweets each, for the task of spam detection. The two datasets were collected using

completely different approaches (namely deploying social honeypots for attracting

spammers; and checking malicious URL links), which helps us learn more about the

nature of social spam and further validate the results of different spam detection

systems.
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2.2 Sentiment Analysis

In recent years sentiment analysis has become ever more popular, with over 7,000 ar-

ticles written on the topic [52], applications ranging from box office [53] and election

prediction [13], to detecting emotions in suicide notes [54]. Despite the popularity

and commercial adoption of sentiment analysis especially for social media, a number

of challenges in this field are still yet to be solved. For example as reviewed in [55],

sentiment is domain specific and the meaning of words changes depending on the

context they are used in. Another important challenging task is to distinguish and

detect sentiment expressed towards different target entities appearing in the same

text. Here we address the cross-domain challenge in Chapter 3 and target-specific

sentiment analysis in Chapter 4.

In this section, we start with a general review on sentiment analysis research

on social media such as Twitter. Then we discuss relevant work on domain adap-

tation for sentiment classification. At last, we zoom in on two related research

areas for entity-level sentiment analysis, namely target-specific sentiment recogni-

tion on Twitter (described in Section 2.2.3) and aspect-level sentiment classification

on reviews (described in Section 2.2.4).

2.2.1 Sentiment Analysis on Social Media

In an earlier study, Wang et al. [16] develop a real-time large scale (collected over

36 million tweets) political sentiment analysis system achieving 59% in accuracy

on four-category classification of negative, positive, neutral or unsure. It uses a

crowdsourcing platform (Amazon Mechanical Turk) to acquire sentiment annotated

training data, and built simple Naive Bayes model on unigram features. Machine

learning-based approaches require creating a model by training the classifier with

a large set of sentiment annotated training data, which is labor-intensive to ac-

quire. Lexicon-based approaches on the other hand (e.g. [56]), use sentiment dictio-
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nary to determine opinion orientations, but because of the noisy nature of tweets,

lexicon-based approaches suffer from low recall problem. Zhang et al. [57] propose

combining lexicon-based and learning-based methods, using lexicon to label tweets

as training data for learning a Support Vector Machine model. Go et al. [10] in-

troduce a distant-supervision approach using emoticons as noisy labels, producing

large amount of training data. In SemEval-2013 and 2014 Twitter sentiment analysis

competitions the best performing systems [58, 59] both use rich lexical and manually

engineered features. However, the development of lexica can be time consuming and

is domain specific. An interesting study by Tang et al. [60] propose a joint learning

framework for tweet-level sentiment classification. The framework has a tweet seg-

mentation model that is updated at each training iteration by verifying predicted

sentiment of each segmentation candidate, top ranked candidates are selected in

turn for training the sentiment classifier. However, learning such sentiment-specific

segmentation model is a difficult task if only tweet-level sentiment information is

used as the training signal1. Several other studies focus on incorporating additional

information to further improve performance such as user background [61], topic

information [62], user bias towards a topic [63], or social relations [64, 17].

Deep learning has also been applied in the field of Twitter sentiment analysis.

Severyn and Moschitti [65] use a convolutional neural network (CNN) for predicting

polarities at both tweet and phrase levels, using distant-supervision data for net-

work initialisation. Ren et al. [66] propose a context-based neural network model

incorporating contextualized features from relevant tweets (to the target tweet) in

the form of word embedding vectors. A recent work by Yang et al. [67] proposes an

attention-based neural architecture, incorporating the author’s position in the social

network, which makes it possible to induce personalized classifiers. These supervised

deep learning approaches usually require large amount of training data, which is not

always available. In two studies by Tang et al. [68, 69], sentiment-specific word em-

1This is observed by evaluating its system on various data sets.
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beddings are learnt and used as features for identification of tweet-level sentiment

achieving good performance. Similar to [39], we adopt a hybrid approach which

incorporates rich and diverse set of features including lexica, n-gram, cluster, and

word embeddings (including the one proposed by [69]), to train a SVM classifier as

a target-independent baseline model to be evaluated and compared in Section 4.4.1.

One future direction of this area is to have a more explicit model of morphology than

just character/sub-word/word composition, which will give us the morphologically-

aware word representations that can be used for modelling sentiment in a sentence.

Support Vector Machine

Support Vector Machines (SVM) [70] are a supervised machine learning algorithm

used for classification, regression and other learning tasks. It maps data points in

d-dimensional space, and tries to find a (d − 1)-dimensional hyperplane (or a set

of hyperplanes) that separates the data points into two classes and the distance

from the hyperplane to the nearest training data point on each side is maximised.

If the training data is not linearly separable, SVM can be extended by using the

hinge loss function: max (0, 1− yi(w · xi − b)). If the data is on the wrong side of

the margin, the function’s value is proportional to the distance from the margin.

Therefore computing the soft-margin SVM amounts to minimising:

[
1

n

n∑
i=1

max (0, 1− yi(w · xi − b))

]
+ λ‖w‖2 (2.1)

where λ determines the tradeoff between the margin-size and making sure xi lie

on the correct side of the margin. Equation .2.1 can be rewritten as the primal
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optimisation problem as below:

min
textbfw,b,ξ

1

2
(w)Tw + C

N∑
i=1

ξi

s.t. yi(w
Tφ(xi) + b) ≥ 1− ξi,

ξi ≥ 0, for all i

(2.2)

where φ(xi) maps xi into a higher-dimensional space, and C is the regularisation

parameter. Due to the possible high dimensionality of w, the Lagrangian dual of

the above problem is usually being solved:

min
α

1

2
(α)TQα− eTα

s.t. yTα = 0,

0 ≤ αi ≤ C, for all i

(2.3)

where e = [1, ..., 1]T , Q is the positive semidefinite matrix, Qi,j ≡ yiyjK(xi,xj), and

K(xi,xj) ≡ φ(xi)
Tφ(xj) is the kernel function2. The optimal w satisfies:

w =
n∑
i=1

yiαiφ(xi)

and the decision function becomes:

sgn(wTφ(x) + b) = sgn(
n∑
i=1

yiαiK(xi,x) + b)

All the weights, support vectors and other information such as kernel parameters

are stored in the model for prediction.

2This allows the algorithm to fit the maximum-margin hyperplane in the transformed feature
space.
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Neural Networks

Neural networks provide powerful tools for modeling language, and have become

the state-of-the-art models for many NLP tasks in the recent years. There are two

main deep neural network architectures: convolutional neural network (CNN)

[71] and recurrent neural network (RNN) [72]. CNNs generally consist of an

input layer, one or more convolution and max pooling layers, the fully connected

layer, and loss layer. Consider a sequence of words x = x1, x2, ..., xn, each with its

corresponding embedding representation v(xi). A one-dimensional convolution layer

of width k works by moving a sliding window of the same size over the sentence, and

applying the filter to the sequence in the window. The filter function is usually a

linear transformation followed by a non-linear activation function. Let ci ∈ Rkd be

the concatenated vector of the sliding window containing k inputs xi, xi+1, ..., xi+k−1

and m is the total number of these windows depending on whether narrow or wide

convolution is used. When i < 1 or i > n, the embedding representations for xi are

zero padded. The result of the convolution layer is m vectors p1, ...,pm, pi ∈ Rd:

pi = g (W · ci + b)

where W ∈ Rd×wd is the convolution weights and b ∈ Rd is the bias. g is an acti-

vation function to increase non-linearity, its common choices are hyperbolic tangent

function tanh, sigmoid function sigmoid and rectified linear unit ReLU. p1, ...,pm

are then combined using a pooling layer such as a max-pooling operation to extract

the most salient information across window positions. The resulting vector from the

pooling layer is then fed into the downstream network layers including a loss layer

for calculating the loss with respect to the downstream task.

The word order sensitivity captured in convolutional networks is restricted to

mostly local patterns. RNNs recursively take a state vector si and an input vector

xi+1, and result in a new state vector si+1. It provides a framework for modeling
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sequence based on the entire history of states without resorting to the Markov

assumption, which is traditionally used in language models. Gating mechanisms

have been developed and widely used to alleviate the vanishing gradient problem

that exists in standard RNNs. Gated recurrent unit (GRU) [73] and long

short-term memory (LSTM) [74] are two types of RNNs using different gating

mechanism. GRU has a update gate and a reset gate, which control what should

be passed to the output. It models input xt as follows:

zt = σg(Wzxt + Uzht−1 + bz) (2.4)

rt = σg(Wrxt + Urht−1 + br) (2.5)

ht = (1− zt)� ht−1 + zt � σh(Whxt + Uh(rt � ht−1) + bh) (2.6)

where xt ∈ Rd is the input at time step t, ht ∈ Rh is the hidden state encoding all

the inputs preceding t, zt is the update gate, rt is the reset gate, σg is a sigmoid

function, σh is a tanh function, and U, W and b are the parameters.

In a standard LSTM network, each of its units is composed of a cell, an

input gate, an output gate and a forget gate. LSTM models xt as follows:

ft = σg(Wfxt + Ufht−1 + bf ) (2.7)

it = σg(Wixt + Uiht−1 + bi) (2.8)

ot = σg(Woxt + Uoht−1 + bo) (2.9)

ct = ft � ct−1 + it � σc(Wcxt + Ucht−1 + bc) (2.10)

ht = ot � σh(ct) (2.11)

where the input gate it ∈ Rh, forget gate ft ∈ Rh and output gate ot ∈ Rh are

generated by applying sigmoid function over the input vector xt ∈ Rd and preceding

hidden state vector ht−1 ∈ Rh. In order to generate the hidden state at current time

step t, it first applies σc (i.e. a tanh function) over xt and ht−1, then combines it
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with ct−1 using input gate it and forget gate ft to get an updated cell state ct ∈ Rh.

The final hidden state ht is generated by multiplying the output gate vector ot with

σh(ct), where σh is another tanh function.

Word Embedding

Word embeddings, or distributional semantic models, are based on the idea that

contextual information constitutes a viable representation of linguistic items such

as words. While topic models (described later in this chapter) use documents as

contexts, neural language models and distributional semantic models instead use

words as contexts. Collobert and Weston [75] showed word embeddings trained on

a sufficiently large dataset to be useful for downstream tasks, and since then it has

been used in various NLP applications such as sentiment analysis, named entity

recognition, parsing, tagging and machine translation.

The main differences among the word embedding models are computational

complexity and training objective. The two most popular word embedding models,

word2vec and GloVe, both encode general semantic relationships. Mikolov et al. [76]

proposed word2vec with two architectures: Continuous bag-of-words (CBOW) and

Skip-gram. These models are shallow, two-layer neural networks that are trained

to reconstruct linguistic contexts of words. While a classic language model aims to

predict each word based on its previous words, CBOW uses both n words before

and after the target word wt for prediction. The objective function of CBOW is

shown below:

Jθ =
1

T

T∑
t=1

log p(wt | wt−n, · · · , wt−1, wt+1, · · · , wt+n) (2.12)

Instead of predicting the target word based on context, skip-gram uses the target

word as an input to a log-linear classifier with continuous projection layer, and
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predict its surrounding words. It has the following objective function:

Jθ =
1

T

T∑
t=1

∑
−n≤j≤n, 6=0

log p(wt+j | wt) (2.13)

To mitigate the cost of computing the final softmax layer, Mikolov et al. [77] intro-

duced negative sampling algorithm and the subsampling of frequent words, showing

much more computationally efficient model architecture. They also proposed an

alternative to the sampling approach, which uses a binary Huffman tree for their

hierarchical softmax (an approximation to full softmax).

GloVe [78] is a count-based model that learns word vectors by essentially

performing dimensionality reduction on the word co-occurrence counts matrix X.

This large matrix is factorised to yield a lower-dimensional matrix, where each row

is a vector representation for a word. Pennington et al. [78] encode the information

present in the ratios of word co-occurrence probabilities instead of the probabilities

themselves. To achieve this, they proposed a weighted least squares objective J :

J =

V∑
i,j=1

f (Xij)
(
wTi w̃j + bi + b̃j − logXij

)2
(2.14)

where wi and bi are word vector and bias respectively of word i, while w̃j and b̃j are

context word vector and bias for word j. Xij is the number of times word i occurs

in the context of word j. The weighting function f is used to prevent learning only

from extremely common word pairs, and it is defined in GloVe as the following:

f(x)


(

x
xmax

)α
if x < xmax,

1 otherwise .

(2.15)
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2.2.2 Cross-domain Sentiment Classification

Most existing domain adaptation approaches can be classified into two categories:

feature-based adaptation and instance-based adaptation. The former seeks to con-

struct new adaptive feature representations that reduce the difference between do-

mains, while the latter aims to sample and re-weight source domain training data

for use in classification within the target domain.

With respect to feature domain adaptation, [79] applied structural corre-

spondence learning (SCL) algorithm for cross-domain sentiment classification. SCL

chooses a set of pivot features that frequently occur in both domains and have

highest mutual information to the domain labels, and uses these pivot features to

align other features by training N linear predictors. Finally it computes singular

value decomposition (SVD) to construct low-dimensional features to improve its

classification performance. A small amount of target domain labelled data is used

to learn to deal with misaligned features from SCL. [80] found that SCL did not

work well for cross-domain adaptation of sentiment on Twitter due to the lack of

mutual information across the Twitter domains and uses subjective proportions as

a backoff adaptation approach. [81] proposed to construct a bipartite graph from

a co-occurrence matrix between domain-independent and domain specific features

to reduce the gap between different domains and use spectral clustering for feature

alignment. The resulting clusters are used to represent data examples and train sen-

timent classifiers. They used mutual information between features and domains to

classify domain-independent and domain specific features, but in practice this also

introduces mis-classification errors. [82] describes a cross-domain sentiment classifi-

cation approach using an automatically created sentiment sensitive thesaurus. Such

a thesaurus is constructed by computing the point-wise mutual information between

a lexical element u and a feature that can be either a sentiment feature or another

lexical element that co-occurs with u in the training data, as well as relatedness be-
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tween two lexical elements. Therefore common domain-independent words are used

as pivots that transfer information from one domain to another. The problem with

these feature adaptation approaches is that they try to connect domain-dependent

features to known or common features under the assumption that parallel sentiment

words exist in different domains, which is not necessarily applicable to various topics

in tweets [83].

When it comes to instance adaptation, [84] proposes an instance weighting

framework that prunes “misleading” instances and approximates the distribution of

instances in the target domain. Their experiments show that by adding some la-

belled target domain instances and assigning higher weights to them performs better

than either removing “misleading” source domain instances using a small number

of labelled target domain data or bootstrapping unlabelled target instances. [85]

adapts the source domain training data to the target domain based on a logistic

approximation. [31] learns different classifiers on different sets of features and com-

bines them in an ensemble model. Such an ensemble model is then applied to part

of the target domain test data to create new training data (i.e. documents for which

different classifiers had the same predictions). We include this ensemble method as

one of our baseline approaches for evaluation and comparison.

Except for [31] and [80], none of the above studies carry out cross-domain

sentiment classification for Twitter data, which has been proven more challenging.

[30] and [86] studied cross-medium sentiment classification, which transfers senti-

ment classifier trained on blogs or reviews to tweets. [87] examined whether the

observation about domain-dependent models improving sentiment classification of

reviews also applies to tweets. They found such models to achieve significantly better

performance than domain-independent models for some topics. [83] implements a

multi-class semi-supervised Support Vector Machines (S3VMs) model that performs

co-training on both textual and non-textual features (e.g. temporal features) for

sentiment classification on tweets. In order to make their model adaptive to differ-
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ent topics, confident unlabelled target-domain data are selected and topic-adaptive

sentiment words are used as additional lexicon features. Ruder et al. [88] review dif-

ferent strategies to select training data from multiple sources for domain adaptation

for sentiment analysis, based on feature representation, similarity metrics, and the

level of the selection. They find both selecting the most similar domain and subsets

outperform instance-level selection. A Bayesian Optimisation based data selection

approach is also proposed by the same author [89].

More recently, several studies have developed deep learning models for do-

main adaptation. [90] is the first to propose learning a unified feature representation

for different domains, under the intuition that deep learning algorithms learn inter-

mediate concepts (between raw input and target) and these intermediate concepts

could yield better transfer across domains. [91] use two parameter-sharing memory

networks with attention for automatically capturing important sentiment words that

are shared in both domains (i.e. pivots), where one network is for sentiment clas-

sification and the other is for domain classification. The two networks are trained

jointly. By augmenting the skip-gram objective with a regularisation term, [92]

learns cross domain word embeddings that is shown to achieve good performance

in cross-domain sentiment classification. However, both source and target domains

are reviews from different sites. [93] uses emoji tweets for pretraining a model that

can be used in a new task with fine-tuning. Their proposed transfer learning ap-

proach sequentially unfreezes and fine-tines each layer, then lastly the entire model is

trained with all layers. The authors evaluated on 3 tasks including emotion analysis,

however, only ‘Fear’, ‘Joy’ and ‘Sadness’ are evaluated as the remaining emotions

rarely occurred in the observations.

In contrast with most cross-domain sentiment classification works, we use

a SVM-based approach proposed in [94], which directly adapts existing classifiers

trained on general-domain corpora. We believe this is more efficient and flexible

[95] for our task. We evaluate on a set of manually annotated tweets about cul-
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tural experiences in museums and conduct a finer-grained classification of emotions

conveyed (i.e. anger, disgust, happiness, surprise and sadness).

2.2.3 Target-dependent Sentiment Recognition

The 2015 Semeval challenge introduced a task on target-dependent Twitter sen-

timent [96] which most systems [97, 98] treated in the same way as tweet level

sentiment. The best performing system in the 2016 Semeval Twitter challenge sub-

stask B [99], named Tweester, also performs on tweet level sentiment classification.

This is unsurprising since tweets in both tasks only contain a single predefined tar-

get entity and as a result often a tweet-level approach is sufficient. An exception to

tweet level approaches for this task [39], trained a SVM classifier for tweet segmen-

tation, then used a phrase-based sentiment classifier for assigning sentiment around

the target and returning the majority sentiment. The Semeval aspect-based sen-

timent analysis task [100, 101] aims to identify sentiment towards entity-attribute

pairs in customer reviews. This differs from the target-dependent task in the fol-

lowing way: both the entities and attributes are limited to a predefined inventory of

limited size; they are aspect categories reflected in the reviews rather than specific

targets, while each review only has one target entity, e.g. a laptop or a restaurant.

Also sentiment classification in formal text such as product reviews is very different

from that in tweets. Recently Vargas et al. [20] analysed the differences between

the overall and target-dependent sentiment of tweets for three events containing 30

targets, showing many significant differences between the corresponding overall and

target-dependent sentiment labels, thus confirming that these are distinct tasks.

Early work tackling target-dependent sentiment in tweets [11] designed target

dependent and independent features manually, relying on the syntactic parse tree

and a set of grammar-based rules, and incorporating the sentiment labels of related

tweets (i.e. retweets, replies and other tweets by the same users) to improve the

classification performance. Recent work [1] used recursive neural networks [102] and
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adaptively chose composition functions to combine child feature vectors according

to their dependency type, to reflect sentiment signal propagation to the target.

Their data-driven composition selection approach relies on the dependency types

(generated from Stanford parser3) as features and a small set of rules for constructing

target-dependent trees. Their manually annotated dataset contains only one target

per tweet and has since been used for benchmarking by several subsequent studies

[103, 104, 105]. Vo and Zhang [103] exploit the left and right context around a target

in a tweet and combine low-dimensional embedding features from both contexts

and the full tweet using a number of different pooling functions. Despite not fully

capturing semantic and syntactic information given the target entity, they show a

much better performance than Dong et al. [1], indicating useful signals in relation to

the target can be drawn from such context representation. Both Tang et al. [104] and

Zhang et al. [105] adopt and integrate left-right target-dependent context into their

recurrent neural network (RNN) respectively. While Tang et al [104] propose two

long short-term memory (LSTM) models showing competitive performance to Vo

and Zhang [103], Zhang et al [105] design a gated neural network layer between the

left and right context in a deep neural network structure but require a combination

of three corpora for training and evaluation. Results show that conventional neural

network models like LSTM are incapable of explicitly capturing important context

information of a target [106]. Tang et al. [104] also experiment with adding attention

mechanism for LSTM but fail to achieve competitive results possibly due to the small

training corpus.

Going beyond the existing work, in Chapter 4 we introduce the more chal-

lenging task of classifying sentiment towards multiple target entities within a tweet.

We show the tweet level approach that many sentiment systems adopted in both

Semeval challenges, fail to capture all target-sentiments in a multi-target scenario

(Section 4.5.1).

3https://nlp.stanford.edu/software/lex-parser.shtml
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2.2.4 Aspect-level Sentiment Classification

The task of classifying target-specific sentiment is related to aspect-level sentiment

analysis, which is mostly analysed on product reviews. Its goal is to identify sen-

timent polarity expressed towards aspect categories [100, 101]. To capture such

aspect-level sentiment on reviews, Lakkaraju et al. [107] use recursive neural tensor

network (RNTN) proposed by [108] to learn representations of words and parses of

phrases and sentences containing the words. The features contribute to an objective

function relating features of the words and phrase constituents to sentiment labels

which the system seeks to optimise. Nguyen et al. [109] transform the dependency

parsing trees into target-dependent binary phrase dependency trees in order to learn

to classify aspect-level sentiment in the restaurant reviews. One potential problem

of recursive neural networks is having to binarise syntactic trees and resulting in

long propagation paths. This may lead to information loss or commonly known

as vanishing gradient problem [110]. Identifying sentiment for product reviews is

different from that of tweets, as not only in reviews if any sentiment is expressed

in a sentence containing a target it is highly likely the sentiment is towards such

target as argued in [11], but also such compositionality from [107] is more difficult

to achieve and requires a dependency parser trained specifically for tweets (such as

[111], which does not provide sufficient dependency type information). One way to

potentially alleviate the latter problem is to have many different parses and learn

to choose or combine them, as suggested by Le et al. [112].

In [109] the authors achieve good performance for review sentences containing

one or two aspects with all aspects in the sentence having the same sentiment type.

They show sentences mentioning three aspects with different sentiment types to be

the most difficult case with the best 48.13 in F1 score, comparing to 62.21 for all

sentences. In Chapter 4 we show our new multi-target corpus has 1649 out of 4077

tweets (40%) having three or more targets with different sentiment categories thus
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posing a challenging task.

2.3 Tweet Clustering

A topical clustering system aims to group a set of tweets, usually posted in the same

period of time, to a number of clusters, with each cluster representing a meaningful

topic. This is also tightly related to topic detection described by the task of Topic

Detection and Tracking (TDT) [113] as extracting event-based4 topics from a corpus

of textual data. According to Aiello et al. [22], methodologically, existing general-

purpose topic detection fit into two main categories: 1), document-pivot approaches

where topics are represented by such document clusters; 2), feature or term-pivot

methods where the most important terms are clustered and a topic is represented by

a cluster of terms instead. In this section we review the recent developments on tweet

clustering and Twitter topic detection from the aforementioned two perspectives.

2.3.1 Document-Pivot Methods

Document-pivot approaches usually involve encoding documents in some vector rep-

resentations that can be either sparse one-hot vectors or dense embedding matrices.

Then similarity metrics are used to measure and group similar documents together

as clusters. An early work on breaking news detection in Twitter [114] uses bag-of-

words for tweet representation and textual similarity between tweets is compared

using boosted tf-idf5. Rosa et al. [21] find traditional unsupervised methods to pro-

duce incoherent topical clusters and suggest the superiority of supervised models

using hashtags as training labels. Similar approaches can be found in many of the

Twitter event detection literature where online clustering is adopted for incremen-

tal and efficient tweet clustering. To alleviate the cluster over-fragmentation issue

that exists in the online clustering approach, these studies usually perform a second

4Here an “event” is defined as some unique thing that happens at some point in time.
5The similarity score is based on tf-idf but boosted by proper noun terms. The Stanford Named

Entity Recogniser is used for the classification of proper noun terms.
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stage of offline clustering [115] [116] or classification [117]. The winner system [118]

of the 2014 SNOW Data Challenge6, uses a method based on aggressive tweet/term

filtering combined with two-stage hierarchical clustering and ranking. In terms of

clustering algorithm Rangrej et al. [119] compare K-means, a Singular Value Decom-

position (SVD) based method and Affinity Propagation, they find the graph-based

Affinity Propagation method to be the most effective in clustering tweets. Tweet

clustering is also studied in the First Story Detection research area, where besides

the use of tf-idf term representation and cosine similarity, Locality Sensitive Hashing

(LSH) is adopted to approximate and speed up the nearest neighbor search process

[120].

Many of the aforementioned studies focus on the problem of online clustering

of a stream of tweets. They use an incremental clustering framework, which assigns

newly arriving tweets to the existing clusters. In Chapter 5, we primarily focus

on how to best cluster a static collection of tweets, which are set to be performed

efficiently offline, possibly at the end of each day.

Using tf-idf feature vectors as tweet representation has the issue of sparsity.

Noticeably Tsur et al. [121] concatenate tweets mentioning the same hashtags into

virtual documents, and perform clustering on the virtual documents instead. This

way it alleviates the sparsity problem of tweets. Another challenge of tweet cluster-

ing is how to go beyond the limitation of bag-of-words representation and encode

tweets in some vector embeddings that enables the semantic similarity matching in

tweet content. This aims to avoid clustering tweets based on language similarity

rather than topical coherence, as mentioned in [21]. Ganesh et al. [122] compare

various tweet representations generated by supervised and unsupervised learning

methods, over a set of tweet-specific elementary property classification tasks such as

predicting slang words or reply time, in trying to show the basic characteristics of

different tweet representations. Their results show Skip-Thought Vectors [123] to be

6http://www.snow-workshop.org/2017/challenge/

30

http://www.snow-workshop.org/2017/challenge/


good for most of the social tasks including in predicting whether a tweet is a reply,

due to its inter-sentential features learnt from predicting surrounding sentences as

well as the recurrent structure in both the encoder and decoder. Vakulenko at al.

[124] employ a character-based tweet embedding method, named Tweet2Vec [125],

along with hierarchical clustering for the task of clustering tweets. They demon-

strate to outperform [118] for the 2014 SNOW breaking news detection corpus.

Interestingly Arora et al. [126] propose a simple and unsupervised approach to

sentence embedding based on the weighted average of word vectors in the sentence

and “common component removal”, reporting surprisingly good performances on 22

textual similarity data sets, including a Twitter corpus.

2.3.2 Term-Pivot Methods

Feature-pivot methods are commonly based on the analysis of associations between

terms, and are closely related to topic modelling. Conventional topic models such

as Latent Dirichlet Allocation (LDA) [127] have shown great success in various

Natural Language Processing (NLP) tasks for discovering the latent topics that

occur in long and structured text documents. Due to the limited word co-occurrence

information in short texts, conventional topic models perform much worse for social

media microposts such as tweets as demonstrated by Rosa et al. [21]. Here we

review the recent developments on Twitter topic modelling and how to tackle the

sparse and noisy nature of tweets.

Earlier studies try to utilise external knowledge such as Wikipedia [128] to

improve topic modelling on short texts. This requires a large text corpus which may

have a domain issue for the task at hand. Since then four approaches have been

studied in the literature to adapt conventional topic models for short texts such as

tweets:

1) Directly model the generation of word co-occurrence pattern in the whole

corpus (rather than at document-level) based on biterms, where a biterm denotes an
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unordered word-pair co-occurring in a tweet, as demonstrated by Yan et al. [129].

Since it does not model the document generation process, the topic distribution of

each document cannot be directly obtained and instead it is derived based on the

topic proportions of biterms of the document.

2) Apply a document pooling strategy, to aggregate tweets to a number of

virtual documents, based on authors [130], hashtags [131], conversation [132] or

other metadata [133] such as timestamps and named entities. This strategy helps to

overcome the limited context information in tweets, but pooling by such metadata

can potentially have adverse effect on the subsequent topic modelling.

3) [134] proposed a simple topic model, named Dirichlet Multinomial Mixture

(DMM) model. The DMM model has since then been used in many Twitter topic

modelling studies for alleviating the data sparsity problem and reported to give

more coherent topics [135, 23, 136, 137], given that its underlying assumptions are

reasonable for short texts.

4) Complement topic models which use the global word collocation patterns

in the same document/tweet, with word embeddings that exploit the local word

collocation patterns within a context window. [138] extend LDA and DMM to

incorporate word embeddings as latent features. Such latent feature component

is integrated with its original topic-word Dirichlet multinomial component. [137]

propose to incorporate word embeddings through the generalised Pólya urn model

in topic inference. [139] propose to infer topics via document-level co-occurrence

patterns of latent concepts instead of words themselves. All of these approaches aim

to improve topic coherence by connecting semantically related words to overcome

the short length of tweets.

Besides the topic-model-based approaches, [22] proposed a term clustering

method, named BNgram, where the distance between terms is defined by the pro-

portion of tweets in which they co-occur. They found that although this method

achieves good topic recall, it is the most effective only when the fixed number of
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topics is set to be very small.

In Chapter 5, we present a comparative study on both topic modelling and

document clustering approaches over two datasets, namely a first story detection

corpus [2] and a large-scale event detection corpus covering over 500 events [140].

Our proposed two-stage topic modelling system adopts three of the four strategies

mentioned above, achieving not only the best performance measured in document

clustering metrics but also topic coherence for its generated topics.

Latent Dirichlet Allocation

Probabilistic topic modeling is a suite of data-driven statistical algorithms that

aim to discover the main themes (i.e. topics) that pervade a large collection of

documents. Since Latent Dirichlet Allocation or LDA was introduced by Blei et al.

[127] in 2003, it has become the most commonly used topic model.

LDA represents each document d as a distribution θd over topics, where each

topic t is a probability distribution φt over words W . The topic assignment for

the dth document are zd, where zd,n is the topic assignment for the nth word in

document d. Both per-document topic distribution and per-topic word distribution

have the Dirichlet prior, where α and β are parameters of the priors as presented in

Figure 2.1. LDA describes the probabilistic process for generating each document

as follows. For each document, it generates words by firstly randomly choosing a

distribution over topics. Then for each word, it randomly choose a topic assignment

and a word from the corresponding topic which is defined by distribution over the

vocabulary. This generative process defines a joint probability distribution over

both the observed (i.e. words in the documents) and latent variables (i.e. topics):

p(φ1:T , θ1:D, z1:D, w1:D)

=
T∏
i=1

p(φi)
D∏
d=1

p(θd)

(
N∏
n=1

p(zd,n|θd)p(wd,n|φ1:T , zd,n)

)
(2.16)
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where this joint distribution specifies a number of dependencies such as the topic

assignment zd,n depends on the per-document topic proportions θd. These depen-

dencies are presented in graphical model for LDA as seen in Figure 2.1. During

Figure 2.1: Graphical Model of Latent Dirichlet Allocation (LDA)

inference, we use the joint distribution to compute the conditional distribution (or

the posterior distribution) of the latent variables (i.e. the topic structure) given the

documents:

p(φ1:T , θ1:D, z1:D|w1:D) =
p(φ1:T , θ1:D, z1:D, w1:D)

p(w1:D)
(2.17)

The marginal probability of the observations p(w1:D) is intractable to compute.

Therefore Equation (2.17) is approximated by adapting a distribution close to the

true posterior. This is generally achieved by either using sampling-based or vari-

ational algorithms. Blei et al. [127] use the latter approach which approximates

this intractable posterior distribution over hidden variables, with a simpler distri-

bution containing free variational parameters λ, γ, η (Equation (2.18)). The hidden

variables of this variational distribution are independent of each other.

q(φ1:T , θ1:D, z1:D|λ, γ, η) =
T∏
i=1

Dir(φi|λi)
D∏
d=1

qd(θd, zd|γd, ηd) (2.18)

The optimising values of the variational parameters are found by minimising the

Kullback-Leibler (KL) divergence between the variational distribution q(φ, θ, z) and

the true posterior:

argminq∈QKL(q(φ, θ, z|λ, γ, η) || p(φ, θ, z|w,α, β)) (2.19)
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The approximate empirical Bayes estimates for the LDA model can be found via an

alternating variational expectation-maximization (EM) procedure that maximises

a lower bound with respect to the variational parameters λ, γ, η, which yields an

approximate posterior distribution on φ, θ, z.

Dirichlet Multinomial Mixture

The Dirichlet Multinomial Mixture (DMM) model [134] is a probabilistic generative

model for documents. It has two assumptions about its generative process: 1)

the documents are generated by a mixture model [141]; 2) there is a one-to-one

correspondence between mixture components and clusters, resulting each document

is sampled from one single latent topic.

Θ | α ∼ Dir (α) (2.20)

zd | Θ ∼Mult(Θ) d = 1, ..., D (2.21)

Φk | β ∼ Dir(β) k = 1, ...,K (2.22)

d | zd, {Φk}Kk=1 ∼ p(d | Φzd) (2.23)

The graphical representation of DMM is shown in Figure 2.2. To generate document

d, DMM first selects a mixture component zd for document d according to the

mixture weights Θ (Equation 2.21) which is generated by a Dirichlet distribution

with a hyper-parameter α (Equation 2.20). Then document d is generated from

distribution p(d | Φzd), shown in Equation 2.23, where the cluster parameter Φz is

also generated by a Dirichlet distribution with a hyper-parameter β (Equation 2.22).

The likelihood of document d is characterised by the sum of the total probability

over all mixture components:

p(d) =

K∑
k=1

p(d | z = k)p(z = k) (2.24)

35



where K is the number of mixture components (i.e. topics). By making the Naive

Bayes assumption that all words in document d are generated independently, the

probability of d generated by topic k can be derived as:

p(d | z = k) =
∏
w∈d

p(w | z = k) (2.25)

where p(w | z = k) = p(w | z = k,Φ) = φk,w with
∑

w φk,w = 1.

Figure 2.2: Graphical Model of Dirichlet Multinomial Mixture (DMM)

Yin et al. [23] proposed a collapsed Gibbs sampling algorithm for the

DMM model. It samples topic zd for document d using conditional probability

p
(
zd = z | ~z¬d, ~d

)
, where ~z¬d is the topic assignments of documents other than

document d.

p(zd = z|~z¬d, ~d, α, β)

∝ (mz,¬d + a)
Γ(nz,¬d + V β)

Γ(nz,¬d + nd + V β)

∏
w∈W

Γ(nwz,¬d + nwd + β)

Γ(nwz,¬d + β)

(2.26)

where mz is the number of documents in topic z, mz,¬d is the number of documents

assigned to topic z excluding the document d, nz is the number of words in topic z,

nwz,¬d is the number of occurrences of word w in topic z excluding the document d,

Γ is the Gamma function. The sampling process is also described in Section 5.2.

Latent Feature LDA

The latent feature LDA or LFLDA [138] has a mixture of a latent feature component

and the topic-word Dirichlet multinomial component of LDA, instead of the topic-
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word component alone. As shown in Figure 2.3, τt and ωw are latent feature weights

associated with topic t and word w respectively, where w is fixed for pre-trained

word embeddings. The generative process of LFLDA starts with randomly choosing

Figure 2.3: Graphical Model of LFLDA

a topic distribution θd for document d. Then the model randomly chooses a topic

assignment, and it has a binary indicator sd,n sampled from a Bernoulli distribution

to choose whether the word wd,n should be generated by the Dirichlet multinomial

or latent feature component.

θd ∼ Dir(α) zd,n ∼ Cat(θd) (2.27)

φz ∼ Dir(β) sd,n ∼ Ber(λ) (2.28)

wd,n ∼ (1− sd,n)Cat(φzd,n) + sd,nCatE(τzd,nω
T) (2.29)

CatE is a categorical distribution with log-space parameters. Sampling-based al-

gorithms in statistical inference attempt to collect samples from the posterior to

approximate it with an empirical distribution. LFLDA [138] adopts the Gibbs sam-

pling algorithm for approximating the true posterior. The outline of its algorithm

is shown below:

Algorithm 1 An approximate Gibbs sampling algorithm for LFLDA

1: Initialise the topic-word variables zdi using the LDA sampling algorithm
2: for iteration iter = 1, 2, ... do
3: for topic t = 1, 2, ... do
4: τt = argmaxτtP(τt|Z, S)

5: for document d = 1, 2, ..., |D| do
6: for word index i = 1, 2, ..., Nd do
7: sample zdi and sdi from P (zdi = t, sdi |Z¬di , S¬di , τ, ω)
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S denotes the distribution indicator variables for the whole corpus D. The

algorithm integrates out sdi to sample zdi :

P (zdi = t | Z¬di , τ, ω)

∝ (N t
d¬i

+Kt
d¬i

+ α)

(1− λ)
N
t,wdi
¬di + β

N t
¬di + V β

+ λCatE(ωdi | τt ω
T)

 (2.30)

Then sdi is sampled given zdi = t:

P(sdi = s | zdi = t) ∝


(1− λ)

N
t,wdi
¬di

+β

Nt
¬di

+V β
for s = 0,

λCatE(ωdi | τt ωT) for s = 1

(2.31)

Here, N t,w
d is the number of times a word w in document d is generated from topic

t by the Dirichlet multinomial component of LFLDA, while Kt,w
d is the number of

times w is generated by the latent feature component. Nw
d +Kw

d is the total number

of times the word w appears in the document d.

2.3.3 Evaluation of Topic Models

An earlier work [142] on intrinsically evaluating learnt topics, provided a summary

of evaluation techniques using held-out likelihood. Many of these are predictive

metrics based on model perplexity, which means they only measure the probability

of observations and ignore the internal representation of the models. Chang et al.

[143] showed in contrary to expectations the extrinsically measured topic coherence

correlates negatively with the model perplexity, which shows the need for a bet-

ter way of evaluating topic models. Since then various methodologies have been

proposed for measuring the intrinsic semantic interpretability of topics, below we

describe two most widely used approaches for such task:

a) Chang et al. [143] designed a word intrusion task for indirectly evaluating

topic interpretability, where a randomly selected “intruder word” is injected into the
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top-N words of a given topic and humans are asked to identify the intruder word

that does not belong to the topic. To measure topic interpretability, they defined

“model precision” as the relative success of human annotators at identifying the

intruder word:

MPmk =
∑
s

1(imk,s = wmk )/S (2.32)

where imk,s is the index of the intruding word from the kth topic inferred by model

m, wmk is is intruder selected by subject s, and S is the number of subjects. Such

word intrusion task is automated in [144], where it is treated as a learning-to-rank

problem with the objective of detecting the least representation word (i.e. the

intruder word). The pairwise approach is used for identifying intruder word (which

has a different target value than the normal topic words) in any given pair of words.

For each of the top-N topic words (including intruder word), the authors compute its

conditional probabilities, Pointwise Mutual Information (PMI) or Normalised PMI

(NPMI) [145] with all other top topic words as word association features. These

features are combined along with the target values that define the order of a given

word pair, in a ranking support vector regression model (SVMrank [146]) to learn

the intruder words. It is shown to achieve near-human levels of accuracy.

b) Newman et al. [147] introduced a more direct approach by calculating

the semantic similarity of the top-N words of each topic using external resources

such as WordNet and Wikipedia. They found the method based on PMI term co-

occurrence using Wikipedia achieving the closest performance to human judgments.

[148] found such performance can be substantially improved if the system scores

and human ratings are aggregated over different numbers of topic words (i.e. N)

before computing the correlation. Other work on directly measuring topic coherence

include replacing PMI with conditional probability based on co-document frequency

proposed in [149], and using classical distributional semantic similarity methods for
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computing the pairwise association of the topic words [150].

Feng at al. [151] evaluated ten automatic topic coherence metrics for Twit-

ter data, and showed a PMI-based metric using Twitter corpus as background data

achieving the highest levels of agreement with the human assessments of topic co-

herence. More recently, [152] showed a new word embedding-based topic coherence

metric effectively capturing the coherence of topics from tweets. It is also more

robust and efficient than the PMI-based metrics. In our work, we adopt this word

embedding-based metric as well as the word intrusion task for the evaluation of our

proposed models.

2.4 Opinion Summarisation

With the growth of the web especially social media over the last decade, we now have

overwhelming amount of opinions about a broad range of topics all over the Internet.

Automatic opinion summarisation system takes these opinionated documents as

input and attempts to generate a concise and coherent summary while preserving the

most important information and the overall meaning in the input documents [153].

The simplest form of an opinion summary is by aggregating the sentiment scores as

proposed in many aspect-based opinion summarisation methods on product reviews

[154, 155, 156], or by visualising how sentiments towards different target entities

develop in a time series graph as we discuss in Section 6.1. Topic modelling is also

be used as a summarisation tool by obtaining representative terms for each topic

[157].

Another direction of opinion summarisation research focuses on automatic

text summarisation, which was proposed by H. P. Luhn [158] in 1958 with a term

frequency based approach. Different to the classic text summarisation problem, the

sentiment in the input document is not to be neglected for opinion summarisation.

However, text summarisation can be used in the final summary selection or gener-
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ation step. Early work in text summarisation mostly focuses on single-document

summarisation, where the goal was to construct a summary for one single input

document such as a news article or an academic paper. The surge of online text

data has led to an increasing research interest in multi-document summarisation

where its input consists of multiple different documents. One big challenge for

summarising multiple documents is to reduce redundancy and produce concise but

informative summaries. In this thesis, we are motivated to summarise tweets men-

tioning the same topic, and thus our problem formulation falls into the domain of

multi-document summarisation.

Methodologically, text summarisation can be classified to two main approaches:

extractive summarisation and abstractive summarisation. Methods for extractive

summarisation select relevant sentences or parts of sentences from the original doc-

ument(s) to form the summary, whereas abstractive summarisation produces an

abstract summary applying natural language generation which is more challenging.

Most existing tweet summarisation approaches rely on extractive methods, which

rank and select tweets according to various relevance criteria for a summary. This

approach unavoidably ends up including secondary, incomplete or redundant infor-

mation. These summaries also typically lack coherence and cohesion. On the con-

trary, abstractive approaches aim to compose the summary from scratch that draws

information from different sources, potentially using vocabulary unseen in the orig-

inal document. Such abstractive summaries can be less verbose, more informative

and are more likely to resemble high-quality, human written pieces representing the

collective opinion of tweets on a given topic or entity. In the following sections,

we review relevant work on both extractive and abstractive summarisation includ-

ing the recent development on text summarisation using neural models, as well as

summarisation on tweets.
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2.4.1 Extractive Summarisation

For traditional documents such as news articles, a large number of extractive sum-

marisation techniques have been developed over the past decade, largely contributed

by conferences like the Text Analysis Conferences7 (previously known as Document

Understanding Conferences8) and Text Retrieval Conferences9. The extractive ap-

proach formulates the summarisation problem as a sentence selection task, thus

the summary becomes easier to construct and does not suffer from the grammatical

issue. As a result, measuring sentence importance and extracting the top N most im-

portant sentences, are the essential parts of the task. The common multi-document

extractive summarisation approach includes the centroid-based [159], graph-based

[160], sentence-based topic model [161], (and for selecting sentences) greedy search

[162, 163], integer linear programming (ILP) [164], submodular function maximi-

sation [165, 166], and supervised learning to rank based methods [167]. Recently,

deep neural network has been applied in the extractive summarisation research al-

though mostly for single-document [168, 169, 170], while the few for multi-document

includes a joint learning framework of summarisation and text classification [171].

Though a lot of progress has been made in extractive summarisation, the

extractive approach has the limitation of unavoidably including redundant informa-

tion and its summaries typically lack cohesion. In [172] the authors suggest that

advances in extractive text summarisation have slowed down in the past few years.

More importantly, extractive summarisation is fundamentally different to how hu-

mans write summaries. As reviewed in [173], there are two possible directions of

further research in summarisation. One option is to make an ensemble of multiple

extractive models. The other approach is to move towards the area of abstractive

summarisation, which we review in the following section.

7http://tac.nist.gov/
8http://duc.nist.gov/
9http://trec.nist.gov/
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2.4.2 Abstractive Summarisation

Rather than simply extract important sentences, abstractive summarisation covers

techniques that designed to resemble the way humans construct summaries. In

[174], the author compares the human generated summaries to the original input

documents, and observes that humans tend to use and modify the input content in

four ways: sentence compression, information fusion, paraphrasing, and generation.

Extractive summaries have inherent limitations primarily because only a part

of the extracted sentences is informative and the other part is redundant. Sentence

compression methods aim to create a compact and grammatical sentence as sum-

mary while keeping salient information. Much work on this approach has looked

at deletion-based sentence compression techniques [175, 176]. Information fusion

is another approach for generating non-extractive summaries, which aims to fuse

multiple sentences by removing redundant content while preserving important in-

formation. Among the information fusion methods, the graph-based techniques have

attracted much research interest [177, 178]. These techniques generally construct a

word graph from topically related sentences and select the best suited path as the

final summary. When choosing a path, several different factors can be considered

such as redundancy, informativeness and readability. [178] identifies such summary

path using an integer linear programming (ILP) model.

Generating summary from scratch is far more challenging than compressing

or fusing sentences, since both language understanding and generation are required.

The abstract generation approach extracts concepts about the input documents

rather than sentences or phrases, and the relationships among these concepts. In ad-

dition to conciseness and informativeness, it is also difficult to generate a summary

that is grammatical, coherent and semantically correct. Early work in abstrac-

tive summary generation rely on manually crafted templates or rules for generating

grammatically correct sentences [179, 180]. In recent years, there has been a surge of
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interest in using sequence transduction neural network architectures for NLP tasks

such as machine translation, question answering, dialogue generation, and abstrac-

tive summarisation.

Central to these approaches is a sequence-to-sequence (or seq2seq) model,

as introduced in [73], consists of two recurrent neural networks (RNNs): an encoder

that reads the input sequence and encodes into a fixed-size state vector, which is

passed to a decoder that generates the output sequence. Another prominent work

[35] uses two multi-layered Long Short-Term Memory networks (LSTMs) for the en-

coding and decoding. They show even with a limited vocabulary, the seq2seq model

can do well on sequence learning problems such as a large scale machine translation

task. To locate the region of focus during decoding, an attention mechanism was

introduced in [181]. This makes the seq2seq model more reliable with long sentences.

Inspired by the development of neural machine translation, Rush et al. [182]

were the first to apply the encoder-decoder architecture to neural abstractive

summarisation. They use a convolutional model for encoding, and an attentional

feed-forward network along with beam search for generating the summary. As an

extension to this work, [183] replace the decoder with an RNN, achieving improved

performance. Both studies evaluate on two sentence-level news article summarisa-

tion datasets, namely Gigaword10 and DUC-200411. The headline of each article

and its first sentence are paired to create input-summary corpus. Nallapati et al.

[184] present a new corpus that comprises multi-sentence summaries, by modifying

a question answering dataset for summarisation, resulting in the CNN/Daily Mail

dataset. For handling out-of-vocabulary (OOV) words (with respect to training

data), instead of emitting the ‘UNK’ token as placeholder, the authors train a de-

coder/pointer switch that either generates a word from the vocabulary or copies a

word from the source text. To improve the handling of rare and OOV words, [185]

use a hybrid pointer-generator network, which learns when to use the pointer by mix-

10https://catalog.ldc.upenn.edu/LDC2012T21
11http://duc.nist.gov/data.html
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ing the probabilities from copy distribution and the vocabulary distribution. They

show this mixture approach can accurately reproduce rare but in-vocabulary words.

Such pointer-generator model has the tendency to repeat itself when producing sum-

mary. To discourage repetition, the authors propose a coverage mechanism to keep

track of what has been summarised. [186] introduce a mixed objective learning

function for abstractive summarisation, which combines the maximum-likelihood

cross-entropy loss used in word prediction with rewards from policy gradient re-

inforcement learning (RL). To summarise a set of multiple text units like movie

reviews, [187] design an importance-based sampling method using manually engi-

neered features for generating input for the encoder. To have better summaries, the

authors also perform post-processing re-ranking based on cosine similarity.

The one key constraint of the seq2seq models is that they require a large

amount of labelled training data, which is expensive to obtain, such as the Giga-

word corpus used in many of the aforementioned work and The New York Times

Annotated Corpus [188]. A number of studies have explored using unlabelled data

for learning a language model or sequence autoencoder as a pretraining step, to

initialise the network in another supervised model for text classification [189, 190],

machine translation [191] or abstractive summarisation [191, 192], and showing im-

proved performance. A similar approach has been used in the machine translation

research to transfer learnt parameters trained from high-resource data to the low-

resource scenario [193, 194]. [195] investigated the feasibility of cross-domain (news

stories to opinion articles) abstractive summarisation. They found a model trained

on out-of-domain data can learn to detect summary-worthy content, but may not

match the generation style in the target domain. To the best of our knowledge,

there is currently no study applying seq2seq abstractive summarisation on tweets,

possibility due to the insufficient training resource.
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Sequence-to-sequence Learning

Sequence-to-sequence (seq2seq) learning refers to a set of sequential learning prob-

lems that aims in mapping an variable length sequence as input to another variable

length sequence as output. For example, speech recognition, machine translation

and text summarisation are such problems. Such a seq2seq model is a general

method to learn the conditional distribution over an output sequence conditioned

on the input sequence, p (y1, ..., yN ′ | x1, ..., xN ), where the the input and output

sequence lengths N and N ′ are unknown and may differ.

A seq2seq has two neural networks, which the first neural network maps

the input sequence to a fixed-sized vector representation (i.e. encoding), and the

second neural network maps the vector representation to the target sequence (i.e.

decoding). In [73] the encoder is an RNN that reads each symbol of an input

sequence x sequentially, and the aforementioned conditional probability is computed

by obtaining the representation v of the input sequence (x1, ..., xN ) given by the last

hidden state of the RNN. The decoder is another RNN that computes the probability

of (y1, ..., yN ′) with a standard RNN language model formulation:

p (y1, ..., yN ′ | x1, ..., xN ) = ΠN ′
n=1p (yn | v, y1, ..., yn−1) (2.33)

where the initial hidden state is set to be the representation v of x1, ..., xN , and

finally each p (yn | v, y1, ..., yn−1) distribution is represented with a softmax over all

the words in the fixed vocabulary. Sutskever et al. [35] use two LSTMs for encoding

and decoding, as it is better at learning long range temporal dependencies. The

encoder and encoder of seq2seq are jointly trained to maximise the conditional log-

likelihood:

maxθ
1

N

N∑
n=1

log pθ(yn | xn) (2.34)

where θ is the set of model parameters. Once the model is trained, a beam search
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(i.e. N -best search) is commonly used to find a target sequence (e.g. translation

or summarisation) that approximately maximises the conditional probability. This

means during testing at each timestep, instead of considering every possible hypoth-

esis of the output sequence or the one best hypothesis (i.e. Greedy search), it only

consider the b most likely hypotheses according to the model’s log probability where

b is the “width” of the beam.

2.4.3 Tweets Summarisation

As we have discussed in Chapter 1, social media has become a rich resource for policy

makers and organisations to understand public opinion. However, understanding the

sentiment towards different issues and entities as manifested in the large volume of

tweets is still a difficult task. The traditional way of collecting such public opinions

is by the use of opinion polls, which is costly and the polls themselves carry bias. In

recent years we have seen a number of studies linking opinions expressed on Twitter

and real world events and stories. For example, an early paper by O’Connor et

al [196] found both consumer confidence and presidential approval polls exhibited

correlation with Twitter sentiment.

The task of summarising large amount of opinions expressed on Twitter

is related to aspect-based summarisation [154, 197, 155], which is concerned with

aspects of the target and the sentiment towards each aspect. These methods aim

to identify the important features for each aspect and attach relevant reviews or

other opinionated sentences to the corresponding feature, providing aspect-based

summary in a structured way. The diverse, noisy and unstructured nature of tweets

makes its summarisation a more challenging task than summarising product reviews.

Louis and Newman [198] presented a concept-based approach that maps business-

related tweets into the corresponding concepts learnt using external resources, and

selects tweets with the highest average probability of words incorporating sentiment

information for each top-ranked cluster. In this thesis, our goal is to construct a
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fluent text-based summary for tweets mentioning the same target carrying the same

sentiment, and thus different to the structured summary provided by the aspect-

based opinion summarisation.

Most work in the literature on tweets summarisation focus on generating

summary for real-world events such as natural disasters [199, 200] and sport games

[201, 202] or trending topics [203, 24, 204], with the aim to reduce information

overload and provide key update for the corresponding story. It has become a pop-

ular research task demonstrated by the Microblog [205], Temporal Summarisation

[206] and Real-Time Summarisation [207] tracks at Text Retrieval Conferences

(TRECs) as well as the more recent Exploitation of Social Media for Emergency

Relief and Preparedness (SMERP) track [200] at European Conference on Infor-

mation Retrieval (ECIR). Among these works, a majority of early studies pursue

either graph-based [208, 203, 209] or term-frequency based [210, 201] approach for

extractive summarisation of tweets. A study by Inouye and Kalita [24] compares

eight algorithms and reports the simple term-frequency with redundancy reduction

based methods, namely multi-post Hybrid tf-idf and SumBasic [211], achieving the

closest performance to human evaluation scores, possibly due to the short, unstruc-

tured and unconnected nature of tweets. [212] apply summarisation for tackling the

topic labelling problem. They also found the frequency based methods outperform-

ing the other approaches. [209] present a Pagerank-like algorithm for generating

summaries of variable lengths. Time-aware summarisation or timeline generation

has also attracted research interest for generating event summary in the form of

timeline [202, 213, 214]. Both [202] and [213] rely on tweet burstiness for identifying

important moments or sub-events of a sports event. [215] propose a time-aware

user behavior model to select representative tweets as summary, based on the user’s

history and collaborative social influences from its social circles.

To determine the salience of the tweets, many studies have also focused on

incorporating the social influence of users and their social network (e.g. follower-
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followee relationship) structure [216, 217, 215, 218]. Finding insightful and informa-

tive tweets is challenging, a related work by Swapna and Jiang [219] tackles the task

of detecting thoughtful online comments as a classification problem by studying var-

ious linguistic features and training a logistic regression model. Some other works

use related web contents to provide additional useful topic information to improve

summarisation [204, 220]. The motivation of our work in this thesis is related to

[25], which also proposes a topic-oriented opinion summarisation framework. How-

ever, they use a template-matching method for identifying insightful tweets and the

final representative summary tweets are selected through a optimisation procedure,

which is different to our approach described in Chapter 6.

While majority of the summarisation research on tweets including all the

aforementioned studies choose to adopt the extractive approach, abstractive sum-

maries are potentially more cohesive and less redundant. However, there has been

few work exploring abstractive summarisation of tweets as it is easily affected by

noise or the diversity of tweets. Ganesan et al. [177] introduce a graph-based al-

gorithm for merging opinions that share similar textual content and thus reducing

redundancy. Because it generates word-graph and explores various sub-paths to

construct the final summary, it can still be regarded as a word-level extractive sum-

marisation. This method can be used on highly redundant text such as tweets.

[221] propose to update the word-graph constantly with tweets which enables for

online abstractive summarisation. A more recent work [199] propose a two-stage

summarisation framework, which first identifies a set of important tweets using a

content-word based extractive approach [222] and then constructs bigram word-

graph followed by integer linear programming based optimisation.

In this thesis we investigate and study the feasibility of applying state-of-the-

art neural abstractive summarisation for events and opinions expressed on Twitter,

with limited training resources. Additionally, we present a visualisation system

for displaying opinion summary towards different topics on each day, using the
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techniques described in Chapter 4 and Chapter 5.
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CHAPTER 3

Preliminary studies

Twitter social spam detection and cross-domain emotion analysis

In the previous chapter we have introduced the background material for this the-

sis. Starting with this chapter, we begin presenting our research and answering

the research questions listed in Chapter 1. In this chapter we present our prelimi-

nary studies for preparing and building up our main research work in its following

chapters. These preliminary studies are set to address two questions:

• How can we develop an efficient and effective way to filter out spam tweets in

a data pipeline?

• How can we improve emotion classification performance on Twitter when

training and testing data are not in the same domain, by using domain adap-

tation?
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3.1 Social Spam Detection

3.1.1 Introduction

Social networking spam, or social spam, is increasingly affecting social networking

websites, such as Facebook, Pinterest and Twitter. According to a study by the

social media security firm Nexgate [223], social media platforms experienced a 355%

growth of social spam during the first half of 2013. Social spam can reach a surpris-

ingly high visibility even with a simple bot [224], which detracts from a company’s

social media presence and damages their social marketing ROI (Return On Invest-

ment). Moreover, social spam exacerbates the amount of unwanted information that

average social media users receive in their timeline, and can occasionally even affect

the physical condition of vulnerable users through the so-called “Twitter psychosis”

[225].

Social spam has different effects and therefore its definition varies across ma-

jor social networking websites. One of the most popular social networking services,

Twitter, has published their definition of spamming as part of their “The Twitter

Rules”1 and provided several methods for users to report spam such as tweeting

“@spam @username” where @username will be reported as a spammer. While as a

business, Twitter is also generous with mainline bot-level access2 and allows some

level of advertisements as long as they do not violate “The Twitter Rules”. In recent

years we have seen Twitter being used as a prominent knowledge base for discov-

ering hidden insights and predicting trends from finance to public sector, both in

industry and academia. The ability to sort out the signal (or the information) from

Twitter noise is crucial, and one of the biggest effects of Twitter spam is that it

significantly reduces the signal-to-noise ratio. Our work on social spam is motivated

by the initial attempts at harvesting a Twitter corpus around a specific topic with

1https://support.twitter.com/articles/18311-the-twitter-rules
2http://www.newyorker.com/tech/elements/the-rise-of-twitter-bots
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a set of predefined keywords [33]. This led to the identification of a large amount of

spam within those datasets. The fact that certain topics are trending and therefore

many are tracking its contents encourages spammers to inject their spam tweets

using the keywords associated with these topics to maximise the visibility of their

tweets.

As mentioned in Chapter 2, the definition of social spam is context depen-

dant. Here we define social spam as tweets posted by content polluters (e.g. mali-

cious promoters and friend infiltrators [47]) who aim to inject unrelated tweets in

timely topics, share malicious links or fraudulent information. As a result social

spam usually has different features to normal tweets (e.g. contains many hashtags

to increase its visibility), and produces a significant amount of noise both to end

users who follow the topic as well as to tools that mine Twitter data.

As described in Section 2.1, the automatic detection of Twitter spam has

been addressed in two different ways. The first way is to tackle the task as a user

classification problem, which makes use of numerous features that need to gather

historical details about a user, such as tweets that a user posted in the past to explore

what they usually tweet about, or how the number of followers and followings of a

user has evolved in recent weeks to discover unusual behaviour. While this is ideal

as the classifier can make use of extensive user data, it is often unfeasible due to

restrictions of the Twitter API. The second, alternative way, is to define the task as

a tweet classification problem, where a tweet can be deemed spam or non-spam. In

this case, the classification task needs to assume that only the information provided

within a tweet is available to determine if it has to be categorised as spam. Here,

we follow this approach to Twitter spam classification, and propose to classify if a

tweet is spam or not by using its inherent features. While this is more realistic for

our scenario, it presents the extra challenge that the available features are rather

limited, which we study here.

Here we present a comparative study of Twitter spam detection systems. We
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investigate the use of different features inherent to a tweet so as to identify the sets

of features that do best in categorising tweets as spam or not. Our study compares

five different classification algorithms over two different datasets. The fact that we

test our classifiers on two different datasets, collected in different ways, enables us

to validate the results and claim repeatability. Our results suggest a competitive

performance can be obtained using tree-based classifiers for spam detection even

with only tweet-inherent features, as comparing to the existing spammer detection

studies.

3.1.2 Datasets

A labelled collection of tweets is crucial in a machine learning task such as spam

detection. We found no spam dataset which is publicly available and specifically

fulfils the requirements of our task. Instead, the datasets we obtained include Twit-

ter users labelled as spammers or not. For our work, we used the latter, which we

adapted to our purposes by taking out the features that would not be available in

our scenario of spam detection from tweet-inherent features. We used two spam-

mer datasets in this work, which have been created using different data collection

techniques and therefore is suitable to our purposes of testing the spam classifier

in different settings. To accommodate the datasets to our needs, we sample one

tweet for each user in the dataset, so that we can only access one tweet per user and

cannot aggregate several tweets from the same user or use social network features.

In what follows we describe the two datasets we use.

Social Honeypot Dataset: Lee et al. [47] created and manipulated (by

posting random messages and engaging in none of the activities of legitimate users)

60 social honeypot accounts on Twitter to attract spammers. Their dataset consists

of 22,223 spammers and 19,276 legitimate users along with their most recent tweets.

They used Expectation-Maximization (EM) clustering algorithm and then manually

grouped their harvested users into 4 categories: duplicate spammers, duplicate @
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spammers, malicious promoters and friend infiltrators. 1KS-10KN Dataset: Yang

et al. [48] defines a tweet that contains at least one malicious or phishing URL as

a spam tweet, and a user whose spam ratio is higher than 10% as a spammer.

Therefore their dataset which contains 1,000 spammers and 10,000 legitimate users,

represents only one major type of spammers (as discussed in their paper).

We used spammer vs. legitimate user datasets from [47] and [48]. After

removing duplicated users and the ones that do not have any tweets in the dataset

we randomly selected one tweet from each spammer or legitimate user to create

our labelled collection of spam vs. legitimate tweets, in order to avoid overfitting

and reduce our sampling bias. The resulting datasets contain 20,707 spam tweets

and 19,249 normal tweets (named Social Honeypot dataset, as from [47]), and 1,000

spam tweets and 9,828 normal tweets (named 1KS-10KN dataset, as from [48])

respectively. The example spam tweets are shown in Table 3.1:

Dataset Sample tweet

Social Honeypot
www.ppnchat.com has got ot be the best chat site on the net,

it’s free and fun. Real people,real talk!(9:33)

Social Honeypot Free trial this miracle fruit from the amazon

Social Honeypot
#par #nzl #svk #bra #prk #civ #por #esp #sui #hon #chi

#worldcup ;D

Social Honeypot
#LOWEST #Single #Unique #Bid #Win a #Lenovo IdeaPad
U450p #Laptop #Value $576.99 #Auction ends:1/28/10@08:00

www.us-DubLi.com #Shopping FUN

1KS-10KN get 88 followers per day using http://xrl.us/bgingb , fast!

1KS-10KN
adults looking for fun Must see http://twurl.nl/hsudj0

:)getting sleepy

1KS-10KN hey cuties, im single again.. message me at http://wowurl.com/16r

Table 3.1: Examples of spam tweets

3.1.3 Features

As spammers and legitimate users have different goals in posting tweets or inter-

acting with other users on Twitter, we can expect that the characteristics of spam

tweets are quite different to the normal tweets. The features inherent to a tweet

include, besides the tweet content itself, a set of metadata including information
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about the user who posted the tweet, which is also readily available in the stream of

tweets we have access to in our scenario. We analyse a wide range of features that

reflect user behaviour, which can be computed straightforwardly and do not require

high computational cost, and also describe the linguistic properties that are shown

in the tweet content. We considered four feature sets: (i) user features, (ii) content

features, (iii) n-grams, and (iv) sentiment features.

User features Content features

Length of profile name Number of words

Length of profile description Number of characters

Number of followings (FI) Number of white spaces

Number of followers (FE) Number of capitalization words

Number of tweets posted Number of capitalization words per word

Age of the user account, in hours (AU) Maximum word length

Ratio of number of followings and followers (FE/FI) Mean word length

Reputation of the user (FE/(FI + FE)) Number of exclamation marks

Following rate (FI/AU) Number of question marks

Number of tweets posted per day Number of URL links

Number of tweets posted per week Number of URL links per word

N-grams Number of hashtags

Uni + bi-gram or bi + tri-gram Number of hashtags per word

Number of mentions

Sentiment features Number of mentions per word

Automatically created sentiment lexicons Number of spam words

Manually created sentiment lexicons Number of spam words per word

Part of speech tags of every tweet

Table 3.2: List of features used for spam detection

User features include a list of 11 attributes about the author of the tweet (as

seen in Table 3.2) that is generated from each tweet’s metadata, such as reputation

of the user [27], which is defined as the ratio between the number of followers and

the total number of followers and followings and it had been used to measure user

influence. Other candidate features, such as the number of retweets and favourites

garnered by a tweet, were not used given that it is not readily available at the time
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of posting the tweet, where a tweet has no retweets or favourites yet.

Content features capture the linguistic properties from the text of each

tweet (Table 3.2) including a list of content attributes and part-of-speech tags.

Among the 17 content attributes, number of spam words and number of spam words

per word are generated by matching a popular list of spam words3. Part-of-speech

(or POS) tagging provides syntactic (or grammatical) information of a sentence and

has been used in the natural language processing community for measuring text in-

formativeness (e.g. Tan et al. [226] used POS counts as a informativeness measure

for tweets). We have used a Twitter-specific tagger [227], and in the end our POS

feature consists of uni-gram and 2-skip-bi-gram representations of POS tagging for

each tweet in order to capture the structure and therefore informativeness of the

text.

N-gram models have long been used in natural language processing for

various tasks including text classification. Although it is often criticised for its lack

of any explicit representation of long range or semantic dependency, it is surprisingly

powerful for simple text classification with reasonable amount of training data.

Sentiment features: Ferrara et al. [49] used tweet-level sentiment as part

of their feature set for the purpose of detecting Twitter bots. We have used the

same list of lexicons from [58] (which has been proved of achieving top performance

in the Semeval-2014 Task 9 Twitter sentiment analysis competition) for generating

our sentiment features, including manually generated sentiment lexicons: AFINN

lexicon [228], Bing Liu lexicon [229], MPQA lexicon [230]; and automatically gen-

erated sentiment lexicons: NRC Hashtag Sentiment lexicon [58] and Sentiment140

lexicon [58].

3https://github.com/splorp/wordpress-comment-blacklist/blob/master/blacklist.txt
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3.1.4 Selection of Classifier

During the classification and evaluation stage, we tested 5 classification algorithms

implemented using scikit-learn4: Bernoulli Naive Bayes, K-Nearest Neighbour (KNN),

Support Vector Machines (SVM), Decision Tree, and Random Forests. These algo-

rithms were chosen as being the most commonly used in the previous research on

spammer detection. We evaluate using the standard information retrieval metrics

of recall (R), precision (P) and F1-measure.

In order to select the best classifier for our task, we have used a subset of

each dataset (20% for 1KS-10KN dataset and 40% for Social Honeypot dataset,

due to the different sizes of the two datasets) to run a 10-fold cross validation for

optimising the hyperparameters of each classifier. By doing so it minimises the risk

of over-fitting in model selection and hence subsequent selection bias in performance

evaluation. Such optimisation was conducted using all 4 feature sets (each feature

was normalised to fit the range of values [-1, 1]; we also selected 30% of the highest

scoring features using Chi Square for tuning SVM as computationally it is more

efficient and gives better classification results). Then we evaluated our algorithm on

the rest of the data (i.e. 80% for 1KS-10KN dataset and 60% for Social Honeypot

dataset), again using all 4 feature sets in a 10-fold cross validation setting (same

as in grid-search, each feature was normalised and Chi square feature selection was

used for SVM).

As shown in Table 3.3, tree-based classifiers achieved very promising perfor-

mances, among which Random Forests outperform all the others when we look at

the F1-measure. This outperformance occurs especially due to the high precision

values of 99.3% and 94.1% obtained by the Random Forest classifier. While Ran-

dom Forests show a clear superiority in terms of precision, its performance in terms

of recall varies for the two datasets; it achieves high recall for the Social Honeypot

dataset, while it drops substantially for the 1KS-10KN dataset due to its approx-

4http://scikit-learn.org/
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imate 1:10 spam/non-spam ratio. These results are consistent with the conclusion

of most spammer detection studies; our results extend this conclusion to the spam

detection task.

When we compare the performance values for the different datasets, it is

worth noting that with the Social Honeypot dataset the best result is more than

10% higher than the best result in 1KS-10KN dataset. This is caused by the different

spam/non-spam ratios in the two datasets, as the Social Honeypot dataset has a

roughly 50:50 ratio while in 1KS-10KN it is roughly 1:10 which is a more realistic

ratio to reflect the amount of spam tweets existing on Twitter (In Twitter’s 2014 Q2

earnings report it says that less than 5% of its accounts are spam5, but independent

researchers believe the number is higher). In comparison to the original papers,

[47] reported a best 0.983 F1-score and [48] reported a best 0.884 F1-score. Our

results are only about 4% lower than their results, which make use of historical

and network-based data, not readily available in our scenario. Our results suggest

that a competitive performance can also be obtained for spam detection where only

tweet-inherent features can be used.

Classifier
1KS-10KN Dataset Social Honeypot Dataset

Precision Recall F-measure Precision Recall F-measure

Bernoulli NB 0.899 0.688 0.778 0.772 0.806 0.789
KNN 0.924 0.706 0.798 0.802 0.778 0.790
SVM 0.872 0.708 0.780 0.844 0.817 0.830

Decision Tree 0.788 0.782 0.784 0.914 0.916 0.915
Random Forest 0.993 0.716 0.831 0.941 0.950 0.946

Table 3.3: Comparison of performance of spam classifiers

3.1.5 Evaluation of Features

We trained our best classifier (i.e. Random Forests) with different feature sets,

as well as combinations of the feature sets using the two datasets (i.e. the whole

corpora), and under a 10-fold cross validation setting. We report our results in Table

5http://www.webcitation.org/6VyBTJ7vt
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3.4. As seen in 1KS-10KN dataset, the F1-measure for different feature sets ranges

from 0.718 to 0.820 when using a single feature set. All feature set combinations

except C + S (content + sentiment feature) perform higher than 0.810 in terms of

F1-measure, reflecting that feature combinations have more discriminative power

than a single feature set.

For the Social Honeypot dataset, we can clearly see User features (U) having

the most discriminative power as it has a 0.940 F1-measure. Results without using

User features (U) have significantly worse performance, and feature combinations

with U give very little improvement with respect to the original 0.940 (except for U

+ Uni & Bi-gram (Tf) + S). This means U is dominating the discriminative power of

these feature combinations and other feature sets contribute very little in comparison

to U. This is potentially caused by the data collection approach (i.e. by using social

honeypots) adopted by [47], which resulted in the fact that most spammers that they

attracted have distinguishing user profile information compared to the legitimate

users. On the other hand, Yang et al. [48] checked malicious or phishing URL

links for collecting their spammer data, and this way of data collection gives more

discriminative power to Content and N-gram features than [47] does (although U

is still a very significant feature set in 1KS-10KN). Note that U + Bi & Tri-gram

(Tf) resulted in the best performance in both datasets, showing that these two

feature sets are the most beneficial to each other irrespective of the different nature

of datasets.

3.1.6 Discussion and Conclusion

Our study looks at different classifiers and feature sets over two spam datasets to

pick the settings that perform best. First, our study on spam classification buttresses

previous findings for the task of spammer classification, where Random Forests were

found to be the most accurate classifier. Second, our comparison of four feature sets

reveals the features that, being readily available in each tweet, perform best in
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Feature Set
1KS-10KN Dataset Social Honeypot Dataset

Precision Recall F-measure Precision Recall F-measure

User features (U) 0.895 0.709 0.791 0.938 0.940 0.940
Content features (C) 0.951 0.657 0.776 0.771 0.753 0.762
Uni + Bi-gram (Tf) 0.959 0.715 0.819 0.783 0.767 0.775

Sentiment features (S) 0.966 0.574 0.718 0.679 0.727 0.702

U + C 0.974 0.708 0.819 0.938 0.949 0.943
U + Bi & Tri-gram (Tf) 0.972 0.745 0.843 0.937 0.949 0.943

U + S 0.948 0.732 0.825 0.940 0.944 0.942
Uni & Bi-gram (Tf) + S 0.964 0.721 0.824 0.797 0.744 0.770

C + S 0.970 0.649 0.777 0.778 0.762 0.770
C + Uni & Bi-gram (Tf) 0.968 0.717 0.823 0.783 0.757 0.770

U + C + Uni & Bi-gram (Tf) 0.985 0.727 0.835 0.934 0.949 0.941
U + C + S 0.982 0.704 0.819 0.937 0.948 0.942

U + Uni & Bi-gram (Tf) + S 0.994 0.720 0.834 0.928 0.946 0.937
C + Uni & Bi-gram (Tf) + S 0.966 0.720 0.824 0.806 0.758 0.782

U + C + Uni & Bi-gram (Tf) + S 0.988 0.725 0.835 0.936 0.947 0.942

Table 3.4: Performance evaluation of various feature set combinations

identifying spam tweets. While different features perform better for each of the

datasets when using them alone, our comparison shows that the combination of

different features leads to an improved performance in both datasets. We believe

that the use of multiple feature sets increases the possibility to capture different

spam types, and makes it more difficult for spammers to evade all feature sets used

by the spam detection system. For example spammers might buy more followers to

look more legitimate but it is still very likely that their spam tweet will be detected

as its tweet content will give away its spam nature.

Due to practical limitations, we have generated our spam vs. non-spam

data from two spammer vs. non-spammer datasets that were collected in 2011.

For future work, we plan to generate a labelled spam/non-spam dataset which was

crawled in 2017. This will not only give us a purpose-built corpus of spam tweets

to reduce the possible effect of sampling bias of the two datasets that we used,

but will also give us insights on how the nature of Twitter spam changes over time

and how spammers have evolved since 2011 (as spammers do evolve and their spam

content are manipulated to look more and more like normal tweet). Furthermore

we will investigate the feasibility of cross-dataset spam classification using domain

adaptation methods, and also whether unsupervised approaches work well enough
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in the domain of Twitter spam detection.

A caveat of the approach we relied on for the dataset generation is the fact

that we have considered spam tweets posted by users who were deemed spammers.

This was done based on the assumption that the majority of social spam tweets on

Twitter are shared by spam accounts. However, the dataset could also be comple-

mented with spam tweets which are occasionally posted by legitimate users, which

our work did not deal with. An interesting study to complement our work would

be to look at these spam tweets posted by legitimate users, both to quantify this

type of tweets, as well as to analyse whether they present different features from

those in our datasets, especially when it comes to the user-based features as users

might have different characteristics. For future work, we plan to conduct further

evaluation on how our features would function for spam tweets shared by legitimate

users, in order to fully understand the effects of bias of pursuing our approach of

corpus construction.

In conclusion our approach differs from most previous research works that

classified Twitter users as spammers or not, and represents a real scenario where

either a user is tracking an event on Twitter, or a tool is collecting tweets associated

with an event. In these situations, the spam removal process cannot afford to retrieve

historical and network-based features for all the tweets involved with the event, due

to high number of requests to the Twitter API that this represents. By conducting

extensive evaluation we show our model achieving competitive performance and can

be used in a data pipeline for filtering out spam tweets. We have indeed used the

proposed spam detection model for our research work in Section 6.1 to improve the

data quality.
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3.2 Twitter Emotion Analysis

3.2.1 Introduction

In recent years we have also seen a surge of research in sentiment analysis with

over 7,000 articles written on the topic [52], for applications ranging from analyses

of movie reviews [231] and stock market trends [15] to forecasting election results

[13]. Supervised learning algorithms that require labelled training data have been

successfully used for in-domain sentiment classification. However, cross-domain sen-

timent analysis has been explored to a much lesser extent. For instance, the phrase

“light-weight” carries positive sentiment when describing a laptop but quite the

opposite when it is used to refer to politicians. In such cases, a classifier trained

on one domain may not work well on other domains. While a domain-independent

classifier would be ideal, it would require a large amount of human labelled corpora,

which is very costly. A widely adopted solution to this problem is domain adapta-

tion, which allows building models from a fixed set of source domains and deploy

them into a different target domain. It can be considered as a special setting of

transfer learning [232] that aims at transferring knowledge across different domains.

Recent developments in sentiment analysis using domain adaptation are mostly

based on feature-representation adaptation [79, 81, 82], instance-weight adaptation

[84, 85, 31] or combinations of both [233, 83]. Despite its recent increase in popu-

larity, the use of domain adaptation for sentiment and emotion classification across

topics on Twitter is still largely unexplored [83, 31, 80]. Not surprisingly, [86] con-

ducted experiments on topic-dependent cross-medium sentiment classification, and

found that cross-topic adaptation is more challenging on Twitter data than on other

kinds of data, owing to the noisy and sparse nature of tweets.

In this section we set out to find an effective approach for tackling the cross-

domain emotion classification task on Twitter, while also furthering research in the

interdisciplinary study of social media discourse around arts and cultural experi-
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ences6. We investigate a model-based adaptive-SVM approach that was previously

used for video concept detection [94] and compare with a set of domain-dependent

and domain-independent strategies. Such a model-based approach allows us to

directly adapt existing models to the new target-domain data without having to

generate domain-dependent features or adjusting weights for each of the training

instances, and thus is more efficient and flexible for our task. We conduct a series

of experiments and evaluate the proposed system7 on a set of Twitter data about

museums, annotated by three annotators with social science background. The aim

is to maximise the use of the base classifiers that were trained from a general-domain

corpus, and through domain adaptation minimise the classification error rate across

5 emotion categories: anger, disgust, happiness, surprise and sadness. Our results

show that adapted SVM classifiers achieve significantly better performance than

out-of-domain classifiers and also suggest a competitive performance compared to

in-domain classifiers. To the best of our knowledge this is the first attempt at

cross-domain emotion classification for Twitter data.

3.2.2 Datasets

We use two datasets, a source-domain dataset and a target-domain dataset, which

enables us to experiment on domain adaptation. The source-domain dataset we

adopted is the general-domain Twitter corpus created by [18], which was gener-

ated through distant supervision using hashtags and emoticons associated with 6

emotions: anger, disgust, fear, happiness, surprise and sadness.

Our target-domain dataset that allows us to perform experiments on emo-

tions associated with cultural experiences consists of a set of tweets pertaining to

museums. A collection of tweets mentioning one of the following Twitter han-

dles associated with British museums was gathered between May 2013 and June

2015: @camunivmuseums, @fitzmuseum uk, @kettlesyard, @maacambridge, @icia-

6SMILE project: http://www.culturesmile.org/
7The code can be found at http://bit.ly/1WHup4b
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bath, @thelmahulbert, @rammuseum, @plymouthmuseum, @tateliverpool, @tate stives,

@nationalgallery, @britishmuseum, @ thewhitechapel. These are all museums asso-

ciated with the SMILES project. A subset of 3,759 tweets was sampled from this

collection for manual annotation. We developed a tool for manual annotation of

the emotion expressed in each of these tweets. The options for the annotation of

each tweet included 6 different emotions; the six Ekman emotions as in [18], with

the exception of ‘fear’ as it never featured in the context of tweets about museums.

Two extra annotation options were included to indicate that a tweet should have

no code, indicating that a tweet was not conveying any emotions, and not relevant

when it did not refer to any aspects related to the museum in question. The anno-

tator could choose more than one emotion for a tweet, except when no code or not

relevant were selected, in which case no additional options could be picked. The

annotation of all the tweets was performed independently by three sociology PhD

students. Out of the 3,759 tweets that were released for annotation, at least 2 of the

annotators agreed in 3,085 cases (82.1%). We use the collection resulting from these

3,085 tweets as our target-domain dataset for classifier adaptation and evaluation.

Note that tweets labelled as no code or not relevant are included in our dataset to

reflect a more realistic data distribution on Twitter, while our source-domain data

doesn’t have any no code or not relevant tweets.

The distribution of emotion annotations in Table 3.5 shows a remarkable

class imbalance, where happy accounts for 30.2% of the tweets, while the other

emotions are seldom observed in the museum dataset. There is also a large number

of tweets with no emotion associated (41.8%). One intuitive explanation is that

Twitter users tend to express positive and appreciative emotions regarding their

museum experiences and shy away from making negative comments. This can also be

demonstrated by comparing the museum data emotion distribution to our general-

domain source data as seen in Figure 3.1, where the sample ratio of positive instances

is shown for each emotion category.
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Emotion No. of tweets % of tweets

no code 1572 41.8%
happy 1137 30.2%

not relevant 214 5.7%
anger 57 1.5%

surprise 35 0.9%
sad 32 0.9%

happy & surprise 11 0.3%
happy & sad 9 0.2%

disgust & anger 7 0.2%
disgust 6 0.2%

sad & anger 2 0.1%
sad & disgust 2 0.1%

sad & disgust & anger 1 <0.1%

Table 3.5: Target data emotion distribution
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Figure 3.1: Source and target data distribution comparison

To quantify the difference between two text datasets, Kullback-Leibler (KL)

divergence has been commonly used before [234]. Here we use the KL-divergence

method proposed by [235], as it suggests a back-off smoothing method that deals

with the data sparseness problem. Such back-off method keeps the probability

distributions summing to 1 and allows operating on the entire vocabulary, by intro-

ducing a normalisation coefficient and a very small threshold probability for all the

terms that are not in the given vocabulary. Since our source-domain data contains

many more tweets than the target-domain data, we have randomly sub-sampled
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the former and made sure the two data sets have similar vocabulary size in order

to avoid biases. We removed stop words, user mentions, URL links and re-tweet

symbols prior to computing the KL-divergence. Finally we randomly split each

data set into 10 folds and compute the in-domain and cross-domain symmetric KL-

divergence (KLD) value between every pair of folds. Table 3.6 shows the computed

KL-divergence averages. It can be seen that KL-divergence between the two data

sets (i.e. KLD(Dsrc ||Dtar)) is twice as large as the in-domain KL-divergence values.

This suggests a significant difference between data distributions in the two domain

and thus justifies our need for domain adaptation.

Data domain Averaged KLD value

KLD(Dsrc ||Dsrc) 2.391
KLD(Dtar ||Dtar) 2.165
KLD(Dsrc ||Dtar) 4.818

Table 3.6: In-domain and cross-domain KL-divergence values

3.2.3 Methodology

Given the source-domain Dsrc and target-domain Dtar, we have one or k sets of

labelled source-domain data denoted as
{

(xki , y
k
i )
}Nk

src

i=1
in Dsrc, where xki ∈ RDk is

the ith feature vector with each element as the value of the corresponding feature

and yki are the emotion categories that the ith instance belongs to. Suppose we have

some classifiers fksrc(x) that have been trained on the source-domain data (named

as the auxiliary classifiers in [94]) and a small set of labelled target-domain data

as Dl
tar where Dtar = Dl

tar ∪ Du
tar, our goal is to adapt fksrc(x) to a new classifier

ftar(x) based on the small set of labelled examples in Dl
tar, so it can be used to

accurately predict the emotion class of unseen data from Du
tar.

Base Classifiers

Our base classifiers are the classifiers that have been trained on the source-domain

data
{

(xi, yi)
}Nsrc

i=1
, where yi ∈ {1, ...,K} with K referring to the number of emotion

67



categories. Naturally this is a multi-class classification problem, which each target-

domain tweet can be classified to one of K classes. Two classic strategies for reducing

the problem of multi-class classification to multiple binary classifications (i.e. yi ∈

{−1,+1}) are the “one-versus-rest” approach and “one-versus-one” approach. The

former builds K binary classifiers, each trained to separate one class from the rest.

To predict a new instance, it chooses the class with the largest decision function

value. The latter approach builds K(K − 1)/2 classifiers and each one trains data

from two classes. A voting strategy is used in classification, and it chooses the

class that is voted by the most classifiers. In our work, we use Support Vector

Machines (SVMs) in a “one-versus-all” setting, which trains K binary classifiers,

each separating one class from the rest. We chose this as a better way of dealing with

class imbalance in a multi-class scenario, and it is more computationally efficient.

Thus we train K SVM models as our base classifiers. The mth SVM is

trained with all the instances in the mth emotion category with positive labels, and

all other instances with negative labels. Given a training set of N instance-label

pairs (x1, y1), ..., (xN , yN ) and yi ∈ {1, ...,K} where i = 1, ..., N , the mth SVM

model solves the following optimisation problem [236]:

min
wm,bm,ξm

1

2
(wm)Twm + C

N∑
i=1

ξmi

s.t. (wm)Tφ(xi) + bm ≥ 1− ξmi , if yi = m,

(wm)Tφ(xi) + bm ≤ −1 + ξmi , if yi 6= m,

ξmi ≥ 0,∀(xi, yi) ∈ Dsrc

(3.1)

where C is the penalty parameter and
∑

i ξi measures the total classification error.

This objective function seeks a balance between the regularisation term 1
2(wm)Twm

and the training errors. xi is assigned to the class which has the largest value of the

decision function:

argmaxm=1,...,K((wm)Tφ(xi) + bm) (3.2)
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where w ∈ Rd+1 are the model parameters.

Features

The base classifiers are trained on 3 sets of features generated from the source-

domain data: (i) n-grams, (ii) lexicon features, (iii) word embedding features.

N-gram models have long been used in NLP for various tasks. It is often

criticised for its lack of any explicit representation of long range or semantic depen-

dency, but it is surprisingly powerful for simple text classification with reasonable

amount of training data. We used 1-2-3 grams after filtering out all the stop words,

as our n-gram features. We construct 32 Lexicon features from 9 Twitter spe-

cific and general-purpose lexica. Each lexicon provides either a numeric sentiment

score, or categories where a category could correspond to a particular emotion or a

strong/weak positive/negative sentiment.

The use of Word embedding features to represent the context of words

and concepts, has been shown to be very effective in boosting the performance

of sentiment classification. Here we use a set of word embeddings learnt using

a sentiment-specific method in [69] and another set of general word embeddings

trained with 5 million tweets by [103]. Training on an additional set of 3 million

tweets we trained ourselves did not increase performance. Pooling functions are

essential and particularly effective for feature selection from dense embedding feature

vectors. [69] applied the max, min and mean pooling functions and found them to

be highly useful. We tested and evaluated six pooling functions, namely sum, max,

min, mean, std (i.e. standard deviation) and product, and selected sum, max and

mean as they led to the best performance.

Classifier Adaptation

[94] proposes a many-to-one SVM adaptation model, which directly modifies the

decision function of an ensemble of existing classifiers fksrc(x), trained with one or k
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sets of labelled source-domain data in Dsrc, and thus creates a new adapted classifier

ftar(x) for the target-domain Dtar. The adapted classifier has the following form:

ftar(x) =
M∑
k=1

τ kfksrc(x) + ∆f(x) (3.3)

where τ k ∈ (0, 1) is the weight of each base classifier fksrc(x). ∆f(x) is the per-

turbation function that is learnt from a small set of labelled target-domain data in

Dl
tar. As shown in [94] it has the form:

∆f(x) = wTφ(x) =

N∑
i=1

αiyiK(xi,x) (3.4)

where w =
∑N

i=1 αiyiφ(xi) are the model parameters to be estimated from the

labelled examples in Dl
tar and αi is the feature coefficient of the ith labelled target-

domain instance. Furthermore K(xi,x) is the similarity between xi and x in the

transformed feature space. ∆f(x) is learnt in a framework that aims to minimise

the regularised empirical risk [237]. The adapted classifier ftar(x) learnt under this

framework tries to minimise the classification error on the labelled target-domain

examples and the distance from the base classifiers fksrc(x), to achieve a better bias-

variance trade-off.

In this work we use the extended multi-classifier adaptation framework pro-

posed by [95], which allows the weight controls {τ k}Mk=1 of the base classifiers fksrc(x)

to be learnt automatically based on their classification performance of the small set

of labelled target-domain examples. To achieve this, [95] adds another regulariser to

the regularised loss minimisation framework, with the objective function of training
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the adaptive classifier now written as:

min
w,τ ,ξ

1

2
wTw +

1

2
B(τ )Tτ + C

N∑
i=1

ξi

s.t. yi

M∑
k=1

τ kfksrc(x) + yiw
Tφ(xi) ≥ 1− ξi,

ξmi ≥ 0, ∀(xi, yi) ∈ Dsrc

(3.5)

where 1
2(τ )Tτ measures the overall contribution of base classifiers. Thus this objec-

tive function seeks to avoid over reliance on the base classifiers and also over-complex

∆f(·). The two goals are balanced by the parameter B. By rewriting this objec-

tive function as a minimisation problem of a Lagrange (primal) function and set its

derivative against w, τ , and ξ to zero, we have:

w =

N∑
i=1

αiyiφ(xi), τ k =
1

B

N∑
i=1

αiyif
k
src(xi) (3.6)

where τ k is a weighted sum of yif
k
src(xi) and it indicates the classification perfor-

mance of fksrc on the target-domain. Therefore we have base classifiers assigned with

larger weight if they classify the labelled target-domain data well. Now given (3.3),

(3.4) and (3.6), the new decision function can be formulated as:

ftar(x) =
1

B

M∑
k=1

N∑
i=1

αiyif
k
src(xi)f

k
src(x) + ∆f(x)

=

N∑
i=1

αiyi

(
K(xi,x) +

1

B

M∑
k=1

fksrc(xi)f
k
src(x)

) (3.7)

Comparing (3.7) with a standard SVM model f(x) =
∑

i=1 αiy( + 1,−1)K(xi,x),

this multi-classifier adaptation model can be interpreted as a way of adding the

predicted labels of base classifiers on the target-domain as additional features. Under

this interpretation the scalar B balances the contribution of the original features and

additional features. The dual form of this multi-classifier SVM can be obtained by
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plugging (3.6) into the primal Lagrangian (3.5), and it can be solved by a variation

of the standard minimal optimisation (SMO) algorithm proposed in [95].

3.2.4 Results and Evaluation

In this section we present the experimental results and compare our adaptation

system with a set of domain-dependent and domain-independent strategies. We

also investigate the effect of different sizes of the labelled target-domain data in the

classification performance.

Adaptation Baselines

The baseline methods and our proposed system are the following:

• BASE: the base classifiers use either one set of features or all three feature sets

(i.e. BASE-all). As an example, the BASE-embedding classifier is trained and

tuned with all source-domain data using only word-embedding features, then

tested on 30% of our target-domain data. We use the LIBSVM implementation

[238] of SVM for building the base classifiers.

• TARG: trained and tuned with 70% labelled target-domain data. Since this

model is entirely trained from the target domain, it is very hard to beat.

• AGGR: an aggregate model trained from all source-domain data and 70%

labelled target-domain data.

• ENSEMBLE: combines the base classifiers in an ensemble model as proposed

in [31]. Then perform classification on 30% of the target-domain data to

generate new training data, as described in Section 2.2.2.

• ADAPT: our domain adapted models use either one base classifier trained

with all feature sets (i.e. ADAPT-1-model) or an ensemble of three standalone
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base classifiers with each trained with one set of features (i.e. ADAPT-3-

model). We use 30% of the labelled target-domain data for classifier adapta-

tion and parameter tuning described in Section 3.2.3.

The above methods are all tested on the same 30% labelled target-domain data

in order to make their results comparable. We use an RBF kernel function with

default setting of the gamma parameter γ in all the methods. For the cost factor C

and class weight parameter (except the SRC-all model) we conduct cross-validated

grid-search over the same set of parameter values for all the methods, for parameter

optimisation. This makes sure our ADAPT models are comparable with BASE,

TARG, ENSEMBLE and AGGR.

Experimental Results

We report the experimental results in Table 3.7, with three categories of models:

1) in-domain no adaptation methods, i.e. BASE and TARG models, TARG being

the upper-bound for performance evaluation; 2) the domain adaptation baselines, i.e.

AGGR and ENSEMBLE and 3) our adaptation systems (ADAPT models). As can

be seen the classification performances reported for emotions other than “happy”

are below 50 in terms of F1 score with some results being as low as 0.00. This is

caused by the class imbalance issue within these emotions as shown in Table 3.5 and

Figure 3.1, especially for the emotion “disgust” which has only 16 tweets. We tried

to balance this issue using a class weight parameter, but it still is very challenging to

overcome without acquiring more labelled data than we currently have. It especially

effects our domain adaptation as all the parameters in Eq.(3.5) cannot be properly

optimised.

Since there are very few tweets annotated as “disgust”, we decide not to con-

sider the “disgust” emotion as part of our experiment evaluation here. As seen in

Table 3.7, BASE models are outperformed significantly by all other methods (except

ENSEMBLE, which performs only slightly better than the BASE models) positing
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the importance of domain adaptation. With the exception of the ADAPT-3-model

for “Anger”, our ADAPT models consistently outperform AGGR-all and ENSEM-

BLE while showing competitive performance compared to the upper-bound baseline,

TARG-all. We also observe that the aggregation model AGGR-all is outperformed

by TARG-all, indicating such domain knowledge cannot be transferred effectively to

a different domain by simply modelling from aggregated data from both domains.

In comparison, our ADAPT models are able to leverage the large and balanced

source-domain data (as base classifiers) unlike TARG, while adjusting the contribu-

tion of each base classifier unlike AGGR. When comparing our ADAPT models, we

find that in most cases models adapted from multiple base classifiers beat the ones

adapted from one single base classifier, even though the same features are used in

both scenarios. This shows the benefit of the multi-classifier adaptation approach,

which aims to maximise the utility of each base classifier.
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(a) C = 1 (b) C = 3

(c) C = 10

Figure 3.2: Performance of each ADAPT model with C = 1,3,10 vs. its computation
time

We can also evaluate the performance of each model by comparing its effi-

ciency in terms of computation time. Here we report the total computation time

taken for all the above methods except BASE, for the emotion “happiness”, on a

laptop with 2.8 GHz Intel Core i7 processor and 16 GB memory. Such computation

process consists of adaptation training, grid-search over the same set of parame-

ter values and final testing. As seen in Table 3.8, compared to other out-of-domain

strategies the proposed ADAPT models are more efficient to train especially in com-

parison with AGGR, which is an order of magnitude more costly due to the inclusion

of source-domain data. Within the ADAPT models, ADAPT-1-model requires less

time to train since it only has one base classifier for adaptation.
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Model Total computation time in minutes

TARG-all 7.72
ENSEMBLE 209.72

AGGR-all 1238.24
ADAPT-1-model 26.30
ADAPT-3-model 118.41

Table 3.8: Total computation time for each classification method

Effect of Adaptation Training Sample ratios

Here we evaluate the effect of different ratios of the labelled target-domain data

on the overall classification performance for the emotion “happiness”. Figure 3.2

shows the normalised F1 scores and computation time of each ADAPT model across

different adaptation training sample sizes ranging from 10% to 70% of the total

target-domain data (with the same 30% held out as test data) and with the cost

factor C = 1, 3 and 10 (as the same choices of C are used in [94] for conducting

their experiment). We observe a logarithmic growth for the F1 scores obtained

from every model, against a linear growth of computation time cost. Thus even

though there is a reasonable increase in classification performance when increasing

the adaptation sample size from 50% to 70%, it becomes much less efficient to train

such models and we require more data, which may not be available. Since we have

a trade-off between model effectiveness and efficiency here, it is appropriate to use

30% of our labelled target-domain data for classifier adaptation as we have done so in

ADAPT-1-model and ADAPT-3-model. One should select the adaptation training

sample size accordingly based on the test data at hand, but empirically we think

1,000 labelled target-domain tweets would be enough for an effective adaptation to

classify 3,000-4,000 test tweets.

3.2.5 Conclusion

Domain adaptation for sentiment and emotion analysis across topics on Twitter is

challenging due to the noisy and sparse nature of tweets. We have studied a model-
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based multi-class adaptive-SVM approach for cross-domain emotion recognition and

compared against a set of domain-dependent and domain-independent strategies.

We evaluated our proposed system on a set of newly annotated Twitter data about

museums, thus furthering research in the interdisciplinary study of social media

discourse around arts and cultural experiences. We find that our adapted SVM

model outperforms the out-of-domain base models and domain adaptation baselines

while also showing competitive performance against the in-domain model. Moreover,

in comparison to other adaptation strategies our approach is computationally more

efficient especially compared to the classifier trained on aggregated source and target

data. Finally, we shed light on how different ratios of labelled target-domain data

used for adaptation can effect classification performance. We show there is a trade-

off between model effectiveness and efficiency when selecting adaptation sample size.

Our code and data8 are publicly available, enabling further research and comparison

with our approach.

In the future we would like to study how to use deep learning for domain

adaptation without retraining on source domain data or fine-tuning target domain

labeled data, by effectively applying teacher’s knowledge learned from the source

domain to the target domain. We would also like to investigate the possibility of

applying multi-task learning using an auxiliary task to help the main task of cross-

topic emotion classification on Twitter. Another future direction is to study how to

best resolve the remarkable class imbalance issue in social media emotion analysis

when some emotions are rarely expressed.

8http://bit.ly/1SddvIw
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CHAPTER 4

Target-specific Sentiment Recognition

Classifying sentiment towards multiple targets in a tweet

In the previous chapter we have explored the challenge of tackling cross-domain emo-

tion classification when we have low training resource for the target domain. In this

chapter we continue our research on Twitter sentiment classification by addressing

the task of target-specific sentiment recognition.

In the recent years we have seen an increasing interest in mining Twitter

to assess public opinion on political affairs and controversial issues [13, 16] as well

as products and brands [239]. Opinion mining from Twitter is usually achieved

by determining the sentiment polarity of tweets and has mostly focused on the

overall sentiment expressed in an entire tweet. However, inferring the sentiment

towards specific targets (e.g. people or organisations) is severely limited by such an

approach since a tweet may contain different types of sentiment expressed towards

each of the targets mentioned. An early study by Jiang et al. [11] showed that 40% of

classification errors are caused by using tweet-level approaches that are independent

of the target. Consider the tweet:
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“I will b voting 4 Greens ... 1st reason: 2 remove 2 party alt. of labour

or conservative every 5 years. 2nd: fracking”

The overall sentiment of this tweet is positive but there is a negative sen-

timent towards “labour”, “conservative” and “fracking” and a positive sentiment

towards “Greens”. Examples like this are common in tweets discussing topics like

politics, as is the case in the corpus of political tweets harvested prior to the UK

General elections in 2015, which we present in Section 4.3. As has been demon-

strated by the failure of election polls in both referenda and general elections [240],

it is important to understand not only the overall mood of the electorate, but also

to distinguish and identify sentiment towards different key issues and entities, many

of which are discussed on social media on the run up to elections. Therefore in this

chapter we will address the following research question:

RQ1: How can we infer the sentiment towards a specific target as opposed to

tweet-level sentiment? Can we find an effective approach for identifying sentiment

towards multiple targets within a tweet?

To answer this research question, we participated in a Twitter sentiment

analysis challenge as our pilot research on classifying single-target sentiment. In this

work we develop a set of different strategies which use either syntactic dependencies

or token-level associations with the target word in combination with our phrase-level

classifier to produce sentiment annotations. Then, we propose a method for multi-

target specific sentiment recognition, which we develop by using the context around

a target as well as syntactic dependencies involving the target. We also present a

corpus of UK election tweets, with an average of 3.09 entities per tweet and more

than one type of sentiment in half of the tweets, making it the most suitable dataset

for this task and thus a valuable resource to the community.
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4.1 Single-target-specific Sentiment Recognition using

Graph Kernel

Participating in SemEval-20151 Task-10 Sub-task C [96], our goal is to identify the

sentiment targeted towards a particular target entity within a tweet. This is closely

linked to aspect-based sentiment [241] and is very important for understanding the

reasons behind the manifestation of different reactions. We develop several strategies

for selecting a target-relevant portion of a tweet and use it to produce a sentiment

annotation. Our approach is based on using a phrase-based sentiment identification

model [39] to annotate the target-relevant selections.

4.1.1 Target Relevance Through Syntactic Relations

A syntactic parser generates possible grammatical relations between words in a

sentence, which are potentially useful for capturing the context around a target

entity. We experimented with the Stanford parser [242] and the recently released

TweeboParser [111]. TweeboParser is explicitly designed to parse tweets – support-

ing multi-word annotations and multiple roots – but instead of the popular Penn

Treebank annotation it uses a simpler annotation scheme and outputs much less de-

pendency type information and was therefore not deemed suitable for our purpose.

We use the Stanford parser with a caseless parsing model, expected to work better

for short documents. We define the target-relevant portion of a tweet as the weakly

connected components of the dependency graph containing a given target-entity

word.

4.1.2 Generating Per-Token Annotations

Our target-specific models use per-token sentiment annotations generated in advance

by a linear SVM and random forest-based classifiers [39], using the balanced and

1http://alt.qcri.org/semeval2015/task10/

81

http://alt.qcri.org/semeval2015/task10/


imbalanced versions of SemEval-2015 Task-10 subtask A’s training data. We found

the SVM outperformed the random forest classifier, with all the submission models

performing best with the balanced version, and the baseline model performing best

using the imbalanced training data.

4.1.3 Classification Without Dependency Relations

The simplest classification method (Baseline) identifies the target entity and only

considers those tokens around it. Then the target sentiment is determined by major-

ity voting from the token sentiments. Despite being rudimentary, we found Base-

line difficult to beat when used with our per-token sentiment classifier, producing

an F1-score of 46.59 with a window of 8 tokens.

4.1.4 Using Dependency Relations

Our submitted model, named Submission, builds a directed co-dependency graph

from the supplied parse, trims some of the relations2, then attempts to match it

against parse trees seen previously, to capture syntactic features that may be relevant

to the target’s sentiment. Because subgraph isomorphism is a computationally diffi-

cult problem, we use a diffusion kernel (as in [244]) to normalise the adjacency ma-

trix for SVM classification. We also add unigrams within the same window used for

Baseline as an additional feature. Submission-Retokenized updates the result

and replaces whitespace tokenisation with that used by [227], and improves the pre-

processing pipeline, improving performance by +5 in F1. Submission-Sentiment

changes the structure of the dependency graph by connecting tokens to their 1-

window sentiment derived from the per-token classifier, improving performance

further still.

2We select 9 dependency relations – ‘amod’, ‘nsubj’, ‘advmod’, ‘dobj’, ‘xcomp’, ‘ccomp’, ‘rc-
mod’, ‘cop’ and ‘acomp’ which feasibly impact sentiment [243].
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Experiment F1 score

TwitterHawk 50.51

Submission 22.79
Submission-Sentiment 29.37
Submission-Retokenized 27.88
Baseline 46.59

Table 4.1: Performance comparison of our submitted sentiment classifiers.

4.1.5 Discussion

Table 4.1 shows the performance of our submitted classifiers and baseline model

comparing to the best performing system - TwitterHawk, for SemEval-2015 Task-10

Sub-task C. The official scoring metric for this task is 2-class macro-averaged (i.e.

negative and positive) F1 score3.

Surprisingly, our simple baseline system outperforms the 3 Submission mod-

els, which aim to construct syntactic features relevant to the target. The two best

performing systems for this challenge including TwitterHawk, both opted to use the

tweet-level target-independent approach. We think there are two potential expla-

nations for why tweet-level models perform well for this task: 1) It may merely be

the nature of this dataset containing 2382 tweets as final test data; 2) tweet-level

approach indeed is the most suitable for the scenario where the tweet only mentions

one single target entity.

To answer to our hypotheses, in the following sections we investigate both

single-target and multi-target-specific tasks. We propose a more effective way of us-

ing the syntactic dependencies involving the target, achieving state-of-the art perfor-

mance on two different datasets. We also study the relationship among tweet-level,

single-target and multi-target tasks, and thus show the importance of of distinguish-

ing target entity sentiment.

3Note that this isn’t a binary classification task as it is still effected by the neutral tweets.
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4.2 Multi-target-specific Sentiment Classification

Recent developments on target-specific Twitter sentiment classification have ex-

plored different ways of modelling the association between target entities and their

contexts. Jiang et al. [11] propose a rule-based approach that utilises dependency

parsing and contextual tweets. Dong et al. [1], Tang et al. [104] and Zhang et

al. [105] have studied the use of different recurrent neural network models for such

a task but the gain in performance from the complex neural architectures is rather

unclear4

In the following section we introduce the multi-target-specific sentiment recog-

nition task, building a corpus of tweets from the 2015 UK general election campaign

suited to the task. In this dataset, target entities have been semi-automatically

selected, and sentiment expressed towards multiple target entities as well as high-

level topics in a tweet have been manually annotated. Unlike all existing studies on

target-specific Twitter sentiment analysis, we move away from the assumption that

each tweet mentions a single target; we introduce a more realistic and challenging

task of identifying sentiment towards multiple targets within a tweet. To tackle this

task, we propose TDParse, a method that divides a tweet into different segments

building on the approach introduced by Vo and Zhang [103]. TDParse exploits

a syntactic dependency parser designed explicitly for tweets [111], and combines

syntactic information for each target with its left-right context.

We evaluate and compare our proposed system on our new multi-target UK

election dataset, as well as on the benchmarking dataset for single-target dependent

sentiment [1]. We show the state-of-the-art performance of TDParse over existing

approaches for tweets with multiple targets, which encourages further research on

the multi-target-specific sentiment recognition task.5

4They have yet to show a clear out-performance on a benchmarking dataset and our multi-target
corpus, possibly because they usually require large amount of training data.

5The data and code can be found at https://goo.gl/S2T1GO.
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4.3 Creating a Corpus for Multi-target-specific Senti-

ment in Twitter

A tweet, though constrained by its 140-character limit, often contain more than

one target entity with opposite sentiments. In this section we describe the design,

collection and annotation of a multi-target sentiment corpus of tweets about the

2015 UK election.

Figure 4.1: Annotation tool for human annotation of target specific sentiment anal-
ysis

4.3.1 Data Harvesting and Entity Recognition

We collected a corpus of tweets about the UK elections, as we wanted to select a

political event that would trigger discussions on multiple entities and topics. Col-

lection was performed through Twitter’s streaming API and tracking 14 hashtags6

that were obtained by using our hashtag seeding algorithm described in Appendix A.

Data harvesting was performed between 7th February and 30th March 2015, to cap-

ture the ongoing discussion in the weeks running up to the election. This led to the

collection of 712k tweets, from which a subset was sampled for manual annotation

of target-specific sentiment. We also created a list of 438 topic keywords relevant

6#ukelection2015, #ge2015, #ukge2015, #ukgeneralelection2015, #bbcqt, #bbcsp, #bbcdp,
#marrshow, #generalelection2015, #ge15, #generalelection, #electionuk, #ukelection and #elec-
tionuk2015
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to 9 popular election issues7 for data sampling. The initial list of 438 seed words

provided by a team of journalists was augmented by searching for similar words

within a vector space on the basis of cosine similarity. Keywords are used both in

order to identify thematically relevant tweets and also targets. We also consider

named entities as targets.

Sampling of tweets was performed by removing retweets and making sure

each tweet contained at least one topic keyword from one of the 9 election issues,

leading to 52,190 highly relevant tweets. For the latter we ranked tweets based on a

“similarity” relation, where “similarity” is measured as a function of content overlap

[245]. Formally, given a tweet Si being represented by the set of N words that appear

in the tweet: Si = W 1
i ,W

2
i , ...,W

N
i and our list of curated topic keywords T , the

ranking function is defined as:

log(|Si|) ∗ |Wi ∈ Si ∩Wi ∈ T | (4.1)

where |Si| is the total number of words in the tweet; unlike Mihalcea [245] we prefer

longer tweets. We used exact matching with flexibility on the special characters

at either end. TF-IDF normalisation and cosine similarity were then applied to

the dataset to remove very similar tweets (empirically we set the cosine similarity

threshold to 0.6). We also collected all external URLs mentioned in our dataset and

their web content throughout the data harvesting period, filtering out tweets that

only contain an external link or snippets of a web page. Finally we sampled 4,500

top-ranked tweets keeping the representation of tweets mentioning each election

issue proportionate to the original dataset.

For annotation we considered sentiment towards two types of targets: entities

and topic keywords. Entities were processed in two ways: firstly, named entities

(people, locations, and organisations) were automatically annotated by combining

7EU and immigration, economy, NHS, education, crime, housing, defense, public spending,
environment and energy
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the output of Stanford Named Entity Recognition (NER) [246], NLTK NER [247]

and a Twitter-specific NER [248]. All three were combined for a more complete

coverage of entities mentioned in tweets and subsequently corrected by removing

wrongly marked entities through manual annotation. Secondly, to make sure we

covered all key entities in the tweets, we also matched tweets against a manually

curated list of 7 political-party names and added users mentioned therein as entities.

The second type of targets matched the topic keywords from our curated list. During

test time, target entities can be extracted automatically by matching the curated

topic keyword and party name lists, as well as performing named entity recognition.

4.3.2 Manual Annotation of Target Specific Sentiment

We developed a tool for manual annotation of sentiment towards the targets (i.e. en-

tities and topic keywords) mentioned in each tweet. The annotation was performed

by nine PhD-level journalism students, each of them annotating approximately a

ninth of the dataset, i.e. 500 tweets. Additionally, they annotated a common sub-

set of 500 tweets consisting of 2,197 target entities, which was used to measure

inter-annotator agreement (IAA). Annotators were shown detailed guidelines8 be-

fore taking up the task, after which they were redirected to the annotation tool itself

(see Figure 4.1).

Tweets were shown to annotators one by one, and they had to complete the

annotation of all targets in a tweet to proceed. The tool shows a tweet with the

targets highlighted in bold. Possible annotation actions consisted in: (1) marking

the sentiment for a target as being positive, negative, or neutral, (2) marking a

target as being mistakenly highlighted (i.e. ‘doesnotapply’) and hence removing

it, and (3) highlighting new targets that our preprocessing step had missed, and

associating a sentiment value with them. In this way we obtained a corrected list

of targets for each tweet, each with an associated sentiment value.

8This guidelines can be found along with our released corpus: https://goo.gl/CjuHzd
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We measure inter-annotator agreement in two different ways. On the one

hand, annotators achieved κ = 0.345 (z = 92.2, p < 0.0001) (fair agreement)9 when

choosing targets to be added or removed. On the other hand, they achieved a similar

score of κ = 0.341 (z = 77.7, p < 0.0001) (fair agreement) when annotating the

sentiment of the resulting targets. It is worth noting that the sentiment annotation

for each target also involves choosing among not only positive/negative/neutral but

also a fourth category ‘doesnotapply’. The resulting dataset contains 4,077 tweets,

with an average of 3.09 entity mentions (targets) per tweet. As many as 3,713 tweets

have more than a single entity mention (target) per tweet, which makes the task

different from 2015 Semeval 10 subtask C [96] and a target-dependent benchmarking

dataset of Dong et al. [1] where each tweet has only one target annotated and thus

one sentiment label assigned. The number of targets in the 4,077 tweets to be

annotated originally amounted to 12,874. However, the annotators unhighlighted

975 of them, and added 688 new ones, so that the final number of targets in the

dataset is 12,587. These are distributed as follows: 1,865 are positive, 4,707 are

neutral, and 6,015 are negative. This distribution shows the tendency of a theme

like politics, where users tend to have more negative opinions. This is different from

the Semeval 2015/2016 dataset, which has a majority of neutral sentiment. Looking

at the annotations provided for different targets within each tweet, we observe that

2,051 tweets (50.3%) have all their targets consistently annotated with a single

sentiment value, 1,753 tweets (43.0%) have two different sentiments, and 273 tweets

(6.7%) have three different sentiment values. These statistics suggest that providing

a single sentiment for the entire tweet would not be appropriate in nearly half of

the cases confirming earlier observations [11].

We also labelled each tweet containing one or more topics from the 9 elec-

tion issues, and asked the annotators to mark the author’s sentiment towards the

topic. Unlike entities, topics may not be directly present in tweets. We compare

9We report the strength of agreement using the benchmarks by Landis and Koch [249] for
interpreting Fleiss’ kappa.
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topic sentiment with target/entity sentiment for 3963 tweets from our dataset adopt-

ing the approach by Vargas et al. [20]. Table 4.2 reports the individual c(starget),

c(stopic) and joint c(starget, stopic) distributions of the target/entity starget and topic

stopic sentiment. While starget and stopic report how often each sentiment category

occurs in the dataset, the joint distribution c(starget, stopic) (the inner portions of

the table) shows the discrepancies between target and topic sentiments. We observe

marked differences between the two sentiment labels. For example it shows the topic

sentiment is more neutral (1438.7 vs. 1104.1) and less negative (1930.7 vs. 2285.5)

than the target sentiment. There is also a number of tweets expressing neutrality to-

wards the topics mentioned but polarised sentiment towards targets (i.e. we observe

c(stopic = neu∩stargets = neg) = 258.6 also c(stopic = neu∩stargets = pos) = 101.4),

and vice versa. This emphasises the importance of distinguishing target entity senti-

ment not only on the basis of overall tweet sentiment but also in terms of sentiment

towards a topic.

c(starget, stopic)
stopic c(stopic)negative neutral positive

s t
a
rg
et negative 1553.9 258.6 118.3 1930.9

neutral 557.6 744.1 137.0 1438.7
positive 174.0 101.4 318.1 593.5

c(starget) 2285.5 1104.1 573.4 3963.0

Table 4.2: Individual c(starget), c(stopic) and joint c(starget, stopic) distributions of
sentiments

4.4 Developing a state-of-the-art approach for target-

specific sentiment

4.4.1 Model development for single-target benchmarking data

Firstly we adopt the context-based approach by Vo and Zhang [103], which divides

each tweet into three parts (left context, target and right context), and where the
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sentiment towards a target entity10 results from the interaction between its left and

right contexts. Such sentiment signal is drawn by mapping all the words in each

context into low-dimensional vectors (i.e. word embeddings), using pre-trained em-

bedding resources, and applying neural pooling functions to extract useful features.

Such context set-up does not fully capture the syntactic information of the tweet and

the given target entity, and by adding features from the full tweet (as done by Vo

and Zhang [103]) interactions between the left and right context are only implicitly

modeled. Here we use a syntactic dependency parser designed explicitly for tweets

[111] to find the syntactically connected parts of the tweet to each target. This

is achieved by treating each target as the root node, and performing breath-first

search to find all the tokens that its head (i.e. the syntactic parent node) either is

the target word or connects to the target along any particular path. As an example

in tweet “so my latebus still sucks, but my Ipod isn’t dead this time”, “ipod” is the

target and it has the following syntactically connected parts:

Figure 4.2: Syntactically connected parts to the target “ipod”

We then extract word embedding features from these syntactically dependent

tokens [D1, ..., Dn] along its dependency path in the parsing tree to the target11, as

well as from the left-target-right contexts (i.e. L−T−R). Feature vectors generated

10As described in Section 4.3, target entities include named entities by automatic entity extrac-
tion, political party names, user mentions and topic keywords from a journalist-curated list.

11Empirically the proximity/location of such syntactic relations have not made much difference
when used in feature weighting and is thus ignored.
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from different contexts are concatenated into a final feature vector as shown in (4.2),

where P (X) presents a list of k different pooling functions on an embedding matrix

X. Not only does this proposed framework make the learning process efficient with-

out labor intensive manual feature engineering and heavy architecture engineering

for neural models, it has also shown that complex syntactic and semantic informa-

tion can be effectively drawn from tweets by simply concatenating different types

of context together without the use of deep learning (other than pretrained word

embeddings).

F = [P (D), P (L), P (T ), P (R)];

with P (X) = [f1(X), ..., fk(X)]

(4.2)

Data set: We evaluate and compare our proposed system to the state-

of-the-art baselines on a benchmarking corpus [1] that has been used by several

previous studies [103, 104, 105]. This corpus contains 6248 training tweets and 692

testing tweets with a sentiment class balance of 25% negative, 50% neutral and 25%

positive. Although the original corpus has only annotated one target per tweet,

without specifying the location of the target, we expand this notion to consider

cases where the target entity may appear more than once at different locations in

the tweet, e.g.:

“Nicki Minaj has brought back the female rapper. - really? Nicki Minaj

is the biggest parody in popular music since the Lonely Island.”

Semantically it is more appropriate and meaningful to consider both target

appearances when determining the sentiment polarity of “Nicki Minaj” expressed in

this tweet. While it isn’t clear if Dong et al. [1] and Tang et al. [104] have considered

this realistic same-target-multi-appearance scenario, Vo et al. [103] and Zhang

et al. [105] do not take it into account when extracting target-dependent contexts.

Contrary to these studies we extend our system to fully incorporate the situation

where a target appears multiple times at different locations in the tweet. We add
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another pooling layer in (4.2) where we apply a median pooling function to combine

extracted feature vectors from each target appearance together into the final feature

vector for the sentiment classification of such targets. Now the feature extraction

function P (X) in (4.2) becomes:

P (X) = [Pmedian([f1(X1), ..., f1(Xm)]),

... ... ,

Pmedian([fk(X1), ..., fk(Xm)])]

(4.3)

where m is the number of appearances of the target and Pmedian represents the

dimension-wise median pooling function.

Models: To investigate different ways of modelling target-specific context

and evaluate the benefit of incorporating the same-target-multi-appearance scenario,

we build these models:

• Semeval-best: is a tweet-level model using various types of features, namely

ngrams, lexica and word embeddings with extensive data pre-processing and

feature engineering. We use this model as a target-independent baseline as

it approximates and beats the best performing system [97] in SemEval 2015

task 10 by (+1.4) in 2-class F1 using the same set of training data. It also

outperforms the highest ranking system in SemEval 2016 task 4, Tweester

[250], on the same corpus (by +4.0% in macro-averaged recall12) and therefore

constitutes a state-of-the art tweet level baseline.

• Naive-seg models: Naive-seg- slices each tweet into a sequence of sub-

sentences by using punctuation (i.e. ’,’ ’.’ ’?’ ’ !’). Embedding features are

extracted from each sub-sentence and pooling functions are applied to combine

word vectors. Naive-seg extends it by adding features extracted from the left-

target-right contexts, while Naive-seg+ extends Naive-seg by adding lexicon

12Official scoring metric for SemEval 2016 task 4.
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filtered sentiment features.

• TDParse models: as described in Section 4.4.1. TDParse- uses a de-

pendency parser to extract a syntactic parse tree to the target and map all

child nodes to low-dimensional vectors. Final feature vectors for each target

are generated using neural pooling functions. While TDParse extends it by

adding features extracted from the left-target-right contexts, TDParse+ uses

three sentiment lexica for filtering words. TDParse+ (m) differs from TD-

Parse+ by taking into account the ‘same-target-multi-appearance’ scenario.

Both TDParse+ and TDParse+ (m) outperform state-of-the-art target-

specific models.

• TDPWindow-N: the same as TDParse+ with a window to constrain the

left-right context. For example if N = 3 then we only consider 3 tokens on

each side of the target when extracting features from the left-right context.

4.4.2 Experimental Settings

To compare our proposed models with Vo & Zhang [103], we have used the same pre-

trained embedding resources and pooling functions (i.e. max, min, mean, standard

deviation and product). For classification we have used LIBLINEAR [251], which

approximates a linear SVM. In tuning the cost factor C we perform five-fold cross

validation on the training data over the same set of parameter values for both Vo

and Zhang [103]’s implementation and our system. This makes sure our proposed

models are comparable with those of Vo and Zhang [103].

Evaluation metrics: We follow previous work on target-dependent Twitter

sentiment classification, and report our performance in accuracy, 3-class macro-

averaged (i.e. negative, neutral and positive) F1 score as well as 2-class macro-

averaged (i.e. negative and positive) F1 score13, as used by the 2015 SemEval

13Note that this isn’t a binary classification task; the F1 score is still effected by the neutral
tweets.
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competition [96] for measuring Twitter sentiment classification performance.

4.4.3 Experimental results and comparison with other baselines

We report our experimental results in Table 4.3 on the single-target benchmarking

corpus [1], with three model categories: 1) tweet-level target-independent models,

2) target-dependent models without considering the ‘same-target-multi-appearance’

scenario and 3) target-dependent models incorporating the ‘same-target-multi-appearance’

scenario. We include the models presented in the previous section as well as models

for target specific sentiment from the literature where possible.

Among the target-independent baseline models Target-ind [103] and Semeval-

best have shown strong performance compared with SSWE [69] and SVM-ind [11]

as they use more features, especially rich automatic features using the embeddings

of Mikolov et al. [76]. Interestingly they also perform better than some of the

target-dependent baseline systems, namely SVM-dep [11], Recursive NN and

AdaRNN [1], showing the difficulty of fully extracting and incorporating target

information in tweets. Basic LSTM models [104] completely ignore such target

information and as a result do not perform as well.

Among the target-dependent systems neural network baselines have shown

varying results. The adaptive recursive neural network, namely AdaRNN [1],

adaptively selects composition functions based on the input data and thus performs

better than a standard recursive neural network model (Recursive NN [1]). How-

ever, due to the challenges of using recursive neural networks discussed in Chap-

ter 2, both of these models under-perform. TD-LSTM and TC-LSTM from

Tang et al. [104] model left-target-right contexts using two LSTM neural networks

and by doing so incorporate target-dependent information. TD-LSTM uses two

LSTM neural networks for modeling the left and right contexts respectively. TC-

LSTM differs from (and outperforms) TD-LSTM in that it concatenates tar-

get word vectors with embedding vectors of each context word. We also test the
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Gated recurrent neural network models proposed by Zhang et al. [105] on the same

dataset. The gated models include: GRNN, that includes gates in its recurrent

hidden layers, G3 that connects left-right context using a gated NN structure, and

a combination of the two - GRNN+G3. Results show these gated neural net-

work models do not achieve state-of-the-art performance. When we compare our

target-dependent model TDParse+, which incorporates target-dependent features

from syntactic parses, against the target-dependent models proposed by Vo and

Zhang [103], namely Target-dep which combines full tweet (pooled) word embed-

ding features with features extracted from left-target-right contexts and Target-

dep+ that adds target-dependent sentiment features on top of Target-dep, we see

that our method beats both of these, without using full tweet features14.

TDParse+ also outperforms the state-of-the-art TC-LSTM. It is worth

mentioning here deep learning models such as LSTM, require large amount training

data, especially when attention mechanism is used. We have approximated the two

target-dependent LSTM models15 proposed by [104]. Given the training data here

is rather small, we have observed the instability in training resulting in inconsistent

performance (even with the same initialisation). This is also reported by other users

evaluating the same implementation code and set-up but running on a different

machine on this corpus16. We show that a simple linear SVM model, can perform

just as competitive or better for a small training corpus. More importantly, it is

much easier and more efficient to optimise and train, and gives the same performance

all the time.

When considering the ‘same-target-multi-appearance’ scenario, our best model

- TDParse+ improves its performance further (shown as TDParse+ (m) in Ta-

ble 4.3). Even though TDParse does not use lexica, it shows competitive results

14Note that the results reported in Vo and Zhang [103] (71.1 in accuracy and 69.9 in F1) were
not possible to reproduce by running their code with very fine parameter tuning, as suggested by
the authors

15Code can be found at: https://goo.gl/9nvNAt.
16E.g. https://goo.gl/ApD5ku and https://goo.gl/4H7HSv
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to Target-dep+ which uses lexicon filtered sentiment features. In the case of

TDParse-, which uses exclusively features from syntactic parses, while it performs

significantly worse than Target-ind, that uses only full tweet features, when the

former is used in conjunction with features from left-target-right contexts it achieves

better results than the equivalent Target-dep and Target-dep+. This indicates

that syntactic target information derived from parses complements well with the left-

target-right context representation. Clausal segmentation of tweets or sentences can

provide a simple approximation to parse-tree based models [252]. In Table 4.3 we can

see our naive tweet segmentation models Naive-seg and Naive-seg+ also achieve

competitive performance suggesting to some extent that such simple parse-tree ap-

proximation preserves some semantic structure of text and that useful target-specific

information can be drawn from each segment or clause rather than the entire tweet.

4.5 Evaluation for target-specific sentiment in a multi-

target setting

We perform multi-target-specific sentiment classification on our election dataset by

extending and applying our models described in Section 4.4.1. We compare the

results with our other developed baseline models in Section 4.4.1, including a tweet-

level model Semeval-best and clausal-segmentation models that provide simple

parse-tree approximation, as well as state-of-the-art target-dependent models by Vo

and Zhang [103] and Zhang et al. [105]. The experimentation set-up is the same as

described in Section 4.4.217.

Data set: Our election data has a training/testing ratio of 3.70, containing

3210 training tweets with 9912 target entities and 867 testing tweets with 2675

target entities.

Models: In order to limit our use of external resources we do not include

17Class weight parameter is not optimised for all experiments, though better performances can
be achieved here by tuning the class weight due to the class imbalance nature of this dataset.
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Model Accuracy 3 Class F1 2 Class F1

SSWE 62.4 60.5
SVM-ind 62.7 60.2

LSTM 66.5 64.7
Target-ind 67.05 63.4 58.5

Semeval-best 67.6 64.3 59.2

SVM-dep 63.4 63.3
Recursive NN 63.0 62.8

AdaRNN 66.3 65.9
Target-dep 70.1 67.4 63.2

Target-dep+ 70.5 68.1 64.1
TD-LSTM 70.8 69.0
TC-LSTM 71.5 69.5

GRNN 68.5 65.8 61.0
G3 68.5 67.0 63.9

GRNN+G3 67.9 65.2 60.5
TDParse+ 72.1 69.8 66.0

Target-dep+ (m) 70.7 67.8 63.4
Naive-seg- 63.0 57.6 51.5
Naive-seg 70.8 68.4 64.5

Naive-seg+ 70.7 67.7 63.2
TDParse- 61.7 57.0 51.1
TDParse 71.0 68.4 64.3

TDParse+ (m) 72.5 70.3 66.6
TDPWindow-2 68.2 64.7 59.2
TDPWindow-7 71.2 68.5 64.2
TDPWindow-12 70.5 67.9 63.8

Table 4.3: Performance comparison on the benchmarking data [1]
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Naive-seg+ and TDParse+ for evaluation as they both use lexica for feature

generation. Since most of our tweets here contain N > 1 targets and the target-

independent classifiers produce a single output per tweet, we evaluate its result N

times against the ground truth labels, to make different models comparable.

Results: Overall the models perform much poorer than for the single-target

benchmarking corpus, especially in 2-class F1 score, indicating the challenge of the

multi-target-specific sentiment recognition. As seen in Table 4.4 though the feature-

rich tweet-level model Semeval-best gives a reasonably strong baseline performance

(same as in Table 4.3), both it and Target-ind perform worse than the target-

dependent baseline models Target-dep/Target-dep+ [103], indicating the need

to capture and utilise target-dependent signals in the sentiment classification model.

The Gated neural network models - G3/GRNN/GRNN+G3 [105] also perform

worse than Target-dep+ while the combined model - GRNN+G3 fails to boost

performance over each separate model, presumably due to the small corpus size

(suggested by its authors).

Our approximated version of two target-dependent LSTM models [104] show

strong performance with TC-LSTM* having the highest 3-class F1 score. As men-

tioned in Section 4.4.3, again we found unstable training process leading to different

final performance with the same network initialisation due to insufficient amount of

training data. It is also time-consuming to optimise the network even with Bayesian

Optimisation.

Our final model TDParse achieves competitive performance in all three cat-

egories scoring the highest in 2-class F1 and 2nd highest in 3-class F1. This indicates

that our proposed models can provide better and more balanced performance be-

tween precision and recall. It also shows the target-dependent syntactic information

acquired from parse-trees is beneficial to determine the target’s sentiment particu-

larly when used in conjunction with the left-target-right contexts originally proposed

by Vo and Zhang [103] and in a scenario of multiple targets per tweet. Efficiency-
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Model Accuracy 3 Class F1 2 Class F1

Semeval-best 54.09 42.60 40.73
LSTM 51.59 41.92 40.24

Target-ind 52.30 42.19 40.50
Target-dep 54.36 41.50 38.91

Target-dep+ 55.85 43.40 40.85
GRNN 54.92 41.22 38.57

G3 55.70 41.40 37.87
GRNN+G3 54.58 41.04 39.46
TD-LSTM* 54.28 45.82 43.33
TC-LSTM* 55.74 46.62 42.91

Naive-seg- 51.89 39.94 37.17
Naive-seg 55.07 43.89 40.69
TDParse- 52.53 42.71 40.67
TDParse 56.45 46.09 43.43

TDPWindow-2 55.10 43.81 41.36
TDPWindow-7 55.70 44.66 41.35
TDPWindow-12 56.82 45.45 42.69

Table 4.4: Performance comparison on the election dataset

wise TDParse is efficient to optimise and does not require large amount of training

resource. Our clausal-segmentation baseline - Naive-seg models approximate such

parse-trees by identifying segments of the tweet relevant to the target, and as a

result Naive-seg achieves competitive performance compared to other baselines.

S1 Semeval-best Target-dep+ TDParse

Macro 3-class-F1 50.11 46.24 47.08
Micro 3-class-F1 59.72 55.82 57.47
Macro 2-class-F1 46.59 43.42 42.95

S2 Semeval-best Target-dep+ TDParse

Macro 3-class-F1 37.15 41.81 43.07
Micro 3-class-F1 45.17 51.66 52.05
Macro 2-class-F1 37.05 39.75 40.92

S3 Semeval-best Target-dep+ TDParse

Macro 3-class-F1 35.08 42.83 51.26
Micro 3-class-F1 38.16 46.05 53.07
Macro 2-class-F1 35.17 40.53 50.14

Table 4.5: Performance analysis in S1, S2 and S3 scenarios
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4.5.1 State-of-the-art tweet level sentiment vs target-specific sen-

timent in a multi-target setting

To fully compare our multi-target-specific models against other target-dependent

and target-independent baseline methods, we conduct an additional experiment by

dividing our election data test set into three disjoint subsets, on the basis of number

of distinct target sentiment values per tweet: the first subset (S1) contains tweets

having one or more target entities but only one target sentiment, where the sentiment

towards each target is the same; (S2) and (S3) contain two and three different

types of targeted sentiment respectively (i.e. in S3, positive, neutral and negative

sentiment are all expressed in each tweet). As described in Section 4.3.2, there are

2,051, 1,753 and 273 tweets in S1, S2 and S3 respectively.

Table 4.5 shows results achieved by the tweet-level target-independent model

- Semeval-best, the state-of-the-art target-dependent baseline model - Target-

dep+, and our proposed final model - TDParse, in each of the three subsets. We

observe Semeval-best performs the best in S1 compared to the two other models

but its performance gets much worse when different types of target sentiment are

mentioned in the tweet. It has the worst performance in S2 and S3, which again

emphasises the need for multi-target-specific sentiment classification. Finally, our

proposed final model TDParse achieves better performance than Target-dep+

consistently over all subsets indicating its effectiveness even in the most difficult

scenario S3.

4.6 Discussion and Conclusion

In this chapter we have showed why target-specific sentiment recoginition is essential

for understanding public sentiment on Twitter, and how tweet-level approaches are

inadequate for such task. We studied different ways of recognising single-target-

specific sentiment where each tweet mentions only one target entity. In our pilot
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work, we found our graph kernel and per-token sentiment annotation based methods

fail to achieve good performance. Surprisingly, our models are outperformed by a

much simpler baseline method as well as the tweet-level systems.

In the subsequent work, we introduced the challenging task of multi-target-

specific sentiment classification for tweets. To help answering the main research

question raised at the beginning of this chapter, we have generated a multi-target

Twitter corpus on UK elections which is made publicly available. We developed a

much more effective approach which utilises the syntactic information from parse-

tree in conjunction with the left-right context of the target. We found our proposed

approach allows the syntactic target information derived from parses to complement

well with the left-target-right context representation. Our approach outperforms

previous methods on a benchmarking single-target corpus as well as our new multi-

target election data, providing answers for RQ1:

RQ1: How can we infer the sentiment towards a specific target as opposed to

tweet-level sentiment? Can we find an effective approach for identifying sentiment

towards multiple targets within a tweet?

While recent work on sentiment analysis in general has largely focused on

exploring deep learning models such as LSTM with attention, RNN models are not

panacea for sentiment classification and in need for healthy scrutiny to give us a

clear view on what works and what their limitations are. Firstly, while RNNs have

an inductive bias towards sequential recency, syntax-guided linguistic structure is

important18, even for microposts such as tweets. By using a Twitter-specific parser,

we have shown our proposed system can robustly utilise syntactic dependencies in

tweets for our purpose, and as a result it outperforms the Recursive Neural Network

18During the 2017 CoNLL keynote, Chris Dyer argued language is inherently hierarchical, and
syntactic recency is a preferable inductive bias to sequential recency: http://www.conll.org/

keynotes-2017.
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models and is as competitive as the LSTM and attention models. Secondly, despite

the good performance, because our system uses simple linear SVM, it makes the

learning process much more efficient than the neural models which often require

heavy architecture engineering and time-consuming optimisation. Lastly as men-

tioned in Section 4.4.3, due to the insufficient amount of training data, we found the

LSTM and attention models having unstable training process even with the same

initilisation. On the contrary, our system gives consistent performance given the

same search space, and does not need large amount of labeled training data which

is not available for some domains.

In Section 4.5.1 we have showed our tweet-level model performing the best for

tweets containing the same target sentiment type while it is the worst when different

types of targeted sentiment are mentioned in the tweet. Our proposed multi-target

system outperforms two other target-independent and target-dependent models, for

tweets containing two or three different target sentiments. This not only answers the

our hypotheses raised at Section 4.1.5 on why simple tweet-level methods achieving

the best performance for the SemEval-2015 Task-10 competition, but also shows the

need for the multi-target model as single-target is not always sufficient. Future work

could investigate sentiment connections among all targets appearing in the same

tweet19 as a multi-target learning task, as well as a hybrid approach that applies

either Semeval-best or TDParse depending on the number of targets detected in the

tweet. There is a lot of scope for jointly learning sentiments for multiple targets in

our data. It is also worth evaluating and comparing our proposed system with RNN

models on a much larger corpus.

We have addressed the data quality issue caused by social spamming in

Chapter 3, and two different problems on Twitter sentiment/emotion analysis in

the previous chapter and this chapter. In the next chapter, we change our research

angle to the topical clustering of tweets.

19With the application in the financial markets, we also would like to study sentiment connections
among target entities in the same data set.
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CHAPTER 5

Topical Clustering of Tweets

A hierarchical topic modelling approach

In the previous chapter we have discussed our work on target-specific sentiment

analysis for tweets. In this chapter, we change our research angle to effectively

group tweets to a number of clusters, with each cluster representing a topic, story

or event. We can also cluster tweets containing the same sentiment towards a

topic/entity on a day, with each cluster assumed to represent a common theme or

reason underlying the particular choice of sentiment. Therefore this chapter serves as

a bridge between our multi-target-specific sentiment research described in Chapter 4

and the subsequent work on tweet summarisation which is presented in Chapter 6.

5.1 Introduction

In recent years social media platforms are increasingly being used as data sources to

collect all kinds of updates posted by people. Updates that are of interest range from

journalistic information that news practitioners can utilise for news gathering and

reporting [253, 254], as well as opinions expressed by people towards a broad range
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of topics. While social media is a rich resource to shed light on public opinion and

to track newsworthy stories ranging from political campaigns to terrorist attacks, it

is often difficult for humans to keep track of all the relevant information provided by

the large volumes of data. Automatic identification of topics can help to produce a

manageable list that is easier to digest for users, enabling for instance identification

of real-world events among those topics.

In contrast to the well-studied task of Topic Detection and Tracking [113],

which is concerned with topic detection from newswire articles, detecting topics

in social media such as Twitter not only has all the issues of conventional doc-

ument clustering such as scalability to large datasets, ability to work with high-

dimensional data and reliance on the user pre-defined number of clusters [255], it

also poses the challenges of dealing with unmoderated, user-generated content. This

presents caveats such as inconsistent vocabulary across different users as well as the

brevity of microposts that often lack sufficient context. As a consequence, traditional

document clustering approaches using bag-of-words representation and topic mod-

els relying on word co-occurrence fall short of achieving competitive performance.

Therefore, we ask the following research question listed in Chapter 1:

RQ2: Can we develop a system to effectively group tweets to a number of

clusters, with each cluster representing a thematic topic?

To answer the above question, in this chapter, we present a two-stage hierar-

chical topic modelling system shown in Figure 5.1, which: 1) uses a collapsed Gibbs

Sampling algorithm for the Dirichlet Multinomial Mixture model (GSDMM) [23]

for tweet clustering; 2) aggregates each tweet cluster to form a virtual document; 3)

applies the second stage of topic modelling to the virtual documents but this time

incorporates word embeddings as latent features (LFLDA) [138]. This not only al-

leviates the noisy nature of tweets but also generates thematic and interpretable
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topics. Finally we conduct extensive evaluation on two datasets, using clustering

evaluation metrics as well as topic model quality metrics. We compare our pro-

posed approaches with other clustering-based methods and topic models, reporting

the best scores in both clustering performance and topic coherence.

Virtual
Documemt

Virtual
Document

Virtual
Document

Virtual
Document

Twitter Data Topic Modelling
using GSDMM

Tweet Cluster

Tweet Cluster

Tweet ClusterVirtual
Document

Topic Modelling
using LFLDA

Tweet Cluster

Tweet Cluster

Tweet Cluster

Tweet Cluster

Tweet Cluster

Word Embeddings

Figure 5.1: Overview of the proposed topic modelling system

5.2 Methodology

As described in Chapter 2, many studies have tried to tackle the challenge of clus-

tering tweets into topics using different strategies, and yet it is still proven to be

a difficult task to solve. Inspired by the two-stage online-offline approach in Twit-

ter event detection studies [117, 115], we propose a two-stage hierarchical topic

modelling system consisting of two state-of-the-art topic models, namely GSDMM

[23] and LFLDA [138], with a tweet-pooling step streamlining the whole clustering

process.

In the collapsed Gibbs Sampling algorithm for the Dirichlet Multinomial

Mixture model [23] (GSDMM), the probability of a document belonging to a cluster

is proportional to: 1) the cluster size; 2) the similarity between the document and

the cluster (defined by the frequency of each word of the document in the cluster),

which represents the two goals of clustering: Completeness and Homogeneity. After

the initialisation step where documents are randomly assigned to K clusters, in

each iteration it re-assigns a cluster to each document in turn according to the
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conditional distribution: p(zd = z|~z¬d, ~d), where the documents ~d are observed,

cluster assignments ~z are latent, and ¬d means the cluster label of document d is

removed from ~z. [256] shows the probability of document d choosing the cluster zd

given the information of other documents and their cluster labels as follows:

p(zd = z|~z¬d, ~d, α, β) ∝ (mz,¬d + a)

∏
w∈d

∏Nw
d

j=1(n
w
z,¬d + β + j − 1)∏Nd

i=1(nz,¬d + V β + i− 1)
(5.1)

where mz is the number of documents in cluster z, nz is the number of words in

cluster z, nwz is the number of occurrences of word w in cluster z, Nw
d is the number

of occurrences of word w in document d, V is the number of words in the vocabulary,

α and β are two parameters to select. Therefore at each iteration it updates three

count variables, namely mz, nz and nwz , to record the information of each cluster

and thus resigns a cluster to a document accordingly1. Given its proven record on

clustering tweets, we use GSDMM as the first stage of topic modelling and set K

to be a very large number which allows GSDMM to automatically infer the final

number of clusters.

As shown in Figure 5.1, we then assign every tweet to its corresponding

cluster and aggregate each cluster to form a virtual document that consists of every

tweet in that cluster. This pooling step is very similar to previous work [130, 131,

132], with the difference that it does not use any metadata which may not be

available always (e.g. not every tweet mentions a hashtag or named entity).

Finally we apply the second stage of topic modelling to the previously gen-

erated virtual documents. Here we are motivated to take advantage of word em-

beddings [77] trained on a large external corpus which have been shown to perform

well in various NLP tasks, and combine it with topic models. [138] achieves this by

replacing its topic-word multinomial distribution with a two-component mixture of

a Dirichlet multinomial component estimated from our smaller corpus and a latent

1As comparison, common similarity-based methods like K-means and Hierarchical Agglomera-
tive clustering usually represent the documents with the vector space model.
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feature representation trained on a large external corpus (i.e. the word embedding

component). The model uses a topic indicator zdi and a binary indicator sdi for

determining whether the word wdi is to be generated by which component. As a

result, each word is modelled by either the Dirichlet multinomial distribution or

the probability estimated by using word embeddings with respect to the sampled

topic. We choose the better performing LFLDA model for our second-stage of topic

modelling. Thus each tweet is assigned a topic with the highest topic proportion2

given the virtual document cluster that it is in.

5.3 Datasets

We compare this two-stage system with aforementioned approaches on two datasets,

with different characteristics that help us generalise our results to different topic

modelling tasks:

• A first story detection (FSD) corpus [2] collected from the beginning of July

to mid-September 2011. We downloaded the tweets using the Twitter search

API3 with the provided tweet IDs, obtaining 2204 tweets with each tweet

annotated as one of 27 real-world stories such as “Death of Amy Winehouse”

and “Terrorist attack in Delhi”. It has some overlap of stories as well, e.g. four

of the stories are related to the London riots in 2011, makes it also applicable

to the task of sub-story detection.

• A large-scale event detection (ED) corpus [140], collected during October and

November of 2012. Using Wikipedia and crowdsourcing as well as event de-

tection methods [120, 257], it generated 150,000 tweets over 28 days covering

more than 500 events. Each event label represents a specific topic or story

line, e.g. “British prime minister David Cameron and Scottish first minister

2Topic proportion: the proportion of words in document d that are assigned to topic t or the
topic probabilities of a document, i.e. p(t|d)

3https://dev.twitter.com/rest/public/search
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Alex Salmond agree a deal”. After retrieving 78,138 tweets we decide to use

the first five days of data for evaluation, resulting in five sets of tweets/labels:

3330/32, 2083/41, 6234/48, 2038/36 and 3468/43.

5.4 Evaluation

To investigate the performance of our proposed hierarchical topic modelling system

for effectively clustering tweets, we compare it against: 1) six topic models includ-

ing four state-of-the-art standalone Twitter topic models, 2) hierarchical clustering

methods using learnt topic proportions as features, and 3) three neural-embedding-

based clustering approaches. Experiments are conducted on two datasets. More-

over, document clustering metrics as well as topic model quality metrics are used

for evaluation.

5.4.1 Experimental setup

Compared Methods: Both topic modelling and document clustering methods are

evaluated. The topic modelling methods are:

• OLDA [258]: An online variational Bayes (VB) algorithm for LDA, based on

online stochastic optimisation.

• TOLDA [259]: An online version of LDA specific for tracking trends on Twit-

ter over time. Due to the limitation of the FSD corpus, this method is only

evaluated in the event detection data [140].

• GSDMM [23]: A collapsed Gibbs Sampling algorithm for the Dirichlet Multi-

nomial Mixture (DMM) model, proven to work well for short texts.

• LFTM [138]: Consists of LFLDA which is an extension of LDA by incorpo-

rating word embeddings, and LFDMM that integrates such word embeddings

information into DMM.

108



• LCTM [139]: A latent concept topic model, where each latent concept is a

localised Gaussian distribution over the word embedding space.

For the above models we assign the topic with the highest topic proportion to each

tweet.

As for document clustering baseline methods, we use the learnt topic propor-

tion from the above topic models as feature for each tweet and apply a clustering

algorithm, e.g. OLDA+HC. We also evaluate three neural-embedding based clus-

tering approaches:

• GloveWR [126]+HC: Represents sentences by a weighted average of word

vectors and modified by PCA. It was reported to achieve good performance on

a Twitter textual similarity corpus. Here we use GloVe [78] pretrained from

2 billion tweets for word vectors.

• STV [123]+HC: Skip-Thought Vectors (STV) trains an encoder-decoder model

that tries to reconstruct the surrounding sentences of an encoded passage. We

use their pretrained encoder model to generate tweet representations for clus-

tering.

• Tweet2Vec+HC [124]: Uses character-based tweet embeddings (i.e. Tweet2Vec

[125]) and outperforms the winner [118] of the 2014 SNOW breaking news de-

tection competition45 which was defined as a topic detection task.

All document clustering baselines employ a hierarchical agglomerative clustering

algorithm as it is proven to be effective in [124]. We also conducted extensive

experiments using Affinity Propagation [260] since it is reported to be the most

effective for clustering tweets in [119], but decided not to include the results here

due to its very poor performance in most cases.

4http://www.snow-workshop.org/2017/challenge/
5Their data is not evaluated due to its lack of annotated tweets.
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The same preprocessing steps are applied to all methods to reduce the noise

level. This includes removing hashtag symbols, URL links, user mention symbols

and punctuation as well as lower-casing and the tokenisation of each tweet. For

LFTM and LCTM, words that are out of the word embedding vocabulary are

removed as is required for each respective model.

Experimental Settings: GSDMM infers the number of clusters auto-

matically based on a pre-defined upper bound, we set this initial number to 100

(which is a large number comparing to the true number of clusters). For all other

topic models including the ones in our proposed system we set the number of topics,

K = 100, even if they are in the second stage of topic modelling. We use GloVe6

word embedding representation for LFTM and LCTM.

For LFTM we empirically set β = 0.2, λ = 0.6 for processing tweets; and

β = 0.1, λ = 0.6 for virtual documents in the second stage of topic modelling. The

number of latent concepts S in LCTM is set to 500. The number of iterations in

GSDMM is set to 100. Other parameters are kept to their default settings.

For Tweet2Vec+HC we directly use the Tweet2Vec model from [125] trained

using 2 million tweets, also the same hierarchical clustering algorithm implementa-

tion from fast-cluster library [261]. Hierarchical clustering requires to choose a

distance metric, linkage method and criterion in forming flat clusters. We evaluate

the performance of different linkage methods and a wide range of distance metrics,

using the Cophenetic Correlation Coefficient (CPCC) [262] and mean Silhouette

Coefficient [263]7 on a validation dataset containing 9770 tweets, and pick the best

performing combination. We specifically cut the tree at the level that generates

100 clusters. This way we make sure our comparisons are reasonable and unbiased.

Additionally we also search and evaluate the optimal settings in a grid-search set-

up without cutting the tree, and as a result the model generates a large number

6https://nlp.stanford.edu/projects/glove/
7It is a cluster validity index, was found to be the most effective among 30 validity indices for

measuring the quality of the produced clusters [264].
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clusters.

5.4.2 Tweet Clustering Evaluation

With topic models, we can represent each tweet with its topic distribution p(topic|tweet).

Hence we can evaluate the performance of each topic model on a document clus-

tering task, by using the topic proportion directly as the final cluster assignment

or indirectly as feature representations for a further round of clustering or topic

modelling. We then compare the resulting clusters to the true cluster labels in two

datasets.

Evaluation Metrics: We use Purity (P), Homogeneity (H), Completeness

(C), V-Measure (V), and Adjusted Mutual Information (AMI) as our evaluation

metrics. Purity is simply measured by counting the number of correctly assigned

documents and dividing by the total number of documents, with each cluster being

assigned to the class that is most frequent in the cluster. Defined in [265], Ho-

mogeneity measures the extent to which each cluster contains only documents of

the same ground truth label while Completeness measures the extent to which all

documents of a given true label are assigned to the same cluster. V-Measure is the

harmonic mean of Homogeneity and Completeness.

Adjusted Mutual Information (AMI) [266] is an adjustment of the Mutual

Information (MI) and Normalised Mutual Information (NMI) to account for chance.

More specifically AMI subtracts the expectation value of the MI, so that the AMI

is zero when two different clusterings are random, and one when two clusterings are

identical:

∆AMI(U, V ) =
MI(U, V )− E {MI(U, V )}

max {H(U), H(V )} − E {MI(U, V )}
(5.2)

where H(U) = −
∑R

i=1 P (i) logP (i) is the entropy of the clustering U . It accounts

for the fact that the MI or NMI score is generally higher with larger number of

clusters (e.g. they would give a high score for a clustering method that recognise
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each tweet as a cluster). All the aforementioned scores range from 0.0 (worst) to

1.0 (best). We only report the AMI score for the Event Detection corpus for clarity

and concision.

Results: Table 5.1 presents the performance of the different methods on

the FSD corpus. Among the standalone topic models, GSDMM outperforms the

others by a large margin however it generates 17 more clusters than the ground

truth (44 comparing to 27). For the hierarchical clustering methods, we observe the

neural-embedding based models generate large number of clusters and thus very poor

results especially in Completeness and AMI. Among the two-stage topic modelling

methods, all have improved performance over GSDMM alone except LFDMM. The

proposed GSDMM+LFLDA proved to achieve consistent best performance over the

important metrics including V-Measure and AMI as well as the closest number of

clusters to the ground truth. It is also worth mentioning a Hierarchical Dirichlet

Process (HDP) model is proposed in [267] and evaluated on the same FSD corpus.

Our GSDMM+LFLDA system outperforms their best result by 20.4% in AMI.

Table 5.2 shows how each method performing over a 5-day stretch on the

ED corpus [140]. GSDMM again performs the best among the standalone topic

models, except for day-2 where it is beaten by OLDA by a small margin. OLDA

showing surprisingly good performance across the board, credits to the online nature

of its optimisation. The models that incorporate word embeddings, namely LFLDA,

LFDMM and LCTM, show inconsistent performance over the two datasets. We also

observe LFDMM has the tendency to generate relatively small number of clusters

(even with the predefined K = 100). Different to what is reported in [139], we found

that LCTM performs worse than LFLDA consistently8, potentially caused by the

noisy nature of tweets and its adverse effect on constructing latent concepts. As for

the two online topic models, in general they perform reasonably well for this task.

Interestingly we find Twitter Online LDA (TOLDA) performs worse than OLDA on

8We have also evaluated LCTM with number of concepts setting to 600 and 1000, however we
observed little difference in the performance.
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the ED corpus, due to the large number of clusters it assigns to the tweets.

Across the two datasets, we observe mixed results by employing hierarchical

clustering using topic proportions as features. In many cases it is showing to give

almost equivalent performance than using any topic model alone. This shows by

simply using topic proportion as features for clustering is not a promising approach.

We also see among the neural-embedding based approaches, Skip-Thought Vectors

(STV) + HC performs the best but in most of the cases they perform worse than

the topic models. When we tried cutting the tree to generate 50 clusters (which is

closer to the true number of clusters)9, we found there is no noticeably difference in

clustering performance and in many case the performance drops.

Our two-stage topic modelling methods have shown to be rather effective

in improving clustering performance, as only in 2 out of the 34 cases over the two

datasets we have seen performance drop when comparing to either one of the topic

models employed by the method (i.e. TOLDA+OLDA performs worse than OLDA

at day-2, and GSDMM+LFDMM performs worse than LFDMM on the FSD corpus).

This shows the promising result of using our proposed hierarchical topic modelling

process with a pooling step. The proposed GSDMM+LFLDA proved to achieve

consistent best performance over different datasets except at day-4 of the ED corpus

it is beaten by GSDMM+OLDA.

5.4.3 Topic Coherence Evaluation

Here we examine the quality of our hierarchical topic modelling system10 by topic

coherence metrics. As described in Chapter 2 such metrics determine how seman-

tically “cohesive” the topics inferred by a model are, by measuring to what extent

the top topic words or the words that have high probability in each topic are seman-

tically coherent. This includes using word/topic intrusion [143], Pointwise Mutual

9All clustering settings are re-tuned in the validation set.
10LCTM is not evaluated here since its topic is defined as a distribution over latent concepts,

not over words.
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Model N P H C V AMI Silhouette

OLDA 52 0.894 0.874 0.679 0.764 0.656 0.444
GSDMM 44 0.968 0.970 0.815 0.886 0.802 0.988
LFLDA 92 0.895 0.881 0.728 0.797 0.704 0.340
LFDMM 15 0.812 0.764 0.744 0.754 0.735 0.846
LCTM 93 0.937 0.933 0.557 0.697 0.515 0.280

OLDA+HC 42 0.890 0.881 0.724 0.795 0.707 0.449
LFLDA+HC 53 0.900 0.863 0.765 0.811 0.749 0.364
LFDMM+HC 16 0.819 0.784 0.750 0.766 0.740 0.819
LCTM+HC 90 0.950 0.944 0.580 0.718 0.541 0.271

GloveWR+HC 100 0.565 0.499 0.274 0.354 0.196 0.025
STV+HC 100 0.645 0.561 0.546 0.553 0.504 0.067

Tweet2Vec+HC 100 0.441 0.295 0.275 0.285 0.193 0.016

GSDMM+OLDA 26 0.870 0.866 0.885 0.876 0.859 0.708
GSDMM+LCTM 33 0.952 0.951 0.864 0.906 0.856 0.858
GSDMM+LFLDA 26 0.960 0.954 0.909 0.931 0.904 0.795
GSDMM+LFDMM 8 0.316 0.044 0.547 0.081 0.035 0.104

Table 5.1: Document clustering performance on the FSD corpus [2] (N =Number
of resulting clusters; P=Purity; H=Homogeneity; C=Completeness; V=V-measure;
AMI=Adjusted Mutual Information)

Model
Day-1 Day-2 Day-3 Day-4 Day-5

N AMI N AMI N AMI N AMI N AMI

OLDA 58 0.775 45 0.831 72 0.374 55 0.535 55 0.525
TOLDA 100 0.560 100 0.575 100 0.314 100 0.409 100 0.397
GSDMM 46 0.827 53 0.824 53 0.550 51 0.649 42 0.672
LFLDA 97 0.698 88 0.752 99 0.365 97 0.520 98 0.510
LFDMM 8 0.420 15 0.485 14 0.310 13 0.412 11 0.331
LCTM 94 0.583 83 0.672 100 0.301 99 0.419 97 0.406

OLDA+HC 39 0.791 40 0.833 62 0.366 45 0.557 49 0.528
TOLDA+HC 99 0.561 100 0.574 100 0.313 100 0.421 100 0.405
LFLDA+HC 32 0.732 51 0.720 82 0.373 75 0.519 68 0.529
LFDMM+HC 8 0.422 15 0.482 14 0.311 13 0.408 11 0.330
LCTM+HC 66 0.653 80 0.716 9 0.030 8 0.078 10 0.167

GloveWR+HC 100 0.212 100 0.256 100 0.117 100 0.232 100 0.168
STV+HC 100 0.327 100 0.484 100 0.238 100 0.423 100 0.418

Tweet2Vec+HC 100 0.288 100 0.360 100 0.194 100 0.256 100 0.242

TOLDA+OLDA 32 0.807 34 0.826 35 0.509 38 0.594 35 0.634
TOLDA+LFLDA 48 0.728 46 0.789 40 0.441 41 0.610 35 0.634
TOLDA+LCTM 45 0.728 45 0.795 58 0.397 48 0.521 47 0.531
GSDMM+OLDA 26 0.842 34 0.827 38 0.620 25 0.759 26 0.715
GSDMM+LFLDA 28 0.870 29 0.834 30 0.681 27 0.757 22 0.752
1 GSDMM+LCTM 41 0.835 39 0.825 43 0.644 39 0.703 35 0.681

Table 5.2: Document clustering performance (AMI only) on the Event Detection
corpus

114



Information (PMI) [147] or Normalised PMI (NPMI) [144, 150]. For evaluating our

proposed models, we adopt the automatic word intrusion method [144] as well as

the word embedding-based topic coherence metric [152], which is shown to have a

high agreement with human judgments for tweets.

For computing the word intrusion metric, following the findings in [151] we

use a large Twitter corpus collected between 2014 and 2016 as background dataset

to extract PMI and conditional probabilities of word pairs as features. For any given

word pair, the target value of a intruder word is assigned with 2 and normal topic

words are assigned with 1. We then use these features along with corresponding

target values to train a SVMrank for identifying the intruder word or the word that

has the highest predicted ranking score, as proposed in [144]. The final score is

averaged over 10 iterations of cross validation. A more detailed description of the

word intrusion task can be found in Section 2.3.3. We run this classification task 3

times, and take the average score as the final word intrusion for each model. For the

ED corpus, we average all the results over the 5-day period. As shown in table 5.3

GSDMM+LFLDA has the highest word intrusion scores for both datasets.

For computing the word embedding-based coherence metric we use two pre-

trained word embedding models learnt from Twitter data11, resulting in two metrics

G-T-WE (GloVe) and W-T-WE (Word2Vec) based on the cosine similarity between

topic word pairs. We also adopt the approach in [148], computing coherence for

top-5/10/15/20 words and then take the mean over the 4 values. As shown in Ta-

ble 5.4, GSDMM+LFLDA achieves the best topic coherence in 3 out of 4 cases, with

TOLDA+OLDA outperforming the others for W-T-WE on the ED data. When

we compare the the two-stage topic modelling approach (i.e. TOLDA+* or GS-

DMM+*) to its respective topic model used in the first stage (i.e. TOLDA or GS-

DMM), we observe in 10 out of 12 cases its topic coherence has improved. Though

our results for coherence are not perfect, it is demonstrated the usefulness of ag-

11The GloVe model was trained using 2 billion tweets while the Word2Vec model was trained
on 5 million tweets using the skip-gram algorithm.
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gregating first round tweet clusters into virtual documents without the use of any

metadata and then performing second round of topic modelling. As a result it is

able to create not only more discriminative but also more coherent clusters.

Model
Word Intrusion

FSD Event Detection

OLDA 0.059 0.104
TOLDA 0.178
GSDMM 0.062 0.194
LFLDA 0.054 0.075

TOLDA+OLDA 0.155
TOLDA+LFLDA 0.151
GSDMM+OLDA 0.071 0.150
GSDMM+LFLDA 0.115 0.213

Table 5.3: Averaged word intrusion score for both datasets

Model
Topic Coherence

FSD Event Detection
G-T-WE W-T-WE G-T-WE W-T-WE

OLDA 0.217 0.123 0.302 0.135
TOLDA 0.329 0.141
GSDMM 0.277 0.121 0.363 0.132
LFLDA 0.275 0.108 0.323 0.127

TOLDA+OLDA 0.349 0.154
TOLDA+LFLDA 0.371 0.137
GSDMM+OLDA 0.282 0.142 0.349 0.150
GSDMM+LFLDA 0.315 0.144 0.385 0.142

Table 5.4: Averaged topic coherence for both datasets

A recent study by Feng et al. [268] introduced a metric named topic mixing

degree (TMD), which measures to what extent a generated topic is a mixture of

several topic themes (i.e. a multi-theme topic). They use word vectors along with

cosine similarity to compute the topic similarity in the entire topic model containing

K topics, as seen in (5.3). The higher the similarity, the more likely the model has

more multi-theme topics.

∆TMD(w) =
∑
ki

∑
kj

cosine
(
wki , wkj

)
/ |w|2 (5.3)

Here we compute the topic mixing degree for top-5/10/15/20 topic words of our
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models using the GloVe Twitter word vectors (i.e. G-T-WE), and then take the

mean over the 4 values as is done in computing the topic coherence. As seen in

Table 5.5 our proposed system GSDMM+LFLDA has the lowest TMD scores for

both datasets showing it is the least likely to contain multi-theme topics comparing

to other methods. We also observe the TMD scores increased from TOLDA and

GSDMM to TOLDA+OLDA and GSDMM+OLDA respectively, implying in these

cases the second stage of topic modelling have indeed introduced more topic themes

in some of their topics. Overall we can conclude the proposed GSDMM+LFLDA

system generate meaningful and coherent topics with each topic containing a single

dominant theme, as is demonstrated in the following section.

Model
Topic Mixing Degree
FSD Event Detection

OLDA 0.261 0.286
TOLDA 0.281
GSDMM 0.296 0.267
LFLDA 0.252 0.294

TOLDA+OLDA 0.297
TOLDA+LFLDA 0.256
GSDMM+OLDA 0.314 0.303
GSDMM+LFLDA 0.240 0.251

Table 5.5: Averaged topic mixing degree for both datasets

5.4.4 Qualitative Evaluation of Topics

We also present a set of randomly selected example topics generated by GSDMM+LFLDA,

on both the first story detection (FSD) corpus and the first day of the event de-

tection (ED) corpus, as seen in Table 5.6 and Table 5.7. Each detected topic is

presented with its top-10 topic words, and is matched with the corresponding topic

description or story from the ground truth (given by the creators of these data sets),

as well as a sample tweet retrieved using the topic keywords.

As shown in Table 5.6 and Table 5.7, words in obtained topics are mostly

coherent and well aligned with a ground-truth topic description. We can also dis-

cover more useful information with regard to the corresponding real-world story, by
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simply looking at its topic words. For example, in the first topic of Table 5.6 we

see the Twittersphere has mentioned ‘Amy Winehouse’ and ‘death’ along with the

word ‘drug’. This information may have been missed if one only chooses to read a

set of randomly sampled tweets mentioning ‘Amy Winehouse’.

Detected topic Corresponding topic description Sample tweet

amy winehouse rip
amywinehouse die dead

sad dy talent drug
Death of Amy Winehouse.

jesus, amy winehouse found dead.
v sad #winehouse

tottenham riot police
news fire shoot

car london north thur
Riots break out in Tottenham.

RT @itv news: Police cars set on fire
in Tottenham, north London, after
riots connected to the shooting of a

young man by police on Thur ...

mars water nasa flow
found evidence may

scientist saltwater liquid

NASA announces discovery of
water on Mars.

RT @CalebHowe: NASA reporting
live right now that they have

circumstantial evidence for flowing,
liquid water on Mars.

house debt bill pass
us vote ceiling the

representatives raise
US increases debt ceiling.

RT @politico: On Monday evening the
House passed a bill to raise the

debt ceiling, 269 to 161.

delhi high blast court
outside injured explosion

attack kill bomb
Terrorist attack in Delhi.

Bomb Blast outside of High Court
Delhi just few minutes ago.

http://t.co/MejKWlC

pipeline fire kenya least
kenyans people gasoline

kill dead lunga
Petrol pipeline explosion in Kenya

RT @AKenyanGirl:
RT @CapitalFM kenya: Dozens suffer

burns in Kenya #Pipeline fire in
Lunga Lunga, Nairobi.

Firefighters battling inferno ...

Table 5.6: Example topics detected on FSD corpus

5.5 Conclusions and Future Work

In addition to the existing issues in conventional document clustering and topic

modelling, inferring thematic topics in tweets is more challenging due to the short

and noisy nature of tweets. In this chapter we proposed a two-stage hierarchical

topic modelling system, named GSDMM+LFLDA, that leverages a state-of-the-art

Twitter topic model, a topic model with word embeddings incorporated and a tweet

pooling step without the use of metadata in any form. We performed extensive

experiments on two Twitter corpora, in order to answer the main research question

of this chapter:
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Detected topic Corresponding topic description Sample tweet

merkel angela greece
visit athens merkels greek
chancellor protests protest

An estimated 25,000 protest
in Athens as German Chancellor

Angela Merkel visits Greece.

thousands protest merkel s greece
visit http://t.co/sXGTX3jE

syrian plane turkey
passenger turkish land

ankara force syria
intercepts

A Syrian passenger plane is
forced by Turkish fighter jets
to land in Ankara due to the

allegations of carrying weapons.

BreakingNews: Turkish fighter
jets force Syrian passenger
plane to land in Ankara:

Anadolu Agency

malala yousafzai taliban
activist pakistan shot

girl attack bullet shooting

Malala Yousafzai, a 14 year old
activist for women’s education

rights is shot by Taliban
gunmen in the Swat Valley.

Taliban Says It Shot Pakistani
Teen, Malala Yousafzai, For
Advocating Girls Rights...

http://t.co/EjFR5in4

lenovo hp pc top market
battle spot computerworld

gartner shipments

HP and Lenovo battle for top
spot in PC market of

Computerworld.

HP, Lenovo battle for top spot
in PC market - Computerworld

http://t.co/zwzPdN8Q
#googlenews

merger eads bae systems
aerospace plans talks
cancel defence firms

BAE and EADS announce their
merger talks are cancelled

over political disagreements.

BAE-EADS merger plans are
‘off’: Aerospace and defence firms
BAE and EADS have cancelled

their planned merger, t...
http://t.co/UYFOiysX

pussy riot court appeal
moscow member one
freed russian punk

A court in Moscow, Russia,
frees one of the three

Pussy Riot members at
an appeal hearing.

One Pussy Riot Member Freed
by Moscow Court — News —

The Moscow Times
http://t.co/m60lwaWU

#FreePussyRiot

Table 5.7: Example topics detected on ED corpus - day one

RQ2: Can we find a method to effectively group tweets to a number of clus-

ters, with each cluster representing a thematic topic?

The experimental results show our proposed approach outperforms other

clustering-based methods and topic models, in both clustering performance and

topic coherence. The obtained topics by the proposed model are also mostly co-

herent and well aligned with the real-world stories. Besides GSDMM+LFLDA,

GSDMM+OLDA has also shown competitive performance in many categories. In

general the two-stage hierarchical topic modelling framework has effectively im-

proved performance over each individual model, proven to be a promising direction

for a further research. For future work, we also plan to evaluate our system in

tracking the same set of topics across adjacent time intervals, which is a different

task to document clustering and topic detection.

119



We have already addressed target-specific sentiment classification and topical

clustering for tweets in Chapter 4 and 5. In order to understand the sentiment

towards different target entities from a micro-level and thus develop a more in-

depth analysis, we study the task of multi-tweet summarisation in the following

chapter.
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CHAPTER 6

Twitter Opinion Summarisation

Towards neural abstractive summarisation of tweets

In the previous two chapters we have discussed our work on target-specific sentiment

recognition and topical clustering of tweets. Continuing our work towards under-

standing public opinion on Twitter, in this chapter we study the task of summarising

opinionated tweets on common topics, with the goal of adding explanation and jus-

tification behind the sentiments expressed towards different issues and entities. We

formulate it as a multi-document summarisation problem for tweets.

In recent years social media such as Twitter have gained prominence as a

rich resource for opinion mining or sentiment analysis on diverse topics. However,

analysing sentiment about diverse topics and how it evolves over time in large vol-

umes of tweets is a difficult task. In Section 6.1, we present an interactive visualisa-

tion system for analysing sentiment about specific topics or entities over time while

providing fine-grained extractive summaries to give insights into the underlying rea-

sons. We illustrate its use with examples of topics discussed on Twitter during the

2017 UK general election.
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Most existing tweet summarisation approaches rely on extractive methods,

which rank and select tweets according to various relevance criteria for a summary.

This approach has the inherent limitations of unavoidably including incomplete or

redundant information, its generated summaries also typically lack cohesion and

coherence. On the contrary, abstractive summarisation aims to resemble the way

humans write abstracts, and produce a summary which is not limited to the vocab-

ulary of the original document. Such abstract summaries are less redundant and

more informative. Due to its challenges, there has been few work using abstractive

summarisation on tweets. In this chapter, we ask the following research question:

RQ3: How can we generate abstractive summaries for tweets towards com-

mon topics expressed on Twitter? Is it possible to generate tweet abstracts from

scratch with limited training resources?

Neural sequence-to-sequence (or seq2seq) model, consisting of an encoder

and a decoder, has shown promising results in various NLP tasks including abstrac-

tive summarisation on traditional news articles. To address RQ3, we study the

feasibility of applying state-of-the-art neural abstractive summarisation for tweets.

We investigate how to overcome the limitation of insufficient training resources, and

evaluate the performance of cross-medium summarisation. To the best of our knowl-

edge, there is no existing work on applying seq2seq model to multi-document tweet

summarisation.

6.1 Topic-based, Temporal Sentiment Summarisation for

Twitter

Our problem formulation is related to work on prospective information needs, repre-

sented by the Microblog [205], Temporal Summarisation [206] and Real-Time Sum-
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marisation [207] tracks at recent Text Retrieval Conferences (TRECs). However,

while the aim of these tasks is to keep users up-to-date with topics of interest via

push notifications or email digests, our aim in this section is to provide an interactive

user interface that shows how sentiment towards specific entities or topics develops

over time. We have incorporated an automatic summarisation feature to assist users

in understanding the underlying reasons. Thus, our motivation is related to [25],

which also proposes a topic-oriented opinion summarisation framework. However,

we use state-of-the-art methods enabling intuitive and interactive visualisation of

sentiments in chronological order. This provides a useful tool for analysing an im-

portant event over time, such as elections, both quantitatively and qualitatively.

Here, we describe our system that aims at the aforementioned objectives.

Its interactive web interface is accessible online1. We also present two use cases to

demonstrate how the system can be used in analysing public sentiment.

6.1.1 System Design

An overview of the system is depicted in Figure 6.1 and comprises: 1) Data collection

and sampling; 2) Sentiment classification; 3) Tweet summarisation; and 4) Data

visualisation.

Data Collection and Sampling: We collected a corpus of tweets about

the 2017 UK general election through Twitter’s streaming API by tracking 15 hash-

tags2. Data harvesting was performed between 26 May and 21 June 2017 to capture

discussions in the two weeks running up to and after the election. To identify rele-

vant topics and entities in each tweet, we match tweets against two manually curated

lists of keywords (both were created during the 2015 UK election cycle) which in-

clude 438 topic keywords relevant to nine popular election issues (e.g., immigration,

NHS) and a list of 71 political party aliases (e.g. ‘tories’, ‘lib dems’). The resulting

1Live demo: http://elections.iti.gr/uk2017/
2#ukelection2017, #ge2017, #ge17, #ukge2017, #ukgeneralelection2017, #bbcqt, #bbcdp,

#marrshow, #generalelection2017, #generalelection, #electionuk, #ukelection, #electionuk2017
and #brexit
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Figure 6.1: Overview of the proposed summarisation system

corpus contains 3,663,090 tweets, with each tweet mentioning at least one keyword.

To increase data quality and reduce noise in the corpus, we trained and applied a

Twitter spam detection model using features described in Chapter 3.

Sentiment Classification: We use the multi-target-specific approach de-

scribed in Chapter 4 for identifying ‘negative’, ‘positive’ or ‘neutral’ sentiment of

each topic entity. The whole data pipeline of Figure 6.1 is designed to dispatch work

to many machines in parallel3, processing many data batches simultaneously, which

makes it scalable and efficient.

Tweet Summarisation: Here we aim to extract a list of representative

tweets summarising the sentiment(s) expressed towards each topic/entity on each

day (e.g. tweets containing positive sentiment towards ‘NHS’ posted on 26 June

2017).

As a prerequisite for summarisation, we group tweets containing the same

sentiment towards a topic/entity on a day into a number of clusters, with each

cluster assumed to represent a common theme or reason underlying the particular

choice of sentiment. We use the two-stage hierarchical topic modelling approach

described in Chapter 5 and select the GSDMM+OLDA model for this task due to

3We ran it on a server with 40 CPU cores and 64 GB of RAM.
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its efficiency. If there are fewer than 10 unique tweets containing the same sentiment

towards a topic (or entity) on a particular day, we skip clustering and treat each of

these tweets as a cluster.

To extract representative tweets summarising each cluster, we place every

tweet in one common embedding space and identify 20 tweets closest (by cosine

distance) to the cluster centroid (also known as metroid tweets) as summary candi-

dates. The embedding space here is constructed using a simple but effective sentence

embedding method proposed by Arora et al. [126], which reported good performance

on 22 textual similarity data sets, including a Twitter corpus. We then rank the

20 summary candidates based on weighted average tf-idf scores in the cluster; these

scores can be regarded as a measure of informativeness.

We select the most informative tweet from the 20 candidates as the summary

for that cluster and the final summary for the sentiment expressed towards the

topic entity is the summaries combined from all its clusters (e.g., tweets containing

positive sentiment towards ‘NHS’ posted on 26 June 2017, comprise 8 clusters with

a summary consisting of the summary tweet from each one).

6.1.2 Data Visualisation

For each topic/entity we calculate the following daily features: # of tweets, # of

unique users, # of tweets per sentiment type (pos, neg, neutral) and # of unique

users per sentiment. These features were selected based on past studies on the

domain of predicting election results with social media [269], as well as on the basis

of providing potentially useful insights on the election monitoring process. These are

accompanied by the daily summaries of each sentiment type for a given topic/entity

as described above.

In addition to showing the raw values of the above features, we also nor-

malised sentiment features (# of tweets per sentiment, # of unique users per senti-

ment) to reflect the percentage of sentiment of a particular type towards a topic/entity
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on a particular day. To allow time series comparisons across different topics/entities

we normalised the # of tweets and # of unique users of all topics/entities across

all days in the range [0, 1]. Finally, to account for differences in popularity, we

calculated the average (per-topic and across all days) # of tweets and # of unique

users.

The web interface is implemented on Web standards (HTML5/CSS3). The

timeline graphs are built using the NVD34 library (reusable charts for d3.js), while

the auto-complete functionality is based on the ‘Ajax AutoComplete for jQuery’ li-

brary5. In addition, jQuery from Google Hosted Libraries6 and D3.js from Cloudfare

Hosted Libraries7 are used also for DOM manipulation (click events, add/remove

elements etc.) and accessing data (from tsv files) respectively.

6.1.3 Use Case #1 – Party Sentiment

In section 6.1.3 and section 6.1.4, we use two use cases to demonstrate how our

system can help to analyse public sentiment on Twitter.

Recent election campaigns suggest that the Twittersphere tends to contain

more negative sentiment during the election period. Hence, in the first case study,

we compare negative sentiment trends on Twitter for the two major UK political

parties, ‘Conservative’ and ‘Labour’, before and after the 2017 UK general elec-

tion. As described in section 6.1.2, the negative sentiment reflects the percentage of

negative sentiment for each party on each day over all sentiment bearing tweets.

Figure 6.2 reveals consistently more negative sentiment towards ‘Conserva-

tive’ than ‘Labour’, especially for the week before election day (8 June). Interest-

ingly, we also observe that, whereas negative sentiment towards both parties dipped

one day after the election, negative sentiment towards ‘Labour’ rose between June

9 and 11 to be on par with ‘Conservative’ and then dropped sharply to reach its

4http://nvd3.org/
5https://www.devbridge.com/sourcery/components/jquery-autocomplete/
6https://developers.google.com/speed/libraries/
7https://cdnjs.com/
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lowest point on June 17. During this same post-election period, negative sentiment

towards ‘Conservative’ was on a steady and gradual rise.

Figure 6.2: Negative sentiment trends for ‘Labour’ (red) and ‘Conservative’ (blue).

6.1.4 Use Case #2 – Grenfell Tower Fire

To provide deeper insight into the advantages of our opinion summarisation sys-

tem, we present a case study on how public sentiment towards the topic ‘housing’

developed before and after the Grenfell Tower Fire disaster8. Figure 6.3 shows the

percentage of users expressing negative sentiment towards ‘housing’ as well as the

governing party ‘conservative’ over the period covering the incident. Our web in-

terface allows users to click on each circle shown on the graph to display tweet

summaries for that topic on that particular day.

We can see the number of users expressing negative sentiment for the topic

‘housing’ fluctuated throughout the election period while it remained fairly constant

for ‘Conservative’. Negative sentiment peaked in both cases on June 16th. We also

observe a huge dip for users expressing negative sentiment towards ‘housing’ between

June 17 and 20 and an increase in neutral sentiment at the same time.

Table 6.1 presents a negative sentiment summary for each day between June

8https://en.wikipedia.org/wiki/Grenfell_Tower_fire
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Figure 6.3: Negative sentiment trends for ‘housing’ (red) and ’conservative’ (blue),
with a summary tweet displayed for the former.

12 and 15, and all three negative opinion summary tweets on the peak day of June 16

showing each summary tweet represents a different aspect of the topic. Along with

the graph shown in Figure 6.3, this summary is a tight integration of topic, sentiment

and insight into reasons behind the sentiment. Before the fire, negative sentiment

towards ‘housing’ was austerity related; after the fire, the incident dominated the

‘housing’ discussion on Twitter. A large portion of users blame the Conservative

government for the decline of social housing and ultimately the Grenfell Tower

fire. Finally, on June 16 each of the negative opinion summaries represents one

theme related to this topic, namely ‘the decline of social housing’, ‘immigration and

housing’ and ‘the votes on housing safety’.

6.1.5 Conclusion

Here we present a system for monitoring topic-entity sentiment on Twitter and

summarising public opinion around the sentiment towards each entity. The system

deployment for the 2017 UK election, provides an interactive visualisation for com-
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Topic entity Opinion Summaries Date

housing
rt @user1 : the audacity to even refer to tackling a

“ housing crisis ” after being in government for
7 years . https://t.co/lifwybhryp

12 June 2017

housing
austerity is still here , bedroom tax , foodbanks ,

pip , housing cap , universal credit taper ,
welfare freeze , esa cuts , inflation is up . #ge17

13 June 2017

housing
@bbcnews @skynews @itvnews tories cuts in society
kill just look at social housing #grenfelltower sold

to cheapest bidding #ge17 #bbcqt
14 June 2017

housing
tory capitalism cutting kills social housing on the cheap

#grenfelltower cuts in fire ambulance police
nhs services #victorialive #ge17

15 June 2017

housing
rt @user2 : govt is turned their backs on social housing

and families living in them . it is a class war .
we must rebuild & value thes ...

16 June 2017

housing
rt @user3 : laura perrins again blaming the death

toll of #grenfelltower on immigration - putting
pressure on housing . laura bt ...

16 June 2017

housing
rt @user4 : it is a shame the ministers hearts did
not go out to the people in grenfell tower when

they were voting on housing safety #bbcqt
16 June 2017

Table 6.1: Negative opinion summary for ‘housing’ before and after the Grenfell
Tower fire
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paring sentiment trends and display opinion summaries on the graph. In the future,

we plan to improve our system to produce more concise summaries and allow near

real-time processing of new events.

6.2 Neural Abstractive Multi-tweet Opinion Summari-

sation

Recently sequence-to-sequence (seq2seq) models [35], in which recurrent neural net-

works (RNNs) read text via an encoder and freely generate text via a decoder, has

made abstractive summary generation from scratch viable [182, 183, 187, 184, 185,

186]. Although recent literature shows neural abstractive summarisation is a very

promising direction forward, we have not seen any work on applying seq2seq models

to multi-document abstractive summarisation on tweets. This is possibly due to the

lack of labelled training resources which is the key requirement for seq2seq models.

Here we study the feasibility of applying seq2seq model with attention mechanism

for such task and how to overcome its limitations.

6.2.1 Problem Formulation

Different to other neural abstractive summarisation studies, our input consists of

a number of tweets mentioning the same topic, denoted as
{
x = x1, ..., xN

}
. Each

input unit (i.e. a tweet) xk is composed by a sequence of words xk1, ..., x
k
L, where

L is the number of words in this input unit. Each word takes the form of a fixed-

sized vector representation, which can be initialised randomly or by pre-trained

embedding vectors, and updated during training.

Our summarisation task here is defined as finding y, which is the most likely

sequence of words y1, ..., yM that preserve the meaning of x:

y = argmaxyP (y|x) (6.1)
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Where P (y|x) denotes the conditional probability of the output (i.e. summary)

sequence y, given the input sequence x. P (y|x) can be modelled by a parametric

function with parameters θ, as P (y|x; θ). The training in this task aims to find

the θ that maximises the conditional probability of document-summary pairs in the

training corpus.

6.2.2 Sequence-to-Sequence Attentional Model

As described in Section 2.4.2, a seq2seq model consists of an encoder and a decoder,

where the encoder is fed by the tokens of the input sequence one by one to produce

a fixed length hidden state representation, and the decoder generates its own hidden

state from the representation of the previous token, the previous decoder state, and

the embedding representation of the current input token. We use a single-layer

unidirectional LSTM [74] as the decoder. For the encoder, we use a single-layer

bidirectional LSTM, adding an attention layer [181] to produce a weighted sum of

the encoder hidden states. This is fed to the decoder so the decoder knows where

to look in the input sequence to generate the next summary token.

6.2.3 Extractive-Abstractive Summarisation Framework

A key difference between our task and majority of the existing abstractive sum-

marisation studies, is that our input consists of multiple separate input units (i.e.

tweets of a topic). A simple solution would be to concatenate them into one docu-

ment. However this would make our input sequence so long that the training will

become extremely inefficient and time-consuming especially with attention mecha-

nism added. By manually evaluating our datasets, we find even though each cluster

of tweets mentions the same topic, many of them contain redundant or secondary

information. Therefore we think the summarisation task can be divided into two

steps. The first step serves the purpose of information compression, which promotes

topical and diverse information. It samples smaller set of tweets from the original
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cluster and feeds to our seq2seq model as high-quality input. Then our second step

performs abstractive summarisation that learns to pick important information and

add to the final summary.

While Wang and Ling [187] opt to train a regression model for estimating

the importance of each input unit using manually engineered features, we propose

a two-stage framework similar to [199] which consists of an extractive summari-

sation step for selecting important tweets as input for the subsequent abstractive

summarisation using seq2seq. Since our extractive summarisation is completely un-

supervised, such sub-sampling step does not need the ground-truth summary for

creating gold-standard importance score as is required in [187].

6.2.4 Pointer-Generator Network for Abstractive Summarisation

As mentioned in Chapter 2, abstractive summarisation models using seq2seq have

the tendency to generate repeating summaries and suffer from out-of-vocabulary

words (OOVs). To alleviate these issues, we choose to adopt a pointer-generator

network [185] for our tweets summarisation. The pointer-generator model learns

to generate a summary sequence of tokens yi based on the following conditional

probability:

p(yi = w|y1, ..., yi−1, x) = pgenPvocab(w) + (1− pgen)Σi:wi=wa
t
i (6.2)

Where Pvocab denotes the probability to generate a new word from the vocabulary,

pgen is learnt parameter used as a soft switch for choosing between generating a word

or copying a word from the input sequence depending on the attention distribution

at and hidden states of the decoder. This gives the network the ability to produce

OOV words that is not restricted to the pre-set vocabulary. We also adopt the

coverage mechanism proposed in [185], which sums the attention distributions over

all previous decoding time steps to obtain a coverage vector. Such coverage vector is
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added to the attention mechanism to keep track of its previous decisions (on choosing

where to attend). This alleviates the issue of generating repetitive summary text.

The overview of our extractive-abstractive summarisation system (including

the pointer-generator network) is presented in Figure 6.4, where C1, ...,Cn represents

the tweet clusters; w1, ..., wn is the words of the input document in the training data

and x1, ..., xn is the words of the corresponding summary. h1, ..., hn and s1, ..., sn are

the hidden states of the encoder and the decoder respectively. Here we use LexRank

as an example to demonstrate our information compression/data sub-sampling step

using an extractive summarisation method.

Figure 6.4: Overview of extractive-abstractive summarisation system

6.2.5 Unsupervised Pretraining for Model Initialisation

As described in Chapter 2, one key requirement for seq2seq models or deep neural

networks in general, is they require a large set of labelled training data to avoid

overfitting. Several studies [189, 191, 192] have experimented using weights from

pretrained language model for initialising seq2seq networks to improve the perfor-

mance and convergence under a low-training-resource constraint. Due to the lack

of good-quality Twitter corpus with human-generated reference summaries, we set
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to use a traditional news article-abstract corpus as our training data for this tweet

summarisation task. As a result, our training and testing data are from two different

domains and mediums.

To combat these data issues, we opt to pre-train language models using large-

scale unlabelled Twitter data for initialising our pointer-generator summarisation

model. More specifically since the encoder of our summarisation model uses a single-

layer bidirectional LSTM, we first pre-train its forward-LSTM on a large set of

tweets to predict the next word given the previous ones, and then pre-train the

backward-LSTM using the same parameter settings on the same set of tweets but

the words are in a reverse order. For initialising our decoder, we use the same pre-

trained weights used for the forward-LSTM in the encoder. Lastly, the embedding

layers are initialised with existing word embeddings. More details are described in

Section 6.3.3.

6.3 Experiments and Results

We conduct two experiments for evaluating our proposed neural abstractive sum-

marisation system, namely event summarisation and opinion summarisation, and in

each experiment we compare with other extractive and abstractive baseline models.

This allows us to evaluate these systems on two different tasks under the constraint

for human-generated reference summaries.

6.3.1 Datasets

For training our neural summarisation model, due to the lack of good-quality

Twitter summarisation corpus, we use the CNN/Daily Mail dataset [270] which has

been used in several recent news article summarisation work [184, 185]. It has an

averaging 781 tokens per article, and 3.75 sentences or 56 tokens per summary. We

have obtained 287,226 training pairs, 13,368 validation pairs and 11,490 test pairs,
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Event class Event summary Sample tweet

Science &
Technology

Alpha Centauri Bb, an exoplanet,
is discovered orbiting around

Alpha Centauri.

earth sized exoplanet found in
nearest star system to earth - alpha
centauri b #awesome #whencanigo

Law, Politics
& Scandals

Chief Whip of the British Conservative
Party Andrew Mitchell resigns over

remarks he made to police officers in
Downing Street, and following a lengthy

political row over the issue.

chief whip andrew mitchell has
resigned in wake of row over
outburst at police in downing

street. about time

Sports
Finnish racing driver Kimi Raikkonen
wins Formula One’s 2012 Abu Dhabi

Grand Prix.

yea :) “@USER : kimi raikkonen
has won the abu dhabi grand prix

with fernando alonso 2nd &
sebastian vettel 3rd #ssf1”

Table 6.2: Example event summaries with corresponding sample tweets

using the script provided by See et al. [185]. In contrast to [184], we use the original

(i.e. non-anonymised) version of the corpus without replacing named entities with

unique tokens as placeholder, as we believe it is a more realistic summarisation

setting.

For event summarisation, we use the large scale event detection corpus

introduced in [140] containing 150,000 tweets over 28 days covering more than 500

events, as our test data. In addition to tweets, this corpus also has the event descrip-

tions written by human workers from the original crowdsourced corpus evaluation.

Each description captures the essence of its corresponding event, and contains im-

portant named entities (e.g. people or places). We use these descriptions as the

reference summary for each event. After retrieving 78,138 tweets using the Twitter

API, we obtain 161 events in which each event contains no less than 100 tweets,

each tweet contains more than 5 tokens and each event summary has no less than

10 tokens, to ensure the quality of our summarisation corpus. Our final event sum-

marisation corpus has averaging 328 tweets per event (max. 7713 tweets and min.

100 tweets for an event), and averaging 19 tokens per reference summary (max. 60

tokens and min. 10 tokens). Some example event summaries with the corresponding

randomly sampled tweets are shown in Table 6.2.

For opinion summarisation, we use the 2017 UK general election corpus
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from Section 6.1 after performing target-specific sentiment classification and topical

clustering, as our test data. Our goal is to summarise the sentiment(s) expressed

towards each topic/entity on a particular day during the election period. Contrary

to our approach in Section 6.1 where we extract representative tweets as summary,

in this section we evaluate abstractive summary for each cluster. The final summary

for a target-sentiment is the combination of all its cluster summaries. We use a 5-day

sample set consisting of every tweet from the election corpus that is posted between

01/06/2017 and 05/06/2017. After performing clustering and removing clusters that

have less than 100 unique tweets, we obtain 231 clusters for evaluation. Note that

we do not have human-generated reference summary for this task, therefore we opt

to use input-summary similarity based metrics for evaluation which we describe in

the following section.

The same preprocessing steps are applied for both datasets to reduce the

noise level of the tweets. This includes removing hashtag symbols, URL links, user

mentions and punctuations as well as lower-casing and the tokenisation of each

tweet. We also remove tweets that have no more than 5 tokens, and clusters/events

that contain less than 100 tweets.

6.3.2 Automatic Summary Evaluation Metrics

Evaluating summary quality has remained as a challenging problem due to not only

the subjectivity of the task but also it is still unclear how to quantify many aspects

of the summary quality such as clarity, informativeness or coherence [174]. The ul-

timate goal of summarisation is to improve users’ reading experience and to acquire

important information from the source document faster. Therefore, some studies

[271, 272] carried out task-specific evaluations to measure if the summarisation im-

proves the users’ performance on a downstream task such as information retrieval or

question answering. This is known as extrinsic evaluation for summarisation. How-

ever, extrinsic evaluation is time-consuming, and its existing experimental designs
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are still far from being well developed (e.g. it needs to address other factors such

as user interface that also affects the users’ task performance). We also decide to

leave human evaluation, which usually involves ranking and comparing between the

proposed system and other baseline models, for further work.

In our work, we adopt several popular intrinsic evaluation metrics which mea-

sure the summary quality based on the coverage between system generated summary

and human reference summary or the original document. ROUGE [273] is the most

widely used metric for automatic summary evaluation based on content coverage.

We report the F1 scores for ROUGE-1, ROUGE-2 and ROUGE-L, which respec-

tively measure unigram-overlap, bigram-overlap and longest common subsequence

(LCS) between the reference summary and our model-generated summary. Our

ROUGE scores are computed using the pyrouge package9. We also evaluate with a

recall-oriented metric, METEOR [274]10. We report both in exact match mode and

full mode (which also matches stems, synonyms and paraphrases)11.

Additionally, we report several input-summary similarity based scores includ-

ing Jensen-Shannon divergence (JSD) and percentage of input topic words which

are found to have high correlation with both responsiveness and pyramid evaluation

[275] (which relies on human summaries as the gold-standard) at the macro-level

even though they do not require the use of any reference summary [276]. We report

both divergence and topic signature-based feature scores12. The divergence features

consist of Kullback Leibler divergence (KLD), smoothed and unsmoothed Jensen-

Shannon divergence (JSD). The three topic signature based features are APTT (i.e.

averaged percentage of tokens in the summary that are topic words of the input),

AFTW (i.e. averaged fraction of topic words of the input that appear in the sum-

mary), and ATWO (i.e. averaged cosine similarity using all words of the summary

9https://pypi.python.org/pypi/pyrouge/0.1.3
10Note that recall-based metrics tend to have bias towards longer summaries.
11http://www.cs.cmu.edu/~alavie/METEOR/
12Lower divergence scores indicate better summary quality, while for other metrics the higher

the scores are the better.
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but only the topic words from the input)13.

As suggested in [276], while such word distribution similarity-based metrics

can provide reliable estimates of system summary quality when averaged over all test

inputs (i.e. system-level evaluation as opposed to individual-input level), they work

well only for cohesive-type inputs. Given that our opinion summarisation task in

Section 6.3.5 aims to summarise each cluster of tweets that hold the same sentiment

towards common entity on the same day, we think such input-summary similarity

based metrics are appropriate for evaluating the opinion summarisation task. For

the event summarisation evaluation, we use these metrics to complement ROUGE

and METEOR.

6.3.3 Experimental Setup

For our neural abstractive summarisation models, we use 100 dimensional word

embeddings and 256-dimensional hiddens states in both encoder and decoder. For

training, we adopt the same settings as used in [185]. This includes a 50k-word

vocabulary for both source and target sentences, Adagrad [277] with a learning rate

of 0.15 and an initial accumulator value of 0.1 for optimisation, and a maximum

gradient norm of 2 for gradient clipping. As described in Section 6.2.3, we use ex-

tractive summarisation for sub-sampling our data to produce high-quality input for

the subsequent abstractive summarisation. We choose LexRank as the extractive

method for for sampling 30 tweets as an input for abstraction. LexRank has shown

to achieve very good performance for multi-document summarisation, and it pro-

motes diversity by adding Cross-Sentence Informational Subsumption (CSIS) as its

heuristic final step. We denote our summarisation system as Our System.

Training: We truncate the source sequences to 400 tokens and limit the length

of summary to 100 tokens for training and 30 for testing14. For training we start

13The topic signature based features require the supply of occurrence counts for words, which
we produce by using 675 million of UK tweets as the background corpus.

14We then use the first sentence as our final summary.
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with highly-truncated sequences and then gradually increase maximum timesteps,

as suggested in [185]. For each model we train on a Tesla K80 GPU with a batch

size of 16. During testing, we use beam search with beam size of 4. We also add the

coverage mechanism at the end of our training process for a further 3,000 iterations.

Pre-training: Using Twitter’s full firehose from Gnip, we collected a large number

of high-quality geo-tagged tweets posted in the UK posted between May and October

201515. After performing basic preprocessing steps including removing URL links,

retweet symbols, user mentions, tokenisation as well as removing tweets that contain

less than 5 tokens, we have a corpus of 675 million tweets which we use for pre-

training.

We train two language models (LMs) using the aforementioned Twitter cor-

pus and the same corpus but with words in reverse order for each tweet, respectively.

Each LM has the embedding size of 100, and a one-layer LSTM with state size of

256. Both models are trained on 4 Tesla K80 GPUs with a batch size of 128, for

∼ 557k iterations, in a similar fashion to [278]. The LSTM layers of our encoder

and decoder are initialised with the corresponding trained weights of these LMs.

We use the GloVe word vectors [78] trained from 2 billion tweets for initialising the

embedding layers in our summarisation models, same as in [184].

Baselines: To fully evaluate our proposed models, we compare with both extractive

and abstractive summarisation methods, namely:

• Centroid-based: The same centroid-based extractive summarisation method

used in Section 6.1.

• TextRank [279]: A graph-based ranking algorithm for extracting sentences

as summary.

• LexRank [160]: Similar to TextRank, as both models compute text central-

ity based on PageRank algorithm. However the techniques used in computing

15Note that unlike the Twitter REST API, its full firehose provides 100% of the tweets that
match the user defined criteria.
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similarity, weight graph edges, post-processing etc. are different.

• SumBasic [211]: A term-frequency based summarisation system. It uses a

redundancy factor for minimising redundancy in the summary.

• Hybrid-Tfidf [24]: A Tf-idf based model adapted for multi-document sum-

marisation. It employs a similarity threshold, for reducing redundancy.

• ILP-based [280]: Extending an Integer Linear Programming (ILP) based

concept summarisation model [164] to obtain one single optimal solution. This

is also an extractive baseline.

• Opinosis [177]: A graph-based abstractive summarisation algorithm, aimed

to reduce repetitive information and merge opinionated expressions based on

syntactic structure of product reviews.

We also compare between our neural abstractive models with and without

the pre-training. For both event and opinion summarisation tasks, our goal is to

generate and evaluate one-sentence summary for each event or cluster16. We leave

the evaluation of multi-sentence summary generation for the future work.

6.3.4 Results for Event Summarisation

As shown in Table 6.3, it is clear that extractive systems tend to achieve higher

ROUGE and METEOR scores than the abstractive ones except for our system #2

(i.e. LexRank+seq2seq), which is in line with the findings in [185] for news article

summarisation. We think the nature of our event summarisation corpus (i.e. each

event has only one reference summary in our corpus) and the inflexibility of ROUGE

make extractive approaches difficult to beat. As explained in [185], ROUGE rewards

safe strategies such as preserving original phrasing, and as a result safer strategies

16In the opinion summarisation task, we evaluate on the cluster-level rather than entity-
sentiment-level, as we believe this is more appropriate for measuring the quality of the generated
summaries.
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like extractive approaches score higher. In comparison, abstraction introduces more

choices of phrasing, which leads to less chance of matching the reference summary.

Among the extractive approaches, the two graph-based methods, namely

TextRank and LexRank, achieving the highest scores across the board, while frequency-

based SumBasic has lower scores on METEOR for extracting shorter summaries.

We also observe our neural abstractive models receive relatively higher performance

for METEOR, but still perform worse than most of the extractive baselines. This

is possibly due to the language used on Twitter that is not compatible with the

pre-defined list of synonyms and paraphrases used for computing the METEOR

metric.

Our summarisation systems both with and without pre-training, outperform

the abstractive summarisation baseline, Opinosis. We have also tested using other

extractive methods for sub-sampling inputs for abstractive summarisation. In gen-

eral we find the performance improves in comparison to just using extractive sum-

marisation alone. Comparing among our abstractive summarisation models, we find

by initialising the network using weights from pretrained models, the performance

drops especially when we only pre-train encoder but not decoder and vice versa.

Table 6.4 shows the results for divergence and topic signature-based similarity

scores, for measuring the content similarity between summary and original inputs.

We find again most of the extractive baselines perform better than the abstractive

models including our 2-stage extractive-abstractive systems, while three of our sys-

tems (i.e. “Our System”, “+pre-embed”, and “+pre-emb-enc-dec”) outperform the

abstractive summarisation baseline Opinosis.

Additionally, we evaluate our models on a Twitter corpus for summarising

important information that is relevant to each topic of an earthquake happened

in Italy in 2016 [200]. This dataset contains two levels and four topics for each

level, thus overall 8 topics, making it a small corpus. It does contain a summary

of the tweets for each topic, extracted by human annotators. The summaries were
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Model Length
ROUGE METEOR

1 2 L exact match + stem/syn/para

Centroid 13.4 25.62 7.77 21.27 9.34 10.51
TextRank 18.6 32.74 13.32 26.60 13.64 14.97
LexRank 13.5 33.69 12.66 27.24 13.09 14.57
SumBasic 8.7 30.83 10.88 25.55 10.95 11.84

Hybrid-Tfidf 14.7 29.62 10.70 24.61 12.15 13.23
ILP-based 18.8 27.32 8.76 23.00 11.33 12.81

Opinosis 10.6 23.81 9.27 20.99 9.74 10.45

Our System 15.43 31.86 12.65 26.73 13.08 14.67
+ pre-emb 13.71 29.79 10.87 25.01 12.12 13.33

+ pre-emb-enc 11.61 19.17 5.40 15.96 7.70 8.28
+ pre-emb-dec 16.06 10.94 3.90 8.76 4.53 4.92

+ pre-emb-enc-dec 14.06 25.08 8.98 21.18 10.05 11.19

Table 6.3: ROUGE F1 and METEOR scores on the event test set. This table is
divided into 3 sections: extractive baselines, abstractive baseline, and our systems.

Model
JSD KLD APTT AFTW ATWO

Un— Smoothed

Centroid 0.389 0.237 1.634 1.235 0.736 0.0744 0.603
TextRank 0.323 0.208 1.424 1.010 0.790 0.0947 0.724
LexRank 0.314 0.169 1.238 0.614 0.888 0.0845 0.738
SumBasic 0.332 0.170 1.268 0.618 0.897 0.0645 0.754

Hybrid-Tfidf 0.320 0.188 1.333 0.818 0.82 0.0846 0.735
ILP-based 0.356 0.246 1.597 1.392 0.672 0.1033 0.648

Opinosis 0.402 0.227 1.700 0.908 0.808 0.0618 0.573

Our System 0.289 0.213 1.480 0.973 0.779 0.128 0.747
+ pre-emb 0.290 0.218 1.524 1.119 0.766 0.126 0.729

+ pre-emb-enc 0.479 0.399 2.886 5.804 0.466 0.057 0.286
+ pre-emb-dec 0.508 0.462 3.772 7.477 0.323 0.073 0.296

+ pre-emb-enc-dec 0.312 0.233 1.641 1.184 0.769 0.118 0.682

Table 6.4: Content similarity scores on the event test set.

prepared by the same human annotators who judged the relevance of the tweets,

and are of 300 words at most, which makes their gold-standard summaries much

longer than the ones in the event detection corpus (averaging 19 tokens per reference

summary). The results for this dataset presented in Table 6.5, are consistent with

our findings for our event test data.
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Model
JSD KLD APTT AFTW ATWO

Un— Smoothed

Centroid 0.535 0.411 2.290 3.165 0.282 0.174 0.189
TextRank 0.488 0.395 2.293 3.062 0.415 0.351 0.435
LexRank 0.507 0.354 1.940 2.266 0.501 0.251 0.369
SumBasic 0.497 0.364 2.006 2.426 0.444 0.238 0.387

Hybrid-Tfidf 0.526 0.423 2.426 3.396 0.357 0.240 0.314
ILP-based 0.537 0.454 2.688 4.008 0.204 0.227 0.217

Opinosis 0.554 0.369 1.947 2.668 0.413 0.160 0.283

Our System 0.507 0.400 2.320 2.848 0.370 0.272 0.321
+ pre-emb 0.525 0.427 2.504 3.421 0.271 0.227 0.209

+ pre-emb-enc 0.601 0.464 2.524 4.086 0.303 0.106 0.093
+ pre-emb-dec 0.602 0.500 3.084 6.457 0.150 0.155 0.111

+ pre-emb-enc-dec 0.549 0.441 2.520 3.965 0.248 0.192 0.194

Table 6.5: Content similarity scores on the SMERP corpus.

6.3.5 Results for Opinion Summarisation

Our results for the election dataset are given in Table 6.6 using the content similarity-

based metrics described in Section 6.3.2. Our extractive baselines again show strong

performances, outperforming both the abstractive baseline model and our summari-

sation systems. Among the abstractive methods, we observe comparable results

obtained by Opinosis and our systems. Lastly, we observe little performance im-

provement by using pre-trained word vectors for initialising the embedding layers

(i.e. “+pre-emb”) or pretraining encoder, decoder and the embedding layer ( i.e.

“+pre-emb-enc-dec”).

We also find the summaries generated by our systems are highly extractive.

This is due to the integration of the pointer component, which tends to encourage

the copying behaviour during summarisation. Table 6.7 displays a typical example of

our generated summary. The model is able to combine key information from multiple

tweet sources, and generate a concise and cohesive summary that is grammatically

correct. Unnecessary phrases and unimportant expressions are omitted from the

summary. However, we do not see any novel words in the summary, in fact, all the

words are from the original tweets, indicating a lower degree of abstraction. This
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Model
JSD KLD APTT AFTW ATWO

Un— Smoothed

Centroid 0.502 0.259 1.564 1.506 0.513 0.035 0.487
TextRank 0.443 0.214 1.339 1.077 0.668 0.039 0.686
LexRank 0.448 0.200 1.278 0.886 0.680 0.038 0.617
SumBasic 0.461 0.179 1.224 0.803 0.730 0.029 0.685

Hybrid-Tfidf 0.458 0.221 1.348 1.156 0.613 0.040 0.601
ILP-based 0.481 0.276 1.633 1.611 0.524 0.043 0.575

Opinosis 0.498 0.208 1.453 0.870 0.612 0.025 0.482

Our System 0.487 0.238 1.535 1.172 0.580 0.031 0.492
+ pre-emb 0.494 0.234 1.524 1.358 0.552 0.029 0.467

+ pre-emb-enc 0.566 0.284 1.880 3.375 0.401 0.013 0.254
+ pre-emb-dec 0.650 0.416 2.737 7.395 0.105 0.009 0.071

+ pre-emb-enc-dec 0.499 0.228 1.537 1.075 0.605 0.027 0.488

Table 6.6: Content similarity scores on the election opinion test set.

Source Entity: Tories; Sentiment: Negative; Date: 02/05/2017 ; Cluster: #3

Sample tweets

“the tories are coming for your pension , your winter fuel allowance and
your house . do not let them . #votesnp #ge17”

... ...

... ...
“the tories want to cut your pension . do not let them

away with it . make sure and #votesnp on june 8th . #ge2017”

Summary tories want to cut your pension , your winter fuel allowance .

Table 6.7: Example summary with corresponding sample tweets

shows the full abstraction of multiple opinionated tweets is still a challenge yet to

be solved by our work.

6.4 Conclusions and Further Work

In the first part of this chapter, we have presented a system for time-sensitive, topic-

based summarisation of sentiment around target entities and topics in collections of

tweets. By enabling intuitive and interactive visualisation of sentiments in chrono-

logical order (its home page is shown in Figure 6.5), it can be used for analysing an

important event over time, such as elections.

RQ3: How can we generate abstractive summaries for tweets towards com-
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Figure 6.5: Home page for our interactive visualisation interface

mon topics expressed on Twitter? Is it possible to generate tweet abstracts from

scratch with limited training resources?

In the second part of this chapter, we aim to tackle the challenge of abstrac-

tive summarisation for tweets on common topics, raised in RQ3. We have identified

two main problems: the abstraction of multiple text units (i.e. tweets), and insuf-

ficient training resource. For the first problem, we adopt the pointer-generator

network introduced in [185], and propose an extractive-abstractive framework in-

cluding a state-of-the-art seq2seq model, for information compression and abstract

generation. For the latter issue, we experiment with various pre-training techniques

though we have observed little performance improvement, which shows the difficulty

of cross-medium summarisation. As illustrated in [195], out-of-domain training can

detect summary-worthy content but is not able to match the generation style in the

target domain. In addition, the different nature of Twitter language makes the task

even more challenging.

Albeit the difficulty of beating the extractive baselines when measured in

ROUGE and the content-similarity metrics, we have demonstrated it is possible to

145



generate less extractive summaries by using the seq2seq model, even without any

target-domain training data. As the first study on neural abstractive summarisation

of tweets, we show it is a promising direction for future work.

As to future work, we plan to study different approaches to alleviate the lack

of in-domain training resources, via sequence autoencoding for pre-training [189],

transfer learning [193] or multi-task learning [170]. We also would like to explore

character or sub-word level abstractive summarisation. The lack of human-generated

reference summaries also limits our ability to fully evaluate our models.

While ROUGE scores have a good correlation with human judgment in gen-

eral, the summaries with the highest ROUGE are not necessarily the most readable

or natural ones. In addition, ROUGE favors lexical similarities between generated

summaries and reference summaries, which makes it biases towards extracted sum-

maries over abstractive summaries. Although the input-summary similarity metrics

[276] correlate with human judgements for generic summaries, they may not work

as well for opinionated summaries. In fact, we still do not know how well humans

would perform using pyramid method [275] on opinions. All of these show the need

for carefully constructed human evaluation to properly judge abstract generation.

In the future, we plan to recruit human judges for the qualitative evaluation, which

will consist of 3 rating tasks on the basis of ‘informativeness’, ‘coherence’ and ‘gram-

maticality’ (each with a 1-5 scale), and another task for ranking on all summary

variations according to their overall quality. At last, we will also evaluate multi-

sentence summary generated by our system and compare with the strong extractive

baselines.
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CHAPTER 7

Conclusions

In the recent years, we have witnessed an explosive growth of user-generated con-

tent from social media sites such as Twitter. It has provided a platform for the

general public and high-profile governmental figures such as the incumbent presi-

dent of the US, to express opinions towards a broad range of topics. While social

media is thus potentially a rich resource for policy makers, government sectors and

social organisations to shed light on public opinion, understanding the sentiment

towards different issues and entities as manifested in the large volume of tweets (i.e.

information overload), has remained a difficult task.

Motivated by this challenge, in this thesis we have devoted four chapters

to address the research problems for understanding public opinion in social media

from both macro and micro perspectives. We have pursued our work from three

different yet interconnected angles: sentiment, topics and summary. Specifically,

in Chapter 3 we have addressed the problem of spam detection to improve data

quality, as well as cross-domain emotion classification; in Chapter 4 we have studied

the challenge of target-specific sentiment recognition on Twitter; in Chapter 5 we

have studied topical clustering of tweets; and lastly in Chapter 6 we have worked

on multi-tweet summarisation by presenting a temporal sentiment summarisation
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system and studying neural abstractive summarisation for tweets on common topics.

Recognising target-specific sentiment allows researchers to analyse sentiment

towards different issues and understand how it evolves over time, on the macro-level.

With topical clustering of tweets and opinion summarisation, we provide the expla-

nation or the reason underlying a choice of sentiment towards a particular entity on

a particular day, thus offers a micro perspective. Although the approaches presented

in this thesis by no means fully solve all these problems, they have showed promising

directions for understanding public opinion manifested in the large amount of social

media textual data.

In this chapter, we list our main findings and present an outlook on our

future research directions. In Section 7.1, we provide a summary of our findings

and contributions to each research question listed in Chapter 1. In Section 7.2, we

discuss directions for our future work.

7.1 Main Findings

In Chapter 3, we presented two preliminary studies focusing on social spam de-

tection to improve the signal-to-noise ratio for our sentiment corpus, and also a

model-based multi-class adaptive-SVM approach to tackle the task of cross-domain

emotion classification on Twitter. We begin addressing our main research questions

in Chapter 4, where we find existing tweet-level sentiment classification inadequate

for identifying different types of sentiment expressed towards all the target entities

mentioned in a tweet. Therefore in Chapter 4 we aimed to address the following

research question:

RQ1: How can we infer the sentiment towards a specific target as opposed to

tweet-level sentiment? Can we find an effective approach for identifying sentiment

towards multiple targets within a tweet?
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In our pilot work, we have experimented several methods for recognising

single-target-specific sentiment where each tweet mentions only one target entity.

We found our graph kernel based models are outperformed by much simpler tweet-

level systems. Subsequently, we introduced the task of multi-target-specific senti-

ment classification by generating a multi-target Twitter corpus on UK elections.

To tackle this challenge, we have proposed an approach which utilises the syntactic

information from parse tree in conjunction with the left-right context of the tar-

get. We found our proposed model achieving state-of-the-art performances on both

single-target and multi-target datasets, even over the more complex neural networks.

We have also showed our multi-target system performs the best for tweets

containing two or three different target sentiments, against other target-independent

and target-dependent models. However, our approach is limited by its simple way

of utilising the syntactic parser, which is to be improved in the future possibly in

the expense of acquiring more training data.

Keeping track of all the relevant information provided by large volumes of

opinionated tweets is difficult if possible for humans. After studying target-specific

sentiment classification, in Chapter 5 we turned our research angle to topical clus-

tering of tweets to alleviate this information overload. Due to the short and noisy

nature of tweets, traditional document clustering approaches and conventional topic

models fall short of achieving good performance. We were thus motivated to ask

the following research question:

RQ2: Can we develop a system to effectively group tweets to a number of

clusters, with each cluster representing a thematic topic?

To answer the above question, we have proposed a two-stage hierarchical

topic modelling system, integrating a state-of-the-art Twitter topic model, a word

embedding-incorporated topic model and a tweet pooling step without the use of
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any metadata. We have performed extensive evaluations and the results show our

proposed system outperform other clustering-based methods and topic models in

both clustering performance and topic coherence. In addition, the topics obtained

by our system are well aligned with the real-world stories, thus makes it a useful

tool for the analysing corresponding events through the lens of social media.

Finally, to improve our understanding of public opinion on Twitter from the

micro perspective, in Chapter 6 we have studied the task of summarising tweets on

common topics, with the goal of adding justification behind the target-sentiment.

We first presented a topic-based temporal summarisation system that provides in-

teractive visualisation of sentiments with corresponding extractive summaries in

chronological order. Such extractive summaries unavoidably contain secondary or

redundant information. Therefore we aimed to investigate the following research

question:

RQ3: How can we generate abstractive summary for opinions towards com-

mon topics expressed on Twitter? Is it possible to generate tweet abstract from

scratch with limited training resources?

Working towards addressing this question, we have identified two challenges:

the abstraction of multiple tweets, and insufficient training resource. For the first

challenge, we have proposed an extractive-abstractive framework for creating high-

quality inputs to a sequence-to-sequence network that allows both copying and gen-

erating words. For the second problem, we used a medium-size news article corpus

for training, and experimented with various ways of pre-training to alleviate the

different domain/medium issue.

We conducted evaluation for both events summarisation where we have

human-generated reference summaries, and opinion summarisation where we do

not. We found the extractive baselines showing strong performances comparing to
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our abstractive neural models. We also didn’t observe any noticeable improvement

by using pre-training to initialise our seq2seq networks, showing the challenge of

transferring information between two different mediums (i.e. from news articles to

opinionated tweets) for the abstractive summarisation task. Albeit the difficulty of

beating the extractive baselines measured in ROUGE and content-similarity based

metrics, we have showed it is possible to generate less extractive summaries using

the state-of-the-art seq2seq model.

7.2 Future Directions

In this section we discuss the potential future directions for our three lines of work:

sentiment classification, tweets clustering and abstractive summarisation.

7.2.1 Multi-target-specific Sentiment Classification

One of the promising future directions in the area of recognising multi-target-specific

sentiment, is to explore sentiment connections among all targets appearing in the

same tweet as a multi-target learning task. This is somewhat discussed in a recent

study [281] for stance classification, where the authors experimented with standard

attentional sequence-to-sequence models for jointly modelling the overall position

toward two related targets. Our multi-target election corpus introduced in Chapter 4

poses a more challenging task by having many more targets and target types. This

makes the multi-target learning more difficult and a very interesting task for future

research and experimentation.

Another direction is to investigate syntax-guided hierarchical architectures

for tweets in the context of detecting sentiment for each target mentioned within

the tweet. The current trend of using attentional recurrent neural networks has its

limitations. The linguistic structure can reduce the search space for optimisation,

and is important to understand the relationship among targets, even for tweets.
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Lastly, one general future direction of natural language processing is to have

a more explicit model of morphology than just character or word composition. Such

model will enable the morphologically-aware word representations that can improve

the modelling of sentiment for social media posts.

7.2.2 Topical Clustering of Tweets

We think one key aspect of tweet clustering is still the representation or the embed-

ding of tweets, despite the poor performance of tweet2vec based clustering baseline

model in our experiments presented in Chapter 5. Recently we have seen several

studies [282, 283] using the neural embedding approach for generating topic or sen-

tence representations, which have shown to be a promising direction.

Another key aspect is similarity learning. We plan to experiment with the

relaxed version of Word Mover’s Distance (RWMD) [284] and develop a distance

metric learning model similarly to WMD by measuring the optimal transportation

from one document to another. It is worth noting many participating systems

(including the best performing ones) of the semantic textual similarity for tweets task

in the SemEval-2015 competition [285], have used extensive set of heavily engineered

features, which shows the challenge of this task.

Another interesting research area of tweets clustering is to study the mod-

elling of topics over time.

7.2.3 Abstractive Opinion Summarisation on Twitter

The abstractive summarisation of tweets has remained a difficult task. The key

challenge, as demonstrated in Chapter 6, is the lack of tweets-summary training

data. One approach to alleviate this data issue is to investigate the use of pre-

training, transfer learning or multi-task learning (as described in Section 2.4.2),

borrowing ideas from neural machine translation. Another approach is to construct
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a corpus using techniques like distant supervision1.

Finally, evaluating the quality of a summary is a difficult task by itself. The

widely adopted metrics like ROUGE and METEOR are limited by their inflexibil-

ity and inability to measure the semantic similarity between a summary and the

original document. While we do think human evaluation is important for judging a

summarisation system and we plan to hire human judges for qualitative evaluation

of our proposed systems, an alternative to ROUGE but yet effective metric would be

very useful for the development of automatic text summarisation. We have seen on-

going efforts to improve on automatic summarisation evaluation measures [276, 287]

but much is left for future research.

1Hu et al. [286] have built a large scale Chinese short text summarisation corpus. However,
a Chinese microblog post (i.e. Weibo) is inherently different to a typical tweet, as one weibo post
can contain both one sentence summary and a short paragraph of text.
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APPENDIX A

Seeding Keywords for Twitter Data Collection

For many social media mining projects, the ability to collect as much data with as

little noise as possible is crucial for producing meaningful results for the downstream

tasks. Most research work on Twitter data have used one or multiple of the methods

listed below for data collection:

• Keywords filtering.

• User IDs filtering.

• Geo-location filtering.

• All (unfiltered) public tweets within a time period.

Most researches on Twitter socio-political opinion mining have relied on key-

words filtering by manually selecting relevant terms or hashtags as data filters. This

not only requires one’s domain knowledge but is also time consuming and labori-

ous. A seeding algorithm aims to automatically and incrementally generate more

keywords from an initial list of seeding keywords, for the purpose of fetching more

relevant tweets, with minimal human effort and domain knowledge. In this section

we describe our proposed hashtag seeding algorithm for achieving this.
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A.0.1 Seeding Hashtags Using Association Rule Learning

A hashtag is a word or unspaced phrase prefixed with the number sign ‘#’. Hashtags

make it possible to group tweets that have a common topic, and therefore it is an

effective and convenient way to search for relevant tweets. In [288] the author used

two seeding politics-related hashtags and identified a set relevant hashtags with

which it co-occurred in at least one tweet, and ranked the results using the Jaccard

coefficient. In this work we aim to improve both the quantity and quality of our

data collection, by using association rule learning.

Association rule learning is a popular and well researched data mining tech-

nique for discovering frequent itemsets and strong association links (in the form of

rules) between different arrays of items in large databases by using one or multiple

different measures of interestingness. An association rule is the form {X} → {Y },

where X is the antecedent item(s) and Y is the derived consequent item(s). It dis-

covers and reveals interesting associations embedded in huge datasets, which may

include hidden information that can be useful for decision making. Therefore asso-

ciation rule learning has been employed in many application areas such as market

basket analysis, web usage mining and bio-informatics. Here we use it to measure

the likelihood of co-occurrence of hashtags. We apply the well known association

rule learning algorithm - Apriori [289], to identify more and more relevant hashtags

as filters over time from an initial small set of seeding hashtags.

Four measures for filtering useful hashtag associations are used, namely:

• Support threshold, which denotes the frequency counts of the antecedent hash-

tag(s) (as X) and consequent hashtag(s) (as Y).

• Confidence threshold, which denotes how often a tweet containing X also con-

tains Y. It is an estimation of conditioned probability.

Confidence(X−> Y ) =
Support(X

⋃
Y )

Support(X )
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• Lift ratio, is the confidence of the rule divided by the confidence assuming Y

and X are independent (as in some cases if X and Y have high support, we can

have a high confidence value even when they are independent). Lift is known

to assess the interestingness of a rule. The larger the life ratio, the greater is

the strength (or interestingness) off the association.

Lift(X−> Y ) =
Support(X

⋃
Y )

Support(X ) · Support( Y )

• Conviction threshold, intuitively, states by what factor the correctness of the

rule (as expressed by its confidence) would reduce if X and Y were independent.

Conviction(X−> Y ) =
1 − Support( Y )

1 − Confidence(X −> Y )

We adopt the Apriori algorithm and adapt it to a process of discovering

relevant hashtags, described in the following steps:

1. Manually select a small set of hashtags (e.g. ‘#ep2014’ for the 2014 European

Parliament election in the UK) for collecting a set of data to initialise the

hashtag seeding process.

2. For every N days depending on the data traffic, we execute one iteration of

hashtag seeding process and add the resulting hashtag(s) in the existing data

filters:

2.1. Frequent Hashtag-set Generation: Find all the frequent hashtag-set

whose Support ≥ minsup, where minsup is the corresponding support

threshold. It uses a level-wise generate-and-prune strategy, and can result

in a significant reduction in the number of candidate hashtag-set to be

considered.

2.2. Rule Generation: Generate rules from the frequent hashtag-set, using
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Confidence, Lift and Conviction thresholds. Same as step 2.1 it uses a

level-wise approach.

2.3. New Hashtag Addition: Identify relevant hashtags from the generated

association rules, and add to the set of filters used for harvesting data.

3. Repeat step 2 throughout data collection for snowballing hashtags to follow

newly developed or emerging trends, or terminate the the seeding process

manually.

A.0.2 Use Case

We collected a set of Twitter data about the 2014 European Parliament election

between 26/03/2014 and 12/04/2014 by tracking the hashtag ‘#ep2014’. We applied

our hashtag seeding algorithm on this dataset to extract more hashtags as additional

data filters for the purpose of harvesting more data. With 200 as support threshold,

0.85 as confidence threshold, 20.0 as lift threshold and 5.0 as conviction threshold,

the program generated the following association rules:

Support Count Threshold = 200

|C1| = 28954

|L1| = 96

|C2| = 1516

|L2| = 47

|C3| = 12

|L3| = 1

Time spent finding frequent itemsets = 0.88 seconds.

Confidence Threshold = 0.8; Lift Threshold = 10.0; Conviction Threshold =

5.0

{eudebate,withjuncker} → {ep2014}, conf = 1.00, lift = 14.67, conv = inf
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{withjuncker} → {ep2014}, conf = 1.00, lift = 14.67, conv = inf

{wwfpledge} → {ep2014}, conf = 1.00, lift = 14.67, conv = inf

{hrw} → {ep2014}, conf = 1.00, lift = 14.66, conv = 1087.62

{notreeurope} → {ep2014}, conf = 1.00, lift = 14.65, conv = 720.32

{knockthevote} → {ep2014}, conf = 1.00, lift = 14.64, conv = 472.44

{nowschulz} → {ep2014}, conf = 1.00, lift = 14.62, conv = 277.69

{bluehand} → {ukip}, conf = 0.99, lift = 24.36, conv = 72.92

{epduel} → {ep2014}, conf = 0.99, lift = 14.46, conv = 64.61

{edl} → {ukip}, conf = 0.95, lift = 23.33, conv = 17.55

{ue} → {ep2014}, conf = 0.93, lift = 13.58, conv = 12.49

{europa} → {ep2014}, conf = 0.88, lift = 12.97, conv = 8.04

{eu2014} → {ep2014}, conf = 0.87, lift = 12.75, conv = 7.11

{bnp} → {ukip}, conf = 0.86, lift = 21.20, conv = 6.81

Time spent finding association rules = 0.00 second.

We ignored most of the hashtags due to the hashtag being overly-broad

and ambiguous such as #hrw or overly-specific such as #wwfpledge. We chose

#eudebate, #epduel and #eu2014 as our data filters in addition to #ep2014.

We also think this hashtag association rule learning can be used for un-

derstanding emerging events or topics that are only popular online, as well as the

political dynamics in the Twittersphere. For example, We observe #ukip is strongly

associated with #bluehand1, #edl and #bnp, in other words, #ukip is very likely

to appear in the same tweet with #bluehand, #edl or #bnp in our dataset.

1#bluehand is a self-proclaimed “online campaign against left-wing political correctness” move-
ment.
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[192] Tilk, O., Alumäe, T.: Low-resource neural headline generation. In: Proceed-

ings of the Workshop on New Frontiers in Summarization (EMNLP). (2017)

[193] Zoph, B., Yuret, D., May, J., Knight, K.: Transfer learning for low-resource

neural machine translation. In: Proceedings of the 2016 Conference on Em-

pirical Methods in Natural Language Processing. (2016) 1568–1575

[194] Nguyen, T.Q., Chiang, D.: Transfer learning across low-resource, related lan-

guages for neural machine translation. In: Proceedings of the 8th International

Joint Conference on Natural Language Processing (IJCNLP). (2017)

[195] Hua, X., Wang, L.: A pilot study of domain adaptation effect for neural

abstractive summarization. In: Proceedings of the Workshop on New Frontiers

in Summarization (EMNLP). (2017)

[196] O’Connor, B., Balasubramanyan, R., Routledge, B.R., Smith, N.A.: From

tweets to polls: Linking text sentiment to public opinion time series. ICWSM

11(122-129) (2010) 1–2

183



[197] Lerman, K., Blair-Goldensohn, S., McDonald, R.: Sentiment summariza-

tion: evaluating and learning user preferences. In: Proceedings of the 12th

Conference of the European Chapter of the Association for Computational

Linguistics, Association for Computational Linguistics (2009) 514–522

[198] LOUIS, A., NEWMAN, T.: Summarization of business-related tweets: A

concept-based approach. In: 24th International Conference on Computational

Linguistics. (2012) 765

[199] Rudra, K., Banerjee, S., Ganguly, N., Goyal, P., Imran, M., Mitra, P.: Sum-

marizing situational tweets in crisis scenario. In: Proceedings of the 27th ACM

Conference on Hypertext and Social Media, ACM (2016) 137–147

[200] Ghosh, S., Ghosh, K., Ganguly, D., Chakraborty, T., Jones, G.J., Moens,

M.F.: Ecir 2017 workshop on exploitation of social media for emergency relief

and preparedness (smerp 2017). In: ACM SIGIR Forum. Volume 51., ACM

(2017) 36–41

[201] Takamura, H., Yokono, H., Okumura, M.: Summarizing a document stream.

In: ECIR, Springer (2011) 177–188

[202] Chakrabarti, D., Punera, K.: Event summarization using tweets. ICWSM 11

(2011) 66–73

[203] Sharifi, B., Hutton, M.A., Kalita, J.K.: Experiments in microblog summa-

rization. In: Social Computing (SocialCom), 2010 IEEE Second International

Conference on, IEEE (2010) 49–56

[204] Liu, F., Liu, Y., Weng, F.: Why is sxsw trending? exploring multiple text

sources for twitter topic summarization. In: Proceedings of the Workshop on

Languages in Social Media, Association for Computational Linguistics (2011)

66–75

184



[205] Lin, J., Efron, M., Wang, Y., Sherman, G., Voorhees, E.: Overview of the trec-

2015 microblog track. In: Proceedings of the 24th Text REtrieval Conference,

TREC. (2015)

[206] Aslam, J., Diaz, F., Ekstrand-Abueg, M., McCreadie, R., Pavlu, V., Sakai,

T.: Trec 2015 temporal summarization track overview. In: Proceedings of the

24th Text REtrieval Conference, TREC. (2015)

[207] Lin, J., Roegiest, A., Tan, L., McCreadie, R., Voorhees, E., Diaz, F.: Overview

of the trec 2016 real-time summarization track. In: Proceedings of the 25th

Text REtrieval Conference, TREC. Volume 16. (2016)

[208] O’Connor, B., Krieger, M., Ahn, D.: Tweetmotif: Exploratory search and

topic summarization for twitter. In: ICWSM. (2010) 384–385

[209] Xu, W., Grishman, R., Meyers, A., Ritter, A.: A preliminary study of tweet

summarization using information extraction. NAACL 2013 (2013) 20

[210] Sharifi, B.: Automatic microblog classification and summarization. Unpub-

lished masters thesis, University of Colorado, Colorado Springs, CO, USA

(2010)

[211] Vanderwende, L., Suzuki, H., Brockett, C., Nenkova, A.: Beyond sumbasic:

Task-focused summarization with sentence simplification and lexical expan-

sion. Information Processing & Management 43(6) (2007) 1606–1618

[212] Cano Basave, A.E., He, Y., Xu, R.: Automatic labelling of topic models

learned from twitter by summarisation. In: Proceedings of The 52nd Annual

Meeting of the Association for Computational Linguistics (ACL). (2014)

[213] Nichols, J., Mahmud, J., Drews, C.: Summarizing sporting events using twit-

ter. In: Proceedings of the 2012 ACM international conference on Intelligent

User Interfaces, ACM (2012) 189–198

185



[214] Shou, L., Wang, Z., Chen, K., Chen, G.: Sumblr: continuous summarization of

evolving tweet streams. In: Proceedings of the 36th international ACM SIGIR

conference on Research and development in information retrieval, ACM (2013)

533–542

[215] Ren, Z., Liang, S., Meij, E., de Rijke, M.: Personalized time-aware tweets

summarization. In: Proceedings of the 36th international ACM SIGIR con-

ference on Research and development in information retrieval, ACM (2013)

513–522

[216] Duan, Y., Chen, Z., Wei, F., Zhou, M., Shum, H.Y.: Twitter topic summariza-

tion by ranking tweets using social influence and content quality. Proceedings

of COLING 2012 (2012) 763–780

[217] Liu, X., Li, Y., Wei, F., Zhou, M.: Graph-based multi-tweet summarization

using social signals. Proceedings of COLING 2012 (2012) 1699–1714

[218] He, R., Liu, Y., Yu, G., Tang, J., Hu, Q., Dang, J.: Twitter summarization

with social-temporal context. World Wide Web 20(2) (2017) 267–290

[219] Swapna, G., JIANG, J.: Finding thoughtful comments from social media. In:

COLING. (2012)

[220] Yang, Z., Cai, K., Tang, J., Zhang, L., Su, Z., Li, J.: Social context summa-

rization. In: Proceedings of the 34th international ACM SIGIR conference on

Research and development in Information Retrieval, ACM (2011) 255–264

[221] Olariu, A.: Efficient online summarization of microblogging streams. In:

EACL. (2014) 236–240

[222] Rudra, K., Ghosh, S., Ganguly, N., Goyal, P., Ghosh, S.: Extracting situ-

ational information from microblogs during disaster events: a classification-

summarization approach. In: Proceedings of the 24th ACM International on

186



Conference on Information and Knowledge Management, ACM (2015) 583–

592

[223] Nguyen, H.: Research report: 2013 state of social me-

dia spam. http://nexgate.com/wp-content/uploads/2013/09/

Nexgate-2013-State-of-Social-Media-Spam-Research-Report.pdf

(2013)

[224] Aiello, L.M., Deplano, M., Schifanella, R., Ruffo, G.: People are strange when

you’re a stranger: Impact and influence of bots on social networks. CoRR

abs/1407.8134 (2014)

[225] Kalbitzer, J., Mell, T., Bermpohl, F., Rapp, M.A., Heinz, A.: Twitter psy-

chosis: a rare variation or a distinct syndrome. Journal of Nervous and Mental

Disease 202(8) (August 2014) 623

[226] Tan, C., Lee, L., Pang, B.: The effect of wording on message propaga-

tion: Topic- and author-controlled natural experiments on twitter. CoRR

abs/1405.1438 (2014)

[227] Gimpel, K., Schneider, N., O’Connor, B., Das, D., Mills, D., Eisenstein, J.,

Heilman, M., Yogatama, D., Flanigan, J., Smith, N.A.: Part-of-speech tagging

for twitter: Annotation, features, and experiments. In: Proceedings of ACL.

HLT ’11, Stroudsburg, PA, USA (2011) 42–47
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[261] Müllner, D., et al.: fastcluster: Fast hierarchical, agglomerative clustering

routines for r and python. Journal of Statistical Software 53(9) (2013) 1–18

[262] Sokal, R.R., Rohlf, F.J.: The comparison of dendrograms by objective meth-

ods. Taxon (1962) 33–40

191



[263] Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and vali-

dation of cluster analysis. Journal of computational and applied mathematics

20 (1987) 53–65

[264] Arbelaitz, O., Gurrutxaga, I., Muguerza, J., Pérez, J.M., Perona, I.: An
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