33 research outputs found

    A reliable trust-aware reinforcement learning based routing protocol for wireless medical sensor networks.

    Get PDF
    Interest in the Wireless Medical Sensor Network (WMSN) is rapidly gaining attention thanks to recent advances in semiconductors and wireless communication. However, by virtue of the sensitive medical applications and the stringent resource constraints, there is a need to develop a routing protocol to fulfill WMSN requirements in terms of delivery reliability, attack resiliency, computational overhead and energy efficiency. This doctoral research therefore aims to advance the state of the art in routing by proposing a lightweight, reliable routing protocol for WMSN. Ensuring a reliable path between the source and the destination requires making trustaware routing decisions to avoid untrustworthy paths. A lightweight and effective Trust Management System (TMS) has been developed to evaluate the trust relationship between the sensor nodes with a view to differentiating between trustworthy nodes and untrustworthy ones. Moreover, a resource-conservative Reinforcement Learning (RL) model has been proposed to reduce the computational overhead, along with two updating methods to speed up the algorithm convergence. The reward function is re-defined as a punishment, combining the proposed trust management system to defend against well-known dropping attacks. Furthermore, with a view to addressing the inborn overestimation problem in Q-learning-based routing protocols, we adopted double Q-learning to overcome the positive bias of using a single estimator. An energy model is integrated with the reward function to enhance the network lifetime and balance energy consumption across the network. The proposed energy model uses only local information to avoid the resource burdens and the security concerns of exchanging energy information. Finally, a realistic trust management testbed has been developed to overcome the limitations of using numerical analysis to evaluate proposed trust management schemes, particularly in the context of WMSN. The proposed testbed has been developed as an additional module to the NS-3 simulator to fulfill usability, generalisability, flexibility, scalability and high-performance requirements

    Crowdfunding Non-fungible Tokens on the Blockchain

    Get PDF
    Non-fungible tokens (NFTs) have been used as a way of rewarding content creators. Artists publish their works on the blockchain as NFTs, which they can then sell. The buyer of an NFT then holds ownership of a unique digital asset, which can be resold in much the same way that real-world art collectors might trade paintings. However, while a deal of effort has been spent on selling works of art on the blockchain, very little attention has been paid to using the blockchain as a means of fundraising to help finance the artist’s work in the first place. Additionally, while blockchains like Ethereum are ideal for smaller works of art, additional support is needed when the artwork is larger than is feasible to store on the blockchain. In this paper, we propose a fundraising mechanism that will help artists to gain financial support for their initiatives, and where the backers can receive a share of the profits in exchange for their support. We discuss our prototype implementation using the SpartanGold framework. We then discuss how this system could be expanded to support large NFTs with the 0Chain blockchain, and describe how we could provide support for ongoing storage of these NFTs

    Fake Malware Generation Using HMM and GAN

    Get PDF
    In the past decade, the number of malware attacks have grown considerably and, more importantly, evolved. Many researchers have successfully integrated state-of-the-art machine learning techniques to combat this ever present and rising threat to information security. However, the lack of enough data to appropriately train these machine learning models is one big challenge that is still present. Generative modelling has proven to be very efficient at generating image-like synthesized data that can match the actual data distribution. In this paper, we aim to generate malware samples as opcode sequences and attempt to differentiate them from the real ones with the goal to build fake malware data that can be used to effectively train the machine learning models. We use and compare different Generative Adversarial Networks (GAN) algorithms and Hidden Markov Models (HMM) to generate such fake samples obtaining promising results

    Safe Routing Approach by Identifying and Subsequently Eliminating the Attacks in MANET

    Full text link
    Wireless networks that are decentralized and communicate without using existing infrastructure are known as mobile ad-hoc networks. The most common sorts of threats and attacks can affect MANETs. Therefore, it is advised to utilize intrusion detection, which controls the system to detect additional security issues. Monitoring is essential to avoid attacks and provide extra protection against unauthorized access. Although the current solutions have been designed to defeat the attack nodes, they still require additional hardware, have considerable delivery delays, do not offer high throughput or packet delivery ratios, or do not do so without using more energy. The capability of a mobile node to forward packets, which is dependent on the platform's life quality, may be impacted by the absence of the network node power source. We developed the Safe Routing Approach (SRA), which uses behaviour analysis to track and monitor attackers who discard packets during the route discovery process. The attacking node recognition system is made for irregular routing node detection to protect the controller network's usual properties from becoming recognized as an attack node. The suggested method examines the nearby attack nodes and conceals the trusted node in the routing pathway. The path is instantly assigned after the initial discovery of trust nodes based on each node's strength value. It extends the network's life span and reduces packet loss. In terms of Packet Delivery Ratio (PDR), energy consumption, network performance, and detection of attack nodes, the suggested approach is contrasted with AIS, ZIDS, and Improved AODV. The findings demonstrate that the recommended strategy performs superior in terms of PDR, residual energy, and network throughput

    Secure Control and Operation of Energy Cyber-Physical Systems Through Intelligent Agents

    Get PDF
    The operation of the smart grid is expected to be heavily reliant on microprocessor-based control. Thus, there is a strong need for interoperability standards to address the heterogeneous nature of the data in the smart grid. In this research, we analyzed in detail the security threats of the Generic Object Oriented Substation Events (GOOSE) and Sampled Measured Values (SMV) protocol mappings of the IEC 61850 data modeling standard, which is the most widely industry-accepted standard for power system automation and control. We found that there is a strong need for security solutions that are capable of defending the grid against cyber-attacks, minimizing the damage in case a cyber-incident occurs, and restoring services within minimal time. To address these risks, we focused on correlating cyber security algorithms with physical characteristics of the power system by developing intelligent agents that use this knowledge as an important second line of defense in detecting malicious activity. This will complement the cyber security methods, including encryption and authentication. Firstly, we developed a physical-model-checking algorithm, which uses artificial neural networks to identify switching-related attacks on power systems based on load flow characteristics. Secondly, the feasibility of using neural network forecasters to detect spoofed sampled values was investigated. We showed that although such forecasters have high spoofed-data-detection accuracy, they are prone to the accumulation of forecasting error. In this research, we proposed an algorithm to detect the accumulation of the forecasting error based on lightweight statistical indicators. The effectiveness of the proposed algorithms was experimentally verified on the Smart Grid testbed at FIU. The test results showed that the proposed techniques have a minimal detection latency, in the range of microseconds. Also, in this research we developed a network-in-the-loop co-simulation platform that seamlessly integrates the components of the smart grid together, especially since they are governed by different regulations and owned by different entities. Power system simulation software, microcontrollers, and a real communication infrastructure were combined together to provide a cohesive smart grid platform. A data-centric communication scheme was selected to provide an interoperability layer between multi-vendor devices, software packages, and to bridge different protocols together

    Cyber Security

    Get PDF
    This open access book constitutes the refereed proceedings of the 18th China Annual Conference on Cyber Security, CNCERT 2022, held in Beijing, China, in August 2022. The 17 papers presented were carefully reviewed and selected from 64 submissions. The papers are organized according to the following topical sections: ​​data security; anomaly detection; cryptocurrency; information security; vulnerabilities; mobile internet; threat intelligence; text recognition

    Smart Metering System: Developing New Designs to Improve Privacy and Functionality

    Get PDF
    This PhD project aims to develop a novel smart metering system that plays a dual role: Fulfil basic functions (metering, billing, management of demand for energy in grids) and protect households from privacy intrusions whilst enabling them a degree of freedom. The first two chapters of the thesis will introduce the research background and a detailed literature review on state-of-the-art works for protecting smart meter data. Chapter 3 discusses theory foundations for smart meter data analytics, including machine learning, deep learning, and information theory foundations. The rest of the thesis is split into two parts, ‘Privacy’ and ‘Functionality’, respectively. In the ‘Privacy’ part, the overall smart metering system, as well as privacy configurations, are presented. A threat/adversary model is developed at first. Then a multi-channel smart metering system is designed to reduce the privacy risks of the adversary. Each channel of the system is responsible for one functionality by transmitting different granular smart meter data. In addition, the privacy boundary of the smart meter data in the proposed system is also discovered by introducing a data mining algorithm. By employing the algorithm, a three-level privacy boundary is concluded. Furthermore, a differentially private federated learning-based value-added service platform is designed to provide flexible privacy guarantees to consumers and balance the trade-off between privacy loss and service accuracy. In the ‘Functionality’ part, three feeder-level functionalities: load forecasting, solar energy separation, and energy disaggregation are evaluated. These functionalities will increase thepredictability, visibility, and controllability of the distributed network without utilizing household smart meter data. Finally, the thesis will conclude and summarize the overall system and highlight the contributions and novelties of this project

    Cyber Security

    Get PDF
    This open access book constitutes the refereed proceedings of the 18th China Annual Conference on Cyber Security, CNCERT 2022, held in Beijing, China, in August 2022. The 17 papers presented were carefully reviewed and selected from 64 submissions. The papers are organized according to the following topical sections: ​​data security; anomaly detection; cryptocurrency; information security; vulnerabilities; mobile internet; threat intelligence; text recognition

    Energy Data Analytics for Smart Meter Data

    Get PDF
    The principal advantage of smart electricity meters is their ability to transfer digitized electricity consumption data to remote processing systems. The data collected by these devices make the realization of many novel use cases possible, providing benefits to electricity providers and customers alike. This book includes 14 research articles that explore and exploit the information content of smart meter data, and provides insights into the realization of new digital solutions and services that support the transition towards a sustainable energy system. This volume has been edited by Andreas Reinhardt, head of the Energy Informatics research group at Technische Universität Clausthal, Germany, and Lucas Pereira, research fellow at Técnico Lisboa, Portugal

    Public Key Infrastructure

    Full text link
    corecore