
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Faculty Research, Scholarly, and Creative Activity

1-1-2022

Crowdfunding Non-fungible Tokens on the Blockchain Crowdfunding Non-fungible Tokens on the Blockchain

Sean Basu
Monta Vista High School

Kimaya Basu
Monta Vista High School

Thomas H. Austin
San Jose State University, thomas.austin@sjsu.edu

Follow this and additional works at: https://scholarworks.sjsu.edu/faculty_rsca

Recommended Citation Recommended Citation
Sean Basu, Kimaya Basu, and Thomas H. Austin. "Crowdfunding Non-fungible Tokens on the Blockchain"
Communications in Computer and Information Science (2022): 109-125. https://doi.org/10.1007/
978-3-030-96057-5_8

This Conference Proceeding is brought to you for free and open access by SJSU ScholarWorks. It has been
accepted for inclusion in Faculty Research, Scholarly, and Creative Activity by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/faculty_rsca
https://scholarworks.sjsu.edu/faculty_rsca?utm_source=scholarworks.sjsu.edu%2Ffaculty_rsca%2F3260&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1007/978-3-030-96057-5_8
https://doi.org/10.1007/978-3-030-96057-5_8
mailto:scholarworks@sjsu.edu

Sang-Yoon Chang · Luis Bathen ·
Fabio Di Troia · Thomas H. Austin ·
Alex J. Nelson (Eds.)

Second Conference, SVCC 2021
San Jose, CA, USA, December 2–3, 2021
Revised Selected Papers

Silicon Valley Cybersecurity
Conference

Communications in Computer and Information Science 1536

Communications
in Computer and Information Science 1536

Editorial Board Members

Joaquim Filipe
Polytechnic Institute of Setúbal, Setúbal, Portugal

Ashish Ghosh
Indian Statistical Institute, Kolkata, India

Raquel Oliveira Prates
Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil

Lizhu Zhou
Tsinghua University, Beijing, China

https://orcid.org/0000-0002-5961-6606
https://orcid.org/0000-0002-7128-4974

More information about this series at https://link.springer.com/bookseries/7899

https://link.springer.com/bookseries/7899

Sang-Yoon Chang · Luis Bathen ·
Fabio Di Troia · Thomas H. Austin ·
Alex J. Nelson (Eds.)

Silicon Valley Cybersecurity
Conference
Second Conference, SVCC 2021
San Jose, CA, USA, December 2–3, 2021
Revised Selected Papers

Editors
Sang-Yoon Chang
University of Colorado
Colorado Springs, CO, USA

Fabio Di Troia
San Jose State University
San Jose, CA, USA

Alex J. Nelson
National Institute of Standards
and Technology
Gaithersburg, MD, USA

Luis Bathen
IBM Almaden Research Center
San Jose, CA, USA

Thomas H. Austin
San Jose State University
San Jose, CA, USA

ISSN 1865-0929 ISSN 1865-0937 (electronic)
Communications in Computer and Information Science
ISBN 978-3-030-96056-8 ISBN 978-3-030-96057-5 (eBook)
https://doi.org/10.1007/978-3-030-96057-5

© Springer Nature Switzerland AG 2022
7 chapters are licensed under the terms of the Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/). For further details see license information in the chapters.
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-5736-5823
https://orcid.org/0000-0003-2355-7146
https://orcid.org/0000-0002-3771-570X
https://orcid.org/0000-0003-2428-0687
https://doi.org/10.1007/978-3-030-96057-5
http://creativecommons.org/licenses/by/4.0/

Preface

The 2nd Silicon Valley Cybersecurity Conference (SVCC 2021) took place virtually
during December 2–3, 2021. SVCC facilitates research in dependability, reliability,
and security to address cyber-attacks, vulnerabilities, faults, and errors in networks and
systems. This conference provides a high-quality forum for participants to exchange
their research in robustness and resilience in a wide spectrum of computing systems and
networks. The conference addresses innovative system design, protocols, and algorithms
for detecting and responding to malicious threats in dependable and secure systems and
networks including experimentation and assessment.

SVCC 2021 featured five keynote speakers, from academia and industry, and six
different research programs along with a distinguished research forum. The special
research forum recognized three distinguished researchers in 2021 who presented their
high-quality research in cybersecurity. The conference included ten research papers this
year, with an additional session for poster presentation. Papers were evaluated with a
double-blind review process, with three reviews per paper.

In addition, the conference had a special panel for Women-in-Cybersecurity, a
Capture theFlag competition, and theUNiSECDatathon. The goal of theDatathonwas to
create an exciting learning experience at the intersection of cybersecurity and machine
learning. We were pleased to see a diverse range of participants, with 52.6% female
students and 26.4% underrepresented students taking part in the Datathon challenge for
one month.

We are grateful to the three conference sponsors for SVCC 2021: Cisco, Jabil, and
Trend Micro.

December 2021 Sang-Yoon Chang
Luis Bathen

Fabio Di Troia

Organization

General Chairs

Divyesh Jadav IBM Research, USA
Younghee Park San Jose State University, USA

Program Chairs

Sang-Yoon Chang University of Colorado, Colorado Springs, USA
Luis Bathen IBM Research, USA
Fabio Di Troia San Jose State University, USA

Publicity Chairs

Sara Tehranipoor Santa Clara University, USA
Wei Yan Clarkson University, USA

Publication Chairs

Thomas Austin San Jose State University, USA
Alex J. Nelson National Institute of Standards and Technology,

USA

Registration Chairs

Michael Tjebben L&T Technology Services Limited, USA
Sang-soo Lee San Jose State University, USA

Poster Chair

Gokay Saldamli San Jose State University, USA

Special Session Chairs

Nima Karimian San Jose State University, USA
Hossein Sayadi California State University, Long Beach, USA

viii Organization

Datathon Chair

Jorjeta Jetcheva San Jose State University, USA

Technical Program Committee

Vikrant Nanda Google Inc., USA
Subhash Lakshminarayana University of Warwick, UK
Malek Ben Salem Accenture Inc., USA
Sang Kil Cha Korea Advanced Institute of Science and

Technology, South Korea
Harshan Jagadeesh Indian Institute of Technology, Delhi, India
Carlos Rubio-Medrano Texas A&M University–Corpus Christi, USA
Eul Gyu Im Hanyang University, South Korea
Lei Xu University of Texas Rio Grande Valley, USA
Xiaoyan (Sherry) Sun California State University, Sacramento, USA
Tai M. Chung Sungkyunkwan University, South Korea
Liudong Xing University of Massachusetts Dartmouth, USA
Sangwon Hyun Myongji University, South Korea
Daisuke Mashima Illinois at Singapore Pte. Ltd., Singapore
Sung Lee VMware, USA
Sandra Céspedes University of Chile, Chile
Mohammadreza Ashouri University of Potsdam, Germany
Francesco Mercaldo Università degli Studi del Molise, Italy
Carlos Rubio-Medrano Arizona State University, USA
Wenjun Fan University of Colorado, Colorado Springs, USA
Ihor Vasyltsov Samsung Electronics, South Korea
Wei Yan Clarkson University, USA
Ahyoung Lee Kennesaw State University, USA
Daisuke Mashima Advanced Digital Sciences Center, Singapore
Thomas Austin San Jose State University, USA
Chang-Wu Chen imToken, Taiwan
Hsiang-Jen Hong University of Colorado, Colorado Springs, USA
Lei Xu University of Texas Rio Grande Valley, USA
Hossein Sayadi California State University, Long Beach, USA
Liudong Xing University of Massachusetts Dartmouth, USA
Hyoungshick Kim Sungkyunkwan University, South Korea
Attila Altay Yavuz University of South Florida, USA
Donghyun (David) Kim Georgia State University, USA
Jinoh Kim Texas A&M University–Commerce, USA
Hongxin Hu Clemson University, USA
Jorjeta Jetcheva San Jose State University, USA
Tamzidul Hoque University of Kansas, USA

Organization ix

Arman Roohi University of Nebraska at Lincoln, USA
Paul Wortman University of Connecticut, USA
Samah Saeed City College of New York, USA
Sara Tehranipoor Santa Clara University, USA
Prabha Sundaravadivel University of Texas at Tyler, USA
Samaneh Ghandali Google, USA
Nima Karimian San Jose State University, USA
Kohei Shiomoto Tokyo City University, Japan
Qiong Zhang Fujitsu Lab, USA
Mohammad Husain California State Polytechnic University, USA
Daehee Seo Sangmyung University, South Korea
Zhang Tianwei Nanyang Technological University, Singapore
Gokay Saldamli San Jose State University, USA
Young Hyun Oh IBM, USA
T. J. O’Connor Florida Institute of Technology, USA

Contents

Machine Learning for Security

Fake Malware Generation Using HMM and GAN . 3
Harshit Trehan and Fabio Di Troia

Security Threats in Cloud Rooted fromMachine Learning-Based Resource
Provisioning Systems . 22
Hosein Mohammadi Makrani, Hossein Sayadi, Najmeh Nazari,
and Houman Homayoun

Differential Privacy in Privacy-Preserving Big Data and Learning:
Challenge and Opportunity . 33
Honglu Jiang, Yifeng Gao, S. M. Sarwar, Luis GarzaPerez,
and Mahmudul Robin

Towards Building Intrusion Detection Systems for Multivariate
Time-Series Data . 45
ChangMin Seong, YoungRok Song, Jiwung Hyun, and Yun-Gyung Cheong

Encryption

Encryption Scheme Based on the Generalized Suzuki 2-groups
and Homomorphic Encryption . 59
Gennady Khalimov, Yevgen Kotukh, Sang-Yoon Chang,
Yaroslav Balytskyi, Maksym Kolisnyk, Svitlana Khalimova,
and Oleksandr Marukhnenko

End-to-End Security Scheme for E-Health Systems Using DNA-Based
ECC . 77
Sanaz Rahimi Moosavi and Arman Izadifar

A Comprehensive Analysis of Chaos-Based Secure Systems 90
Ava Hedayatipour, Ravi Monani, Amin Rezaei, Mehrdad Aliasgari,
and Hossein Sayadi

Miscellaneous Security

Crowdfunding Non-fungible Tokens on the Blockchain . 109
Sean Basu, Kimaya Basu, and Thomas H. Austin

xii Contents

Automated Flag Detection and Participant Performance Evaluation
for Pwnable CTF . 126
Manikant Singh, Rohit Negi, and Sandeep K. Shukla

Towards Securing Availability in 5G: Analyzing the Injection Attack
Impact on Core Network . 143
Manohar Raavi, Simeon Wuthier, Arijet Sarker, Jinoh Kim,
Jong-Hyun Kim, and Sang-Yoon Chang

Author Index . 155

Machine Learning for Security

Fake Malware Generation Using HMM
and GAN

Harshit Trehan and Fabio Di Troia(B)

San Jose State University, San Jose, CA 95192, USA
fabio.ditroia@sjsu.edu

Abstract. In the past decade, the number of malware attacks have
grown considerably and, more importantly, evolved. Many researchers
have successfully integrated state-of-the-art machine learning techniques
to combat this ever present and rising threat to information security.
However, the lack of enough data to appropriately train these machine
learning models is one big challenge that is still present. Generative mod-
elling has proven to be very efficient at generating image-like synthesized
data that can match the actual data distribution. In this paper, we aim
to generate malware samples as opcode sequences and attempt to dif-
ferentiate them from the real ones with the goal to build fake malware
data that can be used to effectively train the machine learning models.
We use and compare different Generative Adversarial Networks (GAN)
algorithms and Hidden Markov Models (HMM) to generate such fake
samples obtaining promising results.

Keywords: Malware · Fake malware generation · GAN · HMM ·
Word embedding · Machine learning

1 Introduction

Malicious software, or malware in short, is a program that is specifically designed
to harm computer systems by affecting devices, stealing or tampering with data,
and even harming people. According to data collected by SonicWall, there were
a total of 9.9 billion malware attacks worldwide in 2019 alone [29]. Thus, protec-
tion of computer systems from malware is an integral component of information
security, and malware research plays an important role in securing computer
systems.

To overcome these threats, machine learning techniques have been researched
and applied in the malware detection domain. Their models are trained by
extracting features such as opcode sequences, API calls, bytes vectors, and many
other [1,26,32]. Although machine learning techniques have shown promising
results, there are still some challenges to be taken in consideration, such as
malware code obfuscation [22], the availability, or lack thereof, of large pub-
lic datasets for the training phase [8], and adversarial machine learning [12] to
deceive the machine learning models.
c© The Author(s) 2022
S.-Y. Chang et al. (Eds.): SVCC 2021, CCIS 1536, pp. 3–21, 2022.
https://doi.org/10.1007/978-3-030-96057-5_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-96057-5_1&domain=pdf
http://orcid.org/0000-0003-2355-7146
https://doi.org/10.1007/978-3-030-96057-5_1

4 H. Trehan and F. Di Troia

In this paper, we use mnemonic opcodes extracted from malware executable
files belonging to five different malware families to generate realistic fake mal-
ware samples by implementing Generative Adversarial Networks (GAN) [9] and
Hidden Markov Model (HMM). We use multiple machine learning classifica-
tion techniques, namely, Support Vector Machines, k -Nearest Neighbor, Ran-
dom Forest, and Näıve Bayes Classifier to differentiate between fake and real
samples and compare the two techniques (HMM and GAN) based on their per-
formance. The main goal of this project is to develop practical use cases for fake
malware opcode sequences and serve as a proof-of-concept for using generative
modelling to synthesize mnemonic opcode sequences. An embedding step is also
introduced to convert the sequence of opcodes before being used to train the
classifiers. While the majority of research in this field leaned towards creating
fake malware images, this work introduces the creation of fake opcode sequences
comparing HMM and different GAN variants.

The remainder of this paper is organized as follows. In Sect. 2, we go over
previous and related work. Also, we give a brief summary of the techniques and
concepts that we used in this paper. In Sect. 3, we explain our workflow and
give a description of our malware generation pipeline. In Sect. 4, we go over
the actual implementation and our experimental setup. In Sect. 5, we provide
the results of our experiments. Finally, in Sect. 6 we discuss the results and the
future directions for our project.

2 Background

In this Section, we discuss the background of malware classification and the
use of generative modelling. We highlight the gap in the literature with respect
to generated/synthetic malware opcode samples. We also give a brief introduc-
tion to Hidden Markov Models (HHMs) and Generative Adversarial Networks
(GANs). Further reading about the machine learning techniques used to evaluate
our results can be found at [5,7,27,28].

2.1 Background and Related Work

A recent trend in malware research is creating images from malware executable
files and using them to perform malware detection and classification. This gives
the opportunity to use image-analysis techniques, and allows for the use of pow-
erful deep neural networks which perform exceptionally well with images [16,34].

In terms of generative modelling, many researchers used malware images to
generate malware samples as that gives the advantage of boosting the dataset,
and even performing data augmentation to real samples. For example, in [6] the
authors adopted malware as images applying Variational Auto Encoder (VAE)
and GANs to boost the malware dataset. They obtained a 2% and 6% increase in
accuracy in case of, respectively, VAE and GAN. In another similar research [18],
the authors used GAN and observed a 6% increase in accuracy using the bench-
mark ResNet-18 model trained on malware data.

Fake Malware Generation Using HMM and GAN 5

Data augmentation or boosting using malware as images and generative mod-
elling techniques is becoming increasingly popular. The drawback of this tech-
nique, though, is that converting malware files to images is computationally
expensive. Moreover, training deep convolutional networks is also computation-
ally expensive taking long time to train and test the models. Using GANs with
images has similar overheads. An alternative solution is described in [11], where
the authors propose a GAN based model, called “MalGAN”, that is capable to
bypass black-box malware detection systems whit almost 0% of detection rate.
They used API features extracted from the malware samples as they are executed
in a virtual environment. Despite of the impressive results, executing malware
in a sandbox environment to extract the API features is again a not negligible
overhead.

It is clear that there is a gap in the literature when it comes to generating
malware samples using non-image features or representations of malware. Hence,
we explore this gap by utilizing mnemonic opcodes extracted from malware files
and generating mnemonic opcode sequences obtained by applying HMM and
three different GAN architectures (see Sect. 2.3, 2.4, 2.5).

2.2 Hidden Markov Models

Hidden Markov Model (HMM) is a machine learning technique which is widely
and effectively used for statistical analysis of time-series or sequential data. They
have been successfully used in speech analysis and recognition [23], malware
classification [2], and genes sequence analysis [17]. A Markov model is defined as
a statistical model which has states and where the transition probabilities from
one state to another are known. On the other hand, in an HMM the underlying
states are not known to the observer. HMM, in fact, relies on the probability
distribution of observing a set of observation symbols for each state [30].

We can use HMM to solve three Problems:

1. Problem 1: Given an observation sequence, O, and a model λ, we can find
P (O|λ). This means that we can compute a score for the sequence O w.r.t.
λ [30].

2. Problem 2: Given a model λ and an observation sequence O, we can deter-
mine the hidden states of the Hidden Markov Model. That is, we can uncover
the Markov process underneath [30].

3. Problem 3: Given an observation sequence O and dimensions N and M , we
can find the model λ of the given dimensions that best represents O. This
basically means that we are training the model to match the observation
sequence [30].

The solution to these problems is implemented through the Baum-Welch algo-
rithm [31]. In this paper, we solved all three of these problems, and more details
are given in Sect. 4.2.

6 H. Trehan and F. Di Troia

2.3 Generative Adversarial Networks

A Generative Adversarial Network (GAN) [9] model consists of two neural net-
works, the discriminator and the generator, which participate in a zero-sum
game to achieve Nash equilibrium. The objective of the two networks is different
from each other but the overall goal of the algorithm is to generate data samples
that conform to a probability distribution pg which is similar to the true data
probability distribution ptrue. The generator tries to fool the discriminator by
forcing it to classify the generated samples as real, while the discriminator tries
to correctly classify such samples. More information about the GAN working
and architecture can be found in [3,9].

GAN Training. When actually training the model, the loss function used
is Binary Crossentropy [20] which calculates the difference in the probability
distribution of true samples, labelled 1, and false samples labelled 0. The weights
of both models are updated independently of each other using two loss functions
on the models parameterized by their weights.

More details about the GAN training algorithm can be found in [13].

GAN Limitations. Although GANs excel in learning complex data distribu-
tions, there exist major challenges in training GANs, such as mode collapse,
vanishing gradient, internal covariate shift, failure mode, and more. To over-
come these problems, several novel variants and architectures of GANs have
been researched and implemented. The work in [15] and [19] provide a com-
prehensive analysis of the challenges in GAN training and the advantages and
disadvantages of various GAN architectures.

2.4 Wasserstein GAN

Wasserstein GAN (WGAN) [4] was first proposed in 2017 by M. Arjovsky et
al. as an improvement over the vanilla GAN. They first published a paper [3]
highlighting the important theoretical implications of GAN training as proposed
by Ian J. Goodfellow et al. [9], and outlined the mathematical reasoning and
proofs for some of the issues surrounding GAN training.

WGAN Working. The main idea of the WGAN is that instead of optimizing
the JS Divergence between two probability distributions, the use of a different
distance metric as the loss function is proposed, that is, the Wasserstein distance
or Earth-Mover distance. The Wasserstein distance is referred to as the Earth-
Mover distance because it can be thought of as the minimum amount of energy
cost required to transform the shape of a pile of dirt representing a probability
distribution into the shape of another. The dirt is “transported” from one pile to
another, and the cost is calculated as the mass moved times the distance. More
details about this approach can be found in [4].

More details about the WGAN training algorithm can be found in [4].

Fake Malware Generation Using HMM and GAN 7

WGAN Limitations. The main drawback of the WGAN algorithm is the way
K-Lipschitz continuity is enforced [4]. Clipping the weights into a compact space
[−c, c] is not a very good way to enforce this constraint. It can lead to the model
failing to learn more complex distributions and even saturating before reaching
optimality. In fact, if the clipping parameter is large, it takes too much time
for the weights to reach their limit and, thus, jeopardizing the training. On the
other hand, if the clipping is small, we need to take in consideration the vanishing
gradients problem.

2.5 WGAN with Gradient Penalty

Wasserstein GAN with Gradient Penalty (WGAN-GP) was first introduced in
2017 by Ishaan Gulrajani et al. [10]. The main objective of this architecture is
to overcome the drawback of WGAN which is the way Lipschitz continuity is
enforced.

To solve this, the authors in [10] propose an improved WGAN training
method. They present Corollary 1 in [10] which claims that the optimal critic in
WGAN has gradient norm equal to the value 1 and it is 1-Lipschitz continuous.
Using this fact, a “penalty” is imposed on the critic if its gradient’s norm devi-
ates from the value 1. The training algorithm used in WGAN-GP is very similar
to WGAN’s algorithm minus the weight clipping part and the addition of the
gradient penalty [10].

More details about the WGAN-GP training algorithm can be found in [10].

3 Methodology

In this Section, we detail our fake malware generation pipeline, feature extrac-
tion for fake sample evaluation, and the machine learning pipeline for our exper-
iments.

3.1 Fake Malware Using HMM

The methodology adopted for generating fake malware samples using HMM is
explained here:

1. Create observation sequence O of length T = 30, 000 for each family.
2. Train 21 HMM models for each malware family with T = 30, 000, N = 2 and

M ∈ {20, 21, ..., 40}, where M is taken as top M − 1 most frequent opcodes
and every opcode not present in top M − 1 was marked as “other” or M .
Section 4 explains why we chose these values for M .

3. Score these 21 HMM models for each family by testing them against samples
from the other four families and benign dataset.

4. Select the best value of M , say M ′, from these models for each family and
train 10 HMM models by setting N = M = M ′.

5. Score the 10 models for each family.

8 H. Trehan and F. Di Troia

6. Select the two highest scoring models from Step 4 and use their γ matrix to
find out the most likely state sequence of the HMM model. The most likely
state sequence represents the fake samples.

7. Score and evaluate these fake samples as explained in Sect. 3.4.

3.2 Fake Malware Using GAN

We use three different GAN architectures to generate fake samples, that is,
GAN, Wasserstein GAN (WGAN), and Wasserstein GAN with Gradient Penalty
(WGAN-GP). The methodology adopted for generating fake malware samples
using GANs is explained here:

1. Train GAN models for each family, and save generator models at an interval
of 200 epochs for GAN and 500 for both WGAN and WGAN-GP.

2. Generate fake samples in batches of 32 using the saved generative models.
3. Evaluate them against real data samples by simply testing the integer vectors

(Sect. 3.3) representing real samples and fake samples.
4. Repeat Step 4 five times and then average the results.
5. Select the best scoring model as the final generative model for each family,

giving a total of five generator models per architecture.
6. The models selected in Step 6 are used to generate fake samples for each

family and the samples are evaluated as explained in Sect. 3.4.
7. Repeat Steps 2–6 for WGAN and WGAN-GP architectures.

3.3 Feature Extraction

In this Section we explain our feature extraction process and the types of features
used for evaluation. We extract three different features from the real and fake
samples to train our machine learning models.

– Normal integer vector conversion of opcodes: We simply map the
mnemonic opcodes to integers.

– Word2Vec: We treat the real samples as our corpus and create Word2Vec
embedding of length 100 for each opcode. We use this embedding to create
a vector for each data sample by simply summing up the embedding vector
of each opcode in a given sample. Then, we normalize it by the length of the
sample.

– n-grams: We create bigrams (n = 2) from the real dataset and find the top
20 bigrams based on the frequency. Then, a vector of length 20 is created for
each data sample which contains the frequency count of these 20 bigrams. We
treat these vectors as our bigram features.

3.4 Evaluation

We evaluated all the HMM models by creating the Receiver Operating Charac-
teristic (ROC) curve for each model and calculating the Area Under the Curve

Fake Malware Generation Using HMM and GAN 9

(AUC). For GAN, instead, we used a different approach because the most com-
mon application for GANs is in the image domain. However, we generate opcode
sequences which can not be inspected visually. Hence, to evaluate our GAN mod-
els, we saved the generative model at every 200 epochs for GAN and 500 epochs
for WGAN and WGAN-GP. From all the saved generative models we gener-
ated fake samples and classified them against real samples using Random Forest
classifier. The model, identified by the epoch number, that gave the lowest clas-
sification results was chosen as the best generative model from that architecture,
and then used for evaluation as explained in Sect. 4.

Accuracy, Precision and Recall. To score and evaluate the quality of the
fake samples (HMM and GANs), we trained four machine learning models with
each of the three features (Word2Vec, Bigram, integer vectors) and calculated
the Accuracy, Precision, and Recall for each model. The process is explained
here:

1. Randomly sample 100 real data samples and take 100 fake samples.
2. Extract features from real and fake samples as mentioned in Sect. 3.3.
3. Fit four different models, namely SVM, Random Forest, Naive Bayes classi-

fier, and k -Nearest Neighbor on the training data using 5-fold cross validation.
4. Calculate the accuracy, precision and recall for each split done by 5-fold cross

validation and use the average as the final result.

4 Implementation

In this Section, we give a detailed explanation of our dataset and the config-
uration of our HMM models, the different GAN approaches, and the machine
learning techniques implemented for evaluation of our fake samples.

4.1 Dataset

Our dataset consists of five malware families and a benign dataset. Each malware
family has over 1000 samples and the benign dataset has over 700 samples,
both containing mnemonic opcode sequences. To build such dataset, we began
with the Malicia dataset [21] which has over 50 malware families, and selected
WinWebSec and Zbot families since these two has more than 1000 samples each.
The rest of the three families were collected from VirusShare [24]. This dataset
has over 120,000 malware executables and it is around 100 Gigabytes in size,
from which we selected Renos, VBInject, and OnLineGames families.

We used objdump which is a command line program part of the GNU Binary
Utilities library for Unix-like operating systems. This program is used to dis-
assemble executables into Assembly code and, hence, to extract the mnemonic
opcodes. Specifically, such code is processed via a Python script to remove all
the unnecessary information such as registers, labels, and addresses, to obtain
sequences containing only the opcodes found in the code. A summary of our
dataset along with each malware family’s type is given in Table 1.

10 H. Trehan and F. Di Troia

4.2 HMM Implementation

The HMM algorithm was implemented following the algorithm given in [30].
We wrote the code in C++, with the addition of an external Python script to
preprocess our data and create the observation sequence O of length T = 30, 000.
We concatenated the mnemonic opcodes from different samples of a family until
we reached a length of 30, 000. This was done for all five families in our dataset.

Table 1. Dataset summary

Malware family Type Samples

Benign Benign samples 706

OnLineGames Password stealer 1513

Renos Trojan Downloader 1568

VBInject Worm 2694

WinWebSec Rogue 4360

Zbot Password stealer 2136

The number of unique opcodes for each family was very high and setting M
to such large values makes training of HMM models computationally infeasible.
Thus, we experimented with selecting the top n most frequent opcodes from the
observation sequence, where n ∈ {20, 21, ..., 40}. The value n is represented as
the parameter M in HMM, and its optimal value for each family served as the
dimensions of our HMM model in the next set of experiments (N = M = M ′).

Afterwards, we solved Problem 2 of HMM to find the most likely state
sequence which will act as our fake malware samples generated using HMM.
For each family, our model dimensions were N × M , where N = M = M ′ and
M ′ was the best value of M for each individual family.

We trained ten different HMM models, each with 5000 random restarts for
each malware family. All ten of these models were scored the same way as
explained above, using 500 true samples and 500 false samples. Out of these
ten models, we selected the two best ones with the highest AUC value. The
γ matrix from these two models was used to find the most likely hidden state
sequence. Each model gives us a sequence of 30,000 length. Finally, we divided
this sequence into 50 “fake” samples of length 600 each. This gives us a total of
100 fake samples per family.

4.3 GAN Implementation

We implemented all three GAN architectures in Python using TensorFlow and
Keras with TensorFlow backend. For GAN, we used Adam optimizer with the
following parameters:

Adam(lr = 0.0003, β1 = 0.5, β2 = 0.99)

Fake Malware Generation Using HMM and GAN 11

These parameters gave the best results and, thus, they were chosen. The loss
function used was Binary Crossentropy as it is equivalent to the loss function
for GAN. The models were trained for 10000 epochs.

For GANs, the use of Batch Normalization [14] layer is recommended as
the training is done using minibatches of data. The variance in the input data
implicitly caused by minibatches slows down training and requires the use of
very small learning rates, otherwise the gradients and weights of layers may
change drastically from minibatch to minibatch. For the discriminator we have
one input layer, two fully connected hidden layers, and an output layer with
just one neuron. The activation function for the output layer is Sigmoid since
we are using Binary Crossentropy loss, and Sigmoid gives a value between [0, 1]
which is interpreted as the score for a sample or the probability. The activation
function for the hidden layers is LeakyReLU. LeakyReLU is recommended over
ReLU because ReLU outputs 0 for all negative inputs which causes vanishing
gradients problem. LeakyReLU has the hyperparameter α which is used to scale
negative outputs. We used α = 0.2 for our experiments. LeakyReLU activation
function is:

f(x) =

{
αx x ≤ 0
x x > 0

(1)

The generator has one input layer, three fully connected hidden layers with
a batch normalization layer after every hidden layer, and finally an output layer
with 600 neurons, which is the length of the opcode sequence we want to gen-
erate. The activation function for hidden layers is, again, LeakyReLU, and for
the output layer we used TanH. We scale all of our inputs between [−1, 1], and
TanH also gives an output between that range, which is what we expect from the
generator. We experimented with different layers for both networks, including
Convolutional 1D layers, and fully connected Dense layers had the best perfor-
mance.

GAN Stabilizing Techniques. We further utilized stabilizing techniques to
improve GAN training. All the techniques are discussed in [25] which was pub-
lished in 2016 by some of the co-authors of the original 2014 paper on GANs [9].
The techniques were Minibatch Discrimination, Label Smoothing, and Label
Switching.

4.4 WGAN Implementation

For WGAN, we used RMSProp optimizer. RMSProp is recommended by the
paper authors in [4] because the training was more stable for RMSProp as com-
pared to Adam which is momentum based. The learning rate chosen is also a
small value:

RMSProp(lr = 0.00001)

12 H. Trehan and F. Di Troia

The architecture of our WGAN is the same for the critic and the generator,
except the input and output layers. We trained each WGAN model for 100, 000
epochs using minibatches of data.

The actual models are compiled and trained separately for the critic and
generator. For the generator, we have the same activation function for hidden
layers (LeakyReLU) and output layer (TanH). For the critic, however, we used no
activation function or used linear activation in the output layer. This approach
allows the loss function to be computed easily when implementing the WGAN
algorithm given in [4]. These layers and networks gave the best result, hence, we
chose these as our final networks.

4.5 Wasserstein Distance

The loss function or the Wasserstein distance between real and fake samples can
be written as follows:

Critic loss = critic’s avg. real samples score - critic’s avg. fake samples score
Generator loss = - critic’s avg. fake samples score

This interpretation is correct because we want the critic network to learn the
K-Lipschitz function that will calculate the Wasserstein distance. We are only
concerned with the output of the function and not actually knowing the func-
tion. Assuming the network has learnt the correct function, we can interpret the
Wasserstein distance as the loss given above.

Since neural networks use stochastic gradient descent they seek to minimize
the loss values. For the generator, minimizing the loss value will mean that the
critic will be encouraged to score the fake samples higher. For example, a score
of 5 on fake samples will mean −5 loss for the generator and a score of 10 will
mean −10 loss. For the critic, in order to minimize the loss, the score for real
samples will be encouraged to be small. This will maximize the distance between
the generated and fake samples and at the same time minimize both losses. This
is implemented simply by using no activation function in the output layer for
the critic and using −1 label for fake samples and +1 for real samples.

4.6 WGAN with Gradient Penalty Implementation

For WGAN with Gradient Penalty, we used Adam optimizer. Unlike WGAN,
momentum based optimizers seem to work well for WGAN-GP. The parameters
for the optimizer were:

Adam(lr = 0.0001, β1 = 0.5, β2 = 0.9)

We trained each WGAN-GP model using minibatches for 100, 000 epochs.
We decided to use Convolutional 1D layers for the models because using fully
connected Dense layers had worse performance as compared to Conv1D layers.
In the critic network, we used three hidden Conv1D layers with 64, 128, and
256 filters and filter size 3. In the generator network, we also used three Conv1D

Fake Malware Generation Using HMM and GAN 13

layers with 64, 32, and 16 filters, and filter size 3. The activation functions for
the hidden Conv1D layers is again LeakyReLU.

The output layer of the generator is a fully connected Dense layer with 600
neurons, and the activation function is again TanH. Similar to WGAN, the
output layer of the critic network has no activation function because we still
need to calculate the Wasserstein loss/distance. The authors in [10] advised
against the use of Batch Normalization in the critic network. They suggested
that, if required, Layer Normalization could be used. We experimented with
Layer Normalization but the performance degraded, hence, we decided not to
implement it. For the generator, we still used Batch Normalization layer.

We used λ = 10, that is, the penalty coefficient, and the parameter n critic =
7, that is, the number of critic iterations per generator iteration. Additionally,
after every 500 epochs, we trained the critic for 100 iterations and, then, updated
the generator. This allows for exact Wasserstein distance calculation instead of
an approximation and, therefore, the generator receives the correct gradient
updates to converge properly.

5 Results and Discussion

In this Section, we discuss and present the results of our experiments.

5.1 HMM Results

The first set of experiments were conducted to determine the optimal value of M
for each family. Then next set of experiments were conducted to train the best
HMM models which were used to generate fake malware samples. The summary
of the results and the best value of M chosen for each family can be found in [33].

For HMM models to generate fake samples by solving Problem 2, we fixed
the dimensions as N = M , where M is the best value for each family.

Our next experiments consisted of training ten different HMM models with
dimensions as mentioned above and choose the two best models out of ten. We
chose the two highest scoring models and calculated their most likely hidden
state sequence using the γ matrix from the models. After breaking the two γ
matrices of 30,000 length each into 100 samples of length 600 each, we tested
these fake samples against real samples as explained in Sects. 3.3, 3.4. Due to
low accuracy, precision, and recall scores, the model was not able to differentiate
between real and fake samples. Results from each of the four algorithms are
given in the following Section.

HMM Classification Results. We first performed hyperparameter tuning for
the four machine learning algorithms and fixed the best parameters for the rest
of the experiments.

1. SVM: Grid search on the values of C, kernel, and degree with ranges:
C ∈ {1, 2, . . . , 10}, kernel ∈ {rbf, poly, linear}, and degree ∈ {2, 3, 4, 5}.

14 H. Trehan and F. Di Troia

We found that polynomial kernels were overfitting the data, hence, the final
parameters for SVM were C = 5 and kernel = rbf .

2. Näıve Bayes: No hyperparameter tuning required for Näıve Bayes classifier.
3. Random Forest: Grid search on the number of decision trees to use, and

maximum depth of trees, with ranges: number of trees ∈ {10, 20, . . . , 80}, max
depth of trees ∈ {2, 3, . . . , 10}. We found that using 50 decision trees with
max depth of 5 performed best without overfitting the real malware samples.

4. k-NN: Grid search on the number of neighbors to consider (k) with range:
k ∈ {4, 5, . . . , 20}. The value k = 8 worked well, and the distance metric
chosen was Euclidean.

We used 5-fold cross validation and the scores given are the average scores from
5-fold cross validation. By using Word2Vec features, SVM, Random Forest, and
k -NN classifiers, we were able to differentiate between real and fake samples
efficiently. Especially SVM with accuracy, precision, and recall equal to 1.00 for
all the families, except Zbot with 0.97, 0.99, and 0.95, respectively. However,
Näıve Bayes classifier had low recall rates for Zbot (0.73) and OnLineGames
(0.76). We attribute this result to the ineffectiveness of the classifier rather than
the quality of fake samples.

When Bigram features were applied, all four classifiers were able to differen-
tiate between real and fake samples very effectively with accuracy, precision, and
recall in between 0.97 and 1.00, with the only exception of OnLineGame with
accuracy and precision rates equal to 0.96 and 0.93 when Näıve Bayes classifier
and k -NN were used.

Finally, by using integer vectors, the metrics rates were less consistent, vary-
ing between 0.59 and 1.00, with particularly poor results when Näıve Bayes and
k -NN classifiers were used. We attribute these low scores to integer vectors being
a weaker feature representation for the data.

5.2 GAN Results

We experimented with the stabilizing techniques mentioned in Sect. 4.3.
Although the training stabilized across all five families using these techniques,
the results improved for Zbot, Renos, and VBInject but got worse for WinWeb-
Sec and OnLineGames. This is a common phenomenon when training GANs.
The loss values for the discriminator and generator do not necessarily indicate
or correspond to the model’s performance or quality of the generated samples.
Fake samples were generated using the best chosen models in batches of 32 since
that was the batch size during training. Generating samples in same batch sizes
as the training size, generally, gives better results.

We used the same hyperparameters as discussed in Sect. 5.1, and tested the
fake samples using all three features mentioned above.

Using Word2Vec and Bigram features, the scores for all four families dipped
a little as compared to the HMM results. SVM and Random Forest reached
accuracy, precision, and recall above 0.90 for these two features, except for
OnLineGames with 0.88 precision with Random Forest. Low precision rate means

Fake Malware Generation Using HMM and GAN 15

high false positive rate which was the most desirable result for us. Näıve Bayes
had low overall scores for Word2Vec and Bigram features on account of it being a
weaker classifier. Interestingly, k -NN obtained the lowest overall scores for these
two features. This can be attributed to the way k -NN algorithm works and that
the generated data distribution is slightly closer to the real data distribution as
compared to HMM fake samples.

For integer vectors, we found that all four classifiers were not able to effec-
tively differentiate between real and fake samples. As seen with the previous
experiments, integer vectors are a weaker feature representation but the dif-
ference in results between HMM integer vector classification and GAN integer
vector classification does suggest that the GAN models were able to perform
better than HMM. For k -NN and Renos, the precision and recall are 0%, which
means that the model was not able to distinguish between fake and real at all
based on just the integer vectors.

5.3 WGAN Results

Unlike GAN, the loss values when training WGAN gave reliable information
about the model’s progress and convergence. Hence, for WGAN and WGAN-GP,
we first discussed the loss curves and convergence and, then, gave the classifica-
tion results for the four machine learning techniques.

Convergence and Loss Values. The loss value for the critic and the gen-
erator converged very fast in the first few epochs and, then, stayed the same
for the remaining epochs. We tried a lot of different hyperparameters, such as
changing the value of “n critic”, different clipping value, and different learning
rates. Even changing the networks entirely and using Convolutional 1D instead
of fully connected Dense layers did not help. The value of loss did not change
after the first few epochs. This shows that clipping the weights is a major draw-
back in WGAN (Sect. 2.4) as it saturates the model, and the weights do not
update after a point. Any change in weight is nullified by the clipping step.
Interestingly, all four families converged to the same loss value for the critic and
generator. The clipping step stops the training since the weights can not change
beyond the clipping range and do not respond to the gradient updates that are
back propagated through the network.

WGAN Classification Results. The best generative model from WGANs
was chosen independently for each family. We used the same hyperparameters
as discussed in Sect. 5.1, and tested the fake samples using all three features in
batches of 32.

Using Word2Vec and Bigram features, SVM and Random Forest were able to
effectively differentiate between real and fake samples generated by WGAN, with
accuracy, precision, and recall ratios between 0.96 and 1.00 for all the families.
Interestingly, even Näıve Bayes and k -NN performed well, even though we found
from the previous results that they were the two weaker classifiers. This means

16 H. Trehan and F. Di Troia

that the WGAN fake samples were of inferior quality compared to HMM and
GAN.

Using integer vectors, the results for SVM and Random Forest were high (in
between 0.85 and 1.00), but not as effective as the ones obtained with Word2Vec
and Bigram features. Again, integer vectors proved to be a weak feature repre-
sentation that makes classification hard. For k -NN and Naïıve Bayes with integer
vectors, we obtained extremely low recall rates for some families, such as 0.25
for VBInject, 0.37 for OnLineGames, and 0.53 for Renos. However, these low
recall rates were accompanied by high precision rates of almost 1.00 across all
the families.

5.4 Wasserstein GAN with Gradient Penalty

As with WGAN, the critic’s loss value helps monitor the model’s performance
for WGAN-GP. The WGAN-GP paper [10] mentions that the the critic’s loss
should start at a large number and then converge towards zero. The generator’s
loss is not very insightful and can fluctuate. Thus, first we discuss the loss curves
and then give the classification results.

Convergence and Loss Curves. The loss curves for all five families showed a
similar shape, with the start value for the critic that started at around −28 and
then slowly converged to around −4. This is the expected behavior and means
that our model was training properly.

The critic loss curves for the other four families also showed similar shapes
but with slightly different values of convergence. Training the models for more
epochs, around 200,000–300,000, would be ideal for full convergence.

The loss curve for the generator was not very informative about the model’s
performance and training, as the loss values kept oscillating.

WGAN-GP Classification Results. The best generative model from
WGAN-GPs was chosen independently for each family. We used the same hyper-
parameters as discussed in Sect. 5.1, and tested the fake samples using all three
features in batches of 32.

Using Word2Vec and Bigram features, all four machine learning techniques
were not able to give very good classification results. Compared to WGAN and
GAN, the metrics rates were much lower (in between 0.77 and 1.00). This means
that the quality of the fake samples generated by WGAN-GP generative models
is better as compared to WGAN and GAN. The most surprising result is the
dip in Random Forest’s classification. Random Forest is one of the better clas-
sifiers out of the four classifiers that we used. For Zbot, Renos, and VBInject
the overall accuracy for Random Forest was around 0.70. For WinWebSec and
OnLineGames, the accuracy was also low at 0.82 and 0.81 for Word2Vec, respec-
tively, and even lower for Bigram features at 0.81 and 0.74. This is a promising
result since we saw that classifying real and fake samples using these two features
was very effective, getting high accuracy and precision scores previously.

Fake Malware Generation Using HMM and GAN 17

Using integer vector features the scores for SVM, Näıve Bayes, and k -NN
classifiers were very low (in between 0.00 and 0.90). These three models were
not able to distinguish between real and fake samples just based on the integer
representation. This was confirmed by accuracy scores in range of 0.50 and 0.60,
and even lower for Näıve Bayes at less than 0.50 for WinWebSec, Zbot, Renos,
and VBInject families. Random Forest did a better job as compared to the other
three techniques but the accuracy was still around 0.70 for WinWebSec, Zbot,
Renos, and around 0.60 for OnLineGames and VBInject. This again showed that
the quality of fake samples generated by WGAN-GP generative model was much
better than the other GAN architectures and HMM.

5.5 Comparison of the Results

The complete results for the WGAN-GP experiments can be found in [33]. In
Fig. 1, we compare the four different approaches by computing the average accu-
racy per malware family over the three different embeddings. We can see that
the sequences generated by HMM and WGAN techniques are the ones more eas-
ily detected, that is, their generated fake malware is not confused with the real
malware data. GAN obtains better results but they are not far from the previ-
ous ones. WGAN-GP, on the other hand, is the approach that clearly shows its
potential in confusing the classifiers. In fact, the average accuracy obtained with
the four classifiers is consistently poor. This shows the difficulty in detecting the
fake WGAN-GP data from the real one.

Fig. 1. Comparison of the results

18 H. Trehan and F. Di Troia

6 Conclusion and Future Work

In this paper, we aimed at utilizing different generative modelling techniques to
generate fake malware mnemonic opcode sequences. We utilized four different
techniques, that is, Hidden Markov Models (HMMs), Generative Adversarial
Networks (GANs), Wasserstein Generative Adversarial Networks (WGANs), and
Wasserstein Generative Adversarial Networks with Gradient Penalty (WGAN-
GP).

We used three different feature extraction techniques to generate the malware
opcode sequences, namely, Word2Vec, Bigram, and integer vectors. Classification
results showed that Word2Vec and Bigram features gave a better representation
of the malware data since for all four generative models the classification results
were superior. Integer vectors, on the other hand, do not capture the true dis-
tribution of the real malware samples.

Fake samples generated by HMM were quite effectively distinguishable by
SVM, Random Forest, and k -NN classifiers. Especially by using Word2Vec and
Bigram features, these three classifiers obtained accuracy above 0.90 for all five
of the tested families. Näıve Bayes classifier, instead, had much lower scores with
any of the three feature extraction techniques.

Using generative models from GAN, we saw a slight improvement in the
results with the fake malware being confused in larger number with the legitimate
ones. For WGAN, the results were instead not promising. In fact, the classifiers
were able to identify the fake malware samples with scores close to the ones
obtained in the HMM experiments. This was attributed to the weight clipping
step in the WGAN algorithm, that inhibits the critic network’s ability to properly
learn the real data’s representation. However, for WGAN-GP we got the best
results. We saw that the classification outcome was now relatively poor, even
when the more informative Word2Vec and Bigram features were applied. In fact,
for all four classifiers, we obtained accuracy in between 0.70 and 0.82. For integer
vectors the results were even more promising, as the accuracy score dipped to
around 0.50 and 0.60.

We concluded that using WGAN-GP algorithm is the best approach to suc-
cessfully generate fake malware opcode sequences such that they appear closer
to the real data distribution. This serves as a proof of concept that GAN algo-
rithms, in particular WGAN-GP, can be successfully applied to generate malware
opcode sequences, and not only in generating image data.

6.1 Future Work

There are a lot of different directions that this paper can be expanded in. For
example, the dataset can be enlarged and the experiments can consider a larger
number of malware families. Furthermore, instead of training individual GAN
models for each family, a multi-class generative model can be considered. Another
possible application is to use trained generative models to boost or augment the
datasets for families that have a limited number of data samples. Other GAN
variants could also be considered and compared, such as EBGAN and LSGAN.

Fake Malware Generation Using HMM and GAN 19

Finally, experiments with LSTM-GAN can be conducted since stateful networks
can provide interesting results.

References

1. Ahmadi, M., Ulyanov, D., Semenov, S., Trofimov, M., Giacinto, G.: Novel fea-
ture extraction, selection and fusion for effective malware family classification. In:
Proceedings of the Sixth ACM Conference on Data and Application Security and
Privacy, pp. 183–194 (2016)

2. Annachhatre, C., Austin, T.H., Stamp, M.: Hidden Markov models for malware
classification. J. Comput. Virol. Hacking Tech. 11(2), 59–73 (2014). https://doi.
org/10.1007/s11416-014-0215-x

3. Arjovsky, M., Bottou, L.: Towards principled methods for training generative
adversarial networks (2017)

4. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein Gan (2017)
5. Biau, G., Scornet, E.: A random forest guided tour. TEST Official J. Spanish Soc.

Stat. Oper. Res., 197–227 (2016). https://doi.org/10.1007/s11749-016-0481-7
6. Burks, R., Islam, K.A., Lu, Y., Li, J.: Data augmentation with generative mod-

els for improved malware detection: a comparative study*. In: 2019 IEEE 10th
Annual Ubiquitous Computing, Electronics Mobile Communication Conference
(UEMCON), pp. 0660–0665 (2019). https://doi.org/10.1109/UEMCON47517.
2019.8993085

7. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20, 273–297 (1995)
8. Gibert, D., Mateu, C., Planes, J.: The rise of machine learning for detection and

classification of malware: research developments, trends and challenges. J. Network
Comput. Appl. 153, 102526 (2020)

9. Goodfellow, I.J., et al.: Generative adversarial networks (2014)
10. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.: Improved

training of wasserstein GANs (2017)
11. Hu, W., Tan, Y.: Generating adversarial malware examples for black-box attacks

based on Gan (2017)
12. Huang, L., Joseph, A.D., Nelson, B., Rubinstein, B.I., Tygar, J.D.: Adversarial

machine learning. In: Proceedings of the 4th ACM Workshop on Security and
Artificial Intelligence, pp. 43–58 (2011)

13. Hui, J.: Gan - what is generative adversarial networks GAN? Decem-
ber 2019. https://jonathan-hui.medium.com/gan-whats-generative-adversarial-
networks-and-its-application-f39ed278ef09

14. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by
reducing internal covariate shift (2015)

15. Jabbar, A., Li, X., Omar, B.: A survey on generative adversarial networks: Variants,
applications, and training. ArXiv abs/2006.05132 (2020)

16. Jain, M.: Image-based malware classification with convolutional neural networks
and extreme learning machines, December 2019. https://scholarworks.sjsu.edu/
etd projects/900/

17. Krogh, A.: An introduction to hidden Markov models for biological sequences.
In: Salzberg, S., Searls, D., Kasif, S. (eds.) Computational Methods in Molecular
Biology, pp. 45–63. Elsevier, London (1998)

18. Lu, Y., Li, J.: Generative adversarial network for improving deep learning based
malware classification. In: 2019 Winter Simulation Conference (WSC), pp. 584–593
(2019). https://doi.org/10.1109/WSC40007.2019.9004932

https://doi.org/10.1007/s11416-014-0215-x
https://doi.org/10.1007/s11416-014-0215-x
https://doi.org/10.1007/s11749-016-0481-7
https://doi.org/10.1109/UEMCON47517.2019.8993085
https://doi.org/10.1109/UEMCON47517.2019.8993085
https://jonathan-hui.medium.com/gan-whats-generative-adversarial-networks-and-its-application-f39ed278ef09
https://jonathan-hui.medium.com/gan-whats-generative-adversarial-networks-and-its-application-f39ed278ef09
https://scholarworks.sjsu.edu/etd_projects/900/
https://scholarworks.sjsu.edu/etd_projects/900/
https://doi.org/10.1109/WSC40007.2019.9004932

20 H. Trehan and F. Di Troia

19. Pavan Kumar, M.R., Jayagopal, P.: Generative adversarial networks: a survey on
applications and challenges. Int. J. Multimedia Inf. Retrieval 10(1), 1–24 (2020).
https://doi.org/10.1007/s13735-020-00196-w

20. Mannor, S., Peleg, D., Rubinstein, R.: The cross entropy method for classification.
In: Proceedings of the 22nd International Conference on Machine Learning, ICML
2005, pp. 561–568. Association for Computing Machinery (2005). https://doi.org/
10.1145/1102351.1102422

21. Nappa, A., Rafique, M.Z., Caballero, J.: The MALICIA dataset: identification and
analysis of drive-by download operations. Int. J. Inf. Secur. 14(1), 15–33 (2015)

22. O’Kane, P., Sezer, S., McLaughlin, K.: Obfuscation: the hidden malware. IEEE
Secur. Priv. 9(5), 41–47 (2011). https://doi.org/10.1109/MSP.2011.98

23. Rabiner, L.: A tutorial on hidden Markov models and selected applications in
speech recognition. Proc. IEEE 77(2), 257–286 (1989). https://doi.org/10.1109/5.
18626

24. Roberts, J.M.: VirusShare.com - Because Sharing is Caring (2011). http://www.
virusshare.com

25. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.:
Improved techniques for training GANs (2016)

26. Santos, I., Penya, Y.K., Devesa, J., Bringas, P.G.: N-grams-based file signatures
for malware detection. ICEIS 2(9), 317–320 (2009)

27. Sawla, S.: Introduction to Naïıve Bayes for classification (2018). https://medium.
com/@srishtisawla/introduction-to-naive-bayes-for-classification-baefefb43a2d

28. Scikit-learn: K Neighbors Classifier. https://scikit-learn.org/stable/modules/
generated/sklearn.neighbors.KNeighborsClassifier.html. Accessed 09 May 2021

29. SonicWall: Sonicwall 2020 Cyber Threat Report (2020). https://www.sonicwall.
com/news/2020-sonicwall-cyber-threat-report

30. Stamp, M.: A revealing introduction to hidden Markov models. Science, 1–20
(2004)

31. Stamp, M.: Introduction to Machine Learning with Applications in Information
Security, 1st edn. Chapman & Hall/CRC (2017)

32. Sun, Z., et al.: An opcode sequences analysis method for unknown malware detec-
tion. In: ICGDA 2019, pp. 15–19. Association for Computing Machinery (2019)

33. Trehan, H.: Fake malware opcodes generation using HMM and different GAN algo-
rithms. Master’s thesis, San Jose State University (2021). https://scholarworks.
sjsu.edu/etd projects/1001/

34. Yajamanam, S., Selvin, V.R.S., Di Troia, F., Stamp, M.: Deep learning versus gist
descriptors for image-based malware classification. In: ICISSP, pp. 553–561 (2018)

https://doi.org/10.1007/s13735-020-00196-w
https://doi.org/10.1145/1102351.1102422
https://doi.org/10.1145/1102351.1102422
https://doi.org/10.1109/MSP.2011.98
https://doi.org/10.1109/5.18626
https://doi.org/10.1109/5.18626
http://www.virusshare.com
http://www.virusshare.com
https://medium.com/@srishtisawla/introduction-to-naive-bayes-for-classification-baefefb43a2d
https://medium.com/@srishtisawla/introduction-to-naive-bayes-for-classification-baefefb43a2d
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://www.sonicwall.com/news/2020-sonicwall-cyber-threat-report
https://www.sonicwall.com/news/2020-sonicwall-cyber-threat-report
https://scholarworks.sjsu.edu/etd_projects/1001/
https://scholarworks.sjsu.edu/etd_projects/1001/

Fake Malware Generation Using HMM and GAN 21

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Security Threats in Cloud Rooted
from Machine Learning-Based Resource

Provisioning Systems

Hosein Mohammadi Makrani1(B) , Hossein Sayadi2 , Najmeh Nazari1 ,
and Houman Homayoun1

1 University of California, Davis, USA
{hmakrani,nnazaribavarsad,hhomayoun}@ucdavis.edu

2 California State University, Long Beach, USA
hossein.sayadi@csulb.edu

Abstract. Resources provisioning on the cloud is problematic due to het-
erogeneous resources and diverse applications. The complexity of such
tasks can be reduced with the aid of Machine Learning. Researchers have
found, however, that machine learning poses new threats such as adver-
sarial attacks. Based on our investigation, we found that adversarial ML
can target resource provisioning systems (RPS) to perform distributed
attacks. Our work proposes a fake trace generator (FTG), which can be
wrapped around an adversary kernel to avoid detection by the RPS and to
enable the adversary to get co-located with the victim’s virtual machine.

Keywords: Machine-learning · Cloud · Resource-provisioning

1 Introduction

Due to the rise of social media, Internet-of-Things (IoT), and multimedia, the
volume of data has increased continuously, resulting in an overwhelming amount
of data known as big data. In order to efficiently process such massive data, scale-
out architecture has gained interest as a promising solution that is designed to
provide a massively scalable computer architecture. Recent improvements in
the networking, storage, energy-efficiency and infrastructure management have
made cloud (the best example of scale-out architecture) a preferable approach
to respond to the new computing challenges.

A resource provisioning system provides various services including resource
efficiency [11], security, fault tolerance, and monitoring to achieve the performance
goals while maximizing the utilization of available resources [10] in the cloud. The
latest recourse provisioning systems, which they were successful to significantly
improve the utilization, used machine learning techniques to overcome the chal-
lenge of diversity of applications and heterogeneity of resources in the cloud.

RPSs routinely schedule multiple applications from multiple users on the
same physical hosts to increase efficiency, in a way that applications have min-
imum impact on each other’s performance. Moreover, a recent work proposed
c© Springer Nature Switzerland AG 2022
S.-Y. Chang et al. (Eds.): SVCC 2021, CCIS 1536, pp. 22–32, 2022.
https://doi.org/10.1007/978-3-030-96057-5_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-96057-5_2&domain=pdf
http://orcid.org/0000-0002-5088-8728
http://orcid.org/0000-0001-6423-0145
http://orcid.org/0000-0003-3094-9439
http://orcid.org/0000-0001-8904-4699
https://doi.org/10.1007/978-3-030-96057-5_2

Security Threats in Cloud Rooted from ML-Based RPSs 23

to exploit information used by resource provisioning systems for scheduling pur-
poses, for detecting an adversary VM by its micro-architectural trace and behav-
ior. In this way, they are actually adding another line of defense, this time in the
scheduling phase, against attackers.

On the other hand, the interference on shared resources from multi-tenancy
can lead to security and privacy vulnerabilities. Interference may leak important
information ranging from a service’s placement to confidential data, like private
keys [3]. This has prompted significant work on distributed side-channel [9] and
distributed denial of service attacks (DDoS) [6], data leakage exploitations [22],
and attacks that pinpoint target VMs in a cloud system [19]. However, none
of the above attacks targeted the resource provisioning system by itself to use
it as a new point of vulnerability and a platform for their attacks. Most of
those attacks leverage the lack of strictly enforced resource isolation between
co-scheduled instances and the naming conventions cloud frameworks use for
machines to extract confidential information from victim applications, such as
encryption keys.

In this work, we show how utilizing machine learning in resource provisioning
systems can become a blind spot and weakness to be exploited by adversaries
for planning an attack. Despite the machine learning systems being deployed
in numerous applications and shown robustness against random noises [18], the
exposed vulnerabilities have shown that the outcome of ML models can be mod-
ified or controlled by adding specially crafted perturbations to the input data,
often referred to as Adversarial samples. A plethora of works on adversarial
attacks exists, focusing specifically on computer vision applications, where the
number of features is often large. Recently, a few works on crafting adversarial
traces are as well proposed [12].

We argue that the adversarial samples in ML can be leveraged to impose
security risk and manipulate today’s ML-based RPSs by reverse engineering the
ML models from the performance and utilization data these systems generate.
We show an example (DDoS attack) to how an adversary can bypass the instance
initialization phase of RPS and get co-located by victims with high probability.
We also will show how it is possible to disguise the malicious behavior of the
adversary’s VM and still remain on the same host with the victim and avoid the
migration. To create such a fake trace generator, we use the concept presented
in [12] for the adversarial sample generation in machine learning. By reverse
engineer the resource provisioning system, we can create an adversarial sample
for the adversary’s application trace. We run FTG as a separate thread inside
the adversarial VM and by expecting the transferability of such an attack, we
improve the effectiveness of distributed attacks.

2 Security Threats

We show that ML solutions hides security vulnerabilities, since it enables an
adversary to extract information about an application’s type and characteristics.
An adversarial VM has the goal of disguising as Friendly VM to determine the

24 H. M. Makrani et al.

nature and characteristics of any applications co-scheduled on the same physical
host, and negatively impact their behavior.

2.1 Threat Model

Our work focuses on IaaS providers that offer public clouds to mutually untrust-
ing customers where multiple VMs can be co-located on the same server. VMs
do not have any control over where they are placed, nor do they have any infor-
mation about other VMs on the same physical host. As a result, at this point,
we assume that the resource provisioning system will be neutral with respect to
detection of adversarial virtual machines, which means that it won’t assist such
attacks or employ additional resource isolation techniques to prevent them.

Adversarial VM: Adversary virtual machines are designed to steal infor-
mation or negatively impact the performance of the victims by getting co-located
with them and evading detection mechanisms embedded in resource provisioning
systems.

Friendly VM: One or more applications are run on this virtual machine,
which is scheduled on a physical host. No techniques for preventing detection,
such as obfuscation of memory patterns, are used.

2.2 Distributed Attack

A distributed attack [1] goal is to retrieve secret information, or decrease the per-
formance of computing nodes on a distributed system, where each computing
node processes a part of the overall data. The examples of retrieved information
may be a set of encryption keys that can be used to compromise the function-
ality of the whole distributed system. A distributed attack may also be used to
retrieve information about the cloud infrastructure such as FPGA cartography
and fingerprinting. In the following, we present some characteristics and provide
more details of such attacks.

Definition 1. We can define the distributed attack over a set Mvic of virtualized
instances running in a distributed system S, as a tuple DSCA = (S, Mvic, D,
Mmal, A, CP, EP) where: S is a distributed system; Mvic are the VMs that are
targeted by the attack; D is the distributed dataset to be compromised (partially
or totally); Mmal are malicious VMs, co-located with the victim VMs; A is a set
of local attack techniques (such as side channel [16], denial of service, or resource
freeing attack); CP is a protocol to coordinate the attacker VMs in Mmal; EP
is a protocol to exfiltrate data.

We consider D = d1, ..., dn a dataset to be processed by the distributed
system S = s1, ..., sn implemented on a set of VMs Mvic = mvic1, ...,mvicn on
a virtualized platform. Each component si of S processes data di locally and
runs in its own VM mvici. To perform the distributed attack, the adversary sets
up a number of malicious VMs(at least equal to the number of Mvic) Mmal =
mmal1, ...,mmaln, co-located with the victim instance Mvic. The adversary also
masters a set A = a1, ..., am of local attack techniques, i.e., Flush+Reload.

Security Threats in Cloud Rooted from ML-Based RPSs 25

The objective of a distributed attack is to first attack each component of the
system si running on mvici through mmali running local attack technique aj to
retrieve di. The synchronization between attack instances and a central server
may be performed using a coordination protocol CP . A protocol EP may be
used to control attacking instances remotely, and to send collected information
to a remote server to exfiltrate sensitive data. In the following, we briefly explain
three well-known local attack on a distributed system:

Side Channel Attack. By sharing physical resources like processor caches,
or by using virtualization mechanisms, side-channels may occur due to lack of
enforced isolation. The side channel is a hidden information channel that is
different from the main channel (e.g., network), in that the protection mech-
anisms around the data might not be adequate to prevent security violations.
The purpose of a side channel attack is to exploit a side channel for obtaining
critical information. Side channel attacks can be classified according to the type
of exploited channel. The two most popular types of SCA are timing attacks and
cache-based attacks, where the cache memory of the processor is often exploited
by adversaries.

Denial of Service Attack. The overloading of server resources caused by a
denial of service attack degrades the performance of the victim service. These
attacks can be classified as external or internal (or host-based) in cloud set-
tings specifically. IaaS cloud multi-tenancy allows internal DoS attacks to launch
adversarial programs on the same host as the victim and impact its performance.

Resource Freeing Attack. In addition, resource-freeing attacks (RFAs) hurt
the victim’s performance as well as forcing them to surrender resources to the
adversary [17]. Despite their effectiveness, RFAs require significant compute and
network resources, and are subject to defenses, like live VM migration.

2.3 Attack’s Setting: VM Co-location

An adversarial VM is rarely interested in a random service running on a public
cloud. They need to pinpoint where the target resides in a practical manner to
be able perform DoS, RFA, or SC attacks. This requires a launch strategy and
a mechanism for co-residency detection. The attack is practical if the target is
located with high accuracy, in reasonable time and with modest resource costs.
We show that by black box attack to the RPS’s model and eventually generating
adversarial sample, we can force the RPS to put the Adversarial VM on the
desired host. Once a target VM is located, the adversary can launch RFA, or
DoS attack.

2.4 Locating Physical Hosts Running Victim Instances

In order to accomplish co-residency with the victim instance, an attacker needs
to launch several VMs. This is impractical and not feasible. As side-channel and

26 H. M. Makrani et al.

RFA attacks are local attacks, it is essential that the malicious VMs reside on the
same physical host as the victim VMs. Finding the physical hosts running virtual
machines on which the victims are running is therefore the first and most impor-
tant step. It is important to consider factors such as datacenter region, instance
type, and time interval when aiming for co-residency. Among IaaS clouds, these
variables may vary. The application type is, however, considered an important
factor in placement [21]. Let P (mmali) be the probability of instance mmali to be
co-resident with instance victim mvici. The value of P will be raised by increas-
ing the number of launched attack instances. To make sure that both attacker
and victim VMs achieve coresident placement, the adversary can perform co-
residency detection techniques such as network probing [7]. The attacker can
also use data mining techniques to detect the type and characteristics of a run-
ning application in the victim VM by analyzing interferences introduced in the
different resources to increase the accuracy of co-residency detection.

2.5 Avoidance of Detection and Migration

In virtualized environments, there are several techniques for detecting attacks.
A side-channel attack, for example, would require very fine-grained informa-
tion in order to be detected [15]; this information can primarily be provided by
Hardware Performance Counters (HPCs) [13]. Modern microprocessors contain
a set of special-purpose registers called HPCs that capture hardware events such
as last-level cache (LLC) load misses, branch instructions, branch misses, and
executed instructions while executing an application. Events of this type are
primarily used for analyzing program behavior and are accessible to everyone in
the user space. Detection of abnormalities in computer systems is also based on
these events. We distinguish two different methods of detection: (1) signature
based [14] and (2) threshold-based [2]. The signature-based approach generates a
signature of the attack based on information received from HPCs and compares
the behavior of the system with the generated signature to identify if any mali-
cious activity has been detected. On the other hand, threshold-based approaches
utilize the HPCs trace to flag anomaly resource utilization that goes beyond a
pre-specified threshold.

3 ML Based Resource Provisioning System

Figure 1 shows how a normal ML based RPS works. First, they monitor the
application and extracts its micro architectural information. Then based on the
current behavior and server configuration, they generate a performance model
for the application. By leveraging an optimization techniques and available cost
model, they determine the suitable configuration and host for the application.
In this study we use PARIS [20], a ML based performance model proposed at
Berkeley as a cost aware resource provisioning system.

PARIS uses Random Forest for predicting performance from the application
fingerprint to find the best VM type configuration. To generate the fingerprint

Security Threats in Cloud Rooted from ML-Based RPSs 27

of application, PARIS extracts 20 resource utilization counters spanning the
following broad categories and calls it fingerprint: CPU utilization, Network
utilization, Disk utilization, Memory utilization, and System-level features. On
the other hand, CPU count, core count, core frequency, cache size, RAM per
core, memory bandwidth, storage space, disk speed, and network bandwidth of
the server are the representation of the configuration provisioned by PARIS.

We denote the micro architectural fingerprint and system level information of
an application as Finger print vector. In Eq. (1), fi denotes each architectural
feature.

Finger print = {f1, f2, ..., f20} (1)

configuration parameters of the server platform referred to configuration inputs
is as follow:

Configuration = {c1, c2, ..., c9} (2)

where Configuration is the configuration vector and ci is the value of the ith
configuration parameter (number of sockets, number of cores, core frequency,
cache size, memory capacity, memory frequency, number of memory channel,
storage capacity, storage speed, network bandwidth).

The RPS is responsible to provision Configuration based on Finger print:

Configuration = f(Finger print) (3)

Note that f(Finger print) is just a data model, which means there is no direct
analytical equation to formulate it.

3.1 Reverse Engineering the Model

As mentioned, RPS can be considered as a blackbox (worst-case scenario). In
such cases, we perform a reverse engineering to mimic the functionality of the
RPS. Thus, as a first step to craft adversarial malware, we perform reverse
engineering similar to that proposed in [8].

In order to reverse engineer, we first create a training dataset that comprises
of all types of applications. Nearly 11,000 applications are used in the reverse
engineering process. The Original RPS is fed with all the applications and the
responses are recorded. These responses are utilized to train different ML clas-
sifiers in order to mimic the functionality of the original RPS. Further, it is
tested by comparing the outputs from original RPS response and the reverse
engineered RPS’s response. Reverse engineering is non-trivial as the adversaries
generated on a closely functional model will be highly effective compared to a
weakly generated adversary. To ensure the reverse engineering is performed in
an efficient way, we train multiple ML classifiers and choose the classifier that
yields high accuracy.

28 H. M. Makrani et al.

Table 1. Detailed information of local cluster

Server (Xeon) Freq.

(GHz)

Socket Core Cache

(MB)

Mem.

(GB)

Storage Server type Count

E5-4669 V4 2.2 4 22 55 96 SSD PCIe HPC 2

E5-4667 V4 2.2 4 18 45 64 SSD SATA HPC 2

E5-4650 V4 2.2 4 14 35 32 SSD SATA HPC 2

E5-2690 V4 2.6 2 14 35 512 SSD/HDD Memory opt. 4

E5-2650 V4 2.2 2 12 30 256 SSD/HDD Memory opt. 4

E5-2667 V4 3.2 2 8 25 32 SSD PCIe I/O opt. 4

E5-2643 V4 3.4 1 6 20 32 SSD PCIe I/O opt. 4

E5-2660 V2 2.2 2 10 25 16 HDD General purp. 6

E5-2650 V2 2.6 2 8 20 16 HDD General purp. 6

E5-1630 V4 3.7 1 4 10 8 HDD Power opt. 2

E5-1680 V4 3.4 1 8 20 12 HDD Power opt. 2

E3-1270 V6 3.8 1 4 8 8 HDD Power opt. 2

Fig. 1. ML based resource provisioning system

We perform the data collection in a controlled environment, where all appli-
cations are known. We use a 40-machine cluster (presented in Table 1), and
schedule a total of 120 workloads, including batch analytics in Hadoop and Spark
and latency-critical services, such as webservers, Memcached and Cassandra. For
each application type, there are several different workloads with respect to algo-
rithms, framework versions, datasets, and input load patterns. The training set
is selected to provide sufficient coverage of the space of resource characteristics.
The selected workloads cover the majority of the resource usage space.

We submit all of these applications to RPS. In the beginning, the RPS profiles
the application and extracts the fingerprint. Then, the RPS uses the Random
Forest model to determine an appropriate server configuration. We collect all
the fingerprints and their correspondent configurations generated by the RPS to
shape our dataset.

Security Threats in Cloud Rooted from ML-Based RPSs 29

3.2 Adversarial Sample Generator

Once the reverse engineered RPS is built, it is non-trivial to determine the level
of perturbations that need to be injected into application’s micro architectural
patterns in order to get the desired host configuration. The micro architectural
patterns are perturbed by applying a gradient loss based approach, similar to the
Fast-Gradient Sign Method (FGSM), which is widely used in image processing.
The low complexity and low computation overheads are the benefits of such an
approach. To train our neural network, we use reverse engineered ML RPS i.e.,
neural network with θ as the hyper parameters, x being the input to the model,
and y is the output for a given input x, and L(θ, x, y) be the cost function used
to craft adversarial perturbations. Using the gradient of the cost function of the
neural network, the perturbation required to change the output to the target
configuration is calculated. The adversarial perturbation generated based on the
gradient loss, similar to the FGSM [5] is given by:

xadv = x + ε sign(∇x L(θ, x, y)

where ε is a scaling constant ranging between 0.0 to 1.0 is set to be very small
such that the variation in x(δx) is undetectable. In case of FGSM the input x is
perturbed along each dimension in the direction of gradient by a perturbation
magnitude of ε. Considering a small ε leads to well-disguised adversarial samples
that successfully fool the ML model. In contrast to the images where the number
of features are large, the number of features i.e., micro architectural metrics are
limited, thus the perturbations need to be crafted carefully and also be made sure
it can be generated during runtime by the applications. For instance, a negative
value cannot be generated by an application. Hence, we provided lower bound
on the adversary values. [4] presented how to craft the adversarial application
so as to generate the perturbations during runtime.

3.3 Case Study

To evaluate our proposed approach, we implemented 8 distributed attacks as
follow: SC1: Prime+Probe, SC2: Flush+Reload, SC3: Flush+Flush, SC4: Evict
+ Time, DoS1: increasing latency by saturating the network, DoS2: decreasing
throughput by saturating storage, RFA1: freeing memory resource, and RFA2:
freeing CPU resource. We perform these attacks on 20 unseen victim appli-
cations from different domains (SPEC, Hadoop, Spark, Memcache, and Cas-
sandra). Based on our evaluation, the success rate of being co-located with vic-
tims, evading the detection and migration, and getting the desired outcome from
attack depends on many factors such as victim’s type, the period of monitoring
phase, and amount of perturbation.

We now perform the DoS attack on utilization. If it causes the resource satu-
ration, DoS will be detected and the victim will be migrated to a new machine.
Our cluster supports live migration. Figure 2 compares the tail latency and CPU
utilization with adversarial VM to that of a naive DoS that saturates the CPU

30 H. M. Makrani et al.

through a CPU-intensive task. It shows the adversarial attack does not saturate
the resource and does not cause the migration while still can put pressure on
the victim.

Table 2. Effectiveness of distributed attacks based on application type

SPEC Hadoop Spark Memchahced Cassandra

SC1 *** * ** * **

SC2 *** * * * **

SC3 *** * ** ** *

SC4 *** ** ** * **

DoS1 * * *** *** **

DoS2 * *** * * ***

RFA1 * ** *** *** **

RFA2 *** ** *** *** *

Fig. 2. Latency and utilization with adversarial sample and a naive DoS attack that
saturates memory resources

Table 2 shows the impact of victims’ type on the success rate of each type
of attack. The interesting observation is that there is a meaningful relationship
between the application’s type and the nature of the attack by itself. For instance,
we observe that side-channel attacks are more successful when the cache hit rate
of the victim is low. Similarly, we observed that RFA is more successful when the
resource utilization of the victim is high. One reason is that in such case FTG
can generate a better fake trace to convince the RPS to stay at the current host.
In a case that the difference between the behavior of the adversary kernel and
the victim is high, the FTG has to generate more perturbation and this may
lead to a migration decision by RPS.

4 Conclusions

The proposed adversarial attack on RPS comprises of three phases. Firstly, we
perform reverse engineering to build a ML RPS that mimics the functionality

Security Threats in Cloud Rooted from ML-Based RPSs 31

of the original RPS. Further, with the aid of adversarial sample generator, the
micro architectural pattern required to obtain the target server configuration is
determined. Lastly, this crafted adversarial micro architectural pattern generator
is spawned as separate thread, leading to overall pattern close to the victim VM’s
pattern, and eventually causes to be co-located with it. This means without
saturating the resources or act as an abnormal application, by generating only
small noise in applications behavior, we can force RPS to co-locate the adversary
VM with victim and also fool the RPS to change the resources required for the
targeted VM and impacts on its behavior. The goal of this study is to encourage
public cloud providers to implement more stringent isolation solutions for their
platforms and system engineers develop robust RPSs to deliver predictability
and security at high utilization levels.

References

1. Bazm, M.-M., Lacoste, M., Südholt, M., Menaud, J.-M.: Isolation in cloud comput-
ing infrastructures: new security challenges. Ann. Telecommun., 197–209 (2019).
https://doi.org/10.1007/s12243-019-00703-z

2. Chiappetta, M., Savas, E., Yilmaz, C.: Real time detection of cache-based side-
channel attacks using hardware performance counters. Appl. Soft Comput. 49,
1162–1174 (2016)

3. Delimitrou, C., Kozyrakis, C.: Quasar: resource-efficient and QoS-aware cluster
management. In: ACM SIGARCH Computer Architecture News, vol. 42, pp. 127–
144. ACM (2014)

4. Dinakarrao, S.M.P., et al.: Adversarial attack on microarchitectural events based
malware detectors. In: DAC (2019)

5. Goodfellow, I.J., et al.: Explaining and harnessing adversarial examples. arXiv
preprint arXiv:1412.6572 (2014)

6. Gupta, S., Kumar, P.: VM profile based optimized network attack pattern detection
scheme for DDOS attacks in cloud. In: Thampi, S.M., Atrey, P.K., Fan, C.-I., Perez,
G.M. (eds.) SSCC 2013. CCIS, vol. 377, pp. 255–261. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40576-1 25

7. İnci, M.S., Gulmezoglu, B., Eisenbarth, T., Sunar, B.: Co-location detection on the
cloud. In: Standaert, F.-X., Oswald, E. (eds.) COSADE 2016. LNCS, vol. 9689, pp.
19–34. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-43283-0 2

8. Khasawneh, K.N., et al.: RHMD: evasion-resilient hardware malware detectors. In:
MICRO (2017)

9. Liu, F., Ren, L., Bai, H.: Mitigating cross-VM side channel attack on multiple
tenants cloud platform. JCP 9(4), 1005–1013 (2014)

10. Makrani, H.M., et al.: Adaptive performance modeling of data-intensive workloads
for resource provisioning in virtualized environment. ACM Trans. Model. Perform.
Eval. Comput. Syst. (TOMPECS) 5(4), 1–24 (2021)

11. Makrani, H.M., Sayadi, H., Motwani, D., Wang, H., Rafatirad, S., Homayoun,
H.: Energy-aware and machine learning-based resource provisioning of in-memory
analytics on cloud. In: Proceedings of the ACM Symposium on Cloud Computing,
pp. 517–517 (2018)

12. Makrani, H.M., et al.: Cloak & co-locate: adversarial railroading of resource
sharing-based attacks on the cloud. In: 2021 IEEE International Symposium on
Secure and Private Execution Environment Design (SEED). IEEE (2021)

https://doi.org/10.1007/s12243-019-00703-z
http://arxiv.org/abs/1412.6572
https://doi.org/10.1007/978-3-642-40576-1_25
https://doi.org/10.1007/978-3-319-43283-0_2

32 H. M. Makrani et al.

13. Mucci, P.J., Browne, S., Deane, C., Ho, G.: PAPI: a portable interface to hardware
performance counters. In: Proceedings of the Department of Defense HPCMP Users
Group Conference, vol. 710 (1999)

14. Payer, M.: HexPADS: a platform to detect “Stealth” attacks. In: Caballero, J.,
Bodden, E., Athanasopoulos, E. (eds.) ESSoS 2016. LNCS, vol. 9639, pp. 138–154.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30806-7 9

15. Sayadi, H., et al.: Towards accurate run-time hardware-assisted stealthy malware
detection: a lightweight, yet effective time series CNN-based approach. Cryptogra-
phy 5(4), 28 (2021)

16. Sayadi, H., et al.: Recent advancements in microarchitectural security: review
of machine learning countermeasures. In: 2020 IEEE 63rd International Midwest
Symposium on Circuits and Systems (MWSCAS), pp. 949–952. IEEE (2020)

17. Varadarajan, V., Kooburat, T., Farley, B., Ristenpart, T., Swift, M.M.: Resource-
freeing attacks: improve your cloud performance (at your neighbor’s expense). In:
Proceedings of the 2012 ACM Conference on Computer and Communications Secu-
rity, pp. 281–292. ACM (2012)

18. Wang, H., Sayadi, H., Sasan, A., Rafatirad, S., Mohsenin, T., Homayoun, H.: Com-
prehensive evaluation of machine learning countermeasures for detecting microar-
chitectural side-channel attacks. In: Proceedings of the 2020 on Great Lakes Sym-
posium on VLSI, pp. 181–186 (2020)

19. Xu, Z., Wang, H., Wu, Z.: A measurement study on co-residence threat inside the
cloud. In: 24th USENIX Security Symposium (USENIX Security 15), pp. 929–944
(2015)

20. Yadwadkar, N., et al.: Selecting the best VM across multiple public clouds: a data-
driven performance modeling approach. In: ACM SoCC (2017)

21. Zhang, W., et al.: A comprehensive study of co-residence threat in multi-tenant
public PaaS clouds. In: Lam, K.-Y., Chi, C.-H., Qing, S. (eds.) ICICS 2016. LNCS,
vol. 9977, pp. 361–375. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
50011-9 28

22. Zhang, Y., Juels, A., Reiter, M.K., Ristenpart, T.: Cross-VM side channels and
their use to extract private keys. In: Proceedings of the 2012 ACM Conference on
Computer and Communications Security, pp. 305–316. ACM (2012)

https://doi.org/10.1007/978-3-319-30806-7_9
https://doi.org/10.1007/978-3-319-50011-9_28
https://doi.org/10.1007/978-3-319-50011-9_28

Differential Privacy in Privacy-Preserving
Big Data and Learning: Challenge

and Opportunity

Honglu Jiang(B) , Yifeng Gao , S. M. Sarwar , Luis GarzaPerez ,
and Mahmudul Robin

The University of Texas Rio Grande Valley, Edinburg, TX 78504, USA
{honglu.jiang,yifeng.gao,sm.sarwar01,luis.garzaperez,

mahmudul.robin01}@utrgv.edu

Abstract. Differential privacy (DP) has become the de facto standard
of privacy preservation due to its strong protection and sound mathemat-
ical foundation, which is widely adopted in different applications such as
big data analysis, graph data process, machine learning, deep learning,
and federated learning. Although DP has become an active and influen-
tial area, it is not the best remedy for all privacy problems in different
scenarios. Moreover, there are also some misunderstanding, misuse, and
great challenges of DP in specific applications. In this paper, we point
out a series of limits and open challenges of corresponding research areas.
Besides, we offer potentially new insights and avenues on combining dif-
ferential privacy with other effective dimension reduction techniques and
secure multiparty computing to clearly define various privacy models.

Keywords: Differential privacy · Deep learning · Big data

1 Introduction

Organizations, companies and governments collect data from a variety of sources,
including social networking, transactions, smart Internet of Things devices,
industrial equipment, electronics commercial activities, and more, which can
be used to dig out valuable information hidden behind the massive data for
modern life. The extensive collection and further processing of personal infor-
mation in the context of big data analytics and machine learning-based artifi-
cial intelligence results in serious privacy concerns. For example, in March 2018,
Facebook-Cambridge Analytica was reported to use the personal data of millions
of people’s Facebook profiles harvested without their consents for political adver-
tising purposes in the 2016 US presidential election, which was a great political
scandal and caused an uproar in the world. Despite the benefits of analytics,
it cannot be accepted that big data comes at a cost for privacy. Therefore, the
present study shifts the discussion from “big data versus privacy” to “big data
with privacy”, adopting the privacy and data protection principles as an essen-
tial value [5]. Privacy-preserving data publishing (PPDP) and various artificial
c© Springer Nature Switzerland AG 2022
S.-Y. Chang et al. (Eds.): SVCC 2021, CCIS 1536, pp. 33–44, 2022.
https://doi.org/10.1007/978-3-030-96057-5_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-96057-5_3&domain=pdf
http://orcid.org/0000-0001-6014-0396
http://orcid.org/0000-0002-0629-050X
http://orcid.org/0000-0003-0772-8064
http://orcid.org/0000-0001-9482-709X
http://orcid.org/0000-0002-3157-2189
https://doi.org/10.1007/978-3-030-96057-5_3

34 H. Jiang et al.

intelligence-empowered learning/computing have gained significant attentions in
both academia and industry. It is, thus, of utmost importance to craft the right
balance between making use of big data technologies and protecting individuals’
privacy and personal data [5].

Intuitively, one can make use of the simple naive identity removal to pro-
tect data privacy, but in practice, it does not always work. For instances, AOL
released an anonymized partial three-month search history to the public in 2006.
Although personally identifiable information was carefully processed, some iden-
tities were accurately reidentified. For example, The New York Times immedi-
ately located the following individual: the person with number 4417749 was a
62-year-old widowed woman who suffered from some diseases and has three dogs.
Such real-world privacy leakage problems and attack instances clearly demon-
strate the importance of data privacy preservation.

The problem of data privacy protection was first put forward by Dalenius
in the late 1970s [6]—Dalenius pointed out that the purpose of protecting pri-
vate information in a database is to prevent any user (including legitimate users
and potential attackers) from obtaining accurate information about arbitrary
individuals. Following that, many privacy preservation models with strong oper-
ability including k-anonymity, l-diversity [20], t-closeness [18] were proposed.
However, each model generally provides protection against only a specific type of
attacks and cannot defend against newly developed ones. A fundamental cause
of this deficiency lies in that the security of a privacy preservation model is
highly related to the background knowledge of an attacker. Nevertheless, it is
almost impossible to define the complete set of possible background knowledge
an attacker may have.

Dwork originally proposed the concept of differential privacy (DP) to protect
against the privacy disclosure of statistical databases in 2006 [4]. Under differ-
ential privacy, query results of a dataset are insensitive to the change of a single
record. That is, whether a single record exists in the dataset has little effect on
the output distribution of the analytical results. As a result, an attacker cannot
obtain accurate individual information by observing the results since the risk of
privacy disclosure generated by adding or deleting a single record is kept within
an acceptable range. Unlike anonymization model, DP makes the assumption
that an attacker has the maximum background knowledge, which rests on a
sound mathematical foundation with a formal definition and rigorous proof.

It is worth noting that differential privacy is a definition or standard for quan-
tifying privacy risks rather than a single tool, which is widely used in statistical
estimations, data publishing, data mining, and machine learning. It is a new and
promising privacy framework and has become a popular research topic in both
academia and industry, which can be potentially implemented in various applica-
tion scenarios. However, DP is a strict privacy standard, the data utility is likely
to be poor while providing a meaningful privacy guarantee. The goal of this paper
is to summarize and analyze the state-of-the-art research and investigations in the
field of differential privacy and its applications in privacy-preserving data pub-
lishing, machine learning, deep learning, and federated learning, to point out a

Differential Privacy in Privacy-Preserving Big Data and Learning 35

series of limits and open challenges of corresponding research areas, so as to pro-
vide some approachable strategies for researchers and engineers to implement DP
in real world applications. In our paper, we place more focus on practical appli-
cations of differential privacy rather than detailed theoretical analysis of differen-
tially private algorithms.

The rest of this paper is organized as follows. We present the background
knowledge of differential privacy in Sect. 2. Section 3 introduces differentially
private data publishing problem and presents some challenges on this problem. In
Sect. 4, we summarize existing research on the application of differential privacy
to deep learning and federated learning. Section 5 concludes the paper with some
future research discussion and open problems on differential privacy applications.

2 Preliminary of Differential Privacy

Differential privacy can be achieved by injecting a controlled level of statistical
noise into a query result to hide the consequence of adding or removing an
arbitrary individual from a dataset. That is, when querying two almost identical
datasets (differing by only one record), the results are differentially privatized
in that an attacker cannot glean any new knowledge about an individual with
a high degree of probability, i.e., whether or not a given individual is present in
the dataset cannot be guessed.

2.1 Definition of Differential Privacy

Let f be a query function to be evaluated on a dataset D. Algorithm A runs
on the dataset D and sends back A(D). A(D) could be f(D) with a controlled
amount of random noise added. The goal of differential privacy is to make A(D)
as much close to f(D) as possible, thus ensuring data utility (enabling the user
to learn the target value as accurately as possible), while preserving the privacy
of the individuals with the added random noise. The main procedure can be seen
in Fig. 1.

Definition 1 (Neighboring Datasets). Two datasets D and D′ are considered
to be neighboring ones if d(D,D′) = 1, where d(D,D′) is the number of records
D and D′ differ.

Definition 2 (Differential Privacy [8]). A randomized algorithm A is (ε, δ)-
differentially private if for any two datasets D and D′ with d(D,D′) = 1, and
for all sets S of possible outputs, we have

Pr[A(D) ∈ S] ≤ eεPr[A(D′) ∈ S] + δ,

where ε and δ are non-negative real numbers.
When δ = 0, the algorithm becomes ε-differentially private. We say a mecha-

nism gives δ-approximate differential privacy when δ �= 0. The ε is often a small

36 H. Jiang et al.

Fig. 1. The framework of differential privacy

positive real number called privacy budget, which is used to control the proba-
bility of the algorithm A getting almost the same outputs from two neighboring
datasets. It reflects the level of privacy preservation that algorithm A can pro-
vide. For example, if we set ε = ln 2, the result S is at most twice as likely to be
generated by dataset D as by any of D’s neighbor D′.

The smaller the ε, the higher the level of privacy preservation. A smaller ε
provides greater privacy preservation at the cost of lower data accuracy with
more additional noise. When ε = 0, the level of privacy preservation reaches
the maximum, i.e., “perfect” protection. In this case, the algorithm outputs
two results with indistinguishable distributions but the corresponding results do
not reflect any useful information about the dataset. Therefore, the setting of ε
should consider the trade-off between privacy requirements and data utility. In
practical applications, ε usually takes very small values such as 0.01, 0.1, or ln 2,
ln 3.

2.2 Noise Mechanism of Differential Privacy

Sensitivity is the key parameter to determine the magnitude of the added noise,
that is, the largest change to the query result caused by adding/deleting any
record in the dataset. Accordingly, global sensitivity, local sensitivity, smoothing
upper bound, and smoothing sensitivity are defined under the differential privacy
model. Because of the limitation of space, we will specifically introduce them
here.

(1) Laplace Mechanism
The Laplace distribution (centered at μ) with scale b is the distribution with
probability density function

h(z) =
1
2b

exp(−|z − μ|
b

).

Let Lap(b) denote the Laplace distribution (centered at 0) with scale b.

Differential Privacy in Privacy-Preserving Big Data and Learning 37

Definition 3 (Laplace Mechanism [8]). For dataset D and function f : D → Rd

with global sensitivity GSf , the Laplace mechanism A(D) = f(D) + Z is ε-
differentially private, where Z ∼ Lap(GSf/ε).

The Laplace mechanism is suitable for the protection of numerical results.
Taking an example Laplace mechanism for the counting function, since the global
sensitivity of counting is 1, that is GSf = 1, if we choose ε = 0.1, the Laplace
mechanism outputs 3 + Lap(10).

(2) Exponential Mechanism
The Laplace mechanism is appropriate only for preserving the privacy of numer-
ical results. Nevertheless, in many practical implementations, query results are
entity objects. McSherry et al. put forward the exponential mechanism [21] for
the situations where the “best” needs to be selected. Let the output domain of a
query function be Range, and each value r ∈ Range be an entity object. In the
exponential mechanism, the function q(D, r), which is called the utility function
of the output value r, is employed to evaluate the quality of r.

Definition 4 (Exponential Mechanism [21]). Given a random algorithm A with
the input dataset D and the output entity object r ∈ Range, let q(D, r) be the
utility function and Δq be the global sensitivity of function q(D, r). If algorithm
A selects and outputs r from Range at a probability proportional to exp(εq(D,r)

2Δq),
then A is ε-differentially private.

2.3 Local Differential Privacy

Traditional centralized differential privacy provides privacy protection based on
a premise that there is a trusted third-party data collector who does not steal
or disclose user’s sensitive information, while local differential privacy [7] does
not assume the existence of any trusted third-party data collector. Instead, it
transfers the process of data privacy protection to each user, making each user
independently deal with and protect personal sensitive information.

Definition 5 (Local Differential Privacy [7]). Given n users, with each corre-
sponding to a record. A privacy algorithm M with definition domains Dom(M)
and Ran(M) satisfies the ε-local differential privacy if M obtains the same out-
put result t∗ (t∗ ⊆ Ran(M)) on any two records t and t′ (t, t′ ∈ Dom(M)):

Pr[M(t) = t∗] ≤ eε × Pr[M(t′) = t∗]

One can see from this definition that local differential privacy provides pri-
vacy by controlling the similarity between the output results of any two records,
while each user processes its individual data independently, that is, the privacy
preserving process is transferred to a single user from the data collector, such
that a trusted third party is no longer needed and privacy attacks brought from
the data collection of untrusted third-party is thus avoided. The framework of
local differential privacy can be seen in Fig. 2.

38 H. Jiang et al.

Fig. 2. The framework of local differential privacy

3 Differentially Private Data Publishing

3.1 Differential Privacy in Tabular Data Publishing

The goal of differentially private data publishing is to output aggregate/synthetic
information to public without disclosing any individual’s information. Gener-
ally, there are two settings in the data publishing scenario, interactive and non-
interactive. In the first setting, users make queries request to the data curator,
who answers the query with a noisy result. The fixed privacy budget will be
exhausted as the number of queries increases. In the non-interactive setting, the
data curator publishes statistical information related to the dataset that satisfies
differential privacy. When the queries are submitted, the corresponding query
result is directly returned from the published synthetic dataset.

The challenge of interactive setting is that the number of queries is limitedwhile
the privacy budget ε is easily exhausted. That is, a higher accuracy result for one
query with less noise results and a larger ε usually results in a smaller number of
queries.

High sensitivity presents a big challenge on the data publishing in the non-
interactive setting, while high sensitivity means large magnitude of noise and
low data utility especially for big data and complex data, which we will detailed
introduce in Sect. 3.3. Another problem is that the published synthetic dataset
can only be used for particular purposes or targeted a fixed query function.

3.2 Differential Privacy in Graph Data Publishing

With the widespread application of social networks, the increasing volumes of user-
generated data have become a rich source which can be published to third parties
for data analysis and recommendation system. Generally, social networking data
can be modeled as graph G(V,E), where V is a set of nodes and E is a set of rela-
tional activities between nodes. Analyzing graph data such as analysis of social
network data has great potential social benefits and help generate insights into
the laws of data change and trend characteristics. Most popular tasks of social net-
work analysis include degree distribution, subgraph counting (triangle counting,

Differential Privacy in Privacy-Preserving Big Data and Learning 39

Fig. 3. Differential privacy definitions in graph data

k-star counting, k-triangle counting,etc.) and edge weight analysis. In reality, var-
ious types of privacy attacks such as de-anonymization attacks [11,12,14,15,23],
inference attacks [10,16] on social networks have raised the stakes for privacy pro-
tection while a large amount of personal user data have been exposed.

However, the privacy issue of graph is more complicated starting from how to
model and formalize the notion of “privacy” in graph network. Differential pri-
vacy originates from tabular data, while the key to extending differential privacy
to social networks is to determine the neighboring input entries, that is, how to
define “adjacent graphs”. Figure 3 shows existing definitions of DP in graph data,
namely, node differential privacy, edge differential privacy, outlink differential pri-
vacy, partition differential privacy; detailed information can be referred to [13].

3.3 Challenges on Differentially Private Data Publishing

In this subsection, we present a few challenges and open problems on differen-
tially private data publishing especially for big data, complex network, dynamic
and continuous data publishing.

As what it reads, big data deal with massive amounts of data at a great speed
passing, which exhibit various characteristics that cover challenges like gathering,
analysis, storage and privacy preservation. Of the many characteristics of big data,
5V characterizes big data’s nature the best, namely Volume, Velocity, Variety,
Veracity and Value.

Differential Privacy on Complex and High Volume Network Struc-
ture. Network structures such as social networks and traffic networks are often
complex. Since query sensitivities are usually high, much noise has to be added
to query results to achieve differential privacy. Nevertheless, the noise may sig-
nificantly affect the output data utility, resulting in useless data. Moreover, it

40 H. Jiang et al.

may be hard to effectively compute sensitivities, either global or smooth, pre-
cise or approximate, as the computational complexity may be too high (or even
NP-hard) to be practical for many complex graph network analysis queries.

Differential Privacy on High Dimensional Data. Most differentially private
data publishing techniques cannot work effectively for high dimensional data. On
one hand, since the sensitivities and entropy of different dimensions vary, evenly
distributing the total privacy budget to each dimension degrades the performance.
Moreover, “Curse of Dimensionality” is the common challenge in big data pertur-
bation which means a dataset contains high dimensions and large domains result-
ing in a pretty low “Signal-to-Noise” and extremely low data utility even useless.

Differential Privacy on Correlated Data. Differential privacy offers a neat
privacy guarantee while it is a strict privacy standard, while assumes all the data
are independent, while the correlation or dependence may undermine the privacy
guarantees of differential privacy mechanisms. Unfortunately, the real-world gath-
ered data can not be strictly independent, which is not only tuple (record) corre-
lated but also attribute information correlated. For example, the salary informa-
tion in strongly correlated with education level and occupation in a dataset.

Differential Privacy on High-Velocity Data. Velocity in big data refers to
the crucial characteristic of capturing data dynamically. In practical applications,
the data are dynamically updated such as recommendation system, trajectory
data to capture the evolutionary behaviors of various users. Differential privacy
on continuous flow of data faces critical challenges of great noise accumulation
and privacy budget allocation for each time sequence.

4 Differentially Private Machine Learning

4.1 Differential Privacy in Deep Learning

The privacy protection provided by DP also could benefit the existing deep
learning model. Generally, the noise can be added into the gradient, input, and
embedding. Adadi et al. [1] introduce the first DP preserved optimization algo-
rithm named DPSGD. The DP is achieved by adding Gaussian noise in every
SGD optimization step. Arachchige et al. [2] introduce a model named LATENT.
The framework achieves the protection by transferring the real-vale low dimen-
sional representation into a discrete vector. Lecuyer et al. [17] proposed a model
named PixelDP. The framework achieves the goal by adding Gaussian noise in
the hidden layers of a CNN model. Different from these works, Phan et al. [22]
proposed a method that directly manipulates the inputs. The model induces
different levels of noise for each pixel of an image based on a relevant score [3].

4.2 Differential Privacy in Federated Learning

The research field of Federated Learning focuses on learning a model where data
is stored in a distributed system. As pointed out by Wei et al. [25], attackers can

Differential Privacy in Privacy-Preserving Big Data and Learning 41

retrieval the data information through the gradient, aDPpreserved learningmodel
could protect such information leakage in the Federated Learning setting. Wei
et al. [24] integrated DP algorithm into the Secure Multiparty Computation(SMC)
framework. DP is used to encrypt the response for each query in the SMC. Geyer
et al. [9] introduce a DP algorithm focusing on removing the data source info. In
addition to using the same SGD algorithm framework as DPSGD, the algorithm
also will randomly ignore a portion of the data to protect data privacy.

4.3 Challenges on Differentially Private Machine Learning

Model Dependency. Other than the gradient-based approach, most deep-
learning based DP algorithms introduced in this paper are highly related to
the deep learning model. For example, LATENT and PixelDP are designed only
for CNN. A DP approach that does not rely on the data and model could be
promising research in the DP research field.

Accuracy Loss of Federated Learning Due to Added Noise. In federated
learning model, differential privacy-based approaches add noise to the uploaded
parameters which will degrade the model accuracy inevitably and further affect
the convergence of the global aggregation. Moreover, there are few results about
practical frameworks integrating differential privacy and other cryptography-
based methods, which hinders the industrial development of federated learning.

5 Future Directions and Conclusions

Differential privacy is a strong standard of privacy protection with a solid mathe-
matical definition which can be applied in various application scenarios, however
differential privacy is not a panacea for all privacy problems and the research
on differential privacy is still in its infancy stage. There are still some misunder-
standings, inappropriate applications and flawed implementations in differential
privacy. In this section, we propose a few future research problems and open
problems that worthy of more attention.

5.1 Combination of Differential Privacy and Other Technologies

As we mentioned about the privacy preservation of high dimensional data, it
is feasible and promising to combine effective dimensionality reduction tech-
niques with differential privacy to address this issue. Specifically, it is possible to
try both linear and non-linear transformation such as compressive sensing and
manifold learning which maps a high-dimensional space to a low-dimensional
representation.

With the great high privacy concern on Federated learning, IoT network
and other distributed environment, the combination of local differential privacy,
multiparty computations and sampling and anonymization will be a future topic
which needs open-ended exploration. Secure multiparty computation is a type of

42 H. Jiang et al.

cryptography-based which could be concerning and infeasible on computation-
ally constrained devices, while anonymization model has its own shortcomings
about the assumption on background knowledge. However, the combination of
these techniques can boost the performance of differential privacy. Specifically,
differential privacy with a sampling processing can greatly amplify the privacy
preservation level [19], based on which we can adapt the idea of anonymization
to participants of DP processing. For example, in the scenario of federated learn-
ing, we can randomly pick up the clients and parts of differentially private local
updates to form a shuffle model. Moreover, inter-discipline techniques between
local differential privacy and secure multiparty computation involve the secure
computation, privacy preservation and dataset partition, which need to tackle
with the high communication cost and low data utility.

5.2 Variation of Differential Privacy and Personalized Privacy

Differential privacy provides strong and strict privacy guarantee at the cost of
low data utility while it may be too strong and not necessary in some practical
applications. To achieve a better tradeoff between privacy and preservation, var-
ious relax and extensions of differential privacy need to be proposed and in fact
many of these definition have been proposed such as crowd-blending privacy, indi-
vidual differential privacy, and probabilistic indistinguishability. However, most
of these are still in the stage of theoretical definition or be specific scenarios.
The great challenge is that how to widely apply to these extensions to practical
applications.

On the other hand, conventional private data privacy preservation mecha-
nisms aim to retain as much data utility as possible while ensuring sufficient
privacy protection on sensitive data while such schemes implicitly assume that
all data users have the same data access privilege levels. Actually, data users
often have different levels of access to the same data, personalized requirements
of privacy preservation level or data utility. It is a big challenge to achieve per-
sonalized privacy and multi-level data utility while the uniform framework itself
is a hard problem.

5.3 Misunderstandings of Differential Privacy vs More Than
Privacy

As we mentioned in differentially private data publishing, the data utility of
outputs are likely to be very poor or with large privacy budget, that is lower pri-
vacy preservation level, which we cannot sure how much privacy it can provides.
Moreover, when differential privacy is applied to federated learning, it is used on
local updates of parameters while traditional differential privacy is designed for
record data contributed by different individuals on the basis of assumption that
the data are independent. However, in federated/distributed learning, all local
data are from the same client which have little possibility to be independent.

In contrast, differential privacy can do more while there exists misconceptions
and misuse of differential privacy. Besides providing privacy preservation through

Differential Privacy in Privacy-Preserving Big Data and Learning 43

hiding individual information in the aggregate information, from the opposite
perspective of its definition, differential privacy can ensure that the probability of
outcomes unchanged when modifying any individual record in the training data,
and the application of this property needs to be explored. Secondly, differential
privacy can also protect against the malicious attacks in learning techniques such
as poisonous attacks in federated learning which can help improve the accuracy of
training model. Thirdly, specific differentially private methods can be combined
with reward mechanisms in distributed learning to provide privacy preservation
and incentivize more clients to participate in the learning process at the same
time.

References

1. Abadi, M., et al.: Deep learning with differential privacy. In: Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security, pp.
308–318 (2016)

2. Arachchige, P.C.M., Bertok, P., Khalil, I., Liu, D., Camtepe, S., Atiquzzaman, M.:
Local differential privacy for deep learning. IEEE Internet Things J. 7(7), 5827–
5842 (2019)

3. Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.R., Samek, W.: On
pixel-wise explanations for non-linear classifier decisions by layer-wise relevance
propagation. PLoS ONE 10(7), e0130140 (2015)

4. Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener,
I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006).
https://doi.org/10.1007/11787006 1

5. D’Acquisto, G., Domingo-Ferrer, J., Kikiras, P., Torra, V., de Montjoye, Y.A.,
Bourka, A.: Privacy by design in big data: an overview of privacy enhancing tech-
nologies in the era of big data analytics. arXiv preprint arXiv:1512.06000 (2015)

6. Dalenius, T.: Towards a methodology for statistical disclosure control. statistik
Tidskrift 15(429–444), 2–1 (1977)

7. Duchi, J.C., Jordan, M.I., Wainwright, M.J.: Local privacy and statistical minimax
rates. In: 2013 IEEE 54th Annual Symposium on Foundations of Computer Science,
pp. 429–438. IEEE (2013)

8. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in
private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 265–284. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878 14

9. Geyer, R.C., Klein, T., Nabi, M.: Differentially private federated learning: a client
level perspective. arXiv preprint arXiv:1712.07557 (2017)

10. Gong, N.Z., et al.: Joint link prediction and attribute inference using a social-
attribute network. ACM Trans. Intell. Syst. Technol. (TIST) 5(2), 1–20 (2014)

11. Ji, S., Li, W., Gong, N.Z., Mittal, P., Beyah, R.A.: On your social network de-
anonymizablity: quantification and large scale evaluation with seed knowledge. In:
NDSS (2015)

12. Ji, S., Wang, T., Chen, J., Li, W., Mittal, P., Beyah, R.: De-SAG: on the de-
anonymization of structure-attribute graph data. IEEE Trans. Dependable Secure
Comput. 16, 594–607 (2017)

13. Jiang, H., Pei, J., Yu, D., Yu, J., Gong, B., Cheng, X.: Applications of differential
privacy in social network analysis: a survey. IEEE Trans. Knowl. Data Eng. (2021)

https://doi.org/10.1007/11787006_1
http://arxiv.org/abs/1512.06000
https://doi.org/10.1007/11681878_14
http://arxiv.org/abs/1712.07557

44 H. Jiang et al.

14. Jiang, H., Yu, J., Cheng, X., Zhang, C., Gong, B., Yu, H.: Structure-attribute-based
social network deanonymization with spectral graph partitioning. IEEE Trans.
Comput. Soc. Syst. (2021)

15. Jiang, H., Yu, J., Hu, C., Zhang, C., Cheng, X.: Sa framework based de-
anonymization of social networks. Procedia Comput. Sci. 129, 358–363 (2018)

16. Labitzke, S., Werling, F., Mittag, J., Hartenstein, H.: Do online social network
friends still threaten my privacy? In: Proceedings of the Third ACM Conference
on Data and Application Security and Privacy, pp. 13–24 (2013)

17. Lecuyer, M., Atlidakis, V., Geambasu, R., Hsu, D., Jana, S.: Certified robustness
to adversarial examples with differential privacy. In: 2019 IEEE Symposium on
Security and Privacy (SP), pp. 656–672. IEEE (2019)

18. Li, N., Li, T., Venkatasubramanian, S.: t-Closeness: privacy beyond k-anonymity
and l-diversity. In: 2007 IEEE 23rd International Conference on Data Engineering,
pp. 106–115. IEEE (2007)

19. Li, N., Qardaji, W., Su, D.: On sampling, anonymization, and differential privacy
or, k-anonymization meets differential privacy. In: Proceedings of the 7th ACM
Symposium on Information, Computer and Communications Security, pp. 32–33
(2012)

20. Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: l-diversity:
privacy beyond k-anonymity. ACM Trans. Knowl. Discovery Data (TKDD) 1(1),
3-es (2007)

21. McSherry, F., Talwar, K.: Mechanism design via differential privacy. In: 48th
Annual IEEE Symposium on Foundations of Computer Science (FOCS 2007), pp.
94–103. IEEE (2007)

22. Phan, N., Wu, X., Hu, H., Dou, D.: Adaptive Laplace mechanism: differential
privacy preservation in deep learning. In: 2017 IEEE International Conference on
Data Mining (ICDM), pp. 385–394. IEEE (2017)

23. Shirani, F., Garg, S., Erkip, E.: Optimal active social network de-anonymization
using information thresholds. In: 2018 IEEE International Symposium on Infor-
mation Theory (ISIT), pp. 1445–1449. IEEE (2018)

24. Wei, K., et al.: Federated learning with differential privacy: algorithms and perfor-
mance analysis. IEEE Trans. Inf. Forensics Secur. 15, 3454–3469 (2020)

25. Wei, W., Liu, L., Loper, M., Chow, K.H., Gursoy, M.E., Truex, S., Wu, Y.: A frame-
work for evaluating gradient leakage attacks in federated learning. arXiv preprint
arXiv:2004.10397 (2020)

http://arxiv.org/abs/2004.10397

Towards Building Intrusion Detection Systems
for Multivariate Time-Series Data

ChangMin Seong1, YoungRok Song2, Jiwung Hyun2, and Yun-Gyung Cheong2(B)

1 Department of Computer Software, Sungkyunkwan University, Suwon, South Korea
2 Department of Artificial Intelligence, Sungkyunkwan University, Suwon, South Korea

ygcheong@gmail.com

Abstract. Recent network intrusion detection systems have employed machine
learning and deep learning algorithms to defend against dynamically evolving
network attacks. While most previous studies have focused on detecting attacks
which can be determined based on a single time instant, few studies have paid
attention to subsequence outliers, which require inspecting consecutive points in
time for detection. To address this issue, this paper applies a time-series anomaly
detection method in an unsupervised learning manner. To this end, we converted
the UNSW-NB15 dataset into the time-series data. We carried out a preliminary
evaluation to test the performance of the anomaly detection on the created time-
series network dataset as well as on a time-series dataset obtained from sensors.
We analyze and discuss the results.

Keywords: Time series · Intrusion detection system · Stacked RNN ·
Unsupervised learning · Anomaly detection

1 Introduction

Due to the rapid development and popularization of networks, security issues are also
becoming an important issue. In order to solve these security issues, a network intrusion
detection system (NIDS) has been widely used. A NIDS is a system that reads network
packets and detects attack traffic and is known as an effective defense method against
network security issues. During the last decade, network security systems have been
developed by employing various time-series intrusion detection techniques. Pankaj et al.
[21] propose a Long Short TermMemory Networks based Encoder-Decoder scheme for
AnomalyDetection (EncDec-AD) that learns to reconstruct normal time-series behavior.
Kyle et al. [22] demonstrate the effectiveness of LSTM and propose dynamic thresh-
olding approach using LSTMs. Ding et al. [23] propose a real-time anomaly detection
algorithm (RADM) based on Hierarchical Temporal Memory (HTM) and Bayesian
Network (BN). Park et al. [24] introduced a long short-term memory-based variational
autoencoder (LSTM-VAE) that fuses signals and reconstructs expected distribution.

Furthermore, unsupervised learning algorithms have been getting more attention
owing to their advantage of training the models without labels during the training phase
[11, 12]. In the unsupervised methods, attacks are generally detected by regarding them
as outliers or anomalies. More details about outlier detection can be found in [1, 2, 10].

© The Author(s) 2022
S.-Y. Chang et al. (Eds.): SVCC 2021, CCIS 1536, pp. 45–56, 2022.
https://doi.org/10.1007/978-3-030-96057-5_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-96057-5_4&domain=pdf
https://doi.org/10.1007/978-3-030-96057-5_4

46 C. Seong et al.

Time-series data mean the data annotated with time stamps, collected at regular time
intervals. Depending on what is considered an outlier, time-series outliers are largely
divided into two types: point outliers and subsequence outliers [2]. A point outlier means
an outlier of which value is significantly different from the values of the surrounding
data in the overall flow of data in time order as shown in Fig. 1. In the figure, a point
between 10 and 11 can be regarded as normal with a global perspective where similar
data values exist between 21 and 22, but it is determined as an outlier considering the
values of its neighbors with a local perspective [3]. These outliers can be determined
relying on their characteristics at a specific time instant.

Fig. 1. An illustration of a point outlier where samples between 10 and 11 are spiking,
distinguished from their neighboring data.

Fig. 2. An illustration of a subsequence outlier which is represented in the red box. The data
values are within the minimum and the maximum of normal data, and yet the overall pattern is
different from the rest. (Color figure online)

On the contrary, a subsequence outlier can be found only by inspecting consecutive
instants in time. A subsequence outlier shows a pattern that deviates from the normal
repetitive patents as shown in Fig. 2. The points between 9 and 10 can be regarded as
normal when simply looking at the numerical values, but it is determined as an outlier

Towards Building Intrusion Detection Systems 47

Fig. 3. The model structure uses stacked RNN(GRU) models. For the sliding window, which is
the time interval the model trains the specific pattern, set to 90. Using the output of previous 89
data, the model predicts 90th data in the window. The numbers 79 denote the number of features
excluding the time feature, 100 denotes the number of hidden cells of GRU, and 200 denotes the
number of nodes of the FC (Fully Connected) layer.

since its pattern deviated from the repeating patterns between 1 and 2, 5 and 6, 13 and
14, and 17 and 18 [3]. Therefore, it is necessary to detect both outliers for building an
intrusion detection system for practical domains. However, most previous studies have
focused on detecting point outliers [6, 20].

To address this issue, this paper attempts to detect attacks using multivariate time-
series network data. Since time-series network datasets are rarely available, we created
a time-series network dataset using the UNSW-NB15 network dataset [7, 13–16]. As
an experimental model, we employ an unsupervised approach which contains a stacked
RNN model, as was provided by the DACON’s HAICon2021 competition [17]. The
approach showed a good performance, achieving F1 of 0.926 when the provided code
was run on the HAI 2.0 dataset [4]. We carried out preliminary evaluations to test if this
approach can be applied to the time-series network data.

2 Model

We use a stacked RNN (GRU)model [5] for learning time-series data in an unsupervised
learning manner to detect attacks, which was provided as the baseline model for the
HAICon2021 competition. This model uses a three-layer bidirectional GRU with 100
hidden cells as illustrated in Fig. 3. We use the experiment configuration that was set
for the baseline model for comparison in the future research. We train the model for 32
epochs keeping the best model parameters, and the parameters that result in the best loss
were chosen for evaluation. The window size was set as 90.

48 C. Seong et al.

3 Time-Series Anomaly Detection Datasets

To evaluate the time-series anomaly detection system we selected two datasets, UNSW-
NB15 dataset [7] and HAI 2.0 dataset [4]. The UNSW-NB15 dataset is converted into a
time-series format.

3.1 The UNSW-NB15 Dataset

The UNSW-NB15 dataset is widely used for benchmarking network intrusion detection
systems. The dataset contains 9 network attack behaviors which are Fuzzers, Analysis,
Backdoors, DoS, Exploits, Generic, Reconnaissance, Shellcode, and Worms. The data
are provided in two formats, raw traffic packet file and CSV file containing features
extracted from captured network flows. We follow Ge et al. [8] to convert the packet
data into a time-series format.

Feature Extraction: The raw traffic packets from the UNSW-NB15 dataset were cap-
tured using the IXIA PerfectStorm tool and are provided in the PCAP file format [7].
We first select and extract packet fields from the PCAP file using the TShark analyzer
tool. Details of the selected fields are shown in Table 1.

Table 1. Detailed information of extracted fields from network packets.

Feature Field detail

frame frame.time_epoch, frame.len

ip ip.src, ip.dst, ip.ttl

tcp tcp.srcport, tcp.dstport, tcp.stream, tcp.len, tcp.checksum

udp udp.srcport, udp.dstport, udp.stream, udp.checksum, udp.length

The UNSW-NB15 CSV file contains the flow-based features of labeled flow data.
The description of 49 features in the file are listed in Table 2. Each flow is labelled as 0
for normal records and 1 for attacks.

Packet Labelling: After extracting the features from each packet, we sort them in the
chronological order using the frame.time_epoch feature, which indicates the time infor-
mation of the packet. The packets in the PCAP file are labelled using the labels in the
CSV file. It has information about packets transmitted and a label denoting normal or
attack. A label can be created by using the label feature value of the flow which contains
the packet.

The process of determiningwhether a particular packet belongs to aflow is as follows.
First, frame.time_epoch of the PCAP file is matched with the Stime value (the 29th field)
and the Ltime value (the 30th field) of the CSV file. Among the data matched with the
packet, we extracted the data that matches the ip.src and ip.dst of the PCAP with the

Towards Building Intrusion Detection Systems 49

Table 2. Description of features.

Number Description Number Description Number Description

1 srcip 18 Dpkts 35 ackdat

2 sport 19 swin 36 is_sm_ips_ports

3 dstip 20 dwin 37 ct_state_ttl

4 dsport 21 stcpb 38 ct_flw_http_mthd

5 proto 22 dtcpb 39 is_ftp_login

6 state 23 smeansz 40 ct_ftp_cmd

7 dur 24 dmeansz 41 ct_srv_src

8 sbytes 25 trans_depth 42 ct_srv_dst

9 dbytes 26 res_bdy_len 43 ct_dst_ltm

10 sttl 27 Sjit 44 ct_src_ ltm

11 dttl 28 Djit 45 ct_src_dport_ltm

12 sloss 29 Stime 46 ct_dst_sport_ltm

13 dloss 30 Ltime 47 ct_dst_src_ltm

14 service 31 Sintpkt 48 attack_cat

15 Sload 32 Dintpkt 49 Label

16 Dload 33 tcprtt

17 Spkts 34 synack

first field srcip and the third field dstip of the CSV file. Finally, for TCP, we matched
tcp.srcport and tcp.dstport in the PCAP file, and in the case of UDP, udp.srcport and
udp.dstport in the PCAP file with the 2nd field sport, and 4th field dsport of the CSV
file, and the label of the matched file becomes the label of the corresponding PCAP file.
If there is nomatching data, it is infeasible to determine whether it is normal or an attack,
hence, we removed the corresponding packet. Tcp information and udp information are
integrated into one common information, and then in the case of ip.src and ip.dst, they
are used up to map the PCAP file and the CSV information and then removed. Finally, in
the created time-series network data, there are 9 features: frame.time_epoch, frame.len,
ip.ttl, srcport, dstport, stream, checksum, len, and label. We removed the label from the
data for train, validation and test, since we apply unsupervised learning to dataset, we
only used the label for evaluation for validation and test. In total, there are 295,342
time-series data with 277,828 normal data and 17,514 attack data.

Preprocessing: For the source port and destination port features, the port numbers
greater than 49,152 are labelled as 2, the numbers greater than 1,024 are labelled to 1,
and the numbers lower than 1,024 are labelled to 0 since they are divided to dynamic
port, registered port and well-known port. Then numerical features were scaled to fit 0
to 1 using a min-max scaler.

50 C. Seong et al.

3.2 The HAI 2.0 Dataset

TheHAI 2.0 dataset is a time-series dataset created for attack detection in cyber-physical
systems such as railways, water-treatment, and power plants [4]. The data were collected
from the four processes: the boiler process, the turbine process, the water-treatment
process, and the HIL simulation. Data samples were collected every second and consist
of 80 features. Normal data were collected for 7 continuous days, and the attack data
include 38 different attack types. The data are sorted in the increasing order of time
feature in the format of “yyyy-MM-dd hh:mm:ss.”. Other features contain information
associated with the processes such as temperature setpoint, water level setpoint and
motor speed.

Preprocessing: To preprocess the data, the timestamp features were dropped, and the
numerical features were scaled with a min-max scaler similar to UNSW-NB15 [17]. For
some features, of which maximum value and minimum value are the same, we set these
features as 0. After scaling features, we applied an exponential weighted function in
python function “ewm” with 0.9 for alpha for noise smoothing.

4 Experiments

We compare and analyze the anomaly detection system performance using the UNSW-
NB15 and the HAI 2.0 dataset. We convert attack detection into an anomaly detection
problem by assuming the attack to be anomalous.

4.1 Data Preparation

For both datasets, an unsupervised learning was conducted to train the model using only
normal data. We divided the time-series network dataset into training, validation, and
test datasets in a ratio of 8:1:1. Then, since the attack data is also included in the training
datasets for the time-series network data, we removed attack data in the training datasets.
The number of instances for each dataset is presented in Table 3.

Table 3. Simple statistics of processed UNSW-NB15 dataset.

Training Validation Test

Normal 226,240 25,706 25,882

Attack 0 3,828 3,652

Total 226,240 29,534 29,534

However, there are no labels in the test dataset of HAI 2.0 dataset. For the evaluation,
we divided the validation dataset, which has labels, into the validation dataset (first 50%)
and the test dataset (last 50%). Table 4 shows the simple statistics of the processed dataset.

Towards Building Intrusion Detection Systems 51

Table 4. Simple statistics of the processed HAI 2.0 dataset.

Training Validation Test

Normal 965,603 21,060 21,512

Attack 0 540 89

Total 965,603 21,600 21,601

4.2 Training

As described in Fig. 3, the model is trained to predict the last sample in the given
time window when the preceding samples are given. In order to predict whether the last
sample is an anomaly themodel is only trainedwithwindows containing normal samples.
Theoretically the model will predict the last sample as close as possible to the normal
sample given the preceding sample. Therefore, if the difference between the prediction
and true last sample is significant, we consider the last sample to be an anomaly. We
predict the last sample of the window as an anomaly if the difference is greater than a
predetermined threshold. The parameters for training the model are provided in Table
5. The stride means how much data to skip during training.

Table 5. Model parameters and configurations.

Parameter Value/Name Parameter Value/Name

n_hidden 100 n_layers 3

batch_size 512 num_epochs 32

window_size 90 stride 10

loss MSE optimizer AdamW

scheduler X dropout X

4.3 The Evaluation Metrics

There are various evaluation metrics such as precision, recall, and F1 that are frequently
used. However, the evaluationmetric of time-series data needs to consider various factors
such as the diversity of detected attacks and the accuracy of detection as illustrated in
Fig. 4.

For example, as shown in Fig. 4, Model 2 detects 3 anomaly instances between 0
and 3, and Model 1 detects 2 instances, one between 1 and 2 and the other between 6
and 7. In terms of accuracy, Model 2 outperforms Model 1. However, considering that
Model 2 does not detect anomalies between 6 and 8 time slots, it is hard to determine
which model performs better. TaPR [19] is an evaluation metric that considers these
factors. TaP, which corresponds to precision, is an evaluation metric indicating whether

52 C. Seong et al.

Fig. 4. Illustration of time-series anomaly detection where the two different models Model 1 and
Model 2 are used, modified from [18]. The X-axis indicates time, and A indicates the time slots
where an anomaly exists. M1 indicates the anomalies that Model 1 detects, and M2 indicates the
anomalies that Model 2 detects.

the prediction finds outliers with less false positives. TaR, which corresponds to recall,
is an evaluation metric indicating the diversity of the anomalies. Using the detection
score TaPd (resp. TaRd) and the portion score TaPp (resp. TaRp), TaP and TaR can be
calculated as follows:

TaP = α × TaPd + (1− α) × TaPp (1)

TaR = α × TaRd + (1− α) × TaRp (2)

where α controls the ratio of TaPd (resp. TaRd) and TaPp (resp. TaRp), and its value is
between 0 and 1 [9].

5 The Experiment Results

This section reports the evaluation results. The figures below show the error and attack
distribution of the time-series network data created in this paper and the HAI 2.0 data,
respectively (Figs. 5 and 6).

Using the experimental results of validation data, the threshold was set to 0.04 for
the HAI 2.0 data, and the threshold was set to 0.2 for time-series network data. The two
dataset show different properties. In the HAI 2.0 data, the attack data tends to be greater
than the normal data, while in the time-series network data values are relatively evenly
distributed. In addition, in the case of the HAI 2.0 dataset, the number of normal data is
overwhelmingly larger than that of attack data, unlike the time-series network data. As
the evaluation metric, we use TaPR described in Sect. 4.3. The analyses of the results
are shown in the following Tables 6 and 7.

Towards Building Intrusion Detection Systems 53

Fig. 5. Distribution of error and attack in validation dataset of the time-series network dataset. The
x-axis indicates the order of the data, and the y-axis indicates the absolute difference of (answer
- guess). The orange line indicates the attack position, and the blue line indicates the size of the
error. The red line is the threshold value that separates the boundary between normal and attack.
(Color figure online)

Fig. 6. Distribution of error and attack in validation dataset of the HAI 2.0 dataset. The x-axis
indicates the order of the data, and the y-axis indicates the absolute difference of (answer - guess).
The orange line indicates the attack position, and the blue line indicates the size of the error. The
red line is the threshold value that separates the boundary between normal and attack. (Color figure
online)

Table 6. Detection performance results of UNSW-NB15 data.

Evaluation metric UNSW-NB15 data

F1 0.737

TaP 0.731

TaR 0.743

54 C. Seong et al.

Table 7. Detection performance results of HAI 2.0 data.

Evaluation metric HAI 2.0 data

F1 0.926

TaP 0.861

TaR 1.000

The F1 scores are 0.926 for HAI 2.0 data and 0.737 for time-series network data.
The TaP and TaR scores are 0.861 and 1.000 for HAI 2.0 data, and 0.731 and 0.743 for
the time-series network data, respectively. This indicates that the model performs better
with the HAI 2.0 dataset which contains sensor data.

There are two main factors that account for the poor performance of the time-series
network dataset. First, the number of features in the time-series network dataset may be
insufficient. In the case of the HAI 2.0 dataset, there are about 80 features, in the case
of the time-series network data, only about 10 features were used, making it difficult to
determine its anomaly. The other reason is that time-series network data are not complete
time-series. In the case of HAI 2.0 dataset, data is generated every second, but in the
case of the time-series network dataset, since packets are not transmitted at a specific
period, it is difficult to generate data at regular intervals. Moreover, since the attack data
is removed from the training data of the time-series network data to learn the normal
data only, the time information becomes more irregular.

6 Conclusion

While unsupervised deep learning models have shown great performances in detect-
ing attacks that are point outliers, little has been researched on detecting subsequence
outliers. For building a NIDS which can detect subsequence outliers, we first created
the time-series network data by processing the UNSW-NB15 dataset. We carried out
preliminary experiments using both the HAI 2.0 dataset and the time-series network
dataset we created, using a stacked RNN model in an unsupervised manner. The results
show that the model performs better with run on the HAI 2.0 dataset than tested on the
time-series network dataset. The model achieved F1 scores of 0.926 for the HAI 2.0 data
and 0.737 for the time-series network data. The TaP and TaR scores are 0.861 and 1.000
for the HAI 2.0 data, and 0.731 and 0.743 for the time-series network data. The lack of
data and insufficient features of the time-series network data can account for its poor
performance. We expect that more studies on time-series network data attack detection
in the future will help solve these shortcomings.

Acknowledgement. This work was supported by Institute of Information & communications
Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No.
2020-0-00952, Development of 5G Edge Security Technology for Ensuring 5G+ Service Stability
and Availability).

Towards Building Intrusion Detection Systems 55

References

1. Braei, M., Wagner, S.: Anomaly detection in univariate time-series: a survey on the state-of-
the-art. ArXiv abs/2004.00433 (2020)

2. Bl’azquez-Garc’ia, A., et al.: A review on outlier/anomaly detection in time series data. ACM
Comput. Surv. (CSUR) 54, 1–33 (2021)

3. “Anomaly Detection in Time Series: 2021”, neptune.ai. 19 July 2021. https://neptune.ai/blog/
anomaly-detection-in-time-series. Accessed 5 Sept 2021

4. Shin, H.-K., Lee, W., Yun, J.-H., Kim, H.: HAI 1.0: HIL-based augmented ICS security
dataset. In: 13th USENIX Workshop on Cyber Security Experimentation and Test (2020)

5. Cho, K., et al.: Learning phrase representations using RNN encoder–decoder for statistical
machine translation. In: EMNLP (2014)

6. Sandosh, S., Govindasamy, V., Akila, G.: Enhanced intrusion detection system via agent
clustering and classification based on outlier detection. Peer-to-Peer Network. Appl. 13(3),
1038–1045 (2020). https://doi.org/10.1007/s12083-019-00822-3

7. Moustafa, N., Slay, J.:UNSW-NB15: a comprehensive data set for network intrusion detection
systems (UNSW-NB15 network data set). In: Military Communications and Information
Systems Conference (MilCIS). IEEE (2015)

8. Ge, M., et al.: Deep learning-based intrusion detection for IoT networks. In: 2019 IEEE 24th
Pacific Rim International Symposium on Dependable Computing (PRDC), pp. 256–25609
(2019)

9. Hwang, W.-S., Yun, J.-H., Kim, J., Kim, H.: Time-series aware precision and recall for
anomaly detection: considering variety of detection result and addressing ambiguous labeling,
pp. 2241–2244 (2019). https://doi.org/10.1145/3357384.3358118

10. Gupta, M., Gao, J., Aggarwal, C.C., Han, J.: Outlier detection for temporal data: a survey.
IEEE Trans. Knowl. Data Eng. 26(9), 2250–2267 (2014). https://doi.org/10.1109/TKDE.201
3.184

11. Song, Y., Hyun, S., Cheong, Y.-G.: A systematic approach to building autoencoders for
intrusion detection. In: Park, Y., Jadav, D., Austin, T. (eds.) SVCC 2020. CCIS, vol. 1383,
pp. 188–204. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72725-3_14

12. Song, Y., Hyun, S., Cheong, Y.-G.: Analysis of autoencoders for network intrusion detection.
Sensors 21(13), 4294 (2021). https://doi.org/10.3390/s21134294

13. Moustafa, N., Slay, J.: The evaluation of network anomaly detection systems: statistical anal-
ysis of the UNSW-NB15 dataset and the comparison with the KDD99 dataset. Inf. Secur. J.
Glob. Perspect., 1–14 (2016)

14. Moustafa, N., et al.: Novel geometric area analysis technique for anomaly detection using
trapezoidal area estimation on large-scale networks. IEEE Trans. Big Data (2017)

15. Moustafa, N., Creech, G., Slay, J.: Big data analytics for intrusion detection system: statistical
decision-making using finite dirichlet mixture models. In: Palomares Carrascosa, I., Kalu-
tarage, H. K., Huang, Y. (eds.) Data Analytics and Decision Support for Cybersecurity. DA,
pp. 127–156. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59439-2_5

16. Sarhan,M., Layeghy, S.,Moustafa, N., Portmann,M.: NetFlow datasets formachine learning-
based network intrusion detection systems. In: Deze, Z., Huang, H., Hou, R., Rho, S., Chil-
amkurti, N. (eds.) BDTA/WiCON -2020. LNICSSITE, vol. 371, pp. 117–135. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-72802-1_9

17. “HAI DataSet Baseline Model”, DACON, 2 August 2021. https://dacon.io/competitions/off
icial/235757/codeshare/3009?page=1&dtype=recent. Accessed 5 Sept 2021

18. “[Paper Review] EvaluationMetrics for Time SeriesAnomalyDetection”, DSBA, 23 Septem-
ber 2020. http://dsba.korea.ac.kr/seminar/?pageid=3&mod=document&uid=1332. Accessed
6 Sept 2021

https://neptune.ai/blog/anomaly-detection-in-time-series
https://doi.org/10.1007/s12083-019-00822-3
https://doi.org/10.1145/3357384.3358118
https://doi.org/10.1109/TKDE.2013.184
https://doi.org/10.1007/978-3-030-72725-3_14
https://doi.org/10.3390/s21134294
https://doi.org/10.1007/978-3-319-59439-2_5
https://doi.org/10.1007/978-3-030-72802-1_9
https://dacon.io/competitions/official/235757/codeshare/3009?page=1&dtype=recent
http://dsba.korea.ac.kr/seminar/?pageid=3&mod=document&uid=1332

56 C. Seong et al.

19. Hwang,W.-s.,Yun, J.-H.,Kim, J.,Kim,H.: Time-series aware precision and recall for anomaly
detection - considering variety of detection result and addressing ambiguous labeling. In:
CIKM 2019: Proceedings of the 28th ACM International Conference on Information and
Knowledge Management (2019)

20. Devan, P., Khare, N.: An efficient XGBoost–DNN-based classification model for network
intrusion detection system. Neural Comput. Appl. 32(16), 12499–12514 (2020). https://doi.
org/10.1007/s00521-020-04708-x

21. Malhotra, P., et al.: LSTM-based encoder-decoder for multi-sensor anomaly detection. arXiv
preprint arXiv:1607.00148 (2016)

22. Hundman, K., et al.: Detecting spacecraft anomalies using lstms and nonparametric dynamic
thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining (2018)

23. Ding, N., et al.: Multivariate-time-series-driven real-time anomaly detection based on
bayesian network. Sensors 18(10), 3367 (2018)

24. Park, D., Hoshi, Y., Kemp, C.C.: A multimodal anomaly detector for robot-assisted feeding
using an lstm-based variational autoencoder. IEEERob. Autom. Lett. 3(3), 1544–1551 (2018)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.1007/s00521-020-04708-x
http://arxiv.org/abs/1607.00148
http://creativecommons.org/licenses/by/4.0/

Encryption

Encryption Scheme Based on the Generalized
Suzuki 2-groups and Homomorphic Encryption

Gennady Khalimov1 , Yevgen Kotukh2(B) , Sang-Yoon Chang3 ,
Yaroslav Balytskyi3 , Maksym Kolisnyk1 , Svitlana Khalimova1 ,

and Oleksandr Marukhnenko1

1 Kharkiv National University of Radioelectronics, Kharkiv, Ukraine
2 Sumy State University, Sumy, Ukraine

3 University of Colorado Colorado Springs, Colorado Springs, CO, USA

Abstract. This article describes a new implementation of MST-based encryption
for generalized Suzuki 2-groups. The well-known MST cryptosystem based on
Suzuki groups is built on a logarithmic signature at the center of the group, result-
ing in a large array of logarithmic signatures. An encryption scheme based on
multiparameter non-commutative groups is proposed. The multiparameter gener-
alized 2 - Suzuki group was chosen as one of the group constructions. In this case,
a logarithmic signature is established for the entire group. The main difference
from the known one is the use of homomorphic encryption to construct coverings
of logarithmic signatures for all group parameters. This design improves a secrecy
of the cryptosystem is ensured at the level of a brute-force attack.

Keywords: MST cryptosystem · Logarithmic signature · Random cover ·
Generalized Suzuki 2-groups

1 Introduction

Recent advances in quantum computing for solving complex problems formulate new
trends for building secure public-key cryptosystems. The main directions in this area
are the solution of the problem of finding the conjugate element in the theory of non-
commutative groups and the word problem in groups and semigroups. The word com-
plexity problem was proposed by Wagner and Magyarik [1] and implemented in several
cryptosystems. One of the best known and most studied is a cryptosystem based on fac-
torization in finite groups of permutations, called the logarithmic signature [2]. In 2009,
Lempken et al. described an MST3 public-key cryptosystem based on a logarithmic
signature and a Suzuki 2-group [2]. In 2008 Magliveras et al. [4] presented a compre-
hensive analysis of the MST3 cryptosystem identifying limitations for the logarithmic
signature and stated that the transitive logarithmic signature is not suitable for the MST3
cryptosystem. In 2010, Swaba et al. [5] analyzed all known attacks on MST cryptog-
raphy and built a more secure eMST3 cryptosystem by adding a secret homomorphic
coverage. In 2018, T. van Trung [7] proposed a general method for constructing strong

© The Author(s) 2022
S.-Y. Chang et al. (Eds.): SVCC 2021, CCIS 1536, pp. 59–76, 2022.
https://doi.org/10.1007/978-3-030-96057-5_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-96057-5_5&domain=pdf
http://orcid.org/0000-0002-2054-9186
http://orcid.org/0000-0003-4997-620X
http://orcid.org/0000-0002-5736-5823
http://orcid.org/0000-0002-7582-6232
http://orcid.org/0000-0002-1075-9470
http://orcid.org/0000-0001-7224-589X
http://orcid.org/0000-0002-0583-3752
https://doi.org/10.1007/978-3-030-96057-5_5

60 G. Khalimov et al.

aperiodic logarithmic signatures for Abelian p-groups, which is a further contribution
to the practical application of MST cryptosystems.

The construction of MST cryptosystems based on multiparameter non-commutative
groups was proposed in [7–9]. MST cryptosystems based on multi-parameter groups
allow optimizing the costs of cryptosystem parameters and secrecy.

Generalized Suzuki 2-groups are multivariable and have the highest group order
compared to other multivariable groups. The first implementation of the cryptosystem
on the generalized Suzuki 2-group is presented in [8] and does not provide protection
against brute force attacks with sequential brute force key recovery. Analysis of MST
cryptosystems by group shows their vulnerability to highlighted text attacks. The design
feature of all knownMST implementations is the presence of known texts and, as a con-
sequence, the possibility of such cryptanalysis. A secure encryption scheme is proposed
based on the generic Suzuki 2-group with homomorphic encryption.

2 Proposal

The generalizations of Suzuki 2-groups is defined over a finite field, Fq, q = 2n, n > 0
for a positive integer l and a1, a2, ..., al ∈ F for some automorphism θ of F as [10]:

Al(n, θ) = {
S(a1, a2, ..., al)|ai ∈ Fq

}

Each element of Al(n, θ) can be expressed uniquely and it follows that |Al(n, θ)| =
2nl and Al(n, θ) define a group of order 2nl . If l = 2, this group is isomorphic to a Suzuki
2-group A(n, θ).

Group operation is defined as a product:

S(a1, a2, ..., al)S(b1, b2, ..., bl) = S(a1 + b1, a2 + (a1θ)b1
+b2, a3 + (a2θ)b1 + (a1θ

2)b2 + b3,
..., al + (al−1θ)b1 + ... + (a1θ l−1)bl−1 + bl).

with the Identity element being S(01, 0, ..., 0).
The inverse element is given by:

S(a1, a2, a3, ..., al)
−1 = S(a1, a2 + a1θa1, a3 + a2θa1

+a1θ
2(a2 + a1θa1), ..., al + al−1θa1 + ...).

The group G is nonabelian group and has nontrivial center:

Z(G) = {
S(0, 0, ..., c)

∣∣c ∈ Fq
}
.

Assume that θ is the Frobenius automorphism of F, θ : x → x2. For the fixed finite
field, the group Al(n, θ) order is greater than the classical Suzuki 2 - group.

In the new implementation of the cryptosystem, we have changed the encryption
algorithm and suggest using homomorphic encryption for random covers. In this case,
the complexity of the key recovery attack will be determined by exhaustive search over
the entire group.

Encryption Scheme Based on the Generalized Suzuki 2-groups 61

2.1 Description of the Scheme

Our proposal is to create a logarithmic signature for the whole generalized Suzuki 2-
group and homomorphic encryption of random covers in the logarithmic signature.

Let’s take a look at the basic steps of encryption.
Key Generation.
We fix a large group Al(n, θ) = {

S(a1, a2, ..., al)|ai ∈ Fq
}
, q = 2n.

Let’s build a tame logarithmic signatures βk = [
B1(k), ...,Bs(k)

] = (
bij

)
k =

S
(
0, .., 0, bij(k), 0, ..., 0

)
of type:

(
r1(k), ..., rs(k)

)
, i = 0, s(k), j = 1, ri(k), bij(k) ∈ Fq,

k = 1, l.
Let’s set a random cover:

αk = [
A1(k), . . . ,As(k)

] = (
aij

)
k = S

(
a(1)
ij(k), a

(2)
ij(k), . . . , a

(l)
ij(k)

)

of the same type as βk , where aij ∈ Al(n, θ), a(v)
ij(k) ∈ Fq\{0}, i = 1, s, j = 1, ri(k),

k = 1, l.
Select the random covers:
w(k) = [

W1(k), . . . ,Ws(k)
] = (

wij
)
(k) = S

(
w(1)
ij(k),w

(2)
ij(k), . . . ,w

(l)
ij(k)

)
of the same

types as β(k), where wij ∈ Al(n, θ), wij(k) ∈ Fq\{0}, i = 0, s(k), j = 1, ri(k), k = 1, l.
Let’s generate random t0(k), ..., ts(k) ∈ Al(n, θ)\Z , ti(k) = S(ti1(k), ..., til(k)), tij(k) ∈

F×, i = 0, s(k), k = 1, l. Choose

τ0(k), . . . , τs(k) ∈ Al(n, θ)\Z, τi(k)

= S(τi1(k), . . . , τil(k)), τij(k) ∈ F×, i = 0, s(k), k = 1, l.

Let’s take ts(k−1) = t0(k), τs(k−1) = τ0(k), k = 1, l.
Let’s define an additional group operation:

S(a1, a2, ..., al) ◦(k) S(b1, b2, ..., bl) =
S(a1 + b1, a2 + b2, ..., ak + bk , ak+1 + a2kb1 + ... + a2

k

1 bk
+bk+1, ..., al + a2l−1b1 + ... + a2

l−1

1 bl−1 + bl).

The inverse element S−(k) for the group operation ◦(k) is

S−(k)(a1, a2, ..., al) = S(a1, a2, ..., ak , αk+1, ..., αl)

where

αk+1 = ak+1 + a2ka1 + . . . + a2
k−1

2 ak−1 + a2
k

1 ak ,

αk+2 = ak+2 + a2k+1a1 + . . . + a2
k−1

3 ak−1 + a2
k

2 ak + a2
k+1

1 αk+1,

. . .

αl = al + a2l−1a1 + . . . + a2
k

l−kak + a2
k+1

l−k−1αk+1+, . . . ,+a2
l−1

l αl−1

The application of additional group operation ◦(k) leads to homomorphic rep-

resentation of group elements S(a1, a2, ..., al)
◦(k)−→ S(a1, a2, ..., ak , αk+1, ..., αl) =

S(k).

62 G. Khalimov et al.

We apply inverse homomorphic transformation for the inverse and direct elements
S−(k)
1 , S(k)

2 of the group for the calculation in group with left inverse element S−(n)◦
1 .

S3 = S−(k)◦
1 · S(k)◦

2 For S−(k)
1 we have:

S−(k)◦ = S◦(a1, a2, ..., ak , αk+1, ..., αl) = S(α1, ..., αk , αk+1, ..., αl), where

α1 = a1, α2 = a2 + a21a1, ...αk = ak + a2k−1a1 + ..., a2
k−1

l ak−1.

and for S(k)
2 respectively to S3 = S−(k)◦

1 · S(k)◦
2 we get

S(k)◦ = S◦(b1, b2, ..., bk , βk+1, ..., βl) = S(β1, ..., βk , βk+1, ..., βl)

β1 = b1, β2 = b2 + a21(b1 + a1), ...

βk = bk + a2k−1(b1 + a1) + ..., a2
k−1

l (bk−1 + ak−1).

Homomorphic transformations for S−(k)◦, S(k)◦ are needed to for not breaking the
group operation when calculating the elements of the group Al(n, θ).

Let f (e) be a homomorphic cryptographic transformation with respect to addition
f (a + b) = f (a) + f (b), e, a, b ∈ Fq and the corresponding inverse transformation

f̂ (e) = e. We calculate the covering of the logarithmic signatures:

h(k) = [
h1(k), ..., hs(k)

] = t−(k)
(i−1)(k) ◦(k) (

wij
)
(k) ◦(k) (

bij
)
(k) ◦(k) ti(k)

and coverings of the homomorphic cryptographic transformation:
g(k) = [

g1(k), ..., gs(k)
] = τ

−(k)
(i−1)(k) ◦(k) f

(
wij

)
(k) ◦(k) τi(k), where

f (w(k)) = f
(
wij

)
(k) = S

(
f (wij(k)1), f (wij(k)2), ..., f (wij(k)l)

)
,

i = 1, s(k), j = 1, ri(k), k = 1, l.

An output public key is (ak , hk , gk), and a
private key

[
f , β(k),

(
t0(k), . . . , ts(k)

)
,
(
τ0(k), . . . , τs(k)

)]
, k = 1, l respectively.

Encryption
Let the message to be x = S(x1, ..., xl) and the public key (ak , hk , gk), k = 1, l

respectively. Choose a random R = (R1, ...,Rl), R1, ...,Rl ∈ Z|Fq|.
Compute the ciphertext y1, y2, y3 as:

y1 = α(R) · x = α1(R1) · α2(R2) . . . αl(Rl) · x

= S(

l∑

k=1

s(k)∑

i=1,j=Ri(k)

a(1)
ij(k) + x1,

l∑

k=1

s(k)∑

i=1,j=Ri(k)

a(2)
ij(k) + x2 + ∗,

. . . ,

l∑

k=1

s(k)∑

i=1,j=Ri(k)

a(l)
ij(k) + xl + ∗,),

Encryption Scheme Based on the Generalized Suzuki 2-groups 63

y2 = h(R) = h1(R1)◦(1)

(
h2(R2) ◦(2) . . .

(
hl−1(Rl−1) ◦(l−2)

(
hl−1(Rl−1) ◦(l−1) hl(Rl)

)))

= S

⎛

⎝
l∑

k=1

s(k)∑

i=1,j=Ri(k)

w(1)
ij(k) +

s(1)∑

i=1,j=Ri(1)

βij(1),

l∑

k=1

s(k)∑

i=1,j=Ri(k)

w(2)
ij(k)

+
s(2)∑

i=1,j=Ri(2)

βij(2) + ∗, . . . ,

l∑

k=1

s(k)∑

i=1,j=Ri(k)

w(l)
ij(k) +

s(l)∑

i=1,j=Ri(l)

βij(l) + ∗
⎞

⎠

Here, the (∗) components are determined by cross-calculations in the group operation
of the product of t0(k), ..., ts(k) and the product of w(k)(Rk) + β(k)(Rk).

y3 = g(R) = g1(R1)◦(1)

(
g2(R2) ◦(2) . . .

(
gl−1(Rl−1) ◦(l−2)

(
gl−1(Rl−1) ◦(l−1) gl(Rl)

)))

= S

⎛

⎝
l∑

k=1

s(k)∑

i=1,j=Ri(k)

f
(
w(1)
ij(k)

)
+,

l∑

k=1

s(k)∑

i=1,j=Ri(k)

f
(
w(2)
ij(k)

)
+∗, . . . ,

l∑

k=1

s(k)∑

i=1,j=Ri(k)

f
(
w(l)
ij(k)

)
+ ∗

⎞

⎠

Here, the (∗) components are determined by cross-calculations in the group operation
of the product of τ0(k), . . . , τs(k) and the product of f

(
w(k)(Rk)

)
.

Output: a ciphertext (y1, y2, y3) of the message x.
Decryption Input: a ciphertext (y1, y2, y3) and a private key

[
f , β(k), ti(k), τi(k)

]
,

i = 0, s(k), k = 1, l.
To decrypt a message x, we need to restore random numbers R = (R1,R2, ...,Rl).
Compute

D(1)(R) = D(1)(R1,R2, . . . ,Rl) = t0(1) ◦(1) y2 ◦(l) t−(l)
s(l)

= S(

s(1)∑

i=1,j=Ri(1)

w(1)
ij(1) + β1(R1), ∗, . . . , ∗),

G(1)(R) = G(1)(R1,R2, . . . ,Rl) = τ0(1) ◦(1) y3 ◦(l) τ
−(l)
s(l)

= S(

s(1)∑

i=1,j=Ri(1)

f
(
w(1)
ij(1)

)
, ∗, . . . , ∗),

D(1)(R)′ = D(1)(R) ◦(1) f̂ (G(1)(R))−(1) = S(
s(1)∑

i=1,j=Ri(1)

βij(1), ∗, ∗) Restore R1 with

β(1)(R1) =
s(1)∑

i=1,j=Ri(1)

βij(1) using β(1)(R1)
−1, because β1 is simple.

64 G. Khalimov et al.

For the further calculation, it is necessary to remove the component h1(R1) from y2
and g1(R1) from y3. Compute

y(1)
2 = h1(R1)

−(1)◦ · y◦
2, y

(1)
3 = g1(R1)

−(1)◦ · y◦
3, D(R)(2) = t0(2) ◦(2) y(1)

2 ◦(l) t−(l)
s(l) ,

G(R)(2) = τ0(2) ◦(2) y(1)
3 ◦(l) τ

−(l)
s(l) ,

D(2)(R)′ = D(2)(R) ◦(2) f̂ (G(2)(R))−(2) = S(0,
s(2)∑

i=1,j=Ri(2)

βij(2)c , ∗).

and restore R2 with β(2)(R2) =
s(2)∑

i=1,j=Ri(2)

βij(2) using β(2)(R2)
−1, because β2 is

simple. We continue the calculations iteratively until the last value Rl is restored. We
have the following recurrent relations for n = 1, l − 1:

y(n)
2 = hn(Rn)

−(n)◦ · y(n−1)◦
2 , y(n)

3 = gn(Rn)
−(n)◦ · y(n−1)◦

3 ,

D(n+1)(R) = t0(n+1) ◦(n+1) y(n)
2 ◦(l) t−(l)

s(l) , G
(n+1)(R) = τ0(n+1) ◦(n+1) y(n)

3 ◦(l) τ
−(l)
s(l) ,

D(n+1)(R)′ = D(n+1)(R) ◦(n+1) f̂ (G(n+1)(R))−(n+1) =
S(0, 0, ..., 0,

s(n+1)∑

i=1,j=Ri(n+1)

βij(n+1), ∗)

Restore Rn+1 with β(n+1)(Rn+1) =
s(n+1)∑

i=1,j=Ri(n+1)

βij(n+1) using β(n+1)(Rn+1)
−1.

Recovery of the message x = a(R1,R2, ...,Rl)
−1 · y1.

Example
We will show the correctness of the obtained expressions in the following simple

example.
Let’s fix the four-parameter generalized Suzuki group G = A4(n, θ) over the finite

field Fq, q = 25, g(x) = x5 + x3 + 1 . Assume that θ is the Frobenius automorphism of
Fq, θ : α → α2. Group operation is defined as:

S(a1, a2, a3, a4)S(b1, b2, b3, b4) = S(a1 + b1, a2 + a21b1 + b2,

a3 + a22b1 + a41b2 + b3, a4 + a23b1 + a42b2 + a81b3 + b4).

The inverse element is determined as:

S(a1, a2, a3, a4)
−1 = S(a1, a2 + a31, a3 + a22a1 + a41a

′
2, a4 + a23a1 + a42a

′
2 + a81a

′
3)

where a′
2 = a2 + a31, a

′
3 = a3 + a22a1 + a41a

′
2.

Let’s consider the basic steps of our calculations.
Generation of public and private keys
First stage is to generate a tame logarithmic signature with the dimension of corre-

sponding selected type
(
r1(k), ..., rs(k)

)
and finite field Fq. The construction of arrays of

logarithmic signatures is presented in [11]. For our example, we use the construction of
simple logarithmic signatures without analyzing the details of their secrecy. Let’s β(k)

Encryption Scheme Based on the Generalized Suzuki 2-groups 65

for k = 1, 3 have the types of
(
22, 23

)
,
(
2, 22, 22

)
,
(
22, 2, 22

)
,
(
22, 22, 2

)
. They are

represented as a strings and elements of the group over the field Fq in the table provided
below (Table 1).

Table 1. Logarithmic signature generation

βk = [
B1(k),B2(k),B3(k),B4(k)

] = (
bij

)
(k),

(
bij

)
(k) ∈ Al=4(n, θ)

B1(1) B1(2) B1(3) B1(4)

00000 0, 0, 0, 0 00000 0, 0, 0, 0 00000 0, 0, 0, 0 00000 0, 0, 0, 0

10000 α0, 0, 0, 0 10000 0, α0, 0, 0 10000 0, 0, α0, 0 10000 0, 0, 0, α0

01000 α1, 0, 0, 0 01000 0, α1, 0, 0 B2(3) 01000 0, 0, 0, α1

11000 α14, 0, 0, 0 11000 0, α14, 0, 0 00000 0, 0, 0,0 11000 0, 0, 0, α14

B2(1) B2(2) 11000 0, 0, α14, 0 B2(4)

01000 α1, 0, 0, 0 11000 0, α14, 0, 0 10100 0, 0, α28, 0 00000 0, 0, 0, 0

10100 α28, 0, 0, 0 11100 0, α22, 0, 0 01100 0, 0, α15, 0 00100 0, 0, 0, α2

11010 α26, 0, 0, 0 10010 0, α5, 0, 0 B3(3) B3(4)

00110 α16, 0, 0, 0 00110 0, α16, 0, 0 01000 0, 0, α1, 0 01000 0, 0, 0, α1

10001 α25, 0, 0, 0 B3(2) 10010 0, 0, α5, 0 00110 0, 0, 0, α16

11101 α21, 0, 0, 0 10000 0, α0, 0, 0 01101 0, 0, α27, 0 00001 0, 0, 0, α4

10011 α18, 0, 0, 0 10011 0, α18, 0, 0 10111 0, 0, α9, 0 11011 0, 0, 0, α19

11111 α20, 0, 0, 0

Construct random covers αk , for the same type as β(k)

αk = [
A1(k), . . . ,As(k)

] = (
aij

)
k = S

(
a(1)
ij(k), a

(2)
ij(k), a

(3)
ij(k), a

(4)
ij(k)

)

where aij ∈ Al=4(n, θ), a(v)
ij(k) ∈ Fq\{0}, i = 1, s, j = 1, ri(k), k = 1, 4.

In the field representation αk has the following form (Table 2)

Table 2. Random covers construction

αk = [
A1(k), . . . ,As(k)

] = (
aij

)
k = S

(
a(1)
ij(k), a

(2)
ij(k), a

(3)
ij(k), a

(4)
ij(k)

)

k = 1 k = 2 k = 3 k = 4

A1(1) A1(2) A1(3) A1(4)

α6, α11, α17, α27 α17, α5, α26, α28 α0, α2, α14, α20 α20, α14, α30, α13

α11, α5, α7, α5 α20, α14, α19, α24 α17, α27, α16, α10 α4, α2, α13, α17

α21, α18, 0, α16 α30, α21, α6, α3 A2(3) α19, α13, α26, α22

(continued)

66 G. Khalimov et al.

Table 2. (continued)

αk = [
A1(k), . . . ,As(k)

] = (
aij

)
k = S

(
a(1)
ij(k), a

(2)
ij(k), a

(3)
ij(k), a

(4)
ij(k)

)

k = 1 k = 2 k = 3 k = 4

α5, α29, α12, α16 α6, α9, α13, α22 α28, α29, 0, α25 α6, α28, α12, α4

A2(1) A2(2) α10, α12, α22, α30 A2(4)

α4, α7, α4, α2 α30, α14, α27, α30 α13, α23, α19, α19 α18, α1, α1, α24

α12, α11, α3, α1 α1, α18, 0, α13 α0, α10, α1, α20 α26, α28, α15, α0

α18, α15, α14, α30 α1, α18, α28, α30 A3(3) A3(4)

α3, α19, α26, α2 α25, α5, α0, α13 α11, α27, α29, α18 α16, α17, α29, α17

α11, α18, α21, α28 A3(2) α5, α1, α12, α22 α18, α0, α1, α15

α16, α18, α10, α24 α3, α29, α25, 0 α30, α18, α6, α11 α4, α9, α23, α19

α17, α16, 0, α27 α25, α19, α23, α2 0, 0, α17, α23 α19,α20, α30, α10

α25, α17, α8, α12

Choose random Al(n, θ) t0(k), t1(k), ..., ts(k) ∈ Al(n, θ), s(k), k = 1, 4 and t2(1) =
t0(2), t3(2) = t0(3), t3(3) = t0(4) (Table 3)

Table 3. Random t vectors

t0(k), t1(k), . . . , ts(k) ∈ Al=4(n, θ), s(k), k = 1, 4

k = 1 k = 2 k = 3 k = 4

α1, α5, α17, α16

α25, α17, α23, α27

α13, α0, α28, α10

α13, α0, α28, α10

α30, α2, α17, α2
α6, α7, α30, α18

α9, α4, α9, α20

α9, α4, α9, α20

α14, α28, α17, α22

α26, α5, α16, α30

α12, α15, α17, α6

α12, α15, α17, α6

α22, α30, α22, α16

α24, α29, α15, α30

α3, 0, α14, α9

The inverse elements t−(k)
0(k) , t−(k)

1(k) , ..., t−(k)
s(k) of the groupA4(n, θ)were computed with

reference below (Table 4):

Table 4. Computing of inverse elements t−(k)
0(k) , t−(k)

1(k) , . . . , t−(k)
s(k)

τ
−(k)
0(k) , τ

−(k)
1(k) , . . . , τ

−(k)
s(k)

k = 1 k = 2 k = 3 k = 4

α1, α0, α22, α21

α25, α7, α3, α15

α13, α19, α7, α24

α13, α0, α7, α24

α30, α2, α15, α21

α6, α7, α28, α24

α9, α4, α8, α25

α9, α4, α9, α25

α14, α28, α17, α21

α26, α5, α16, α13

α12, α15, α17, α30

α12, α15, α17, α6

α22, α30, α22, α16

α24, α29, α15, α30

α3, 0, α14, α9

Encryption Scheme Based on the Generalized Suzuki 2-groups 67

Similarly, we choose random τ0(k), τ1(k), ..., τs(k) ∈ Al(n, θ), s(k), k = 1, 4 and
t2(1) = t0(2), t3(2) = t0(3), t3(3) = t0(4):

and the inverse elements τ
−(k)
0(k) , τ

−(k)
1(k) , ..., τ

−(k)
s(k) (Table 5):

Table 5. Computing of random τ vectors τ0(k), τ1(k), ..., τs(k) ∈ A(P∞)\Z

τ0(k), τ1(k), . . . , τs(k) ∈ A(P∞)\Z, s(k), k = 1, 4

k = 1 k = 2 k = 3 k = 4

α4, α22, α7, α12

α8, 0, α13, α16

α29, α21, α30, α13

α29, α21, α30, α13

α24, α20, α17, α25

α4, α7, α16, α30

α2, α17, α22, α2

α2, α17, α22, α2

0, α22, α16, α24

α6, α21, α25, α18

α20, 0, α3, α0

α20, 0, α3, α0

α21, α16, α12, α16

α16, α28, α19, α16

α28, α17, α26, α4

Table 6. Computing of inverse elements τ
−(k)
0(k) , τ

−(k)
1(k) , . . . , τ

−(k)
s(k)

τ
−(k)
0(k) , τ

−(k)
1(k) , . . . , τ

−(k)
s(k)

k = 1 k = 2 k = 3 k = 4

α4, α18, α9, α0

α8, α24, α2, α30

α29, α15, α2, α5

α29, α21, α2, α5

α24, α20, α22, α29

α4, α7, α12, α28

α2, α17, α24, α11

α2, α17, α22, α11

0, α22, α16, α2

α6, α21, α25, α3

α20, 0, α3, α22

α20, 0, α3, α0

α21, α16, α12, α16

α16, α28, α19, α16

α28, α17, α26, α4

Construct random covers wk , for the same type as β(k)

w(k) = [
W1(k), . . . ,Ws(k)

] = (
wij

)
(k) = S

(
w(1)
ij(k),w

(2)
ij(k), . . . ,w

(l)
ij(k)

)
, where wij ∈

Al=4(n, θ), w(v)
ij(k) ∈ Fq, i = 0, s(k), j = 1, ri(k), k = 1, 4 (Table 6 and 7).

Table 7. Construct random covers wk

w(k) = [
W1(k), . . . ,Ws(k)

] = (
wij

)
(k) = S

(
w(1)
ij(k), . . . ,w

(4)
ij(k)

)

k = 1 k = 2 k = 3 k = 4

W1(1) W1(2) W1(3) W1(4)

α20, α20, α12, α4 α9, α28, α27, α2 α3, α2, α10, 0 α30, α14, α1, α28

α7, α9, α17, α20 α16, α13, α6, α21 α5, α10, α19, α16 α6, α28, α30, α20

α25, α6, α23, α27 α25, 0, α4, α27 W2(3) α13, α19, α26, α11

α3, α0, α23, α29 α1, α0, α17, α17 α12, α20, α14, α3 α16, α27, α9, α21

(continued)

68 G. Khalimov et al.

Table 7. (continued)

w(k) = [
W1(k), . . . ,Ws(k)

] = (
wij

)
(k) = S

(
w(1)
ij(k), . . . ,w

(4)
ij(k)

)

W2(1) W2(2) α23, α12, α5, α27 W2(4)

α7, α21, α6, α21 α21, α14, α14, α0 α2, α3, α24, α16 α2, α21, α8, α29

α18, α21, α22, α6 α19, α29, α19, α13 α12, α5, α21, α14 α4, α2, α1, α23

α18, α19, α12, α15 α25, α26, α12, α17 W3(3) W3(4)

α16, α12, α14, α6 α10, α19, α23, α4 α14, α6, α0, α17 0, α0, α25, α3

α23, α4, α1, α30 W3(2) α17, α13, α7, α4 α3, α19, α17, α24

α5, α26, α6, α19 α28, α0, α13, α17 α25, α24, α27, α8 α28, α28, α14, α26

α22, α17, α13, α21 α14, α0, α3, α3 α13, 0, α21, α7 α24, α18, α27, α13

α28, α27, α9, α24

The next step is to calculate the arrays hk . Within the condition of the example, we
obtain:

h(k) = [
h1(k), ..., hs(k)

] = t−(k)
(i−1)(k) ◦(k)

(
wij

)
(k) ◦(k)

(
bij

)
(k) ◦(k) ti(k)

i = 1, s(k), j = 1, ri(k), k = 1, 4.
Let’s a homomorphic cryptographic transformation for a field element e ⇒ ρie

where ρi is a secret parameter. The transformation is chosen to be the simplest. You
can also use more complex homomorphic transformations with respect to the addition
operation. We define homomorphic cryptographic transformation for a group element S
as

f (S(e1, e2, e3, e4)) = S(ρ1e1, ρ2e2, ρ3e3, ρ4e4),

and let’s ρ = (ρ1, ρ2, ρ3, ρ4) = (
α4, α5, α6, α7

)
.

Let’s a homomorphic cryptographic transformation for a field element e ⇒ ρie
where ρi is a secret parameter. The transformation is chosen to be the simplest (Table
8).

You can also use more complex homomorphic transformations with respect to the
addition operation. We define homomorphic cryptographic transformation for a group
element S as

f (S(e1, e2, e3, e4)) = S(ρ1e1, ρ2e2, ρ3e3, ρ4e4),

and let’s ρ = (ρ1, ρ2, ρ3, ρ4) = (
α4, α5, α6, α7

)
.

Next, we compute the arrays gk via the homomorphic transformation

g(k) = [
g1(k), ..., gs(k)

] = τ
−(k)
(i−1)(k) ◦(k) f

(
wij

)
(k) ◦(k) τi(k)

i = 1, s(k), j = 1, ri(k), k = 1, 4. See the Table 9 for the results.
An output public key (ak , hk , gk), and a private key[

f , β(k),
(
t0(k), . . . , ts(k)

)
,
(
τ0(k), . . . , τs(k)

)]
, k = 1, 4.

Encryption Scheme Based on the Generalized Suzuki 2-groups 69

Table 8. Construct arrays hk

hk = S(h(1)
ij(k), h

(2)
ij(k), h

(3)
ij(k), h

(4)
ij(k))

k = 1 k = 2 k = 3 k = 4

h1(1) h1(2) h1(3) h1(4)
α16, α20, α22, α30 α24, 0, α16, 0 α27, α25, α27, α30 α7, α25, α9, α19

α20, α7, α21, α15 α7, α25, α21, α3 α21, α15, α20, α14 α26, α21, α26, 0

0, α27, α26, α13 α4, α22, 0, α21 h2(3) α16, α5, α30, α10

α17, α16, α28, α26 α14, α22, α3, α5 α27, α10, α21, α23 α13, α2, α1, α29

h2(1) h2(2) α15, α6, α12, α9 h2(4)
α26, 0, α29, α11 α25, α5, α3, α26 α16, α2, α7, α17 α20, α5, α19, α6

α17, α7, α26, α29 α9, α2, α12, α14 α27, α28, α28, α11 α26, α8, α14, α6

α27, α11, α28, α16 α21, α26, α25, α21 h3(3) h3(4)
α2, α3, α11, α4 α13, α12, α22, α7 α27, α9, α21, α15 α30, α26, α30, α14

α19, α16, α25, α5 h3(2) α7, α8, α4, α4 α24, α25, α9, α18

α8, α8, α19, α19 α29, α9, α1, α12 α2, α10, α30, α24 α25, α11, α15, α6

α8, α10, α1, α30 α16, α28, α1, α3 0, α11, α12, α21 α3, α10, α10, α22

α12, α27, α0, α21

Table 9. Construct arrays gk

gk = S(g(1)
ij(k), g

(2)
ij(k), g

(3)
ij(k), g

(4)
ij(k))

k = 1 k = 2 k = 3 k = 4

g1(1) g1(2) g1(3) g1(4)
α27, α21, α17, α13 α14, α16, α7, α18 α5, α6, α22, α30 0, α21, α19, α9

α28, α18, α2, α1 α5, α25, α18, 0 α18, α18, α8, α7 α19, α3, α20, α19

0, α17, α1, α13 α24, α3, α1, α13 g2(3) α4, α4, α30, α30

α22, α9, α29, α26 α20, α0, 0, α23 α12, α0, α1, α0 α21, α23, α4, α3

g2(1) g2(2) α2, α3, α6, 0 g2(4)
α20, α29, α17, α13 α9, α5, α25, α30 0, α29, α5, α11 α5, α1, α15, α5

α21, α0, α25, α28 α1, α8, α7, α17 α12, α14, α26, α23 α0, α2, α3, α30

α21, α27, α21, α21 α15, α10, α13, α9 g3(3) g3(4)
α11, α30, α22, α5 α11, α23, α29, α18 α30, α17, α26, α2 α5, α30, α25, α11

α15, α24, α17, α24 g3(2) α8, α23, α16, α9 α2, α0, α12, α9

α7, α30, α20, α24 α27, α24, α6, α9 α22, α9, α9, α10 α26, α18, α11, α17

α19, α19, α3, α2 α7, α24, α25, α26 α13, α21, α11, α26 α16, α10, α30, α14

α6, α10, α17, α17

70 G. Khalimov et al.

Encryption
Input: a message m ∈ Al(n, θ), m = S(m1,m2,m3,m4), mi ∈ Fq and the public key[

fk , (ak , hk , gk)
]
, k = 1, 4.

Let m = (
α1, α2, α3, α4

) = S
(
α1, α2, α3, α4

)
.

Choose a random R = (R1,R2,R3,R4) = (10, 20, 30, 14).
We obtain the following Ri expansions for given types of

(
r1(k), ..., rs(k)

)
, k = 1, 4

R1 = (
R1(1),R2(1)

) = (2, 2) = 10,

R2 = (
R1(2),R2(2),R3(2)

) = (0, 1, 1) = 20,

R3 = (
R1(3),R2(3),R3(3)

) = (0, 3, 3) = 30.

R4 = (
R1(4),R2(4),R3(4)

) = (2, 1, 1) = 14

Compute the cipher text:

y1 = a′(R) · m = a′
1(R1) · a′

2(R2) · a′
3(R3) · a′

4(R4) · m =
S
(
α7, α6, α22, α11

)

where:

a′
1(R1) = a1(10) = a1(1)(2)a2(1)(2) = S

(
α23, α13, α20, α20

)
,

a′
2(R2) = a2(20) = a1(2)(0)a2(2)(1)a3(2)(1) = S

(
α26, α3, α5, α29

)
,

a′
3(R3) = a3(30) = a1(3)(0)a2(3)(3)a3(3)(3) = S

(
0, α27, α8, α4

)
,

a′
4(R4) = a4(14) = a1(4)(2)a2(4)(1)a3(4)(1) = S

(
α5, α12, α21, α16

)
.

Calculate

y2 = h1(R1) ◦(1)
(
h2(R2) ◦(2)

(
h3(R3) ◦(3) h4(R4)

))
= S

(
0, α8, α16, α17

)

The components h′
k(Rk) are calculated similarly to a′

k(Rk) components, but using
the appropriate multiplication operation. Compute the component y3:

y3 = g1(R1) ◦(1)
(
g2(R2) ◦(2)

(
g3(R3) ◦(3) g4(R4)

))
= S

(
α16, α14, α1, α4

)
.

We obtained output y1 = (
α7, α6, α22, α11

)
, y2 = (

0, α8, α16, α17
)
, y3 =(

α16, α14, α1, α4
)
.

Decryption
Input: a ciphertext (y1, y2, y3) and private key

[
f , β(k), ti(k), τi(k)

]
, i = 0, s(k), k =

1, 4.

Encryption Scheme Based on the Generalized Suzuki 2-groups 71

Output: the message m ∈ A(P∞) corresponding to ciphertext (y1, y2, y3).
To decrypt a message m, we need to restore random numbers R = (R1,R2,R3).
Compute

D(1)(R) = t0(1) ◦(1) y2 ◦(4) t−(4)
s(4) = S(α29, α8, α24, α28),

G(1)(R) = τ0(1) ◦(1) y3 ◦(4) τ
−(4)
s(4) = S(α18, α5, α7, α30),

D(1)(R)′ = D(1)(R) ◦(1) f̂ (G(1)(R))−(1) = S(α5, α22, α21, α0).

Restore R1 with β(1)(R1) =
s(1)∑

i=1,j=Ri(1)

βij(1) using β(1)(R1)
−1, because β1 is simple.

We get β1(R1) = α5 = (10010). Perform inverse calculations β(1)(R1)
−1.

10|010 R1 = (*, 2)
11|010 row 1 from B4(1)
10|010−11|010 = 01|000 R1 = (2, 2)
We get β1(R1)

−1 = (2, 2) = 10
For further calculation, it is necessary to remove the component h′

1(R1) from y2 and
g′
1(R1) from y3.

Compute

y(1)
2 = h1(R1)

−(1)◦ · y◦
2 = S(α26, α16, α17, α19),

y(1)
3 = g1(R1)

−(1)◦ · y◦
3 = S(α19, α18, α12, α19),

D(2)(R) = t0(2) ◦(2) y(1)
2 ◦(4) t−(4)

s(4) = S(α26, α18, α16, α2),

G(2)(R) = τ0(2) ◦(2) y(1)
3 ◦(4) τ

−(4)
s(4) = S(α30, α27, α0, α11),

D(2)(R)′ = D(2)(R) ◦(2) f̂ (G(2)(R))−(2) = S(0, α12, α4, α30)

and restore R2 with β(2)(R2) =
s(2)∑

i=1,j=Ri(2)

βij(2) using β(2)(R2)
−1, because β2 is

simple. We get β2(R2) = α12 = (01111). Restore R2 with β2(R2). We use the same
calculations as in the example for β2(R2)

−1, and we get:
01|11|1 R2 = (*, *, 1)
10|01|1 row 1 from B3(2)
01|11|1−10|01|1 = 11|10|0 R2 = (*, 1, 1)
11|10|0 row 0 from B3(2)
11|10|0−11|10|0 = 00|00|0 R2 = (0, 1, 1)
We get β2(R2)

−1 = (0, 1, 1) = 20.
Remove the component h′

2(R2) from y(1)
2 and g′

2(R2) from y(1)
3 . We get

y(2)
2 = h3(R3)

−(2)◦ · y(1)◦
2 = S(α19, α18, α22, α15),

72 G. Khalimov et al.

y(2)
3 = g3(R3)

−(2)◦ · y(1)◦
3 = S(α21, α10, α0, α19),

D(3)(R) = t0(3) ◦(3) y(2)
2 ◦(4) t−(4)

s(4) = S(α23, α5, α18, α21),

G(3)(R) = τ0(3) ◦(3) y(2)
3 ◦(4) τ

−(4)
s(4) = S(α21, α10, α7, α13),

D(3)(R)′ = D(3)(R) ◦(3) f̂ (G(3)(R))−(3) = S(0, 0, α19, α6)

We get β3(R3) = α19 = (11011).
Perform inverse calculations β3(R3)

−1.
1|10|11 R3 = (*, *, 3)
1|01|11 row 3 from B3(3)
1|10|11−1|01|11 = 0|11|00 R3= *, 3, 3)
0|11|00 row 3 from B2(3)
0|11|00−0|11|00 = 0|00|00 R3 = (0, 3, 3)
We get β3(R3)

−1 = (0, 3, 3) = 30.
Remove the component h′

3(R3) from y(2)
2 and g′

3(R3) from y(2)
3 .

As a result, we get:

y(3)
2 = h3(R3)

−(3)◦ · y(2)◦
2 = S(α19, α1, α29, α17),

y(3)
3 = g3(R3)

−(3)◦ · y(2)◦
3 = S(α13, α13, α0, α16),

D(4)(R) = t0(4) ◦(4) y(3)
2 ◦(4) t−(4)

s(4) = S(α7, α2, α25, α21),

G(4)(R) = τ0(4) ◦(3) y(3)
3 ◦(4) τ

−(4)
s(4) = S(α11, α7, α0, α16),

D(3)(R)′ = D(4)(R) ◦(4) f̂ (G(4)(R))−(4) = S(0, 0, 0, α29)

01010
We get β4(R4) = α29 = (01010). Perform inverse calculations β4(R4)

−1.
01|0|10 R3 = (*, *, 1)
00|1|10 row 1 from B3(4)
01|0|10−00|1|10 = 01|1|00 R3 = (*, 1, 1)
00|1|00 row 1 from B2(4)
01|1|00−00|1|00 = 01|0|00 R3 = (2, 1, 1)
We get β4(R4)

−1 = (2, 1, 1) = 14.
Receive a message m = a′(R)−1y1 = S

(
α1, α2, α3, α4

)
.

Encryption Scheme Based on the Generalized Suzuki 2-groups 73

3 Security Parameters Analysis and Cost Estimation

Consider a brute force attack of key recovery. There are three possible schemes for such
an attack.

Brute force attack on cipher text. By selecting R = (R1,R2, ...,Rl) try to decipher
the text y′

1 = α′(R′) · m = α′
1

(
R′
1

) · α′
2

(
R′
2

)
. . . α′

l

(
R′
l

) · m. The covers αk = (
aij

)
k =

S
(
a(1)
ij(k), a

(2)
ij(k), ..., a

(l)
ij(k)

)
are selected randomly and the value is determined by multipli-

cation in a group with no coordinate constraints. The resulting vector α′(R′) depends on
all componentsα′

i

(
R′
i

)
. Enumeration of key valuesR = (R1,R2, ...,Rl) has an estimation

of complexity. For a practical attack, the messagem is also unknown and has uncertainty
to choose from ql . This makes a brute-force attack on a key infeasible. If we take an
attack model with a known text, then the attack complexity still remains the same and
equal to ql .

Brute force attack on the cyphertext y2. Select R = (R1,R2, ...,Rl) to match y2. The
vector y2 has a following definition over the components α′

i(Ri)

y2 = S

⎛

⎝
l∑

k=1

s(k)∑

i=1,j=Ri(k)

w(1)
ij(k) +

s(1)∑

i=1,j=Ri(1)

βij(1),

l∑

k=1

s(k)∑

i=1,j=Ri(k)

w(2)
ij(k)+

s(2)∑

i=1,j=Ri(2)

βij(2) + ∗, . . . ,

l∑

k=1

s(k)∑

i=1,j=Ri(k)

w(l)
ij(k) +

s(l)∑

i=1,j=Ri(l)

βij(l) + ∗
⎞

⎠

The values of the coordinates y2 are defined by calculations over the vectors
w′
1(R1),w′

2(R2), ...,w′
l(Rl). The keys R = (R1,R2, ...,Rl) are bound and changes in

any of them leads to change y2. The brute force attack on key R has a complexity equal
to ql .

Brute force attack on the ciphertext y3. Select R = (R1,R2, ...,Rl) to match y3. The
vector y3 has a following definition over the components ρiw′

i(Ri)

y3 = S

⎛

⎝
l∑

k=1

s(k)∑

i=1,j=Ri(k)

f
(
w(1)
ij(k)

)
+,

l∑

k=1

s(k)∑

i=1,j=Ri(k)

f
(
w(2)
ij(k)

)
+∗,

. . . ,

l∑

k=1

s(k)∑

i=1,j=Ri(k)

f
(
w(l)
ij(k)

)
+ ∗

⎞

⎠.

The values of the coordinates y3 are defined by calculations over the vectors
w′
1(R1),w′

2(R2), ...,w′
l(Rl). The keys R1,R2, ...,Rl are bound and changes in any of

them leads to change y3. The brute force attack on key R has a complexity equal to ql .
Brute force attack on the vectors

(
t0(k), . . . , ts(k)

)
and

(
τ0(k), τ1(k), . . . , τs(k)

)
. The

brute force attack on
(
t0(k), . . . , ts(k)

)
is a general for the MST cryptosystems and for

the calculation in the field Fq over the group center Z(G) has an optimistic complexity
estimation equal to q. For the proposed algorithm all calculations are executed on whole
group |Al(n, θ)| = ql and is a such case the complexity of the brute force attack on(
t0(k), . . . , ts(k)

)
and

(
τ0(k), τ1(k), . . . , τs(k)

)
will be equal to ql .

74 G. Khalimov et al.

Attack on the Algorithm. The attack on the implementation algorithm of the MST
cryptosystem based on the generalized Suzuki 2-group is multifaceted. Practical attacks
look at the features of logarithmic signatures and random coverings known to a cryptan-
alyst. One solution is to use aperiodic logarithmic signatures. In the new cryptosystem
with homomorphic encryption, random covers are a secret for the cryptanalyst. In this
case, the known attacks based on the weakness of logarithmic signatures are impossible.

Let’s estimate security and keys parameters for generalized Suzuki-2 group cryp-
tosystem. We fix a generalized Suzuki 2-group Al(n, θ) = {

S(a1, a2, . . . , al)|ai ∈ Fq
}
,

which is defined over the field Fq, q = 2n. Then for l-parametric group we achieve
K = nl bit cryptography. Logarithmic signature array and random covers are known
parameters that are used in encryption as follows

αk = [
A1(k), . . . ,As(k)

] = (
aij

)
k = S

(
a(1)
ij(k), a

(2)
ij(k), . . . , a

(l)
ij(k)

)
,

h(k) = [
h1(k), . . . , hs(k)

] = S
(
h(1)
ij(k), h

(2)
ij(k), . . . , h

(l)
ij(k)

)

Also, we know random cover with homomorphic encryption

g(k) = [
g1(k), . . . , gs(k)

] = S
(
g(1)
ij(k), g

(2)
ij(k), . . . , g

(l)
ij(k)

)

for k = 1, l.
The number of vectors in arrays αk , h(k), g(k) is defined by the type of logarithmic

signature.
(
r1(k), . . . , rs(k)

)
and equals to N =

l∑

k=1

(
r1(k) + r2(k) + . . . + rs(k)

)

Since arrays αk , g(k) are random and can be constructed by random bits deterministic
generator from some initial vector V , then we can define αk , g(k) over the vector V . Let’s
fix the vector length V to be equal to nl bits.

The array size g(k) equals to: Ng = l
l∑

k=1

(
r1(k) + r2(k) + . . . + rs(k)

)
n-bits words.

The secret parameters of the cryptosystem include vectors t, τ , ρ:

t0(k), . . . , ts(k) ∈ Al(n, θ)\Z, ti(k) = S(ti1(k), . . . , til(k)),

τ0(k), . . . , τs(k) ∈ Al(n, θ)\Z, τi(k) = S(τi1(k), . . . , τil(k)), ρ = (ρ1, ρ2, . . . , ρl), k = 1, l.

The number of vectors ti(k), τi(k) equals to:Nt = Nτ = l
l∑

k=1
s(k) n-bits words.

The length of the vector ρ equal to nl bits.
Obviously, that Ng , Nt , Nτ depends on type of

(
r1(k), . . . , rs(k)

)
.

Let the secrecy of cryptographic transformations be determined byK bits.
Let’s define a type of

(
r1(k), . . . , rs(k)

) = (2, . . . , 2), then s(k) = n over the field
F(2n). We get the following values

Ng = nl
l∑

k=1

(
r1(k) + r2(k) + . . . + rs(k)

) = 2n2l2 = 2K2 bit

Encryption Scheme Based on the Generalized Suzuki 2-groups 75

Nt = Nτ = nl
l∑

k=1
s(k) = n2l2 = K2 bit

The length of vectors V , ρ equals to NV = Nρ = nl = K bit. Let’s define a type of(
r1(k), . . . , rs(k)

) = (
28, . . . , 28

)
, s(k) = n/8 over field F(2n). We achieve

Ng = nl
l∑

k=1

(
r1(k) + r2(k) + . . . + rs(k)

) = 25n2l2 = 25K2 bit

Nt = Nτ = nl
l∑

k=1
s(k) = n2l2/8 = 2−3K2 bit

Estimated implementation costs are presented in the table below.
Memory costs for arrays of shared and secret parameters do not depend on the field

F(2n) and the number of parameters of the generalized Suzuki group. Selection of field
Fq and parameters of the Suzuki group will define the speed of calculations on the group
and depends on the software implementation (Table 10).

Table 10. Estimated implementation costs

K = 256,
(
r1(k), . . . , rs(k)

) = (2, . . . , 2)

F(2n) Ng Kbyte Nt(Nτ), Kbyte NV (Nρ), bit

F(28), . . . ,F(2256) 4 2 256

K = 256,
(
r1(k), . . . , rs(k)

) =
(
28, . . . , 28

)

F(28), . . . ,F(2256) 64 0.25 256

K = 512,
(
r1(k), ..., rs(k)

) =
(
28, . . . , 28

)

F(28), . . . ,F(2512) 64 32 512

K = 512,
(
r1(k), . . . , rs(k)

) =
(
28, . . . , 28

)

F(28), . . . ,F(2512) 1024 8 512

4 Conclusions

GeneralizedSuzuki 2-groups aremultiparameter groups andmayhave an arbitrarily large
order. MST cryptosystems based on generalized Suzuki 2-group have an advantage over
other schemes implementations in secrecy and realization. We can build a highly secure
cryptosystem with group computation in a small finite field. Applying homomorphic
encryption to random coverings in a logarithmic signature provides protection against
known attacks on logarithmic signature implementations. To build a cryptosystem, you
can use secure logarithmic signatures of a simple design, which leads to low costs for the
general parameters of the cryptosystem. The proposed cryptosystem with homomorphic
encryption is a good candidate for post-quantum cryptography.

76 G. Khalimov et al.

Acknowledgements. This publication is based on work supported by a grant from the U.S.
Civilian Research & Development Foundation (CRDF Global).

References

1. Wagner, N.R., Magyarik, M.R.: A public-key cryptosystem based on the word problem.
In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 19–36. Springer,
Heidelberg (1985). https://doi.org/10.1007/3-540-39568-7_3

2. Magliveras, S.S.:A cryptosystem from logarithmic signatures of finite groups. In: Proceedings
of the 29th Midwest Symposium on Circuits and Systems, pp. 972–975. Elsevier Publishing,
Amsterdam (1986)

3. Lempken, W., Magliveras, S.S., van Trung, T., Wei, W.: A public key cryptosystem based on
non-abelian finite groups. J. Cryptol. 22, 62–74 (2009)

4. Magliveras, S.S., Svaba, P., van Trung, T., et al.: On the security of a realization of
cryptosystem MST3. Tatra Mt. Math. Publ. 41, 1–13 (2008)

5. Svaba, P., van Trung, T.: Public key cryptosystem MST3 cryptanalysis and realization. J.
Math. Cryptol. 4(3), 271–315 (2010)

6. van Trung, T.: Construction of strongly aperiodic logarithmic signatures. J. Math. Cryptol.
12(1), 23–35 (2018)

7. Khalimov, G., Kotukh, Y., Khalimova, S.: MST3 cryptosystem based on the automorphism
group of the Hermitian function field. In: IEEE International Scientific-Practical Conference:
Problems of Infocommunications Science and Technology, PIC S and T 2019 - Proceedings,
pp. 865–868 (2019)

8. Khalimov, G., Kotukh, Y., Khalimova, S.: MST3 cryptosystem based on a generalized Suzuki
2 – Groups. CEUR Workshop Proc. 2711, 1–15 (2020)

9. Khalimov, G., Kotukh, Y., Khalimova, S.: Encryption scheme based on the automorphism
group of the Ree function field. In: 2020 7th International Conference on Internet of Things:
Systems, Management and Security, IOTSMS 2020, 9340192 (2020)

10. Hanaki, A.: A condition on lengths of conjugacy classes and character degrees Osaka J. Math.
33, 207–216 (1996)

11. P. Svaba, “Covers and logarithmic signatures of finite groups in cryptography”, Dissertation,
https://bit.ly/2Ws2D24

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.1007/3-540-39568-7_3
https://bit.ly/2Ws2D24
http://creativecommons.org/licenses/by/4.0/

End-to-End Security Scheme for E-Health
Systems Using DNA-Based ECC

Sanaz Rahimi Moosavi(B) and Arman Izadifar

California State University Dominguez Hills (CSUDH), Carson, CA 90747, USA
srahimimoosavi@csudh.edu

Abstract. Today, the amount of data produced and stored in com-
puting Internet of Things (IoT) devices is growing. Massive volumes of
sensitive information are exchanged between these devices making it crit-
ical to ensure the security of these data. Cryptography is a widely used
method for ensuring data security. Many lightweight cryptographic algo-
rithms have been developed to address the limitations of resources on the
IoT devices. Such devices have limited processing capabilities in terms of
memory, processing power, storage, etc. The primary goal of exploiting
cryptographic technique is to send data from the sender to the receiver
in the most secure way to prevent eavesdropping of the content of the
original data. In this paper, we propose an end-to-end security scheme for
IoT system. The proposed scheme consists of (i) a secure and efficient
mutual authentication scheme based on the Elliptic Curve Cryptogra-
phy (ECC) and the Quark lightweight hash design, and (ii) a secure
end-to-end communication based on Deoxyribonucleic Acid (DNA) and
ECC. DNA Cryptography is the cryptographic technique to encrypt and
decrypt the original data using DNA sequences based on its biological
processes. It is a novel technique to hide data from unauthorized access
with the help of DNA. The security analysis of the proposed scheme
reveals that it is secure against the relevant threat models and provides
a higher security level than the existing related work in the literature.

Keywords: Deoxyribonucleic Acid (DNA) · Elliptic curve
cryptography · E-health system · End-to-end security

1 Introduction

The Internet of Things (IoT) is a new paradigm for modern pervasive wireless
communications that connects a wide range of physical devices via the Internet
to collect and exchange data. A healthcare IoT network consists of smart sensors,
wearable/implantable health devices, and medical instruments that can remotely
monitor a patient’s health. Among the major areas of concern in healthcare IoT
are patient’s security and privacy. In this regard, remote health caregiver (end-
user) authentication and authorization, as well as end-to-end data protection,
are critical requirements to prevent eavesdropping on sensitive medical data

c© The Author(s) 2022
S.-Y. Chang et al. (Eds.): SVCC 2021, CCIS 1536, pp. 77–89, 2022.
https://doi.org/10.1007/978-3-030-96057-5_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-96057-5_6&domain=pdf
http://orcid.org/0000-0002-4194-6586
https://doi.org/10.1007/978-3-030-96057-5_6

78 S. R. Moosavi and A. Izadifar

or malicious triggering of specific tasks [1]. As humans are directly involved
in healthcare IoT applications, robust and secure data communication among
healthcare sensors, actuators, patients, and caregivers is critical. Cryptography
is defined as the technique that applies logic and mathematics to keep and send
information in the coding style and through a secured format so that only the
intended receiver can read and translate the meaning. State-of-the-art security
and protection mechanisms, such as existing cryptographic solutions, secure pro-
tocols, and privacy assurance, cannot be re-used in healthcare IoT systems due
to resource constraints, security level requirements, and system architecture [2].
Strong network security infrastructures for short and long-range communication
are required to mitigate the aforementioned risks.

Unlike symmetric ciphers, which uses the same secret key to encrypt and
decrypt sensitive data, asymmetric ciphers, also known as public-key cryptogra-
phy or public-key encryption, uses mathematically linked public- and private-key
pairs to encrypt and decrypt sensitive data sent to and received from senders
and recipients. An important advantage of asymmetric ciphers over symmetric
ciphers is that no secret channel is necessary for the exchange of the public key.
The receiver needs only to be assured of the authenticity of the public key. Due
to its superiority in generating a powerful encryption mechanism with small key
sizes, ECC is widely used in constrained environments for asymmetric cryptog-
raphy. ECC improves device performance while decreasing power consumption,
making it suitable for a wide range of applications, including healthcare IoT.
On the other hand, Deoxyribonucleic Acid (DNA) cryptography can be defined
as a technique of hiding data in terms of DNA sequence. In the cryptographic
technique, each letter of the alphabet is converted into a different combination
of the four bases which make up the human’s DNA [4,5]. DNA cryptography
is a rapidly developing technology that is based on DNA computing concepts.
Beside of the huge parallelism, DNA molecules also have massive storage capac-
ity. A gram of DNA molecules consist of 1021 DNA bases which is nearly about
108 tera-byte [6]. As a result, it can be concluded that a few grams of DNA can
contain all of the world’s data [7]. These benefits of DNA computation inspire
the concept of DNA cryptography. Prof. Leonard Adleman, also known as the
‘A’ of the RSA algorithm, is regarded as the father of DNA computing [3].

In this paper, an end-to-end security scheme for healthcare IoT systems is
proposed. The main contributions of this work are twofold. First, we present our
end-to-end security solution for e-health systems. In this regard, we exploit the
DNA and ECC cryptography techniques. Second, we analyze the characteristics
of the proposed scheme in terms of security. The security analysis of the scheme
demonstrates that it is secure against the relevant threat models and offers a
higher security level than the existing related work in the literature.

The remainder of this paper is organized as follows: Sect. 2 provides an
overview of related work. The end-to-end security scheme for e-health systems
using DNA-based ECC is presented in Sect. 3. Section 4 provides a comprehen-
sive security analysis of our scheme. Finally, Sect. 5 concludes the paper.

End-to-End Security Scheme for E-Health Systems Using DNA-Based ECC 79

2 Related Work

Roy et al. [8] devised a method based on DNA synthesis to improve key genera-
tion. The encryption and decryption processes are optimized by this system. A
first level key and an encryption algorithm are used to convert plain text to pri-
mary cipher text. The concept of a second level key is introduced, enhancing the
security of this technique. The second level private key strengthens the cipher
text by adding primers and intron positions. Excellent results are obtained after
analyzing the proposed method against brute force attacks. The hacker would
need more than a half-year to decrypt the cipher text using a modern computer.
This method has a high level of time and space complexity. Shinde et al. [9]
proposed a new DNA-based cryptography technique. The method combines tra-
ditional cryptographic techniques with novel approaches to improve data secu-
rity. The plaintext is first converted into an ASCII value, and then into binary
strings. The binary strings are then converted to hexadecimal values, and a 128
bit key is generated using the MD5 algorithm. This key is converted into a 32-
character hexadecimal string that is mapped to 16 dynamic values. The binary
values are encoded using a mapping table. Following encoding, some mathemat-
ical and logical operations are carried out. This technique is both quick and
efficient. However, he security offered in this algorithm is not suitable for health-
care IoT systems. Gogte et al. [10] presented a new type of DNA cryptography
system for secure communication based on quantum cryptography. Quantum
cryptography is a new security technique in which two parties communicate
using a quantum channel. Its foundations are Heisenberg’s uncertainty princi-
ple and the no-cloning theorem. Initially, a simulation of quantum key exchange
and authentication is carried out. This is followed by the use of a DNA-based
algorithm. The DNA encryption algorithm employs a symmetric block cipher
with a 128 bit key as input. The method is secure against man-in-the-middle
attacks, eavesdropping, replay attacks, packet sniffing, and spoofing. However,
the technique is heavy-weight to be implemented for the resource-constrained
e-health systems. A DNA cryptographic algorithm was proposed by Zhang et al.
[11]. The method is based on the assembly of DNA fragments. The authors’ algo-
rithm incorporates DNA digital coding, DNA molecular keys, and some software
techniques. This method is based on the concept of symmetric key cryptography.
The encryption mechanism in this case is accomplished through the use of DNA
digital coding. The main challenge of this algorithm is the implementation of the
DNA molecular key. Ibrahim et al. [12] proposed using double DNA sequences to
improve the security of data hiding. The main idea behind the scheme’s design
is to encrypt secret messages to ensure security and robustness. The encrypted
message is tucked away in a different DNA reference sequence. Overall, a new
data concealment algorithm based on DNA sequences has been suggested. The
hiding of data in repeated characters in this scheme reduces the rate of modifi-
cation. However, in this approach, if the attacker manages to obtain the secret
message then the method is broken.

80 S. R. Moosavi and A. Izadifar

3 End-to-End Security Through DNA-Based ECC

In this section, we present our end-to-end security scheme for healthcare IoT
systems. The proposed scheme consists of (i) ECC-based mutual authentica-
tion and authorization, (ii) DNA-ECC-based encryption. Our scheme offers the
first-level of security through ECC algorithm requiring smaller key size and less
computation overhead. The second level of security is provided by the use of a
low computation DNA-ECC cryptosystem. The structure of a DNA-based cryp-
tography techniques is shown in Fig. 1.

Fig. 1. DNA-based cryptography technique

3.1 ECC-Based Mutual Authentication and Authorization

This section describes our ECC-based mutual authentication and authorization
scheme, which meets the security requirements of a healthcare IoT system. A
mutual authentication scheme allows the communicating parties, the medical
sensor device and the health care provider, to verify and ensure each other’s
identities. The scheme is divided into two phases: (i) health caregiver authenti-
cation and (ii) medical sensor device identification and verification. Elliptic curve
cryptography (ECC) was firstly proposed by Victor Miller and Neal Koblitz [13].
It is a type of public key encryption system used to generate smaller, faster, and
more efficient cryptographic keys. In contrast to the RSA algorithm, which is
based on large prime numbers, keys in the ECC are generated using the ellip-
tic curve equation’s parameters. The encryption functionality provided by ECC
requires fewer resources than RSA or other public key algorithms. In general,
the longer the key, the better the protection for any system. However, when
compared to RSA, ECC can provide comparable protection with a smaller key
size. As a result, the ECC’s resources must perform fewer mathematical compu-
tations. The security level of ECC can be achieved with a 164-bit key, whereas
other systems require a 1024-bit key. Furthermore, the security of ECC is based

End-to-End Security Scheme for E-Health Systems Using DNA-Based ECC 81

on the difficulty of the Elliptic Curve Discrete Logarithm Problem (ECDLP),
and because the computation of DLP problems is not easy, it prevents an adver-
sary from easily breaking the ECDLP. An ECC E [14] over a finite field Fp

includes all points (x, y) ∈ F p × Fp which fulfill an equation of the form
Y 2 + a1XY + a3Y = X3 + a2X

2 a4X + a6 with ai ∈ Fp, whose discrim-
inant is non-zero, accompanied by the point at infinity. Then, an Elliptic Curve
E (Fp) over Fp defined by parameters a, b ∈ Fp made up of serious of points
P = (x, y) for x, y ∈ Fp to the equation:

y2 ≡ x3 + ax + b (mod p) (1)

The mentioned equation y2 ≡ x3 + ax + b (mod p) is called the description
of the equation E (Fp) for a certain point p = (xp, yp). Here, xp is entitled
as the x -coordinate of P, and yp is called the y-coordinate of P. The number of
point on E (Fp) represents as # E (Fp) and:

p + 1 − 2
√

p ≤ # E (Fp) ≤ p + 1 + 2
√

p (2)

The elliptic curve version of the Digital Signature Algorithm is known as the
Elliptic Curve Digital Signature Algorithm (ECDSA) (DSA). The ECDSA is a
modified version of the DSA and RSA that works with Elliptic Curve groups.
The proposed ECDSA not only offers smaller key sizes for the same security level,
but it also significantly improves ECC generation and authentication techniques.
The diagram of elliptic curve is shown in Fig. 2. The proposed ECC-based mutual
authentication scheme establishes a secure channel between the sensor and the
caregiver, allowing them to communicate securely and efficiently. Before delving
into the phases, we go over the parameters and notations used in the scheme.

Fig. 2. Elliptic curve diagram

– G: a group of order q on an elliptic curve having the order n,
– P : a primitive element or the base point of G,
– sp1, sp2: each sensor keeps two secret points sp1, sp2 ∈ E(Fg), which will

change over time. These secret points will be varied each time the sensor is
successfully identified,

82 S. R. Moosavi and A. Izadifar

– IDn: the sensor’s identification number or ID,
– sp3: each end-user keeps a secret point sp3 ∈ Zn, which will change over

time. This secret point will be varied each time the end-user is successfully
authenticated,

– IDk = sp3.P : the end-user’s public key,
– rn, j1, j2: random numbers in Zn,
– h: a lightweight hash function,
– (x, y): a signature generated by the sensor in its identification phase.

3.2 Health Caregiver Authentication Phase

The Health Caregiver authentication phase of our scheme is based on the Elliptic
Curve Discrete Logarithm Problem (ECDLP) [13]. In this phase, the caregiver
is assigned with a random number rs1 ∈ Zn and its public key is computed as
R1 = rs1.P . Next, the caregiver initializes its counter value j1 to one and sends
both R1 and j1 to the medical sensor. It then increments the value j1 by rn1.
Upon receiving the message, the sensor checks whether j2 (which is initialized
to zero) is greater than j1. If the condition holds, it replaces j2 by j1 and selects
a random number rn2 ∈ Zn. Then, the sensor computes:

rn3 = X(rn2.P) ∗ Y (R1) (3)

where * is a non-algebraic operation over the abscissa of (rn2.P) and the ordi-
nate of R1 and it sends the value rn3 to the caregiver. After receiving rn3, the
caregiver computes R2 and sends this value to the sensor. Finally, if the following
equation holds, the sensor verifies that the caregiver is authentic.

R2 = rn1.IDn + rn3.sp3 (4)

(R2 − rn1.IDn)rn−1
3 .P = IDk (5)

3.3 Medical Sensor Authentication and Verification Phase

Our scheme’s medical sensor identification and verification phase is based on the
Elliptic Curve Digital Signature Algorithm (ECDSA) using Quark lightweight
hash design. Quark is one of the most efficient lightweight hash designs and it
was first proposed by Aumasson et al. [14]. Quark lightweight hash is based
on non-linear Boolean functions and bit shift registers. As a result, not only
is its implementation feasible, but the circuit area requirements of this hash
design are ideal for implantable medical devices. A digital signature also provides
identification, integrity, and non-repudiation. Because of resource constraints
and the delicate use cases of healthcare IoT systems, lightweight cryptographic
hash designs must be carefully considered. As a result, we use the D-Quark in
our proposed ECC-based medical sensor authentication (i.e., one of the flavors
of Quark) lightweight hash design rather than the general purpose hash designs.
In the sensor identification phase of our scheme, the sensor’s initial secret point

End-to-End Security Scheme for E-Health Systems Using DNA-Based ECC 83

Table 1. DNA nucleotide to binary and decimal conversion

DNA nucleotide base Binary equivalent Decimal equivalent

Adenine (A) 00 10

Thymine(T) 01 20

Guanine(G) 10 30

Cytosine(C) 11 40

is sp1 ∈ E(Fg) from which the next secret point sp2 and IDn will be computed.
To generate the second secret point, the sensor computes:

s2 = f(X(s1)).P (6)

Obtaining the first secret point from the second is difficult, as it requires the
computation of an ECDLP. Since the second key is generated from the second
key, our scheme provides forward security. For the sake of efficiency, the func-
tion f should be selected in a manner that avoids large hamming weights for
sp2, assuring that the computation of sp2.P will be fast without compromising
security [12]. Once the generation of the second secret point sp2 is done, the
sensor selects a random integer k ∈ Zg and computes a curve point (d, c) = k.G.
To send its digital signed message (x, y) to the back-end system, the sensor
computes d = x mod n. If x = 0, the sensor starts to select a another random
number k ∈ Zg and computes the next curve point and its ID as:

IDn = Mb(X(sp1)) ∗ Mb(X(sp2)).P (7)

where Mb will output some middle bits of the input values. The operand * is a
non-algebraic operation ∈ Fg done over the abscissa of the first and the second
secret points. Then, the sensor computes the following equation:

l = k(hash(IDn) + X(sp1).x) (8)

If the computed y = 0, the sensor will start the algorithm by selecting another
random integer e. Finally, the sensor sends the computed values (x, y) and (IDn)
to the back-end system. Algorithm 2 shows the pseudocode of the sensor iden-
tification phase of the proposed scheme. To verify the sensor is authentic the
beck-end system selects a random integer rns ∈ Zn and it computes its public
key pr = rns.P for j ∈ [1, n− 1], the back-end system checks whether x, y ∈ Zn.
If the result is valid, the back-end system calculates h = Hash(IDn), where
Hash is the same Quark lightweight hash function that is used in the previous
phase to generate the sensor’s signature. Once the hash value of (IDn) is com-
puted, the back-end selects the leftmost bit of h and denotes it as z. Then, the
back-end calculates the values U,m1,m2. Based on the calculated values, the
back-end system computes the curve point as:

(x, y) = m1.P + pr (9)

84 S. R. Moosavi and A. Izadifar

Finally, the back-end system will accept the sensor’s signature as a valid one if
the equation r = x mod n holds.

3.4 DNA-Based ECC Cryptography

DNA cryptography is a method of concealing data in terms of DNA sequence.
Each letter of the alphabet is converted into a different combination of the four
bases that make up human DNA in the cryptographic technique. DNA cryp-
tography is a rapidly developing technology that is based on DNA computing
concepts. Inside the tiny nuclei of living cells, DNA stores a massive amount
of information. It contains all of the instructions required to create every living
creature on the planet. The main advantages of DNA computation are minia-
turization and parallelism, which are not available in conventional silicon-based
machines. With its unique data structure and ability to perform many paral-
lel operations, DNA allows one to view a computational problem from a new
perspective. The following are the benefits of using DNA cryptography:

Algorithm 1. DNA-ECC Cryptographic Algorithm
Input: Plaintext (P), number of bits of DNA sequence segment (k), known DNA
sequence (D).
Output: Ciphertext (C)
Global Variables : ECC points, which are denoted as (x1, y1), (x2, y2), ..., (xn, yn),
an auxiliary base parameter k for which both entities need to agree upon this; Global
Constants: Tasks : Vector of ECC Body:

1: Input Plaintext
2: Convert Plaintext into Binary P ′

3: Convert D into Binary D′

4: Segment D′ with k bit in a segment
5: Insert each bits of P ′ into the beginning of each segment of D′

6: Concatenate segments of D′

7: Convert each character of the DNA Nucleotide into Numbers as 10(00), T =
20(01), G = 30(10), C = 40(11);

8: Koblitz Method: Pick an elliptic curve ECC = (a, b).
9: Each number mk, takes x = mk + 1 and tries to solve for y.

10: while y �= solved do
11: for each x ∈ Tasks do
12: x ← mk + k − 1;
13: Take the point (x, y) and covert m into a point on the ECC;
14: end for
15: end while

1. Power Requirements: While the computation is taking place, no power is
required for DNA computing. Chemical bonds, which are the building blocks
of DNA, form without the assistance of an outside source of energy. The
power requirements of traditional computers are incomparable.

End-to-End Security Scheme for E-Health Systems Using DNA-Based ECC 85

2. Speed: Conventional computers have a peak performance of about 100 MIPS
(millions of instruction per second). Combining DNA strands as demonstrated
by Adleman made computations equivalent to 109 or better, arguably over
100 times faster than the fastest computer.

3. Storage Requirements: Memory is stored in DNA at a density of about 1 bit
per cubic nanometer, where conventional storage media requires 1012 cubic
nanometers to store 1 bit.

A simple mechanism of transmitting two related messages while concealing
the message is insufficient to prevent an attacker from breaking the code. DNA
cryptography has a unique advantage for secure data storage, authentication,
digital signatures, steganography, and other applications. DNA strands are long
polymers made up of millions of linked nucleotides. As Algorithm1 indicates,
these nucleotides are made up of four nitrogen bases, a five-carbon sugar, and
a phosphate group. The nucleotides that make up these polymers are named
after the nitrogen base in which they are composed: Adenine (A), Cytosine (C),
Guanine (G) and Thymine (T). This means we can utilize this 4 letter alphabet
Σ = {A,G,C, T} to encode information, which is more than enough considering
that an electronic computer needs only two digits, 1 and 0, for the same purpose.
Three DNA cryptography methods are used in this cryptosystem. They are (i)
the insertion method, (ii) the substitution method, and (iii) the complementary
pair approach. A common method of encoding and decoding is used in all of
these approaches. Binary numbers are generated from the plaintext. The binary
numbers are then converted to a DNA nucleotide sequence.

Algorithm 2. DNA-ECC Cryptographic Example
Input: Plaintext Message (P): ”m”
ASCII Message: 109
Binary Message(P’): 01101101
DNA Sequence (D): TCGCAATTCGCGCTGAGTCACAATTCGCGCTGAGTCACA
ATTCGCGCTGAGTCACAATTGTGACTCAGCCGCGAATTCCTGCAGCCCCGA
ATTCCGCATTGCAGAGATAATTGTATTTAAGTGCCTAGCT.
Output: Ciphertext (C) Body: converting plaintext to ciphertext

– Binary DNA Sequence (D’): 01 11 10 11 10 11 01 01 00 00 10 11 01 00
– Segmented Binary DNA sequence (where k = 3): 110 100 111 010 000 101 111 110

110 1
– Insert each bits of P’ into beginning of each segments of D’:1-010—1-111—0-

000—1-111—1-100—0-000—0-101—-110—-1
– Concatenate the segments of D’:00001111110000001010010101011101
– Convert D’ 10-00- 11-11-11- 00- 00- 00-10-10- 01-11-01- 01-11-01 to DNA nucleotide

A- C- A- A- G- G- C- C- C- A- T- T- C- A- G- T
– Convert DNA nucleotide to ASCII A C A A G G C C C A T T C A G T 10 40

10 10 30 30 40 40 40 10 20 20 40 10 30 20
– Convert the ASCII of DNA nucleotide to ECC point

86 S. R. Moosavi and A. Izadifar

The following facts underpin the encoding and decoding operations. As shown
in Table 1, there are four basic units in DNA that are encoded into binary in
the following manner. Binary equivalent of a DNA nucleotide base Adenine (A)
is 00, Thymine (T) is 01, Guanine (G) is 10, and Cytosine (C) is 11. The DNA
sequences in this work are taken from a publicly available database and converted
into a binary sequence. The binary DNA sequences are divided into segments,
each of which contains a random number of bits greater than two. Then, each bit
of binary plain text is inserted at the start of a segmented binary DNA sequence.
The inserted sequences are concatenated to obtain an encoded binary sequence.
The segments are needed to be concatenated again and converted to Nucleotide
letter. For encryption, we use the Koblitz method to convert decimal numbers
into elliptic curve points. The plaintext is represented by ECC curve points. The
ECC encryption algorithm is used to encrypt these points (Algorithm 2) [16].

{kG, Pm + k PB} (10)

where, G is the generated points, Pm is the plaintext points, k is a random
number being selected by the user, and PB is the public key of the user. The
ECC decryption algorithm is used to decipher the ciphertext points. The Koblitz
method is used to convert deciphered points into numbers. These numbers are
decoded using DNA nucleotides, and the required plaintext is obtained.

Pm + kPB − nB(kG) = Pm + k(nB)G − nB(kG) (11)

4 Security Analysis of the Proposed Scheme

In this section, we analyze the security of the proposed scheme in order to verify
whether the essential requirements have been satisfied.

Mutual Authentication: In the end-user authentication phase of our scheme,
to verify that the end-user is legitimate, the medical sensor computes whether
(R2 − rn1.IDn)rn−1

3 .P = IDk holds or not. Similarly, to verify whether the
medical sensor is authentic (based on its transmitted (IDn) and the digital
signed message), the end-user needs to checks if r = x mod n holds. This is how
our proposed scheme achieves mutual authentication.

Availability: In our scheme, since the sensor and the end-user change their secret
points sp1, sp2, and sp3 once they are successfully authenticated, it is not possible
that an adversary performs a denial of service attack.

Forward Security: Here, if an adversary attempts to decrypt some of the infor-
mation he has intercepted, for example the sensor’s second secret key s2, he/she
cannot benefit from the gained information. Obtaining the first secret key from
the second will necessitate a solution to the ECDSA, which will be difficult.

End-to-End Security Scheme for E-Health Systems Using DNA-Based ECC 87

Impersonation Attack: Concerning this type of attack, we consider two different
scenarios: (i) Impersonation of the end-user : Here, if an adversary tries to imper-
sonate the end-user, he/she will fail. This is because if the attacker tries to imper-
sonate as a fake health caregiver to the medical sensor, he/she must compute R1

and at the same time try to guess the value rn2 (which is not easily feasible).
Nevertheless, without the end-user’s computed value R2 = rn1.IDn + rn3.sp1,
the adversary cannot compute (R2 − rn1.IDn)rn−1

3 .P = IDk to verify whether
the end-user is authentic. (ii) Impersonation of the medical sensor : In order to
impersonate the sensor in our proposed scheme, an adversary needs to have an
access to the sensor’s secrets sp1 and sp2 and as it was presented earlier in
this section, the values of the secret keys cannot be acquired from the public
information of the system IDn.

Brute-Force Attack: The DNA sequences in the proposed scheme are chosen ran-
domly from a pool of available DNA sequences. Hence, it is impossible to predict
the DNA sequence used in this study. In other words, no predictive model can
be used by an attacker to determine the used DNA sequence. Without knowl-
edge of the DNA sequence, the attacker will be unable to capture the network.
When each sensor is assigned multiple DNA sequences, the DNA sequence pool
is formed by randomly selecting DNA sequences from a pool of thousands. Each
DNA sequence in the pool is distinct from the other DNA sequences in the pool.
There are currently no methods for predicting which DNA sequences are present
in the pool. Using any predictive model, an attacker cannot determine the entire
DNA sequence pool. As a result, without knowledge of the DNA sequence, an
attacker cannot easily capture the network.

Eavesdropping: In our scheme, (i) in the sensor identification phase, if an adver-
sary tries to guess the sensor’s secrets sp1 and sp2, the only public information
concerning it is ID. As it was discussed earlier, the bits of the sensor’s ID result
from a non-algebraic operation done over some middle bits of the abscissa of
two different secret points sp1 and sp2. Thus, it is computationally unfeasible to
obtain the secret from its ID. (ii) In the digital signature generation section, if an
adversary could guess the value x, it cannot obtain the value y effortlessly. This
value is also generated from a non-algebraic operation done over the abscissa of
the secret point sp1 and the value x. The gained result will be added to the hash
value of IDn and multiplied by a random number k. Such an operation can-
not be easily computed by an adversary as it requires to compute the discrete
logarithm problem that is not computationally feasible. For the same reason, in
the end-user authentication phase, even if an adversary could guess one of the
values R1 or R2 or rn3, he/she still cannot easily obtain other secure informa-
tion related to the end-user. Based on the discussion above, the adversary also
cannot implement any Replay Attack.

Unauthorized Tracking of the Sensor: Here, the only public information concern-
ing the sensor is its ID. In the sensor identification phase, it was shown that the
value of the sensor’s ID results from the product of a non-algebraic operation

88 S. R. Moosavi and A. Izadifar

done over some middle bits of the abscissa of the first and second secret keys
of the sensor. Hence, it is impossible to compute and obtain the sensor’s secret
keys from its current ID. The main reason for this is that obtaining the secret
points necessitates solving the elliptic curve discrete logarithm problem. Solving
the discrete logarithm problem is as difficult as solving the integer factorization
problem, this problem cannot be solved easily. Thus far, there has not been any
polynomial time algorithm proposed to solve discrete logarithm problems.

5 Conclusion and Future Work

In this paper, we presented a novel end-to-end security scheme for healthcare
IoT systems using ECC and DNA cryptography techniques. To the best of
our knowledge, previously proposed end-to-end security schemes, concerning e-
health systems in general, cannot fully fulfill the essential security requirements
of health-care IoT systems. The majority of the previously proposed solutions
were not secure against most common attacks on healthcare IoT systems. The
proposed scheme was specified and designed by employing (i) ECC and the
Quark lightweight hash design to mutually authenticate and authorize medi-
cal sensors and end-users (i.e. health caregivers), and (ii) the DNA-based ECC
cryptographic technique to encrypt and decrypt the health data using DNA
sequences of the patients. We demonstrated that our proposed scheme is secure
against the relevant attacks and provides a higher level of security than related
work found in the literature. Based on the security analyses presented in this
paper, we conclude that the proposed scheme has the appropriate features for
use in e-health systems. We believe that our scheme is not just limited to health-
care IoT systems and can also be applied to any application of IoT that requires
secure and efficient end-to-end communication. Our future work will focus on
performance analysis of the proposed scheme in terms of terms of communication
overhead, latency, and memory footprint.

References

1. Hummen, R., Shafagh, H., Raza, S., Voig, T., Wehrle, K.: Delegation-based authen-
tication and authorization for IP-based Internet of Things. In: IEEE International
Conference on Sensing, Communication, and Networking, pp. 284–292 (2014)

2. Hung, X., Khalid, M., Sankar, R., Lee, S.: An efficient mutual authentication and
access control scheme for WSN in healthcare. J. Netw. 6(3), 355–364 (2011)

3. Adleman, L.M.: Molecular computation of solutions to combinatorial problems.
Science 266(5187), 1021–1025 (1994)

4. Akiwate, B., Parthiban, L.: A dynamic DNA for key-based cryptography. In: IEEE
International Conference on Computational Techniques, Electronics and Mechan-
ical Systems, pp. 223–227 (2018)

5. Rafiul, M., Rokibul, K., Akber, A., Morimoto, Y.: A DNA cryptographic technique
based on dynamic DNA encoding and asymmetric cryptosystem. In: International
Conference on Networking, Systems and Security, pp. 1–8 (2017)

End-to-End Security Scheme for E-Health Systems Using DNA-Based ECC 89

6. Pradeeksha, A., Sathyapriya, S.: Design and implementation of DNA based cryp-
tographic algorithm. In: IEEE International Conference on Devices, Circuits and
Systems, pp. 299–302 (2020)

7. Zebari, D., Haron, H., Zeebaree, S., Zeebaree, D.: Multi-level of DNA encryption
technique based on DNA arithmetic and biological operations. In: IEEE Interna-
tional Conference on Advanced Science and Engineering, pp. 312–317 (2018)

8. Chakraborty, R., Rakshit, G., Roy, B.: Enhanced key generation scheme based on
cryptography with DNA logic. Int. J. Inf. Commun. Technol. Res. 1(8), 370–374
(2011)

9. Gehlot, L., Shinde, R.: A survey on DNA-based cryptography. Int. J. Adv. Res.
Comput. Eng. Technol. 5(1), 107–110 (2016)

10. Gogte, S., Nemade, T., Nalawade, P., Pawar, S.: Simulation of quantum cryptogra-
phy and use of DNA based algorithm for secure communication. J. Comput. Eng.
11(2), 64–71 (2013)

11. Fu, B., Zhang, Y., Zhang, X.: DNA cryptography based on DNA fragment assem-
bly. IEEE Int. Conf. Inf. Sci. Digital Content Technol. 1, 179–182 (2012)

12. Abdelkader, H., Ibrahim, F., Moussa, M.: Enhancing the security of data hiding
using double DNA sequences. In: Industry Academia Collaboration Conference
(2015)

13. Koblitz, N.: Elliptic curve cryptosystems. Math. Comput. A8, 203–209 (1987)
14. Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.)

CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986). https://
doi.org/10.1007/3-540-39799-X 31

15. Aumasson, J., Henzen, L., Meier, W.: QUARK: a lightweight hash. J. Crypt. 26(2),
313–339 (2013)

16. Vijayakumar, P., Vijayalakshmi, V., Zayaraz, G.: DNA computing-based elliptic
curve cryptography. J. Comput. Appl. 36(4), 1–4 (2011)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/3-540-39799-X_31
https://doi.org/10.1007/3-540-39799-X_31
http://creativecommons.org/licenses/by/4.0/

A Comprehensive Analysis
of Chaos-Based Secure Systems

Ava Hedayatipour(B), Ravi Monani, Amin Rezaei, Mehrdad Aliasgari,
and Hossein Sayadi

College of Engineering, California State University Long Beach, Long Beach, USA
ava.hedayatipour@csulb.edu

Abstract. Chaos is a deterministic phenomenon that emerges under
certain conditions in a nonlinear dynamic system when the trajectories
of the state variables become periodic and highly sensitive to the ini-
tial conditions. Chaotic systems are flexible, and it has been shown that
communication is possible using parametric feedback control. Chaos syn-
chronization is the basis of using chaos in communication. Chaos synchro-
nization refers to the characteristic that the trajectories of two identical
chaotic systems, each with its own unique initial conditions, converge
over time.

In this paper, data extraction is performed on different chaotic equa-
tions implemented as circuits. Lorenz is the base system implemented
in this paper, followed by Modified Lorenz, Chua’s, Lü’s, and Rössler
systems. Additionally, more recent systems (e.g., SprottD Attractor) are
included in the data extraction process. The robust system implementa-
tions provide an alternative to software chaos and architectures, and will
further reduce the required power and area. These chaotic systems serve
as alternatives for quantum era computing, which will cause synchronous
and asynchronous techniques to fail. The data extracted organize differ-
ent modes of chaos implementation based on the ease of their fabrication
in integrated circuits. Performance metrics including power consumption,
area, design load, noise, and robustness to process and temperature vari-
ant are extracted for each system to demonstrate a figure of merit. The
figure of merit showcases chaos equations fitting to be implemented as a
transmitter/receiver with a mode of chaotic ciphering in communication.

Keywords: Chaos · Synchronization · Lorenz · CMOS · Gm-C filter

1 Introduction

Chaos is a deterministic phenomenon that emerges under certain conditions in
a nonlinear dynamic system when the trajectories of the state variable/variables
become aperiodic and highly sensitive to the initial conditions. In 1963, Lorenz
presented the first well known chaotic system, marking the beginning of chaos
theory, a branch of non-linear system theory which has been studied intensively
in recent years [1].
c© Springer Nature Switzerland AG 2022
S.-Y. Chang et al. (Eds.): SVCC 2021, CCIS 1536, pp. 90–105, 2022.
https://doi.org/10.1007/978-3-030-96057-5_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-96057-5_7&domain=pdf
https://doi.org/10.1007/978-3-030-96057-5_7

A Comprehensive Analysis of Chaos-Based Secure Systems 91

Fig. 1. Data is encrypted and transmitted over a public channel to the receiver, where
it is decrypted before further processing.

Chaos can be defined as the unpredictability of a deterministic system which
is highly dependent on its initial conditions. Chaos synchronization refers to the
characteristic that the trajectories of two identical chaotic systems, each with
its own unique initial condition, converge over time. Figure 1 shows an overview
of a chaotic encryption system. The input signal is the raw unencrypted data
that is scrambled by the chaotic transmitter before being transmitted over the
public channel. The public channel can be wireless as in body sensor networks
or wired as in a power grid.

Chaotic systems are flexible and can be utilized for communication using
parametric feedback control [2]. Lorenz-based chaotic circuits can be synchro-
nized for communication [1]. Instead of conventional frequency synthesizers,
chaos generators can be used as communication carriers. Here, the digital infor-
mation modulates the chaotic signal causing the digital signal to be transmitted
as a chaotic spectral signal that looks like noise to a third party.

In this paper, different modes of chaotic equations suitable for communication
are implemented and simulated. The robustness of system implementations are
examined and their reduction of power and area compared to software imple-
mentation is explored. The data extracted organizes these different modes of
chaos implementation based on the ease of fabrication in integrated circuits. For
the purpose of comprehensive analysis, various performance metrics including
power consumption, area, design load, frequency range, noise, and robustness to
process and temperature variant are extracted and compared for each system to
demonstrate a figure of merit.

2 Chaotic Ciphering of Communication

Though chaotic communication has been known for decades, with the commer-
cialization of computers, asymmetric and symmetric key encryption Cryptogra-
phy has become a fundamental part of communication between devices such as
cars, implanted medical devices, and internet of things devices (IoTs). However,
commonly used cryptosystems that are used in our everyday devices are expected
to fail once large quantum computers exist. Quantum computing, first proposed
based on a model of the Turing machine [3], originated in the 1980s based on
complex phenomenons relating to quantum-mechanical physics such as super-
position, the uncertainty principle, wave particle duality, and entanglement to
perform computation. Later, it was suggested that computers performing quan-
tum computation should be known as quantum computers. In October 2019,

92 A. Hedayatipour et al.

Google in partnership with NASA, claimed they achieved quantum computing
[4]; though this claim raised some dispute [5,6], it is still one of the most impres-
sive milestones in quantum computing. Quantum computers can break sym-
metric and asymmetric cryptography keys quickly by exhaustively trying long
bits of all secret keys. Therefore, methods of encryption other than symmetric
and asymmetric security are gaining more importance and quickly becoming
necessary.

Chaotic secure communication is advantageous in terms of having a strong
real time performance, but real world implementation of these systems is still
scarce. Research studies illustrate that the implementation of chaos theory in
numerical simulations do not always perform well or expected for real world
implementations. Therefore, in this paper, we focus on systems that can be
implemented in hardware for various applications. Hardware based chaotic plat-
forms can minimize area and power for a more efficient system implementation.

The Lorenz attractor, with its butterfly-like projection, is one of the first and
most well-known chaotic attractors, though it has a complex equation. The main
disadvantage of this system, however, lies in the necessity of using multipliers
in realization of Lorenz equations, which is hard to implement. The modified
Lorenz system proposed by Elwakil et al. [7] captures the essential behavior of
Lorenz attractor with three differential equations and no multipliers. Notably,
the Modified Lorenz system projects the “butterfly effect” and unsymmetrical
Lorenz systems. As an example, to improve the stability or predictability of
the Lorenz system, Stenflo and Leonov derived the following four-dimensional
Lorenz-Stenflo system with four parameters. Another well-known chaos gener-
ator is Chua’s chaotic system, which consists of multi-scroll chaotic oscillators
derived from Chua’s double-scroll equation.

Chua’s equation has been implemented on a CMOS chip using gm −C mod-
ulators and non-linear resistors for the third order non linear differential equa-
tions. [8,9]. The area and power consumption were very large and the design
is complex. A double scroll like chaotic oscillator was implemented using the
non-linearity of CMOS inverters [10].

Current conveyor based oscillators using commercially available devices
implemented Chua’s equations for a master-slave communication system have
been used [11]. 3−, 5−, and n-scroll attractors parameters have been approx-
imated using real devices and integrated circuits [12,13]. Multi-scroll chaotic
designs implemented using discrete components have the significant drawback
of needing many external bias currents; however, V to I inverter cells which take
advantage of the gate capacitance sizing can be used to address this [14].

Other than Chua’s based attractors, the Lorenz equations are an alternative
method of signal ciphering for communication security. The voltage equivalant of
the chaotic equations, a Lorenz chaotic oscillator was fabricated back in 1999 [15],
and more recently a modified Lorenz-Stnflow with reduced power consumption
was implemented as an encryption system [16]. Active control methods may be
used in the system to reduce synchronization error and can be implemented
using multipliers, opamps and passive components [17].

A Comprehensive Analysis of Chaos-Based Secure Systems 93

Analog circuits exhibit process, temperature, and age variations and thus
present some challenges when used to implement chaotic systems. In particular,
the components must have significant degrees of matching in the transmitter
and receiver. It may be possible to mitigate matching issues through feedback
and techniques such as using floating gates. In recent years, neural networks
have been used to eliminate unwanted noise and error and train the receiver to
generate the expected outputs of chaotic systems [18,19].

Chaotic generators can also be implemented using digital systems which elim-
inate the matching issues found in analog circuits. However, channel noise is still
a significant issues in these implementations. FPGAs have also been widely used
for the implementation of chaotic systems such as Chua’s system, Lü’s system,
Rössler’s system, Chen’s system, etc. [20]. However, the area and power consump-
tion are high when using FPGA’s and the implementations of these designs on
integrated chips is rather rare. As the security we are targeting here mostly tar-
get portable and wearable and generally resource limited devices, use of FPGA
to implement security will not be viable.

3 Design of Chaos for Integrated Circuits

Chaotic equations have been an appealing area of research for many mathemati-
cians for more than three decades. They tried to simplify the chaotic behaviors
as simple equations in order to analyze and study these behaviors. These equa-
tions aim to answer this basic question: What is the necessary and sufficient
conditions for the differential equations to become chaotic?

3.1 Continuous Time

Continuous-time chaos generators are systems that can be described by nonlin-
ear differential equations. These equations can be either differential equations
(ODEs) or delay-differential equations. The positive entropy in these chaotic
dynamical systems leads to continuous instability and the output being unpre-
dictable at all times.

Chaos can be implemented using various equations. In case of all these equa-
tions, the most important block is the nonlinear element that has multiple equi-
librium points, hence though the system output is unpredictable, it is bounded
to “attractive regions”. Integrators, sinusoidal waveform generators, delay based
systems, and polynomial forms, and piecewise-linear (PWL) functions are among
these non linear elements. In Table 1, different equations produce continuous
chaos, along with references implementing them and their implementation based
on attracting or type and function.

94 A. Hedayatipour et al.

Table 1. Examples of continues time chaotic systems

Name References Equation Scroll type Function

Lorenza [21–23] x′ = λσ(y − x) Double scroll OTA, Multiplier

y′ = λ((β − z)x − y) Multi scroll

z′ = λ(xy − ρz)

Modified Lorenzb [7,24,25] x′ = σ(y − x) Double scroll OTA

y′ = K(β − z) + m Multi scroll

z′ = (|x| − ρz)

Lorenz-Stenfloc [26,27] x′ = σ(y − x) + λω Double scroll OTA, Product

y′ = (β − z)x − θy)

z′ = xy − εz

ω′ = −x − ρω

Chuad [8,9] x′ = σ(y − x − f(x)) Multi scroll PWL

y′ = x − y + z

z′ = −βy

Rösslere [28] x′ = −y − z Double scroll OTA, Product

y′ = x + σy

z′ = β + z(x − ρ)

Lüf [29] x′ = σ(y − x) Multi scroll OTA, Product

y′ = βy − xz

z′ = −ρz + xy

SprottD [30] x′ = −y Multi scroll OTA, Product

y′ = x + z

z′ = 2y2 + xz − a

a: λ, σ, β, and ρ are parameters whose choice of value results in a chaotic system.
b: σ, β, and ρ are parameters whose choice of value results in a chaotic system.
K is a bipolar switching constant which is 1 for x ≥ 0 and −1 for x < 0.
c: λ, σ, β, ε, θ and ρ are parameters whose choice of value results in a chaotic system.
d: σ, and β are parameters whose choice of value results in a chaotic system and
f(x) is a nonlinear element.
e: σ, β, and ρ are parameters whose choice of value results in a chaotic system.
f: σ, β, and ρ are parameters whose choice of value results in a chaotic system.

3.2 Discrete Time

Discrete systems can also be used to generate chaos. A discrete system is
expressed as xn+1 = f(C, xn) that shows the next state of the system, xn+1 is a
function of the present state, xn, and the control parameter, C. Same as contin-
uous time chaos, nonlinear functions are also essential here to create a chaotic
map. Depending on the number of the state variables, chaotic maps are of two
kinds: 1) One-dimensional maps, where deterministic equations are the only ele-
ment responsible for the evolution of a single state variable, with functions such
as sine map, tent map, and logistic map and 2) Multi-dimensional chaotic maps
where more than one deterministic equation is needed to define the evolution
of multiple state variables. In particular, Hénon map is a good example of this

A Comprehensive Analysis of Chaos-Based Secure Systems 95

second category. These common functions are showcased in Table 2 as commonly
used mathematical chaotic maps. Their simple mathematical expressions can be
suitable for applications like FPGA-based image encryption [31]. However, it is
reported that the CMOS-based compact implementation of classic chaotic maps
including logistic map [32], sine map [33], and tent map [34], becomes highly
hardware-hungry. As a solution to this issue, researchers have been exploring
to leverage the built-in non-linearity in transistors to design simple, hardware-
effective discrete maps with good chaotic properties [35–37]. Though discrete
time chaos has a great potential as a base of a chaotic communication system,
we will not be discussing them, as continuous time chaos is a better fit for using
chaos ciphering in wearable and other resource limited systems.

Table 2. Examples of some familiar mathematical chaotic maps

Name Mathematical expression Parameter bounds

Logistic map [38] xn+1 = Cxn(1 − xn) xn = [0, 1]
C = [0, 4]

Hénon map [39]
{

xn+1 = 1 − Cax2
n + yn

yn+1 = Cbxn

xn = [0, 1.4]
Ca = [0, 1.4]
Cb = [0, 0.3]

Sine map [40] xn+1 = Csin(πxn) xn = [0, 1]
C = [0, 1]

Tent map [38]
xn+1 =

{
Cxn , xn < 0.5

C(1 − xn) , xn ≥ 0.5

xn = [0, 1]
C = [0, 2]

4 On-Chip Chaos Implementation and Simulation

Here we discuss continuous-time chaotic equations that can be described by
non-linear differential equations. The steps to implement chaos as an integrated
circuit are shown in Fig. 2. The first step is implementation of these equations in
MATLAB, after simulations and confirmation of chaos, parameters and initial
conditions that satisfy chaos are extracted. The equations are then translated
to a block diagram implemented in MATLAB Simulink. The transformation
from MATLAB Simulink to circuit block diagram requires implementing each
block in the diagram to a low power circuit. Simulation results for each type
of our equation is seen in Fig. 3. The building blocks of these systems as seen
from the equations listed in Table 3 are multipliers, integrators, amplifiers, and
PieceWise-Linear (PWL) functions. To extract performance parameters of each
chaotic equation as an integrated chip, each block used in the chaotic system is
implemented using 65 nm CMOS technology and simulated.

96 A. Hedayatipour et al.

Fig. 2. The flow of implementing chaotic synchronization on chip (a) Implementing the
chaotic equations in MATLAB and extracting the initial conditions and parameters
needed to achieve chaos (b) Implementing the equations as MATLAB simulink block
diagram (c) Simulating the chaotic equations to confirm the bounded chaos needed for
ciphering of signals using chaotic synchronization (d) Implementing Simulink blocks as
integrated circuits using 65 nm MOSFET technology, the block showed in the picture
is an n-W powered integrator.

The first building block implemented and simulated is a low power integrator.
The integrator is based on Rieger et al. [41]. This integrator, consuming power in
range of nano-watts, has a very large tunable time constant without using area
consuming resistors or a big capacitor. The nominal value of the time constant
with a 2pF capacitor is 5 s which can also be useful for slower signals. The inte-
grator is based on cascading of basic transconductance and transimpedance (gm
- 1/gm chain). The gm blocks implemented here are 4 operational transconduc-
tance amplifiers (OTAs) with a bias current injected to them from VDD. The
1/g blocks are grounded transistors acting as voltage attenuator resistances. A
chain of two gm and two 1/gm blocks, alternating, are used as an attenuator
to drive the OTA and the capacitor (OTA-C). The OTA-C section consists of a
current source biasing a PMOS OTA, which regulates the NMOS mirror tran-
sistors (M5-M10). This integrator is a good fit for resource limited applications
that are required to consume low power and low area. Since there will be process,
temperature, and voltage variations leading to an output offset on the capacitor
nodes, a current source to eliminate the offset can be implemented on the last

A Comprehensive Analysis of Chaos-Based Secure Systems 97

Fig. 3. Simulation results for (a) Lorenz system (b) Lü’s system (c) Rössler system (d)
SprottD system and (e) Chua system, The axes in the pictures are x, y and z showing
the 3 states of the system.

1/gm block. The diode connected M11 is used to achieve better-balanced dc con-
ditions. The circuit implementation of the integrator along with the simulation
is seen in Fig. 4. The integrator output voltage (Vo) in this picture is simulated
by extracting the response versus an square pulse as slow 4 Hz for the input.

Gilbert cell typologies are good topologies to be used as multipliers. Gilbert
cells are mixers with output signals that are proportional to the product of two
input signals. This cell, depicted in Fig. 5 uses eight NMOS transistors and two
active loads, all are working in saturation region. There are 2 sets of differential
input fed to the circuit and the top 4 transistors work as a switch that source
the current in the lower part of the circuit. In the lower circuit, the signal is
multiplied by the signal fed into M1–M4, and the output obtained is a differential
output. To simulate this block, a sinusoidal wave and a square pulse are given as
the two sets of input and as shown in the Gilbert cell simulation, the output is
the multiplication of two signals. The power consumption of Gilbert cells is two
orders of magnitude higher than the integrator and around 200–500µW based
on the gain implemented.

98 A. Hedayatipour et al.

Fig. 4. (a) Circuit diagram of an integrator (b) Simulation results shown for an input
pulse.

Chua’s or Lü’s circuit can use a CMOS implementation of the PWL as the
nonlinear element of chaos. This function is constructed of various straight line
segments connecting points creating custom wave-forms. PWLs are integral parts
in achieving chaos since they are the limiting components when it comes to fre-
quency. A convenient way to implement these line segments is to have a summa-
tion of simple functions. The topology shown in Fig. 6, based on Carbajal-Gomez
et al. [42], can be programmed to have a break-point set by Ioffin and Ioffout
and a slope that can be set by Isat. This implementation is also advantageous
in terms of stability since it has a current mode open loop configuration. The
circuit, implemented in current mode shows a better frequency response than
voltage mode and is easy to implement with only few transistors.

Apart from these introduced blocks, amplifiers to determine the coefficients
of the equations through gain blocks, and passive elements like resistors are
common in the chaos generator circuits. It must be noted that not all the chaotic
circuits discussed in literature use these blocks exclusively, but use of these blocks
in this paper is to extract performance parameters using common blocks.

A Comprehensive Analysis of Chaos-Based Secure Systems 99

Fig. 5. (a) Circuit diagram of a multiplexer (b) Simulation results shown for multipli-
cation of a pulse and a sinusoidal wave.

Fig. 6. (a) Circuit diagram of implementation of a piece wise-linear circuit (b) Simu-
lation results showing the current output of a piece wise-linear circuit.

100 A. Hedayatipour et al.

5 Discussion

To implement chaotic synchronization, different blocks introduced in the pre-
vious sections are used. In this section, performance of these equations based
on their area and power consumption, sensitivity, and robustness is discussed.
Chaotic synchronization is very sensitive to initial conditions, in this sense, mak-
ing a small change in the initial condition of this complex, nonlinear system,
produces a huge change in the behavior of the system. With slightly different
initial conditions, we start with a slight difference in the results, then beyond
a certain time, the system would no longer be predictable. The sensitivity of
Rössler, Lü and SprottD systems can be seen in Fig. 7. Though having a big
change in output with a slight change in initial conditions seems desirable as
it provides better ciphering, there is indeed a trade off. Systems more sensitive
toward initial conditions are also more sensitive toward process, voltage, and
temperature (PVT) variations. The small changes formed in the fabrication pro-
cess of the integrated chip, makes the more sensitive implementations almost
impossible to synchronize as two identical systems implemented on chip will still
be slightly different and posing an extremely different output. To eliminate these
PVT variations, considerations for tuning circuit and post-fabrication processing
are needed to contribute towards power and area consumption. Lü’s system is
seen to be more sensitive toward initial conditions as seen in the simulation.

Lorenz was the main equation to implement chaos for decades. This set of
equations, however, needs two multipliers which are power and area consum-
ing to be implemented on chip and can contribute to a significant DC offset.
Modified Lorenz eliminates the multipliers which will reduce the power and area
consumption. Chua’s design also eliminates the multipliers, replacing them with
a PWL circuit. The power consumption is hence proportional to the number of
multipliers in the circuit as the power consummation of the Gilbert cells is 2
order of magnitude higher than that of amplifiers, PWLs and integrators.

These data are utilized to come up with a Figure of Merit (FOM), that is
smaller for a better design as shown in Eq. 1. The design performance improves
as we use less power and area consumption (proportional to the number of multi-
pliers), fewer blocks (using only primitive blocks, such as amplifiers, integrators,
multipliers, etc. for design purposes), and reduced noise sensitivity (the FOM is
designed to be proportional with these parameters). The design will improve if we
are robust to PVT variation (or if the design is easily tunable after fabrication).
For the design load of Lorenz, Lü, Rössler, and SprottD, they are estimated as
1 since they can be implemented using the integrators and multipliers and the
design load of Modified Lorenz and Chua’s are estimated as 2 because of need to

A Comprehensive Analysis of Chaos-Based Secure Systems 101

Fig. 7. Sensitivity of (a) Rössler, (b) Lü and (c) SprottD systems to initial condition.

design specialty blocks. Lorenz- Stenflo requires 4 equations to be implemented
and it’s design load is estimated as 2. Chua’s robustness to PVT is estimated
as 2 because of ease of tuning the PWL currents after the process. The detailed
comparison of these systems in terms of performance is shown in Table 3.

FOM =
Power&AreaConsumption× #ofblocks×DesignLoad×Noise

Robustness
(1)

102 A. Hedayatipour et al.

Table 3. Comparison table with state-of-the-art chaotic communication

Name Based on # of main blocks # of multipliers FOM

Lorenz [23] 5 2 15

Modified Lorenz [25] 4 0 8

Lorenz-Stenfloa [26] 6 2 18

Chua [8], [9] 4 0 4

Rössler [28] 4 1 8

Lüb [29] 5 0–2 10

SprottDc [30] 5 2 7.5

a: This design has more output states leading to a more robust ciphering.
b: Various alternatives exist to implement Lü’s system with one or no
multiplier.
c: This design has no equilibria leading to a more robust ciphering.

6 Conclusion

In this paper Multiple Lorenz, Chua’s, Lü’s, and Rössler, and sprottD systems
are implemented and simulated. The system implementations are considered as
alternatives to the software chaos and architectures which can further reduce the
power and the area overheads. Reducing power and area of these systems pave
the way for the effective utilization of security at chip level for resource limited
applications such as wearables, implantable devices, and Internet-of-Things (IoT)
devices where security has been overlooked even in regularly used devices. Various
performance metrics including power consumption, area, design load, noise, and
robustness are extracted and compared for each system to demonstrate a figure of
merit. The figure of merit shows the importance of reducing the use of multipliers
by introducing chaotic equations that avoid using multipliers.

Acknowledgement. The simulations on this paper are done using Cadence virtuoso,
supplied by Cadence university program to California State University Long Beach.
This work is supported by the National Science Foundation under award No. 2131156.

References

1. Cuomo, K.M., Oppenheim, A.V., Strogatz, S.H.: Synchronization of Lorenz-based
chaotic circuits with applications to communications. IEEE Trans. Circ. Syst. II
Analog Digital Signal Process. 40(10), 626–633 (1993)

2. Ott, E., Grebogi, C., Yorke, J.A.: Controlling chaotic dynamical systems. In Chaos:
Soviet-American Perspective on Nonlinear Science, pp. 153–172. American Insti-
tute of Physics (1990)

3. Benioff, P.: The computer as a physical system: a microscopic quantum mechanical
Hamiltonian model of computers as represented by turing machines. J. Stat. Phys.
22(5), 563–591 (1980)

A Comprehensive Analysis of Chaos-Based Secure Systems 103

4. Arute, F., et al.: Quantum supremacy using a programmable superconducting pro-
cessor. Nature 574(7779), 505–510 (2019)

5. Kalai, G.: The argument against quantum computers. In: Quantum, Probability,
Logic, pp. 399–422 (2020)

6. Smith, F.L., III.: Quantum technology hype and national security. Secur. Dialogue
5(1), 0967010620904922 (2020)

7. Elwakil, A.S., Kennedy, M.P.: Construction of classes of circuit-independent
chaotic oscillators using passive-only nonlinear devices. IEEE Trans. Circ. Syst.
I Fundam. Theory Appl. 48(3), 289–307 (2001)

8. Delgado-Restituto, M., Rodriguez-Vazquez, A.: A CMOS analog chaotic oscillator
for signal encryption. In: ESSCIRC 1993: Nineteenth European Solid-State Circuits
Conference, vol. 1, pp. 110–113. IEEE (1993)

9. Delgado-Restituto, M., Rodriguez-Vazquez, A., Linan, M.: A modula-
tor/demodulator CMOS IC for chaotic encryption of audio. In: ESSCIRC1995:
Twenty-First European Solid-State Circuits Conference, pp. 170–173. IEEE (1995)

10. Elwakil, A.S., Salama, K.N., Kennedy, M.P.: An equation for generating chaos and
its monolithic implementation. Int. J. Bifurcat. Chaos 12(12), 2885–2895 (2002)

11. Trejo-Guerra, R., Tlelo-Cuautle, E., Cruz-Hernández, C., SÁnchez-LÓpez, C.:
Chaotic communication system using Chua’s oscillators realized with CCII+S. Int.
J. Bifurcat. Chaos 19(12), 4217–4226 (2009)

12. Sánchez-López, C., Trejo-Guerra, R., Munoz-Pacheco, J., Tlelo-Cuautle, E.: N-
scroll chaotic attractors from saturated function series employing CCII+S. Non-
linear Dyn. 61(1–2), 331–341 (2010)

13. Trejo-Guerra, R., et al.: Integrated circuit generating 3-and 5-scroll attractors.
Commun. Nonlinear Sci. Numer. Simul. 17(11), 4328–4335 (2012)

14. Trejo-Guerra, R., Tlelo-Cuautle, E., Jiménez-Fuentes, M., Muñoz-Pacheco, J.M.,
Sánchez-López, C.: Multiscroll floating gate-based integrated chaotic oscillator. Int.
J. Circuit Theory Appl. 41(8), 831–843 (2013)

15. Gonzalez, O.A., Han, G., De Gyvez, J.P., et al.: CMOS cryptosystem using a
Lorenz chaotic oscillator. In: ISCAS 1999, Proceedings of the 1999 IEEE Interna-
tional Symposium on Circuits and Systems VLSI (Cat. No. 99CH36349), vol. 5,
pp. 442–445. IEEE (1999)

16. Wu, Y.-L., Yang, C.-H., Li, Y.-S., Wu, C.-H.: Nonlinear dynamic analysis and
chip implementation of a new chaotic oscillator. In: 2015 IEEE 12th International
Conference on Networking, Sensing and Control, pp. 554–559. IEEE (2015)

17. Xiong, L., Lu, Y.-J., Zhang, Y.-F., Zhang, X.-G., Gupta, P.: Design and hard-
ware implementation of a new chaotic secure communication technique. PLoS One
11(8), e0158348 (2016)

18. Liang, C., Zhang, Q., Ma, J., Li, K.: Research on neural network chaotic encryp-
tion algorithm in wireless network security communication. EURASIP J. Wirel.
Commun. Netw. 2019(1), 1–10 (2019). https://doi.org/10.1186/s13638-019-1476-
3

19. Zhang, L.: Artificial neural network model design and topology analysis for FPGA
implementation of Lorenz chaotic generator. In: IEEE 30th Canadian Conference
on Electrical and Computer Engineering (CCECE), pp. 1–4. IEEE (2017)

20. Tuna, M., Alçın, M., Koyuncu, İ, Fidan, C.B., Pehlivan, İ: High speed FPGA-based
chaotic oscillator design. Microprocess. Microsyst. 66, 72–80 (2019)

21. Gonzales, O.A., Han, G., De Gyvez, J.P., Sánchez-Sinencio, E.: Lorenz-based
chaotic cryptosystem: a monolithic implementation. IEEE Trans. Circ. Syst. I Fun-
dam. Theory Appl. 47(8), 1243–1247 (2000)

https://doi.org/10.1186/s13638-019-1476-3
https://doi.org/10.1186/s13638-019-1476-3

104 A. Hedayatipour et al.

22. Yu, S., Lü, J., Tang, W.K., Chen, G.: A general multiscroll Lorenz system family
and its realization via digital signal processors. Chaos Interdisc. J. Nonlinear Sci.
16(3), 033126 (2006)

23. Brown, D., Hedayatipour, A., Majumder, M.B., Rose, G.S., McFarlane, N., Mat-
erassi, D.: Practical realisation of a return map immune Lorenz-based chaotic
stream cipher in circuitry. IET Comput. Digital Tech. 12(6), 297–305 (2018)

24. Özoǧuz, S., Elwakil, A.S., Kennedy, M.P.: Experimental verification of the butterfly
attractor in a modified Lorenz system. Int. J. Bifurcat. Chaos 12(07), 1627–1632
(2002)

25. Radwan, A., Soliman, A., El-Sedeek, A.: MOS realization of the modified Lorenz
chaotic system. Chaos, Solitons Fractals 21(3), 553–561 (2004)

26. Wu, Y.-L., Yang, C.-H., Wu, C.-H.: Design of initial value control for modified
Lorenz-Stenflo system. Math. Probl. Eng. 2017, 8424139 (2017)

27. Zhang, F., Chen, R., Chen, X.: Analysis of a generalized Lorenz-Stenflo equation.
Complexity 2017, 7520590 (2017)

28. Butusov, D.N., Karimov, T.I., Lizunova, I.A., Soldatkina, A.A., Popova, E.N.: Syn-
chronization of analog and discrete rössler chaotic systems. In: IEEE Conference of
Russian Young Researchers in Electrical and Electronic Engineering (EIConRus),
pp. 265–270. IEEE (2017)

29. Liao, T.-L., Chen, H.-C., Peng, C.-Y., Hou, Y.-Y.: Chaos-based secure communi-
cations in biomedical information application. Electronics 10(3), 359 (2021)

30. Wei, Z.: Dynamical behaviors of a chaotic system with no equilibria. Phys. Lett.
A 376(2), 102–108 (2011)

31. Baruah, B., Saikia, M.: An FPGA implementation of chaos based image encryption
and its performance analysis. IJCSN Int. J. Comput. Sci. Netw. 5(5), 712–720
(2016)

32. Lopez-Hernandez, J., Diaz-Mendez, A., Vazquez-Medina, R., Alejos-Palomares, R.:
Analog current-mode implementation of a logistic-map based chaos generator. In:
52nd IEEE International Midwest Symposium on Circuits and Systems, pp. 812–
814. IEEE (2009)

33. Farfan-Pelaez, A., Del-Moral-Hernández, E., Navarro, J., Van Noije, W.: A CMOS
implementation of the sine-circle map. In: 48th Midwest Symposium on Circuits
and Systems, pp. 1502–1505. IEEE (2005)

34. Callegari, S., Setti, G., Langlois, P.J.: A CMOS tailed tent map for the generation
of uniformly distributed chaotic sequences. In: IEEE International Symposium on
Circuits and Systems (ISCAS), vol. 2, pp. 781–784. IEEE (1997)

35. Dudek, P., Juncu, V.: Compact discrete-time chaos generator circuit. Electron.
Lett. 39(20), 1431–1432 (2003)

36. Juncu, V., Rafiei-Naeini, M., Dudek, P.: Integrated circuit implementation of a
compact discrete-time chaos generator. Analog Integr. Circ. Sig. Process 46(3),
275–280 (2006)

37. Kia, B., Mobley, K., Ditto, W.L.: An integrated circuit design for a dynamics-based
reconfigurable logic block. IEEE Trans. Circuits Syst. II Express Briefs 64(6), 715–
719 (2017)

38. Zhou, Y., Hua, Z., Pun, C.-M., Chen, C.P.: Cascade chaotic system with applica-
tions. IEEE Trans. Cybern. 45(9), 2001–2012 (2014)

39. Al-Shameri, W.F.H.: Dynamical properties of the hénon mapping. Int. J. Math.
Anal. 6(49), 2419–2430 (2012)

40. Hua, Z., Zhou, Y.: Dynamic parameter-control chaotic system. IEEE Trans.
Cybern. 46(12), 3330–3341 (2015)

A Comprehensive Analysis of Chaos-Based Secure Systems 105

41. Rieger, R., Demosthenous, A., Taylor, J.: A 230-nW 10-s time constant CMOS
integrator for an adaptive nerve signal amplifier. IEEE J. Solid-State Circ. 39(11),
1968–1975 (2004)

42. Carbajal-Gomez, V.H., Tlelo-Cuautle, E., Muñoz-Pacheco, J.M., de la Fraga, L.G.,
Sanchez-Lopez, C., Fernandez-Fernandez, F.V.: Optimization and CMOS design
of chaotic oscillators robust to PVT variations. Integration 65, 32–42 (2019)

Miscellaneous Security

Crowdfunding Non-fungible Tokens
on the Blockchain

Sean Basu1, Kimaya Basu1, and Thomas H. Austin2,3(B)

1 Monta Vista High School, Cupertino, CA, USA
2 0Chain Corporation, Cupertino, CA, USA

3 San José State University, San Jose, CA, USA
thomas.austin@sjsu.edu

Abstract. Non-fungible tokens (NFTs) have been used as a way of
rewarding content creators. Artists publish their works on the blockchain
as NFTs, which they can then sell. The buyer of an NFT then holds own-
ership of a unique digital asset, which can be resold in much the same
way that real-world art collectors might trade paintings.

However, while a deal of effort has been spent on selling works of
art on the blockchain, very little attention has been paid to using the
blockchain as a means of fundraising to help finance the artist’s work in
the first place. Additionally, while blockchains like Ethereum are ideal
for smaller works of art, additional support is needed when the artwork
is larger than is feasible to store on the blockchain.

In this paper, we propose a fundraising mechanism that will help
artists to gain financial support for their initiatives, and where the back-
ers can receive a share of the profits in exchange for their support. We
discuss our prototype implementation using the SpartanGold framework.
We then discuss how this system could be expanded to support large
NFTs with the 0Chain blockchain, and describe how we could provide
support for ongoing storage of these NFTs.

Keywords: Blockchain · Non-fungible tokens · Crowdfunding ·
Storage

1 Introduction

As the world moves to an online, digital retail model, there has been a struggle
to find ways to reward artists and other content creators for their work.

Non-fungible tokens (NFTs) have been one proposed solution. Artists create
their work and then sell it online, with ownership tracked on the blockchain to
determine who owns the unique copy of the work of art.

However, while NFTs offer a model for artists to sell their work, they do
not intrinsically offer a way for artists to raise funds to help them create their
projects in the first place. Additionally, while NFTs offer a good model for
storing smaller amounts of content on the blockchain, the cost of storing a larger
work of art on the blockchain quickly becomes prohibitive. In this paper, we

c© The Author(s) 2022
S.-Y. Chang et al. (Eds.): SVCC 2021, CCIS 1536, pp. 109–125, 2022.
https://doi.org/10.1007/978-3-030-96057-5_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-96057-5_8&domain=pdf
http://orcid.org/0000-0003-2428-0687
https://doi.org/10.1007/978-3-030-96057-5_8

110 S. Basu et al.

highlight how an artist’s project to create an NFT can be supported on the
blockchain through crowdfunding. In our design, an artist posts a transaction to
the blockchain advertising their project. Other clients may then contribute to
the project, in exchange gaining a portion of the coins from the initial sale. Once
the artist then launches the NFT on the blockchain, the funding campaign is
tied to the NFT itself. The artist may then sell the NFT as they see fit, and the
artist’s backers are compensated automatically. For a successful artist, a history
of successful projects can be an excellent form of marketing; backers can see the
artist’s history on the blockchain and thereby be encouraged to invest in the
artist’s next fundraising campaign.

To help further understanding of our design, we offer a prototype implemen-
tation using the SpartanGold framework [2]. Our implementation is available
at https://github.com/taustin/spartan-gold-nft. We then consider the storage
of larger NFTs, and discuss our proposed design for the 0Chain blockchain. As
part of this discussion, we show how 0Chain’s token-locking reward protocol [10]
can be used to create an ongoing revenue stream to fund long-term NFT storage.

2 Background

Bitcoin’s seminal whitepaper [12] introduced the world to the blockchain as a
distributed and decentralized ledger for managing cryptocurrency. Bitcoin also
included a primitive scripting language for writing programmable smart con-
tracts. However, due to concerns about denial-of-service attacks, the power of
these smart contracts was deliberately restricted.

Namecoin, a fork of Bitcoin, focused on allowing data to be stored directly on
the Blockchain. In 2014, Kevin McCoy and Anil Dash used Namecoin to launch
what is generally considered the first NFT [6].

Ethereum expanded upon Bitcoin’s ideas to create a blockchain that supports
a quasi-Turing complete virtual machine [22]. To avoid denial-of-service attacks,
Ethereum’s virtual machine (EVM) includes a notion of gas. Clients pay for their
transactions by specifying a gas price; if they run out of gas, the effects of the
transaction are rolled back, and the miners keep the ether used to pay for the
transaction.

Ethereum’s flexibility introduced the world to a wide variety of new applica-
tions for the blockchain. One popular use was the creation of ERC-20 tokens [20].
The ERC-20 specification allows a standard way for organizations to issue tokens
as a fundraising mechanism. These tokens typically serve as a placeholder for the
native coins on a new blockchain; once the new blockchain is launched, clients
may exchange these tokens to receive an equivalent amount of native coins on
the new blockchain.

While ERC-20 has been an influential design, its focus is on fungible tokens.
There is no connection between a fungible token and any unique asset. Essen-
tially, ERC-20 tokens act as an additional currency running on the Ethereum
blockchain.

To our knowledge, the first example of a fungible token on the Ethereum
blockchain was used in the design of CryptoPunks [4] in 2017. In this application,

https://github.com/taustin/spartan-gold-nft

Crowdfunding NFTs 111

users trade unique cartoon characters on the blockchain. Later that same year,
CryptoKitties was released on the Ethereum blockchain. At its height, Cryp-
toKitties accounted for a quarter of the traffic on Ethereum’s blockchain [5].
The popularity of these applications served to both highlight the power of the
Ethereum blockchain, and to showcase its limitations in handling the amount of
traffic generated by these applications.

The success of these applications lead to the development of two Ethereum
Improvement Proposals (EIP): EIP/ERC-721 [7] provides a standard interface
for non-fungible tokens; EIP/ERC-165 [15] gives a way to tag an implementation
to indicate that it supports a given contract interface.

The ability to create unique tokens on a decentralized, publicly visible
blockchain has lead to some initial efforts at using NFTs as a form of inven-
tory management. Regner et al. [14] describe how NFTs can be used as part of
an event ticketing system. Westerkamp et al. [21] use NFTs on Ethereum to track
inventory in a manufacturing process, where “recipes” dictate how NFTs rep-
resenting ingredients are consumed to produce new NFTs of the finished good.
Stefanović et al. [18] describe the applications for smart contracts in handling
land administration systems and real estate transfers, though the authors do not
explicitly mention NFTs. Bastiaan et al. [1] describe how NFTs could be useful
in real-estate management, including some discussion of early attempted appli-
cations of this work for Vermont and Ukraine. Patil [13] develops a NFT-based
land registry system using government records for the Washington D.C. area.
Salah et al. [16] propose a system for tracking soybeans using the Ethereum
blockchain. Kim et al. [8] describe possible applications in the areas of food
traceability and describe how these assets can be tokenized.

Alternately, NFTs have been seen as a new way to create a market for digital
works of art. While CryptoPunk and CryptoKitties can been seen as initial works
in this direction, additional challenges remain. Chevet [3] provides an overview
of the challenges and benefits in using NFTs to reward artists, arguing that
scarcity is the key property that NFTs add to the existing digital art world.
Trautman [19] provides a detailed overview of the history of NFTs for virtual
art, including extensive discussion of some of the highest-selling NFTs to date.

Muller et al. [11] show how their DeCoCo system can use fungible tokens as a
mode of rewarding artists, where tokens translate to permission to access some
content. While their use case is slightly different than ours, the usage of tokens
to track ownership for artistic content bears a similarity to our own design.

3 Crowdfunding NFT Creation

In this section, we highlight how the blockchain can facilitate decentralized
fundraising for artist projects, and also tie successful projects to the result-
ing NFTs. In our discussion, the artist and the backers are both assumed to be
clients on the blockchain. There is also a smart contract, the NFT Smart Con-
tract (NFTSC), which manages the fundraiser and records the contributions.

112 S. Basu et al.

We assume that the backers will share the proceeds for the sale of the NFT.
However, if the artist wishes to retain all funds, they may specify that when
initializing the fundraiser; and non-monetary benefits from the artist must then
be managed off-chain. Figure 1 shows a sequence diagram of the process.

Fig. 1. Crowdfunding sequence diagram

The process for creating a new fundraiser works as follows:

1. The artist posts a transaction the the NFT Smart Contract, specifying:
– Artist’s ID.
– Project name.
– Project description.
– Project ID, chosen by artist. This should be unique for the artist.
– End date, when the fundraiser will conclude.
– Minimum funding. If not met by the end date, the fundraiser fails.
– Maximum funding (optional). If this amount is met or exceeded, the

fundraiser ends immediately.
– Artist share, between 0 and 1. When the NFT is eventually sold, this

amount specifies what percentage of the sale goes directly to the artist.
2. Backers contribute to the project, specifying:

– Artist’s ID and the project ID.
– Amount of tokens to contribute.
– ID of the backer.

3. The NFT Smart Contract records the contribution. If the maximum funding
goal is met, the fundraiser ends.

When the fundraiser ends, the NFT Smart Contract verifies that the fund-
ing goal has been met. If so, the contributions are recorded and the funds are
transferred to the artist. Otherwise, all funds are returned to the artist. Who
initiates the transaction depends on the result. If the fundraiser is successful, it
is in the best interest of the artist to write the transaction in order to get access
to the raised funds. Otherwise, any of the backers can call the smart contract

Crowdfunding NFTs 113

to reclaim funds from an unsuccessful fundraiser; if there are multiple backers,
this situation could result in a waiting game, where each backer hopes one of
the others will bear the cost of the transaction. This issue could potentially be
addressed by compensating the caller from the contributed funds.

4 Creation of the NFT on the Blockchain

After successful fundraising, the artist can use those resources to create their
project. Once completed, they then call the NFT Smart Contract to release the
NFT on the blockchain. Initially, the NFT is owned and controlled by the artist,
though the backers’ shares of the NFT are also recorded.

To create the NFT on the blockchain, the artist must write a transaction
calling the NFT Smart Contract with the following information:

– artist ID.
– project ID.
– NFT data.
– NFT content hash (optional).

For smaller NFTs, the entire content might be stored on the blockchain, in
which case the content hash is unnecessary. For larger NFTs, the data must be
uploaded to its storage location before this transaction is written. Specifying the
correct hash is the responsibility of the artist, and the blockchain miners are not
expected to validate it. However, the specification of the hash allows others to
verify the validity of the content off chain.

Of course, many storage schemes could be used. Section 7 shows how the
NFT creation on the blockchain could be coupled with 0Chain’s storage system.

Once the transaction has been written, the NFT Smart Contract records the
NFT and tracks the ownership information, including details about the backers’
shares.

5 Initial Sale of the NFT

With our design, the NFT Smart Contract serves as an escrow service handling
the exchange of the NFT for coins on the blockchain. Once the transfer is com-
plete, both the artist and their backers receive their coins, and the buyer receives
ownership and control of the NFT. Figure 2 shows a sequence diagram for the
steps in the initial sale of the NFT.

To begin this process, the artist writes a transaction calling the NFT Smart
Contract. This call should specify:

– The ID of the buyer.
– The purchase price.
– The expiration of the offer.
– The NFT itself. It information should include the project ID.

114 S. Basu et al.

Fig. 2. NFT initial sale sequence diagram

As part of this transaction, the NFT is transferred to the ownership of the
NFT Smart Contract. If the offer expires before the buyer has fulfilled the agree-
ment terms, then the artist may call the NFT Smart Contract to reclaim its
NFT.

To accept the terms of the agreement, the buyer must write to the NFT
Smart Contract, specifying the NFT and transferring enough coins to meet the
purchase price. If it does so before the offer expiration, the NFT is transferred
to the buyer.

Once the exchange is completed, the proceeds from the sale are transferred
to the artist and their backers according to the terms specified in the initial
fundraising phase of the project.

6 Implementation

To help further understanding of our design, we implement our system in the
SpartanGold blockchain framework. Our implementation is available at https://
github.com/taustin/spartan-gold-nft.

6.1 SpartanGold Overview

SpartanGold [2] is a JavaScript framework for simulating different blockchain
designs. Its default design is roughly patterned after Bitcoin, with its miners
using proof-of-work to validate transactions. However, its design is simpler, and
more amenable to being easily extended with alternate designs or configurations.
Transactions in SpartanGold include a data field, which accepts arbitrary JSON
data. As a result, transactions may be extended in a variety of ways without
changing the Transaction class. However, the logic to correctly interpret any
information in the data field must be added to the Block class, described later
in this section. In our design, we add a type field to data, allowing the Block
implementation to easily add custom logic for that specific kind of transaction.

Simulations in SpartanGold can be done in a single-threaded mode, commu-
nicating through the FakeNet module. This approach allows for better demon-
strations, with all results posted in a single window. However, the miners may
instead be run in separate processes, in which case they can communicate over
the network and avoid any “cheats” in the code.

https://github.com/taustin/spartan-gold-nft
https://github.com/taustin/spartan-gold-nft

Crowdfunding NFTs 115

A couple of differences between SpartanGold and Bitcoin should be noted.
First, SpartanGold uses an account-based model. In our experience, this model is
easier for students to understand than Bitcoin’s UTXO model, and it simplifies
many cases where we wish to tie some information to a specific account. Sec-
ond, SpartanGold does not have a built-in scripting language for writing smart
contracts.

Instead of using smart contracts, we must extend SpartanGold’s Block class
to handle new types of transactions. The Block class not only stores all trans-
actions, but also stores any additional information that should be tracked and
keeps track of the rules for validating transactions.

6.2 NFT Basic Operations

For our prototype, we first review how an NFT can be added to the SpartanGold
blockchain. While NFTs are often visual works of art, in our example, we use
a poet creating a new poem as an NFT. Figure 3 shows the driver for creating
and transferring an NFT.

The initial code sets up a blockchain with four clients (alice, storni,
minnie, and mickey), where two of the clients (minnie and mickey) are miners,
and storni is an artist who creates an NFT. The balances for all clients are
specified in the genesis block, along with the implementations for transactions
and blocks. For this example, we use the standard SpartanGold Transaction
class, but extend the NftBlock class with extra logic for handling NFTs.

After running for 2 s, storni invokes her createNFT method, where her NFT
content is the poem “Hombre pequeñito”. The code runs for an additional 3 s
before storni then transfers the NFT to alice. At the 10 s mark, the blockchain
terminates, and final balances are displayed. Additionally, the NFTs for storni
and alice are displayed in order to show that the NFT has been successfully
transferred.

The output of the program is given below. Some messages have been edited to
reduce the output length, but note that alice has possession of the NFT at the
end of program execution. The balances of the two miners have also increased,
each gaining a reward of 25 gold for every block that they have produced.

Initial balances:
Alice: 233
Minnie: 500
Mickey: 500
Storni: 500
Mickey: found proof for block 1: 2764
Mickey: found proof for block 2: 4080

... TRIMMED FOR BREVITY ...

Mickey: found proof for block 12: 1268
CREATING NFT
Minnie: found proof for block 13: 9984
Mickey: found proof for block 14: 25567

... TRIMMED FOR BREVITY ...

Mickey: found proof for block 23: 54456

116 S. Basu et al.

const {Blockchain , Miner , Transaction , FakeNet} = requ i r e (' spartan - gold ') ;
const Nf tCl i ent = r equ i r e (' ./ nft - client . js ') ;
const NftBlock = r equ i r e (' ./ nft - block . js ') ;

l e t fakeNet = new FakeNet () ;

// Clients and miners
l e t a l i c e = new NftCl i ent ({name : " Alice " , net : fakeNet }) ;
l e t minnie = new Miner ({name : " Minnie " , net : fakeNet }) ;
l e t mickey = new Miner ({name : " Mickey " , net : fakeNet }) ;

// Artist creating an NFT
l e t s t o r n i = new NftCl i ent ({name : " Alfonsina Storni " , net : fakeNet }) ;

// Creating genesis block
l e t g en e s i s = Blockchain . makeGenesis ({

b lockClas s : NftBlock ,
t r an sa c t i onC la s s : Transaction ,
c l ientBalanceMap : new Map([

[a l i c e , 2 3 3] , [s t o rn i , 5 0 0] , [minnie , 5 0 0] , [mickey , 5 0 0] ,
]) ,

}) ;

f unc t i on showBalances (c l i e n t) {
conso l e . l og (A l i c e : ${ c l i e n t . l a s tB lo ck . balanceOf (a l i c e . address) }) ;
conso l e . l og (Minnie : ${ c l i e n t . l a s tB lo ck . balanceOf (minnie . address) }) ;
conso l e . l og (Mickey : ${ c l i e n t . l a s tB lo ck . balanceOf (mickey . address) }) ;
conso l e . l og (Sto rn i : ${ c l i e n t . l a s tB lo ck . balanceOf (s t o r n i . address) }) ;

}

conso l e . l og (" Initial balances :") ;
showBalances (a l i c e) ;

fakeNet . r e g i s t e r (a l i c e , minnie , mickey , s t o r n i) ;

// Miners start mining .
minnie . i n i t i a l i z e () ; mickey . i n i t i a l i z e () ;

// Artist creates her NFT .
setTimeout (() => {

conso l e . l og (" *** CREATING NFT *** ") ;
s t o r n i . c r ea t eNf t ({

artistName : s t o r n i . name , t i t l e : " Hombre peque ~n ito " ,
content :

,otiñeuqeperbmoh,otiñeuqeperbmoH
Sue l ta a tu canar io que qu i e r e vo l a r . . .

,otiñeuqeperbmoh,oiranacleyosoY
dé jame s a l t a r . ,

}) ;
} , 2000) ;

setTimeout (() => {
l e t nftID = s t o r n i . g e tNf t Ids () [0] ;
c onso l e . l og (Trans f e r r i ng NFT ${nftID }) ;
s t o r n i . t r a n s f e rN f t (a l i c e . address , nftID) ;

} , 5000) ;

// Print out the final balances after it has been running for some time .
setTimeout (() => {

conso l e . l og () ;
conso l e . l og (Minnie has a chain o f l ength ${minnie . currentBlock .

chainLength } :) ;
c onso l e . l og (" Final balances (Alice ' s perspective):") ;
showBalances (a l i c e) ;

conso l e . l og () ;
conso l e . l og (" Showing NFTs for Storni :") ;
s t o r n i . showNfts (s t o r n i . address) ;

conso l e . l og () ;
conso l e . l og (" Showing NFTs for Alice :") ;
a l i c e . showNfts (a l i c e . address) ;

p roce s s . e x i t (0) ;
} , 10000) ;

Fig. 3. SpartanGold NFT simulation

Crowdfunding NFTs 117

***Transferring NFT fc469b3105a3c89416a...
Minnie: found proof for block 24: 27051

... TRIMMED FOR BREVITY ...

Minnie: found proof for block 45: 66366

Minnie has a chain of length 46:
Final balances (Alice’s perspective):
Alice: 233
Minnie: 1125
Mickey: 975
Storni: 500

Showing NFTs for Storni:

Showing NFTs for Alice:

Alfonsina Storni’s "Hombre peque~nito"

Hombre peque~nito, hombre peque~nito,
Suelta a tu canario que quiere volar...
Yo soy el canario, hombre peque~nito,
déjame saltar.

esCrow . se tContract ([
(tx) => tx . from === a l i c e . address &&

tx . outputs [0] . amount === 150 &&
tx . outputs [0] . address === esCrow . address ,

(tx) => tx . from === s t o r n i . address &&
tx . data !== undef ined &&
tx . data . r e c e i v e r === esCrow . address &&
tx . data . nftID === nftID

] , () => {
esCrow . postTransact ion ([{ amount : 150 , address : s t o r n i .

address }]) ;
esCrow . t r an s f e rN f t (a l i c e . address , nftID) ;

}) ;

Fig. 4. Setting an escrow agreement

6.3 NFT Escrow

Since SpartanGold does not have smart contracts, we must enable another way
for an NFT to be transferred between clients. Our solution is to extend the
SpartanGold Client class to create an EscrowClient. An EscrowClient can receive
gold (SpartanGold’s currency) or NFTs just like any other client. However, it
can receive a contract of conditions that different parties agree to take through
the setContract method.1

1 Note that calling this method does not involve transactions on the blockchain, and
it does not provide any defenses against abuse; this design simulates what would be
done through a smart contract in a blockchain that supported them.

118 S. Basu et al.

Figure 4 shows an example using the setContract method. The setContract
method take an array of conditions, which are callback functions returning true
or false. The EscrowClient monitors transactions, testing them against these
functions. Whenever a condition is satisfied, it is removed from the list of condi-
tions. Once the last condition is met, the action callback function is executed,
and then the action itself is deleted. In the example, the contract monitors the
blockchain to watch for alice transferring 150 gold to the escrow account and
for storni to transfer the NFT to the escrow account. Once these actions have
been completed, the escrow account posts transactions to transfer to the gold to
storni and the NFT to alice.

6.4 Crowdfunding

For our implementation, the following code snippet shows how a client storni
advertises a fundraiser, set to expire one minute after the project is posted.

storni.createFundraiser ({

projectName: "Un poema de amor",

projectDescription: "Probablemente pienses que este

canci ón es sobre ti , ¿no es as ı́?",

projectID: "1",

endDate: Date.now() + 60000,

minFunding: "20",

maxFunding: "25",

artistShare: "0.20",

});

The following code shows the initFundraiser method of the NftClient
class. It derives a fundraiser ID from the artist’s ID and the artist’s choice for
project ID, and then stores that fundraiser in the current block.

initFundraiser(artistID , projectID , {

projectName , projectDescription , endDate , maxFunding ,

artistShare ,

}) {

let fundraiserID = this.calcFundraiserID (artistID ,

projectID);

this.fundraisers.set(fundraiserID , {

donations: [],

artistID ,

projectName ,

projectDescription ,

endDate ,

maxFunding ,

artistShare ,

});

}

Crowdfunding NFTs 119

A few changes are then needed in other parts of the code. When the createNft
method from Sect. 6.2 is invoked, the artist must specify the projectID matching
the ID she selected during the fundraising piece. Doing so ensures that the con-
tributors receive a share of the proceeds on the initial sale of the NFT. Of course,
the artist could neglect to specify the projectID and keep the full sale price. How-
ever, the artist’s fundraising history is on the blockchain, and a history of unful-
filled fundraisers is likely to reduce her success in fundraising again in the future.
Of course, she could register additional accounts, but if she is a successful artist,
changing her identity would be to her detriment.

In addition, when an NFT is sold initially, the contract with the escrow service
must also be changed to reward the backers. The code below shows the modified
action that could be registered for the EscrowClient. Note the addition of the
project field with the relevant details of the project.

(p r o j e c t) => {
l e t payment = 450 ;
l e t a r t i s t Sha r e = Math . f l o o r (p r o j e c t . a r t i s t Sha r e ∗ payment) ;
payment −= ar t i s t Sha r e ;
l e t outputs = [] ;
// Giving the artist her cut .
outputs . push ({amount : a r t i s tSha r e , address : s t o r n i . address }) ;
p r o j e c t . backers . forEach (({ id , amount }) => {

l e t reward = Math . f l o o r (payment ∗ amount / p r o j e c t .
to ta lDonat ions) ;

outputs . push ({amount : reward , address : id }) ;
}) ;
esCrow . postTransact ion (outputs) ;
esCrow . t r an s f e rN f t (a l i c e . address , nftID) ;

}

7 Storing Large NFTs on the 0Chain Blockchain

For smaller NFTs, it is feasible to store the entire NFT directly on the blockchain.
However, as the storage needs increase, it becomes exceedingly expensive (or even
prohibitive) to store the data directly on the blockchain. Since our focus is on
providing a market for artists, we discuss how our design may be coupled with
storage using the 0Chain blockchain.

In this section, we first provide a brief overview of 0Chain’s design. Then we
show how our system could be integrated into this blockchain.

7.1 0Chain Overview

To understand our design, a few key features of 0Chain’s architecture must be
understood.

0Chain advertises itself as a high performance decentralized storage network.
Its token-locking reward model (TLRM) [10] allows for “free” transactions or
other services. Instead of paying for service by transferring tokens, clients may
temporarily lock their tokens (making them unavailable) in order to generate
interest, acting somewhat like a bond where the interest is prepaid. That gen-
erated interest may then be given to miners or service providers. Essentially,
clients pay in liquidity, but do not permanently lose their tokens.

120 S. Basu et al.

On the 0Chain blockchain, tokens may be placed in token pools. A client
can then give signed markers to other clients, allowing those other clients to
draw funds from the token pools. The combination of token pools and markers
is roughly analogous to banking accounts and checks.

0Chain’s focus is on creating a marketplace for storage. Blobbers provide the
storage, curated by the blockchain. Data for the blobbers is erasure coded and
encrypted, ensuring that no single blobber is given an inordinate amount of power
over the data that it stores. Through the use of proxy re-encryption [17], the client’s
data can be easily and efficiently re-encrypted for any recipient without revealing
it to the blobbers themselves. Clients then pay blobbers in read markers and write
markers, allowing the blobbers to draw on funds from the appropriate token pools
(referred to as the read pool and write pool respectively).

7.2 Modifications Needed for Storage

The steps that we outlined in the design of our prototype implementation for the
creation and sale of NFTs still apply for NFTs created for the 0Chain blockchain.
However, with 0Chain, we can tie the NFTs to storage allocations directly on
the blockchain. Note that the data is not stored on the blockchain itself, but the
record of payment for storage and the management of the blobbers storing the
data is publicly available on the blockchain.

When the artist writes a transaction to the blockchain creating the NFT,
they must also specify any needed requirements for storage, such as the amount
of data to be stored and the quality of service required. Additionally, they must
provide a supply of ZCN (0Chain’s native token) to fund the initial storage.

Since the NFT itself is not stored on the blockchain directly, a hash of the
content must be stored instead. This hash allows any user accessing the NFT
and its off-chain data to verify its authenticity.

When the NFT Smart Contract creates the NFT, it assigns blobbers to store
the NFT based on the specifications of the artist. The tokens provided by the
artist are divided between the read pool and write pool for the NFT.

Finally, an additional step is needed beyond the process listed in Sect. 4. The
artist must upload the erasure coded and (optionally) encrypted data to the
blobbers. As part of this interaction, the artist must send signed write markers to
each blobber. These markers include a Merkle root [9] of the erasure coded data,
thereby serving both as a handshake between the artist and the blobber and as a
form of payment. The blobber may write a transaction to redeem these markers
on the blockchain, but doing so serves as the blobber’s commitment to store the
data that matches the Merkle root specified by the client. A challenge protocol
probabilistically ensures that the blobber is both storing the data and that it
matches this agreed-upon Merkle root. The blobber is rewarded or punished
depending on the results of the challenge. For more details on this challenge
protocol and the format of the write markers, we refer the interested reader to
Merrill et al. [10].

One significant modification is needed to 0Chain’s architecture for this design.
In the 0Chain ecosystem, allocations of data are permanently tied to a single

Crowdfunding NFTs 121

account. However, with an NFT, we wish to be able to transfer control of the
data corresponding to the NFT to the new owner. Adding this ability would be
relatively straightforward, and could potentially lead to additional applications.

There is one significant challenge that must be addressed, however. If the
data for the NFT is encrypted using proxy re-encryption [17], then the ability
to generate re-encryption keys requires the original private key used to encrypt
the data. This would require the blobbers to re-encrypt the data when an NFT’s
ownership changed, who would need to be compensated for their additional work.
We will discuss that point in more detail in the next section.

When selling an NFT on 0Chain’s network, the ownership of the associated
data allocation must also be transferred with it. While this is not a currently
supported feature, the change to do so seems fairly minor. When the allocation
is transferred to the new owner, the tokens in the corresponding read and write
pools remain associated with it. Therefore, the initial cost of storing the NFT
will already be handled by the previous owner; handling the ongoing storage is
described in the next section.

If the data for the NFT is not encrypted, no other change is needed to
the process. Essentially, a storage allocation for an NFT can be handled like any
other. Ideally, the allocation should be marked as read-only, thereby guaranteeing
to any buyer of an NFT that the content has not changed from the original
hash. While this does not guarantee that the data originally updated is correct,
an auditing service could be used to review the NFT and provide a stamp of
approval on the blockchain.

A more interesting case arises when the data for the NFT is encrypted.
0Chain uses proxy re-encryption. The NFT owner would first erasure code the
data into separate stripes given to each storage provider, and then encrypt the
stripes using its public key. When providing read access to other parties, the
owner would take the receiver’s public key; from that public key and the owner’s
own public/private key pair, the owner generates a re-encryption key. The re-
encryption key is sent to the blobbers, who can re-encrypt the data as if it had
been originally encrypted with the receiver’s public key. The advantage of this
approach is that the blobbers do not have access to the original content, but can
re-encrypt the data for the receiver on the owner’s behalf.

However, when transferring an NFT to a new owner, the data stored must be
re-encrypted for the new owner’s key pair. Fortunately, this re-encryption can
be done entirely on the blobber’s side. When the seller writes a transaction to
transfer ownership of the NFT, they must include the valid re-encryption key.

The blobbers would need to re-encrypt their storage using the re-encryption
key. However, they would need to be compensated for their work, and to ensure
that the Merkle root that they have committed to storing matches the data
that they are actually storing. As a result, the buyer would need to calculate
the Merkle roots for each data chunk and upload matching write markers to all
blobbers.

122 S. Basu et al.

7.3 Funding Storage

For NFTs stored on the blockchain, the initial cost is high, but the NFT owner
does not need to pay maintenance costs. Since data on the blockchain is perma-
nent, it will always be available as long as the full blockchain is stored by some
subset of the mining network.

In contrast, in 0Chain’s ecosystem, storage is an ongoing cost. Clients pay
blobbers for a period of storage; when that period ends, the client must negotiate
to continue the storage contract, or else let the storage allocation expire. This
model allows storage to be done more cheaply, but requires ongoing funds to
maintain the NFT.

However, 0Chain’s token-locking reward model can be used to create perma-
nent storage. By locking tokens for a set period of time, the client earns additional
tokens as a form of pre-paid interest. Those tokens can be spent however the
client wishes, and is the basis for 0Chain’s “free” transaction model.

In order to create permanent storage for an NFT, the owner needs to create
an additional token pool, which we refer to as the NFT funding pool. The NFT
funding pool may be periodically locked in order to generate an ongoing revenue
stream for the NFT’s write pool.

Fig. 5. Fundraising pool

For example, let’s assume that the cost of storing an NFT is 20 tokens for 90
days, and that the interest rate for locking tokens is 10% for the same period.
The owner can create an NFT funding pool with 200 tokens. By locking the
tokens in the NFT funding pool, 20 tokens are minted and added to the write
pool for the NFT. When the storage contract duration elapses, the tokens in the
NFT funding pool are also unlocked, allowing the owner to relock them, thus
continuing funding for the storage. Figure 5 shows a picture of this process.

Crowdfunding NFTs 123

Of course, this design must consider price fluctuations in the cost of storage
and the value of 0Chain tokens, known as ZCN. Should the price of ZCN rise
compared to the cost of storage, additional rewards are generated for the write
pool, and could be used to offset periods where the price drops.

On the other hand, if the cost of storage drops below the amount of tokens
that the NFT funding pool can generate, then the same blobbers will be unwilling
to provide storage. However, other blobbers with lower quality of storage could
be used as backup storage providers. We introduce the notion of archival blobbers;
these blobbers would provide cheap storage, but with extremely low read rates.
In their role, they could help NFTs to weather sudden, unexpected rises in the
cost of storage relative to the value of ZCN.

Some client must initialize the transaction and pay the cost of that trans-
action. With 0Chain, certain types of transactions are designated zero-cost; the
re-locking of NFT funding pools could be added to this list. Alternately, a por-
tion of the minted tokens could be given to the client to compensate them for
the transaction fee, or even to provide a small reward for calling the transaction.

The ability of the token-locking reward protocol to create a steady revenue
stream seems likely to be useful in a number of other areas. Whenever an ongoing
service needs to be funded, this design provides a model of how that funding
could be achieved.

8 Conclusion and Future Work

In this paper, we have proposed a system for helping artists to produce NFTs on
the blockchain. Our crowdsourcing mechanism both helps artists to create their
new projects and more easily reward their backers with a share of the proceeds.
We also show how the 0Chain blockchain could be leveraged to store large NFTs
and how a revenue stream could be created to offset the cost of that storage.

In future work, we intend to explore how these NFTs could be transferred
across blockchains. Additionally, we intend to expand our prototype to further
explore the challenges of NFTs.

References

1. Real estate use cases for blockchain technology. Enterprise Ethereum Alliance -
Real Estate Special Interest Group, vol. 1 (2019)

2. Austin, T.H.: SpartanGold: a blockchain for education, experimentation, and rapid
prototyping. In: Park, Y., Jadav, D., Austin, T. (eds.) SVCC 2020. CCIS, vol. 1383,
pp. 117–133. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72725-3 9

3. Chevet, S.: Land registry on blockchain. Blockchain Technology and Non-Fungible
Tokens: Reshaping Value Chains in Creative Industries. Master’s thesis, Paris,
France (2018)

https://doi.org/10.1007/978-3-030-72725-3_9

124 S. Basu et al.

4. Cryptokitties, cryptopunks and the birth of a cottage industry. Financial Times
(2018)

5. Cryptokitties key information. https://www.cryptokitties.co/technical-details.
Accessed April 2021

6. Dash, A.: NFTs Weren’t Supposed to End Like This. The Atlantic, Washington
(2021)

7. Entriken, A.W., Shirley, D., Evans, J., Sachs, N.: EIP-721: ERC-721 non-fungible
token standard (2018). https://eips.ethereum.org/EIPS/eip-721

8. Kim, M., Hilton, B., Burks, Z., Reyes, J.: Integrating blockchain, smart contract-
tokens, and IoT to design a food traceability solution. In: 2018 IEEE 9th Annual
Information Technology, Electronics and Mobile Communication Conference (IEM-
CON), pp. 335–340 (2018). https://doi.org/10.1109/IEMCON.2018.8615007

9. Merkle, R.C.: Protocols for public key cryptosystems. In: 1980 IEEE Symposium
on Security and Privacy, p. 122 (1980)

10. Merrill, P., Austin, T.H., Thakker, J., Park, Y., Rietz, J.: Lock and load: a model for
free blockchain transactions through token locking. In: IEEE International Confer-
ence on Decentralized Applications and Infrastructures (DAPPCON). IEEE (2019)

11. Müller, M., Janczura, J.A., Ruppel, P.: DeCoCo: blockchain-based decentralized
compensation of digital content purchases. In: 2nd Conference on Blockchain
Research & Applications for Innovative Networks and Services, BRAINS 2020,
Paris, France, 28–30 September 2020, pp. 152–159. IEEE (2020). https://doi.org/
10.1109/BRAINS49436.2020.9223299

12. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008). https://
bitcoin.org/bitcoin.pdf. Accessed 1 April 2021

13. Patil, M.: Land registry on blockchain. Master’s thesis, San José State University,
San Jose, CA, USA (2020)

14. Regner, F., Urbach, N., Schweizer, A.: NFTs in practice - non-fungible tokens as
core component of a blockchain-based event ticketing application. In: Krcmar, H.,
Fedorowicz, J., Boh, W.F., Leimeister, J.M., Wattal, S. (eds.) Proceedings of the
40th International Conference on Information Systems, ICIS 2019, Munich, Ger-
many, 15–18 December 2019. Association for Information Systems (2019). https://
aisel.aisnet.org/icis2019/blockchain fintech/blockchain fintech/1

15. Reitwießner, C., Johnson, N., Vogelsteller, F., Baylina, J., Feldmeier, K., Entriken,
W.: EIP-165: ERC-165 standard interface detection (2018). https://eips.ethereum.
org/EIPS/eip-165

16. Salah, K., Nizamuddin, N., Jayaraman, R., Omar, M.: Blockchain-based soybean
traceability in agricultural supply chain. IEEE Access 7, 73295–73305 (2019).
https://doi.org/10.1109/ACCESS.2019.2918000

17. Selvi, S.S.D., Paul, A., Dirisala, S., Basu, S., Rangan, C.P.: Sharing of encrypted
files in blockchain made simpler. In: Pardalos, P., Kotsireas, I., Guo, Y., Knotten-
belt, W. (eds.) Mathematical Research for Blockchain Economy. SPBE, pp. 45–60.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-37110-4 4

18. Stefanović, M., Ristić, S., Stefanović, D., Bojkić, M., Pržulj, D.: Possible applica-
tions of smart contracts in land administration. In: 2018 26th Telecommunications
Forum (TELFOR), pp. 420–425 (2018). https://doi.org/10.1109/TELFOR.2018.
8611872

19. Trautman, L.J.: Virtual art and non-fungible tokens (2021). https://papers.ssrn.
com/sol3/papers.cfm?abstract id=3814087

20. Vogelsteller, F., Buterin, V.: EIP-20: ERC-20 token standard (2015). https://eips.
ethereum.org/EIPS/eip-20

https://www.cryptokitties.co/technical-details
https://eips.ethereum.org/EIPS/eip-721
https://doi.org/10.1109/IEMCON.2018.8615007
https://doi.org/10.1109/BRAINS49436.2020.9223299
https://doi.org/10.1109/BRAINS49436.2020.9223299
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://aisel.aisnet.org/icis2019/blockchain_fintech/blockchain_fintech/1
https://aisel.aisnet.org/icis2019/blockchain_fintech/blockchain_fintech/1
https://eips.ethereum.org/EIPS/eip-165
https://eips.ethereum.org/EIPS/eip-165
https://doi.org/10.1109/ACCESS.2019.2918000
https://doi.org/10.1007/978-3-030-37110-4_4
https://doi.org/10.1109/TELFOR.2018.8611872
https://doi.org/10.1109/TELFOR.2018.8611872
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3814087
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3814087
https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-20

Crowdfunding NFTs 125

21. Westerkamp, M., Victor, F., Küpper, A.: Blockchain-based supply chain traceabil-
ity: token recipes model manufacturing processes. In: IEEE International Confer-
ence on Internet of Things (iThings) and IEEE Green Computing and Communi-
cations (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom)
and IEEE Smart Data (SmartData), iThings/GreenCom/CPSCom/SmartData
2018, Halifax, NS, Canada, 30 July–3 August 2018, pp. 1595–1602. IEEE (2018).
https://doi.org/10.1109/Cybermatics 2018.2018.00267

22. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger (2014).
https://gavwood.com/paper.pdf

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1109/Cybermatics_2018.2018.00267
https://gavwood.com/paper.pdf
http://creativecommons.org/licenses/by/4.0/

Automated Flag Detection
and Participant Performance Evaluation

for Pwnable CTF

Manikant Singh(B) , Rohit Negi(B) , and Sandeep K. Shukla(B)

C3i Center, Department of Computer Science and Engineering,
Indian Institute of Technology, Kanpur, India
{manikant,rohit,sandeeps}@cse.iitk.ac.in

Abstract. The demand for cyber security awareness, education, eval-
uation of learning levels of students etc., has increased in the past few
years. In order to meet this rising demand, several cyber security learn-
ing and training platforms have been developed. Capture the flag (CTF)
platforms and cyber ranges have become primary tools that facilitate
education, training and recruitment of cyber security personnel. These
tools evaluate and rank the participants on the basis of challenges solved
by them. A discrete evaluation mechanism focusing only on flags solved,
fails to ensure that the effort and knowledge demonstrated by the partic-
ipants while solving the challenge, are factored into the scoring system.
Most of these tools do not even distinguish between participants actu-
ally solving the flags vs. those who might copy a captured flag without
actually working on the problem. Further, in flag only scoring systems,
participants feel discouraged as they fail to score without finding the
flags – despite putting in enormous time and effort. In this paper, we
present our novel approach to quantify participant’s learning, efforts, and
any unethical practices. We award partial scores by automatically cap-
turing their behavior while solving the CTF problems. We also provide
an accurate ranking system with automated solved challenge detection
which replaces the need for manual flag submission. In our system, par-
ticipants get hybrid scores based on their efforts, and organizations get
a better and an effective evaluation tool.

Keywords: Cyber security · CTF · Binary exploitation · Reverse
engineering

1 Introduction

Cyber security education and training play an essential role in safeguarding orga-
nizations and their users from cyber attacks. It helps in making people aware of
the extent and the severity of cyber threats and encourages them to improve their
security posture. Several cyber security courses and hands-on exercises have been
designed to facilitate education, training & recruitment of cyber security profes-
sionals. Hands-on exercises using capture the flag (CTF) competitions & cyber
c© The Author(s) 2022
S.-Y. Chang et al. (Eds.): SVCC 2021, CCIS 1536, pp. 126–142, 2022.
https://doi.org/10.1007/978-3-030-96057-5_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-96057-5_9&domain=pdf
http://orcid.org/0000-0002-6083-3966
http://orcid.org/0000-0002-4211-5637
http://orcid.org/0000-0001-5525-7426
https://doi.org/10.1007/978-3-030-96057-5_9

Automated Flag Detection and Participant Performance Evaluation 127

ranges are considered more effective as they are engaging and they acquaint the
participants with core concepts in short time-frames. Consequently, experienced
instructors have shifted to using hands-on learning [9] via CTFs. CTFs have
been used in the cyber security domain for education as well as evaluation of
learning, for over a decade [3,5,6,8].

In standard CTFs, participants apply theoretical concepts to solve/exploit
the challenges and capture the hidden flags which are only visible once a suc-
cessful exploit of one or multiple vulnerabilities has been made.

In most CTF platforms, the participants have to submit the flags on an
online portal to be awarded scores for it. If they fail to submit a flag, they get
no score at all even if they spent a lot of effort unsuccessfully and almost solved
it. Administering organization of the CTF use the obtained scores to evaluate,
rank, select or measure learning outcomes.

Stakeholders of the CTF may differ based on their use cases. For educational
use cases, the students and the instructors will be the stakeholders. In case
a student obtain no score even after putting in a lot of effort, he/she might
lose interest in the curriculum. On the other hand, the instructors may fail
to evaluate the overall progress of their students. For a recruitment use case,
the examiner, the examinees, and the hiring organization are the stakeholders.
With the discrete scoring (i.e. based only on the submission of flags), hiring
organizations may not get potential candidates.

Most existing tools and frameworks use discrete evaluation scheme. Most of
the existing tools do not even support automated detection of capturing of flags.
The first challenge is that participants in the CTF are being graded on the basis
of submission of flag. Second is, they are ranked on the basis of the timestamps
of the submission of flags and not on the time stamps of flag capture events. The
third problem is unethical practices by the participants. It is therefore essential to
have a cyber security education and recruitment framework (CSERF) that aims
to fill these gaps by systematic evaluation of participants. An ideal CSERF must
facilitate not only training exercises but also capture trainee’s activities, auto-
matically detect solved challenges, and penalize those making unethical attempts
– including attack on other participants or compromising the platform itself.

In this work, we introduce a novel method to capture a participant’s pursuits
and quantify their efforts. This paper presents a hybrid scoring scheme where
partial scores are awarded to the participants for their struggle/effort in solving
the problems. Partial scores are awarded, provided that they attempt a question.
Our ranking system is based on the correct sequence of events leading to solving
the problem, and on penalizing detected attempts at unfair means to problem
solving. Moreover, automatic detection of solved problem removes the need to
create any distinct flag submission mechanism for the participants.

Rest of the paper is organized in the following manner: Sect. 2 is a brief
discussion on related work. Sect. 3 describes our setup and testing environment.
Sect. 4 details our evaluation scheme. Section 5 shows the results of a case study.
Section 6 concludes the paper with some indications of future plans.

128 M. Singh et al.

2 Background and Related Work

Capture the flag is one of the prominent & dominating setup used in cyber secu-
rity education and evaluation. Jeopardy style CTF is the most popular type of
event. As per Valdemar Švábenský et al. [11], it constitutes 86% of all the CTFs
listed on ctftime.org and the challenges are further subdivided into multiple
categories as mentioned in Table 1.

Table 1. CTF categories and vulnerabilities tested

Category Vulnerabilities

Binary exploitation Buffer/Integer overflow, format string, return
oriented programming, heap exploitation, double
free, use after free, etc.

Web exploitation Broken Access Control, Broken Anti-Automation,
Broken Authentication, Cross Site Scripting (XSS),
Cryptographic Issues, Improper Input Validation,
Injection, Insecure Deserialization, Security
Misconfiguration, Security through Obscurity,
Sensitive Data Exposure, Unvalidated Redirects,
Vulnerable Components, XML External Entities
(XXE), etc.

Network exploitation DNS Spoofing, DNS poisoning, MITM
(Man-in-the-middle), Packet Sniffing, ARP spoofing,
IP spoofing, timing attack, session hijacking, etc.

Crypto Brute force, replay, hash collision, side channel
attack, etc.

Table 2. Feature comparison between different software

Features CSERF Pwnable.kr CyTrOne Hack The Box The Juice Shop

Educational use
√ √ √ √ √

Score board
√ √ √ √ √

Behaviour analysis
√

X X X X

Automated flag detection
√

X X X
√

Automated scoring
√

X X X
√

Partial scoring
√

X X X X

In Table 2, we have compared several CTF tools that we used and studied
by comparing their features against desired features. CTFd [4] is an open-source
platform that helps to host CTF with user and flag score management capabil-
ities. In the past few years, it has become a de-facto standard to host capture
the flag tournaments via CTFd. It lets participants to submit flags for each

http://www.ctftime.org

Automated Flag Detection and Participant Performance Evaluation 129

problem they solve and unlock new challenges as they progress. CyTrOne [1]
was developed by the Cyber Range Organization and Design (CROND) at the
Japan Advanced Institute of Science and Technology (JAIST). It is a cyber secu-
rity training framework that simplifies the training setup process by integrating
training content and training environment management. Open Cyber Challenge
Platform (OCCP) is an open-source platform. It is used to educate and train
high school/college students about cyber attacks by recreating already discov-
ered attacks in a controlled environment. Participants defend/attack/investigate
a network and data center with realistic attacks, but the community no longer
supports it. Pwnable.kr [3] is a non-commercial war game website specialised
in hosting pwnable CTF. It’s similar to OverTheWire website but with some
additional graphics to make it more engaging for the end-user. Another online
platform is HackTheBox which allows participants to test their penetration test-
ing skills and have a global scoreboard for teams worldwide. Multiple companies
have used it for selecting new hires. All these platforms/frameworks use the
conventional method of finding and submitting the flag to score.

OWASP TheJuiceShop is one of the best platforms to learn about web secu-
rity. It automatically maintains a scoreboard based on the sequence of events.
Once the participant accesses a particular file or performs a similar attack, it
generates an event and automatically detects solved challenges. Again a dis-
crete evaluation scheme is followed and has no partial scoring feature based on
participant efforts in the right direction.

For a fine-grained evaluation, S.K. Kim et al. [7] proposed a platform to pro-
vide a fine-grained evaluation technique for pwnable CTF. They have defined
four levels to evaluate student’s progress: 1) Crash Check, 2) Control Flow Han-
dling Check, 3) Mitigation Bypassing Check, and 4) Full Exploit Check. These
steps are associated with the level of understanding a student might be possess-
ing if they successfully pass a particular evaluation step. Steps are arranged in
increasing order of difficulty. If a student fails at a particular level, the student
is considered to have knowledge of the techniques required to cross all previous
levels. Though the framework is designed to mitigate an instructor’s burden,
they still need to create build scripts and select the types of mitigation through
a web portal. In this paper, we aim to fill the following gaps of existing CTF
platforms. Most platforms provide marks solely based on flag submission, and
no marks are given for efforts or evidence of knowledge and learning. Further-
more, they do not capture candidates participation behaviour data and do not
apply any behavioural analytics on captured behaviour. Existing platforms do
not distinguish between a flag obtained using unfair means versus flags obtained
through genuine efforts.

In our work, we capture participant’s activities and do behavioural analysis to
generate a hybrid score. The automated multidimensional grading would enhance
the capability of CTF platforms/tools and generate realistic scores and reduce
the time to assess the skill set of participants. In addition, an automated flag

130 M. Singh et al.

detection system provides more accurate rankings based on the precise time
stamps of flag retrieval and reduces the possibility of using unfair means (such
as copy another participant’s flags and submitting them).

Fig. 1. Platform architecture

3 Proposed Framework

This section explains our platform architecture, system setup and techniques
used to extract grading parameters and grading scheme.

3.1 High Level System Architecture

As depicted in Fig. 1, high level platform architecture has two major components.
The first component is the game zone, where all the participant machines having
problem setups are deployed with auditor and logger. The second component is
the central server, where all the logs pertaining to a participant’s activity will
be processed for automated scoring. This system configuration ensures that the
vulnerable machine is isolated from the Internet and cannot be used to attack
other systems present on the Internet.

A single virtual machine per participant, is provisioned for the entire dura-
tion of a CTF and all the participants are given access to their separate set of
vulnerable binaries to exploit. For any new challenge, we only have to add that
challenge to the provisioned machines.

The Gaming Zone. It is a collection of isolated controlled virtual environ-
ments with pre-configured auditors and logging tools that record participant’s
behaviour. New problems can be added to the existing virtual environment at
any point in time. New virtual machines can be added to the gaming zone at
the trainer/instructor’s discretion.

Automated Flag Detection and Participant Performance Evaluation 131

Centralised Server. The Centralized server is responsible for user and scoreboard
management. It also consists of an Analysis engine, which is the core of the
framework. Figure 2 shows different stages of analysis engine and the sequence
of operations to auto-grade participants.

The Analysis engine can be considered as a collection of three sub-modules
1) Data collector 2) Analyzer 3) Auto-Grader. The first and second modules
are responsible for gathering and extracting raw information. The third module
utilises collected information to generate scores. The responsibilities of the first
module are further divided into the following steps.

A) Update Participants List: Before retrieving the data from the server, the
agent checks if there is any addition or removal of users from the server and
update the local list of users. All other operations will be performed only for
users present in the updated list of users.

B) Get Latest Data Logs: Once the users list is updated, the agent fetches the
most recent logs generated by Osquery [10], GDB history and shell history.

C) Parse Unprocessed Logs (Analyzer): At this stage, the engine processes all
the recent logs and extract the relevant information in JSON format. Later these
parsed logs are utilised by the auto-grader for partial grading.

3.2 Behavioral Analysis and Data Sources

As no data set was readily available for our research purpose, we conducted a
capture the flag tournament in a cyber security training course at our institute,
consisting of sixty-nine participants and recorded their live data. More details
of the tournament are specified in Sect. 5.

This section explains the techniques used to capture a user’s behaviour and
the source of each data point. The Data sources can be classified into the fol-
lowing four categories.

Command Line Process. We track all the processes invoked by a user either
from a terminal or by a process started from the terminal. All processes invoked
directly or indirectly from the terminal are labelled as command-line processes.
We keep a check on the execution of all the executable files with the help of
Osquery.

132 M. Singh et al.

start

Autograder

Data Collector

Analyzer

GDB Active Time Interval Generation

Update Participants List

Get Latest Data Logs

File Events

Cmdline Events

Shell Events

Active Time Interval Generation

Detect Solved Problem

Scores

Stop

Fig. 2. Analysis engine

File Events. In addition to terminal driven processes, we also keep track of
files accessed by a participant. Rules are set to watch for any access made to
files. Keeping track of the time of access helps us determine the liveness of the
participant on the server. The file path which is accessed helps us determine the
binary or the file on which participant is currently working.

GDB History. GDB is an essential tool for the process of binary exploitation.
Consequently, we also collect the GDB history of each user. However, by default,
GDB only keeps track of commands entered by a participant, which is not suf-
ficient for our use case. We need to know at which executable the user initiated
the GDB session and how long the session lasts.

Automated Flag Detection and Participant Performance Evaluation 133

To achieve this, we have modified the GNU Debugger source code to record
the executable name on which GDB is invoked and the timestamp of each com-
mand entered during that session. Using this technique, we accurately determine
the debugging activities of users.

Shell History. Shell history is collected from the history of each user. This lets
us determine all the activities performed by the user from the terminal.

Other data sources such as open sockets and listening ports were found irrel-
evant during the feature selection process. Therefore they are not discussed here.

4 Our Approach

4.1 Feature Set

In this section, we elucidate each feature extracted by our analysis engine that
contributes to the final grading.

Number of Attempts: To inspect whether a participant attempted a problem
or not, we look at the command line processes and the shell history. If the
occurrence of a challenge’s executable file name is missing, we say that the
participant didn’t attempt the question. If the occurrence is found, we keep
track of its frequency. Here C is the set of all challenges, and Apc denotes the
number of attempts made to solve a challenge c ∈ C by the participant p ∈ P
(Table 3). The maximum value of attempts made to solve a challenge c among
all participants is given as

Amax
c = max

p∈P
(Apc) (1)

Table 3. Feature set with respective weight

Feature Symbol Weight

No. of attempts A WA

Active time intervals I WI

GDB active time G WG

Knowledge of tools Kt WKt

Knowledge of system Ks WKs

Ethics E WE

Active Time: Linux provides built-in tools to determine when the user logs
in and how long the log-in session lasts. However, this gives us an overall active
time but to correctly estimate the time spent by each participant on a particular
problem, we propose an algorithm to generate activity periods from the logs
synthetically. We have defined a parameter called buffer time (BT), which is the
maximum time difference (in seconds) between two consecutive activities of the
same session.

134 M. Singh et al.

initialization;
BT – Buffer Time
I – Superset of active intervals, initially empty
P – Set of participants
C – Set of challenges
for p ∈ P do

for c ∈ C do
Ipc ← 0 /* Sum of active intervals for a challenge c of the participant p
*/

Tpc – Timestamps of activities for a challenge c of the participant p
N ← size(Tpc) − 1;
Tpc ← sorted(Tpc);
Spc ← T 0

pc; /* Active interval start time */
Epc ← T 0

pc; /* Active interval end time */
AIpc ← (Epc − Spc); /* Current active interval */

for T i
pc ∈ {T 1

pc . . . T
N
pc} do

if T i
pc − T i−1

pc > BT then

/* End previous active interval */
AIpc ← (T i−1

pc − Spc);
/* Add active interval AIpc to Ipc */
Ipc ← AIpc + Ipc;
/* Update start and end time */
Spc ← T i

pc;
Epc ← T i

pc;

end
else

/* Extend active interval AIpc end time*/
Epc ← T i

pc;

end

end
/* End last open active interval */
AIpc ← (Epc − Spc);
Ipc ← AIpc + Ipc;
/* Insert sum of active interval Ipc into I */
I ← Ipc ∪ I;

end

end
Algorithm 1: Active Interval Generation

Algorithm 1 shows a procedure for determining accurate active time inter-
vals. Let us say that a participant is writing a payload script in the challenge’s
directory. With the help of an auditing tool, we watch for changes in a direc-
tory/file and record timestamps for each activity performed on a particular file.
Using these timestamps, we generate a synthetic active time interval.

Automated Flag Detection and Participant Performance Evaluation 135

Let us say that a participant p is working on challenge c. While working on
the challenge, the participant performs following actions.

– Creates a script payload.py at (T i
pc)

– Modifies payload.py at (T i+1
pc)

– Deletes palyload.py at (T i+2
pc)

If the time difference between these consecutive activities is less than the
buffer time (BT) and there is no other activity in-between, we say that the par-
ticipant started working on challenge c at T i

pc and continued till T i+2
pc . Therefore,

they contribute to the same active interval AIpc. If the time difference between
two consecutive activities is greater than the buffer time (BT), we conclude the
active time interval, add it to sum of existing intervals Ipc and begin new active
interval for the current activity at time T i

pc, where Ipc is sum of all such active
intervals for participant p and challenge c. Here Ipc is an integer. The maximum
value of cumulative interval for a challenge c among all participants is given as

Imax
c = max

p∈P
(Ipc) . (2)

This approach gives us a reasonably good estimate of a user’s cumulative
active time for a particular challenge.

GDB Sessions and Active Time: With our modified GDB, we have exe-
cutable names on which the GDB was invoked and the timestamp of each com-
mand entered. We apply the same Algorithm 1 for synthetic timestamp sequenc-
ing on GDB activities as well, so that we have accurate active time estimates
and the user is not able to manipulate active sessions. Gpc is a sum of all GDB
active intervals for a participant p and challenge c.

The maximum value of cumulative GDB session interval for challenge c
among all users is given as

Gmax
c = max

p∈P
(Gpc) . (3)

Knowledge of Tools: To check if a user has used the tools required to crack
the problem, we track usage of tools like readelf, objdump, ltrace, strace, ptrace,
hexdump, nasm, gdb and file. This takes care of assessing the granularity of
knowledge. The list can also be modified before starting the analysis engine.
Kt

p denotes the cumulative count of selected tools used by a participant p. The
maximum value of Kt

p among all participants is given as

Kt
max = max

p∈P

(
Kt

p

)
. (4)

136 M. Singh et al.

Knowledge of System: Similar to tools knowledge, we also check whether a
participant understands Linux and its permission/privilege system. To take care
of this parameter, we have identified few commands like sudo, chmod, chroot,
chgrp and chown, which the participants use during an actual CTF session. How-
ever, repetitive usage of such commands indicates that the user does not under-
stand Linux and its permission system. Commands to watch for this purpose
can be added/removed at the trainer’s discretion. Ks

p denotes the cumulative
count of selected commands used by participant p. The maximum value of Ks

p

among all participants is given as

Ks
max = max

p∈P

(
Ks

p

)
. (5)

Ethics: To identify unethical attempts, we check if participants try to access
restricted inodes. Though in most pwnable/binary CTFs, participants cannot
view other users’ directory content, we track such events so that the trainer gets
an idea about participants trying to use unfair means. For example, commands
like

“cat ../../../home/otheruser/problem/file.txt”
“ls ../../../home/otheruser/problem/”
“ls /home/otheruser/problem”

all are considered unethical attempts, Ep denotes the frequency of such attempts
made by participant p. Participants are penalized for these activities. The max-
imum value of Ep among all participants is given as

Emax = max
p∈P

(Ep) . (6)

Solved Challenge Auto Detection: Our framework automatically detects
when a participant successfully opens a “flag.txt” with elevated privileges and
mark that challenge as solved for that particular participant. The system also
maintains the time of the actual flag retrieval to ensure a precise ranking sys-
tem. Our technique is independent of challenge type (buffer overflow, integer
overflow etc.) and flag value written in flag.txt, making it easier for the tutor to
have randomized flag value for each participant. Note that the auto detection
mechanism for other kinds of challenges such as web security challenges will be
different.

Automated Flag Detection and Participant Performance Evaluation 137

initialization;

/* {A, I,Kt,Ks, G,E} are features with {WA,WI ,WKt ,WKs ,WG,WE} as
their respective weights.*/
/* Set of dedicated marks for challenges*/
CM ← {CM1, CM2 . . . CMm};
F – Analysis time frame in seconds
TSD – Timestamp indicating start of the current day
SF – /* Scaling factor */
CSp ← 0; /* Cumulative score of p ∈ P */
CEp ← 0; /* Cumulative effort score of p ∈ P */
Mp ← 0; /* Marks to maintain rank of p ∈ P */
HSp ← 0; /* Hybrid score of p ∈ P */
for p ∈ P do

for c ∈ C do

/*normalize data */

Ipc ← Ipc
Imax
c

;

Gpc ← Gpc

Gmax
c

;

Apc ← Apc

Amax
c

;

if c is solved then
t – Initial timestamp when c was solved
if t >= TSD then

else
/*Add dedicated challenge score and incentivize early solver */

Mp ← Mp + CMc + SF ∗
(
1 − t−TSD

F

)
;

end
Mp ← Mp + SF ;

else

CSp ← CSp +
WA∗Apc+WI∗Ipc+WG∗Gpc

WA+WI+WG
;

end
end

/*normalize data */

Kt ← Kt
p

Kt
max

;

Ks ← Ks
p

Ks
max

;

E ← Ep

Emax
;

/* Weighted score of knowledge and ethics */

CEp ←
(

WKt∗Kt−WKs∗Ks−WE∗E
WKt+WKs+WE

)
+ CSp;

end

CEmax ← maxp∈P (CEp) ;

for p ∈ P do

/* Normalize cumulative effort */

CEp ←
(
SF ∗ CEp

CEmax

)
;

/* Update hybrid score of participant p */
HSp ← CEp + Mp;

end

Algorithm 2: Evaluation Algorithm

138 M. Singh et al.

4.2 The Grading Algorithm

In the previous section, we discussed all the features which contribute to the
final evaluation. Since every tutor may not find all these parameters equally rel-
evant to them, we let them define the weights {WA,WI ,WKt ,WKs ,WG,WE}
for each parameter. Given the weights, the auto-grader comes into action to
calculate scores for all the participants. The Algorithm 2 utilizes data points
{Ipc, Gpc, Apc,K

t
p,K

s
p , Ep} collected at the behavioural analysis stage to calcu-

late these scores.
In our Algorithm 2, we loop on every participant p, and on each challenge

c ∈ C. For a particular participant p, we first check if a challenge is solved
or not. Our system automatically detects the first instance when the challenge
was solved and imparts the dedicated challenge score CMc and an additional
incentive score to an early solver. Incentive score is calculated on the basis of
the initial timestamp when a challenge was solved, as shown in the Algorithm
2. If the challenge was solved at an earlier time frame, we impart the maximum
incentive marks that can be given for a time frame. The Incentive score ranges
between 0 to 1 and scaled with scaling factor SF as per the configuration. Sum
of CMc and incentive score contributes to Mp, that is, the score to maintain the
rank for participant p. The incentive score helps a participant maintain his/her
prior rank similar to any other standard flag submission based ranking system.

If a challenge is not solved, then we calculate the partial score from the
weighted sum of parameters {Ipc, Gpc, Apc} which are exclusively related to a
challenge c and participant p. This weighted sum is stored in a temporary vari-
able called cumulative score CSp. Other parameters {Kt

p,K
s
p , Ep} contributes

to partial scores for a participant p, and the weighted score of these parameters
combined with CSp gives us the cumulative effort score CEp for a participant p
for a given analysis time frame.

Finally, hybrid score HSp, a combination of rank maintainer score Mp and
cumulative effort score CEp, is given to the participant p. The final ranking is
done using this hybrid score.

5 Case Study

Since there was no existing data set for our research and analysis, we hosted
a capture the flag (CTF) tournament for a cyber security training course we
run at our institute, with a total of sixty-six participants and collected logs for
their activities while they were exploiting the given challenges in our controlled
environment. Each participant had access to the gaming zone with pre-configured
auditors and loggers. All participants actively tried to crack the given challenges,
only 18.18% participants were able to solve at least one challenge, and 43.93%
participants were found to have issues with tools and system.

In addition to our automated flag detection system, we gave them the facility
to submit flags manually on a ranking server (CTFd) for live tracking.

Table 4 shows the ranking obtained by top 12 participants based on their
flag submission and Table 5 shows the ranking obtained with our framework.

Automated Flag Detection and Participant Performance Evaluation 139

Table 4. CTFD ranking system based on flag submission

Rank Name Score Last submission

1 P35 3600 2021-05-08 23:51:07

2 P34 3600 2021-05-20 09:26:39

3 P5 2600 2021-05-20 02:11:09

4 P61 2600 2021-05-29 17:26:43

5 P8 2600 2021-05-29 19:14:19

6 P43 2100 2021-04-27 20:36:54

7 P55 1900 2021-05-16 22:47:22

8 P52 1400 2021-05-30 12:26:20

9 P23 1300 2021-05-28 12:56:27

10 P42 800 2021-04-15 00:19:07

11 P12 600 2021-04-19 13:19:36

12 P64 600 2021-05-28 16:45:55

Table 5. Ranking with automated flag detection

Rank Name Score Last solve

1 P35 3600 2021-05-08 23:49:28

2 P34 3600 2021-05-20 09:25:51

3 P5 2600 2021-05-20 02:10:00

4 P61 2600 2021-05-29 17:22:55

5 P8 2600 2021-05-29 19:13:05

6 P43 2100 2021-04-27 20:36:54

7 P55 1900 2021-05-16 22:47:06

8 P52 1400 2021-05-30 00:22:48

9 P23 1300 2021-05-28 00:55:26

10 P42 800 2021-04-15 00:15:51

11 P12 600 2021-04-17 19:46:38

12 P64 600 2021-05-28 16:45:25

Participants with zero submission got ranking based on hybrid scores for their
efforts. This technique let us identify participants who gave significant efforts
yet failed to solve. Table 7 shows top 5 participants who solved zero challenges
yet got ranking from 13 to 17 based on their pursuit.

From Tables 4 and 5, we can see that there is always a delay of few minutes
between flag retrieval and flag submission. Difference between flag retrieval and
submission is significant in case of participant P12 ranked at position 11. These
ranks could have been different if some other participant submitted their flag
in between. Based on these results, we can conclude that ranking based on flag

140 M. Singh et al.

Table 6. Ranking combined with hybrid scores

Rank Name Original score Cumulative effort
score (CE)

Hybrid score
(HS= CE+ M)

1 P35 3600 2132.50 5732.50

2 P34 3600 1359.36 4959.36

3 P5 2600 1221.96 3821.96

4 P8 2600 853.03 3453.03

5 P61 2600 802.71 3402.71

6 P43 2100 1294.26 3394.26

7 P55 1900 888.81 2788.81

8 P52 1400 244.15 1644.15

9 P23 1300 150.30 1450.30

10 P42 800 468.06 1268.06

11 P12 600 476.32 1076.32

12 P64 600 83.86 683.86

Table 7. Top 5 participants with zero solves

Rank Name Original score Hybrid score (HS = CE+ M)

13 P7 0 161.99

14 P4 0 109.14

15 P48 0 88.50

16 P2 0 50.48

17 P13 0 48.11

submission does not fully capture and rank the participants based on the criteria
we believe should be used in evaluating participants. However, our framework
more accurately capture these criteria in scoring and ranking of participants. Of
course, one case study is not enough to be sure, and we plan to do more extensive
experiments in the future batches of trainees to get a better data support for
this assertion.

Table 6 shows ranking obtained after assigning partial scores (cumulative
effort scores). Here we can clearly see that partial scores works as a tie breaker
and favours participants with more efforts in lesser time frame. The justification
for this is that those putting more effort in solving the challenges are possibly
learning more from the exercises.

6 Conclusion and Future Work

CTF tournaments are playing a crucial role in cyber-security education and
training activities. We have built a system that improves the evaluation

Automated Flag Detection and Participant Performance Evaluation 141

techniques used in traditional CTF tournaments, and this paper tries to elu-
cidate our work. Our framework’s evaluation scheme motivates participants to
put in more efforts and learn, through partial scores for their participation and
activeness. They are not judged just on the basis of solved problems but also
ethics, and their knowledge of tools and systems. From Tables 5 and 6, we can
observe that with hybrid scores, we still get similar ranks as that of a discrete
score based ranking system but with some significant positive discrimination for
hardworking and ethical participants. From Table 7, we observe that partici-
pants who solved zero challenges also got their ranks aligned according to their
efforts, which does not happen in a discrete score-based ranking system. Discrete
score based systems do not provide any way to differentiate between active and
non-active participants. Techniques proposed in this paper creates a favourable
environment for cyber security organizations, educational institutions and par-
ticipants. With solved challenge auto-detection, we have improved the ranking
system based on correct sequence of events.

Although CSERF is the first of its kind to auto-grade participants, there
is still a vast scope of improvement and innovation. The Framework is imple-
mented for pwnable CTF. Nonetheless, there are numerous training challenges
like networking, web, cryptography, defensive cyber security etc., where we can
extend the support for hybrid scoring. Harsh et al. [2] mentioned that using
server logs, one can identify participant’s behaviour. Web request can be clas-
sified into attacks such as SQL Injection, Cross-Site Scripting, Path-traversal,
Command Injection, Cross-site request forgery etc. We can utilize this technique
to calculate the partial score of participants for web challenges also.

Also, as we gather more data over many tournaments, scoring system can
be improved using machine learning models. Currently, the data being limited,
we have provided algorithms based on our assumptions on how a user behaves
towards solving CTF challenges.

References

1. Beuran, R., Pham, C., Tang, D., Chinen, K., Tan, Y., Shinoda, Y.: CyTrONE: an
integrated cybersecurity training framework (2017)

2. Bhagwani, H., Negi, R., Dutta, A.K., Handa, A., Kumar, N., Shukla, S.K.: Auto-
mated classification of web-application attacks for intrusion detection. In: Bhasin,
S., Mendelson, A., Nandi, M. (eds.) SPACE 2019. LNCS, vol. 11947, pp. 123–141.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35869-3 10

3. Azam, M.H.B.N., Beuran, R.: Usability evaluation of open source and online cap-
ture the flag platforms (2018)

4. Chung, K.: Live lesson: lowering the barriers to capture the flag administration
and participation. In: 2017 USENIX Workshop on Advances in Security Education
(ASE 2017) (2017)

5. Chung, K., Cohen, J.: Learning obstacles in the capture the flag model. In: 2014
USENIX Summit on Gaming, Games, and Gamification in Security Education
(3GSE 14) (2014)

https://doi.org/10.1007/978-3-030-35869-3_10

142 M. Singh et al.

6. Ford, V., Siraj, A., Haynes, A., Brown, E.: Capture the flag unplugged: an offline
cyber competition. In: Proceedings of the 2017 ACM SIGCSE Technical Sympo-
sium on Computer Science Education, pp. 225–230 (2017)

7. Kim, S.-K., Jang, E.-T., Park, K.-W.: Toward a fine-grained evaluation of the Pwn-
able CTF. In: You, I. (ed.) WISA 2020. LNCS, vol. 12583, pp. 179–190. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-65299-9 14

8. Kucek, S., Leitner, M.: An empirical survey of functions and configurations of
open-source capture the flag (CTF) environments. J. Netw. Comput. Appl. 151,
102470 (2020)

9. McDaniel, l., Talvi, E., Hay, B.: Capture the flag as cyber security introduction.
In: 2016 49th Hawaii International Conference on System Sciences (HICSS), pp.
5479–5486. IEEE (2016)

10. Osquery. Osquery
11. Švábenskỳ, V., Čeleda, P., Vykopal, J., Brǐsáková, S.: Cybersecurity knowledge and

skills taught in capture the flag challenges. Comput. Secur. 102, 102154 (2021)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-030-65299-9_14
http://creativecommons.org/licenses/by/4.0/

Towards Securing Availability in 5G:
Analyzing the Injection Attack Impact

on Core Network

Manohar Raavi1(B) , Simeon Wuthier1 , Arijet Sarker1 , Jinoh Kim2 ,
Jong-Hyun Kim3 , and Sang-Yoon Chang1

1 University of Colorado, Colorado Springs, CO 80918, USA
{mraavi,swuthier,asarker,schang2}@uccs.edu

2 Texas A & M University, Commerce, TX 75428, USA
jinoh.kim@tamuc.edu

3 Electronics and Telecommunications Research Institute, Daejeon, South Korea
jhk@etri.re.kr

Abstract. 5G technology for mobile networking involves control com-
munications to set up the radio channels and the authentication and
security credentials. The control communications preceding the authen-
tication and subscription verification remain vulnerable against the com-
munication injection threats. We study the injection threats on control
communications in 5G New Radio standard in 3GPP. From our 5G client-
based implementation and experimentation against real-world network-
ing, we analyze and measure the threat impact against the 5G service
provider infrastructure of the core network. To secure 5G networking,
our paper discusses about future research directions for increasing the
understanding of such vulnerability/threat and for building greater secu-
rity and availability for 5G networking against such wireless injection
threats.

Keywords: 5G · Mobile networking · Communication · Injection
attack · DoS

1 Introduction

Mobile users use cellular networking to access the Internet and network with
other computers. Since the 2G supporting text messaging in the early 1990’s,
cellular technologies have been evolving with the subsequent generation of tech-
nologies with increasing performances in communication rate, scalability/density
in the number of users, and broader set of applications. This paper focuses on
the most recent cellular technology in 5G networking.

In computer networking, the user devices use the control communications to
set up the communication channels before delivering the goodput data using
the channels. The control communications include the synchronization and the
agreement in both the channel resources (such as the frequency band/bandwidth
c© The Author(s) 2022
S.-Y. Chang et al. (Eds.): SVCC 2021, CCIS 1536, pp. 143–154, 2022.
https://doi.org/10.1007/978-3-030-96057-5_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-96057-5_10&domain=pdf
http://orcid.org/0000-0002-9093-4725
http://orcid.org/0000-0003-4088-7518
http://orcid.org/0000-0002-7911-6625
http://orcid.org/0000-0002-9835-1866
http://orcid.org/0000-0002-5532-2117
http://orcid.org/0000-0002-5736-5823
https://doi.org/10.1007/978-3-030-96057-5_10

144 M. Raavi et al.

Fig. 1. The networking illustration including user, base station, and the core network.
The communications between the user and base station are wireless (the furthest left
arrow in the diagram), while the rest of the communication links are wired (the other
arrows). Our injection threat affects all the communication links between the user and
the core network.

and the modulation type), the security setup and credentials (such as the security
mechanisms/protocol type and the key), and the application-layer registration.
As shown in Fig. 1, in 5G and earlier cellular technologies, the control commu-
nications begin with the user initiating the channel request and the wireless
channel setup, which involves the user and base station. Afterward, the control
communication involves the core network beyond the base station for registra-
tion processing/verification and the security setup/key exchange. Therefore, the
earlier the control communications before the security setup and authentication
and the corresponding protection remain vulnerable against injection attacks.

In this paper, we study the security threat based on injections in the 5G con-
trol communications against the 5G networking service provider’s availability.
We show that the injection attack is feasible in the current 5G networking and
quantify how much resources it consumes against the networking availability.
While multiple injections lead to flooding for DoS attack, we focus on per injec-
tion and the corresponding resource consumptions at both the attacker (client)
and the victim (the service provider end). To analyze and estimate the injection
threat impact, we experiment on the real-world 5G networking to provide ref-
erence measurements and estimate the injection attack impact based on those
measurement results.

The rest of the paper is organized as follows. Section 2 provides the back-
ground information on 5G control communications and Sect. 3 describes the
injection threat against 5G. Section 4 provides the experiment methodology used,
discusses measurement results, and estimates the injection impact. We review
the related work on control communications security in Sect. 5 and discuss the
future scope and potential countermeasures in Sect. 6. Finally, we conclude our
work in Sect. 7.

Towards Securing Availability in 5G: Analyzing the Injection Attack Impact 145

Fig. 2. 5G control communications including the wireless/radio access setup and the
user registration verification [2,4]. This diagram focuses on the parts of the communi-
cation most relevant to our work, which are the parts before establishing the security
and key exchange. The control communications further encapsulate the rest of the
registration with “...”, including authentication and security mode setup. The data
communication for the actual 5G service/goodput follows after control communica-
tions.

2 Background of 5G Control Communications

In 5G, the user needs to establish control communications with the base station
and core network to access the network services [2,4]. The control communica-
tions build on the a priori registration, which occurs before the real-time control
communications described in Fig. 2; in such a priori registration, the user obtains
a subscriber identity module (SIM) and its SIM registration gets inputted to the
Core Network system. The real-time control communications which occur when
the user wants to start networking for cellular service access verifies the user
identity/subscription within the core network.

As shown in Fig. 2, these control communications involve performing chan-
nel setup with the base station and sending a registration request to the core
network. Each of the individual control messages contains different parameters
as listed in Table 1. The user synchronizes the downlink information from the
broadcast messages (or synchronization signals) of the base station and starts a
random access procedure for uplink connection during channel setup. There are
64 possible preambles defined in [3] and user equipment receives this information
from broadcast messages.

For random access procedure initialization, the user sends a random access
request to the base station with a preamble (randomly selected from the 64 pream-
bles). In contention-free random access, the base station assigns a preamble. The
base station prepares a random access response with allocated identifiers and pro-
vides resources to the user for further communications after the reception of the
random access request from the user. The random access response is notified to the
user through downlink control channel and carried on downlink shared channel.

146 M. Raavi et al.

Table 1. Information included in the 5G control communications transactions [2,4].

Message Information includes

Broadcast message Cell ID, master information block, system
information block

Random access request Random access preamble ID

Random access response Frequency and time resource assignment,
Cell-Radio Network Temporary Identifier
(CRNTI)

Radio resource control setup request User identity, Establishment reason

Radio resource control setup Radio bearers configuration, master cell
information

Radio resource control setup complete Acknowledgement

Registration request Registration type, 5G-globally unique
temporary identifier, user capabilities

Identity request Identity request message identity, identity
type

The user, on receiving the random access response, sends a radio resource control
connection setup request to the base station with a random number (ranges from 1
to 239-1) for the user identity (called User-Equipment Identity in the 3GPP stan-
dard [2,4]) and establishment reason. The response (radio resource control setup)
from the base station contains radio bearers configuration and master cell infor-
mation. Once the user receives the information, it configures the connection and
sends a radio resource control connection complete message along with a registra-
tion request to the base station.

The base station forwards the registration request of the user to the core net-
work. The core network has different logical functions to perform identity-check,
authentication of the user, security setup, and user capability inquiry before
accepting the registration. On successful registration, core network schedules
the resources required to provide service to the user. Few of the core network
functions are listed in Table 2 with the terminology used in our paper and their
equivalents in 3rd Generation Partnership Project (3GPP) standards.

3 Injection Threat Against 5G

In this section, we describe and explain the threat model, the injection threat
mechanism, and the vulnerability enabling the injection.

Threat Model. We assume a standard active wireless attacker model in that
the attacker has the injection capability for generating and transmitting the
wireless packets in 5G (which requires the radio/antenna frontend hardware and
the wireless signal processing to generate wireless signals complying with the 5G

Towards Securing Availability in 5G: Analyzing the Injection Attack Impact 147

Table 2. Terminology used in our work and their equivalents in 3rd Generation Part-
nership Project (3GPP) standards [1,2,4].

Our work 3GPP standards

User User Equipment (UE)

Base station gnodeB (gNB)

Core network Access and Mobility Management Function (AMF),
Session Management Function (SMF), Unified Data
Management (UDM), and Policy Control Function (PCF)

Identity request Non-Access Stratum (NAS) Identity Request

NR standard) and can detect and listen another legitimate user’s transmission
(passive radio receiving capability). In our threat model, the attacker knows the
5G protocols including the structure of control communication messages and
preambles by Kerckhoff’s principle. The attacker is implemented on the user
side within the communication range to the base station; thus, there is no need
to compromise the service provider infrastructure, e.g., the base station itself or
a router between the base station and the core network. The attacker generates
and transmits the preamble, initial wireless packets, and registration request to
engage the base station and core network for Registration Request (from the
base station’s Broadcasting Message to the attacker user’s Identity Request in
Fig. 2). The injection attack triggers computing and networking loads to the 5G
service provider infrastructure including the base station and the core network.

The Vulnerability. The vulnerability of our injection threat is from the initial
(wireless) channel access setup forgoing any security protection. This is a part
of the registration process and control communications before the authentica-
tion and the security mode setup, described in Sect. 2. While the attacker only
engages the base station for the injection attack, the attack impacts the entire
5G networking service provider including the core network.

High-Feasibility Threat. Our threat is a high-risk threat since it involves a
very low-barrier attack setup/feasibility as discussed in this section while provid-
ing great impact on the networking service provider. Our paper focuses on quan-
tifying and measuring the injection attack impact. We focus on the per-injection
attack impact analyses. An attacker model with greater constraints (and thus
lower feasibility) and with potentially greater sophistication, e.g., those requir-
ing real-time eavesdropping enabling spoofing, may have greater attack impacts,
which analyses and studies we leave for future work.

4 Threat Impact Measurements and Analyses

In this section, we analyze the attack impact on the base station and core net-
working based on our cellular networking experimentation measurements.

148 M. Raavi et al.

 5 10 20 40 80 160 320 640
Base Station Latency (ms)

0

0.2

0.4

0.6

0.8

1
C

D
F

Cellular
Wi-Fi University
Wi-Fi Home

(a) Latency distribution for the base sta-
tion. The confidence intervals with 95%
certainty for base station are ±0.586ms,
±0.2234ms, and ±0.2202ms for Cellular,
Wi-Fi University, and Wi-Fi Home laten-
cies, respectively.

 5 10 20 40 80 160 320 640
Core Network Latency (ms)

0

0.2

0.4

0.6

0.8

1

C
D

F

Cellular
Wi-Fi University
Wi-Fi Home

(b) Latency distribution for the core
network. The confidence intervals with
95% certainty for core network are
±0.8486ms, ±0.578ms, and ±0.6669ms
for Cellular, Wi-Fi University, and Wi-Fi
Home latencies, respectively.

Fig. 3. The cumulative distribution function (CDF) for the initial base station/core
network node associated with cellular network, university Wi-Fi, and home Wi-Fi. The
dotted line shows the mean latencies for each platform.

4.1 Experiment Methodology

We experiment on real-world networking from the client perspective to estimate
the injection attack impact, i.e., we take networking measurements on the client
node networking with the 5G cellular service providers and estimate the attack
impact based on the measurements. Because we experiment against real-world
networking, we avoid DoS’ing or negatively impacting the service providers and
only collect the reference measurements for our injection impact estimation. We
select the top ten most used web domains [5] as of August 2021, and run the
built-in traceroute shell command to identify every node in the route along with
the link latencies. Our measurements are taken using a physical machine with
Apple M1 chip, 8 core CPU (4 performance cores and 4 efficiency cores), 16
GBs (LPDDR4) of RAM running Python 3.8 for experimentation automation.
While we focus our study on 5G cellular technology (“Cellular”), we do a com-
parison analyses with Wi-Fi and more specifically focusing on the university
Wi-Fi networking infrastructure (“Wi-Fi University”) and the residence Wi-Fi
infrastructure (“Wi-Fi Home”) since the university networking infrastructure
and the residential networking exhibit different networking behavior and char-
acteristics [11]. The actual service providers are anonymized on this manuscript
because we are studying and simulating threats and our threat is applicable to
5G networking and not service-provider specific.

Towards Securing Availability in 5G: Analyzing the Injection Attack Impact 149

We run our experiment for the aforementioned networking cases and collect
1000 samples for each case. We identify the core network nodes from the net-
working service providers by cross-checking with the service provider IP range
from Internet Assigned Numbers Authority [14] and then measure the number
of hops and the latencies to reach those core network servers.

4.2 Networking Measurements for References

We compare the 5G networking with Wi-Fi networking, as Wi-Fi has existed
longer and is more widely studied in networking. Cellular networking is gen-
erally with greater time costs than the Wi-Fi networking (which observation
corroborates with [22]) and thus the threat impact is greater than the DoS
impact on Wi-Fi. Figure 3a shows the distribution of latencies with regards to
the base station. The base station mean latencies for cellular, university Wi-Fi,
and home Wi-Fi are 58.45, 4.77, and 7.29 ms, respectively. Our results show that
the Wi-Fi-based measurements have the lower latencies (12.25 and 8.02 times
faster than cellular for university and home Wi-Fi, respectively), with university
being 1.53 times faster than home Wi-Fi, on average.

Figure 3b shows the distribution of latencies with regards to the core network.
The core network mean latencies for cellular, university Wi-Fi, and home Wi-
Fi are 73.51, 7.93, and 10.54 ms, respectively. We find that the Wi-Fi-based
measurements have the lowest latencies (9.27 and 6.97 times faster than cellular
for university and home Wi-Fi, respectively) with university being 1.33 times
faster than home Wi-Fi, on average.

Our estimation analysis in Sect. 4.3 focuses on the cellular measurements and
we denote the number of communications between the user and base station (one
interaction involving back-and-forth communications) as CBS and the number
of communications between the base station and core network as CCN . We also
denote the number of hops between the user and base station as HBS while we
use HCN for the number of hops between the user and the core network. Finally,
we use TBS to denote the base station latency and TCN to denote the core
network latency. From our measurements, we have HBS = 1 hop (typical since
the user directly communicates with the base station via wireless communication
link), HCN = 4 hops, TBS = 58.45 ms, TCN = 73.51 ms.

4.3 Injection DoS Impact Estimation

We estimate the injection attack impact using our networking reference mea-
surements in Sect. 4.2. More specifically, we quantify and estimate the injection
attack impact in the number of communications (one back-and-forth communi-
cations regardless of whether it is a base station or a cloud-based core network),
C, the number of hops, H, and latency, T . We compute C by calculating the total
number of round-trip communications to the base station and core network, i.e.,
C = CBS + CCN . For example, from Fig. 2, the number of round-trip communi-
cations to the base station, CBS , is 2 and to the core network, CCN , is 1, giving
C = 3 (until identity request). If the attacker chooses to send a response, it would

150 M. Raavi et al.

Table 3. Injection Attack Impact Estimations in the number of communications, C,
the number of hops H, and latency T .

Identity response C (communications) H (hops) T (ms)

Without 3 12 190.41

With 4 20 263.92

cost an additional round trip time. Similarly, the total number of hops involved
in a round-trip communication is given as twice the product of the number of
hops and the number of communications, H = 2 · (CBS ·HBS + CCN ·HCN).
The total latency is given as the product of the number of communications to
the base station/core network and their respective latencies, T = TBS · CBS +
TCN ·CCN . Using the above equations, we quantify the injection impact. Table 3
computes the injection impact based on our reference measurements in Sect. 4.2
when an attacker does an injection without and with identity response. If the
attacker injects a false identity response, it’s going to cause an additional round-
trip communication involving 8 more hops and taking T = 263.92 ms in total.

5 Related Work

In wireless and mobile security, previous research studied the control com-
munication injection threats targeting the victim’s availability. These research
studies defended against DoS threats based on jamming the control com-
munication channel itself because the control communication channel is pub-
licly known [6,9,16], injecting false information on the wireless-channel-setting
medium access control (MAC) communications for DoS [8,19], and injecting
false information on the MAC feedback [23]. While our threat can classify as
false/bogus control communication injection (more specifically, false requests for
the initial channel requests), our work focuses on the emerging 5G networking
as opposed to the more general wireless networking.

In 5G networking, similar to previous networking technologies, most of the
well-known attacks like spoofing, sniffing, signaling, amplification are applica-
ble [17,18,24]. The authors of [18] provide threat assessment and mitigation
techniques for each of the control channels (broadcast, random access, uplink
control, and downlink control) and data channels (uplink and downlink) of 5G.
Their assessment shows that spoofing/jamming/sniffing attack efficiency on con-
trol channels is more effective. A signaling DoS attack on 3G/WiMax is pre-
sented in [17], where a 40-byte packet is sent to 24,000 mobile devices after
every 5 s, which generates enough data to overload the used wireless infrastruc-
ture. The authors of [24] implement the signaling attack on 4G, classified the
impact levels, and discussed possible countermeasures. The authors in [20] show
that distributed DoS poses a big threat for 5G network slices. They also discuss
the optimal placement for virtual network functions for guaranteed end-to-end
delays. A strategic approach based on game theory is proposed in [21] to secure

Towards Securing Availability in 5G: Analyzing the Injection Attack Impact 151

a 5G control plane from distributed DoS signaling attacks. It involves scaling up
or increasing the resource assignment for virtual hosts based on the incoming
signaling traffic.

6 Future Work and Potential Countermeasure
Discussions

We discuss the future scope and potential countermeasures for strengthening the
security of control communication. We intend to inform the 5G standard tech-
nologies of the injection threat in order to inform the research and developments
for securing the networking availability. To achieve such a goal, we identify the
following future research directions:

More Sophisticated Threats. Our threat model is of high feasibility merely
requiring the 5G wireless communication capability, as described in Sect. 3. A
more sophisticated threat may provide a stronger attack impact on the 5G service
provider’s availability but may impose greater constraints for the attacker setup.

Further Injection DoS Impact Analyses. Our work focuses on the per-
injection impact analyses due to our experimental setup, including client-
node implementation and experimentation against the real-world networking
(Sect. 4.1), which can be used to estimate the attacker cost vs. impact for DoS
involving multiple injections. Future research can therefore study the threat
impact analyses of multiple injections, including flooding, DDoS, and their
impacts on the victim’s bandwidth and other networking resources. Analyz-
ing the DoS impact on specific parts of the networking infrastructure, e.g., base
station and a core network server functionality, can also identify the bottle-
neck vulnerabilities of the service provider infrastructure. Furthermore, there
can be other threat impact metrics, including the wireless channel/medium-
access-control resources (between the user and the base station) [8,17–19,23],
host-based networking resources (similar to a TCP SYN Flood attacking the
server connection table) [7,15,18,25], and the power resource (especially useful
if considering a flying base station to provide emergency networking or future-
generation networking with greater device/rate requirements for connectivity
services) [10,12,13].

Building Security on the Base Station and Networking Edge. Security
for 5G networking can be implemented at multiple levels. The base station or an
edge server closer to the attacker user than the core network can build intelli-
gence based on networking/sensed data to detect the injection threats to inform
the attack. If such intelligence is real-time (i.e., occurring while the attack is
ongoing), the base station can filter the attack traffic for mitigation so that the
attack impact does not reach beyond the edge of the network. The base station
on the networking edge can also build prioritization of the users, for example,

152 M. Raavi et al.

based on token credentials from the previous session, so that the priority users
demonstrating greater trustworthiness than others can still access the network-
ing service (i.e., not being subjected to DoS). These approaches will mitigate the
attack impact, thus reducing the security risk, and remain as a critical research
direction to secure mobile/wireless networking.

5G Implementations. Our work studies the security based on the 5G NR stan-
dard and discover and exploit the vulnerability from the security being absent
initially during the channel access setup before the authentication. A more sys-
tems approach based on the 5G system implementations and the collaborations
with a real-world cellular service provider will facilitate more concrete analyses
on the attack impact of the injection analyses. Such an approach will also enable
the practicality analyses of the future security solutions for 5G networking.

Securing 6G and Next-Generation Networking. As observed from the
mobile networking technology evolutions from 2G to 5G, mobile networking
learn from its past generation of technologies to build the future-generation of
networking technologies. Our research in securing the existing mobile networking
technologies will contribute to building security in the next-generation technolo-
gies, such as 6G. Such research will enable the design of the security mechanisms
along with the design of the 6G technology functionalities so that we can practice
the security-by-design principle that would improve the security mechanisms’
effectiveness and practicality beyond building security around the existing tech-
nologies. It will also drive and enable the security solution incorporation into
the standards for wider deployment of the security implementations.

7 Conclusion

There is no security protection at the initial parts of the 5G control commu-
nications before the authentication and the security setup. The attacker can
exploit this vulnerability to perform injection attack to consume the networking
resources of the 5G service provider infrastructure. In this work, we study the 5G
networking standardization and analyze the injection threat impact against the
networking availability. We conduct networking measurements on real-world 5G
and estimate the injection threat impacts in communications, hops, and latencies
based on the networking measurements. We intend to inform the 5G standard
technologies of the injection threat to encourage and facilitate the R&D in secur-
ing the networking availability. To that end, we include discussions for future
work for greater security awareness and potential countermeasures, including the
security mechanisms implemented at the base station or the networking edge.

Acknowledgement. This work was supported in part by Institute of Information
& communications Technology Planning & Evaluation (IITP) grant funded by the
Korea government (MSIT) (No.2021-0-00796, Research on Foundational Technologies
for 6G Autonomous Security-by-Design to Guarantee Constant Quality of Security).

Towards Securing Availability in 5G: Analyzing the Injection Attack Impact 153

This material is also based upon work supported by the National Science Foundation
under Grant No. 1922410.

References

1. 3GPP. TR 21.915: Release 15 Description; Summary of Rel-15 Work Items (2019).
https://www.3gpp.org/release-15

2. 3GPP. TR 21.915: 5G; Procedures for the 5G System (2021). https://www.3gpp.
org/specifications/specifications

3. 3GPP. TS 38.211: 5G; NR; Physical channels and modulation (2021). https://
www.3gpp.org/specifications/specifications

4. 3GPP. TS 38.321: NR; Medium Access Control (MAC) protocol specification
(2021). https://www.3gpp.org/specifications/specifications

5. Alexa: The top 500 sites on the web (2021). https://www.alexa.com/topsites
6. Arjoune, Y., Faruque, S.: Smart jamming attacks in 5G new radio: a review.

In: 2020 10th Annual Computing and Communication Workshop and Conference
(CCWC), pp. 1010–1015. IEEE (2020)

7. Bogdanoski, M., Suminoski, T., Risteski, A.: Analysis of the SYN flood dos attack.
Int. J. Comput. Netw. Inf. Secur. (IJCNIS) 5(8), 1–11 (2013)

8. Chang, S.Y., Hu, Y.C.: SecureMAC: securing wireless medium access control
against insider denial-of-service attacks. IEEE Trans. Mob. Comput. 16(12), 3527–
3540 (2017). https://doi.org/10.1109/TMC.2017.2693990

9. Chang, S.Y., Hu, Y.C., Laurenti, N.: SimpleMAC: a jamming-resilient MAC-layer
protocol for wireless channel coordination. In: Proceedings of the 18th Annual
International Conference on Mobile Computing and Networking, Mobicom’12, pp.
77–88. Association for Computing Machinery, New York (2012). https://doi.org/
10.1145/2348543.2348556

10. Chang, S.Y., Kumar, S.L.S., Hu, Y.C., Park, Y.: Power-positive networking:
wireless-charging-based networking to protect energy against battery dos attacks.
ACM Trans. Sen. Netw. 15(3), 1–25 (2019). https://doi.org/10.1145/3317686

11. Chang, S.Y., Park, Y., Kengalahalli, N.V., Zhou, X.: Query-crafting DoS threats
against internet DNS. In: 2020 IEEE Conference on Communications and Network
Security (CNS), pp. 1–9 (2020). https://doi.org/10.1109/CNS48642.2020.9162166

12. Desnitsky, V., Rudavin, N., Kotenko, I.: Modeling and evaluation of battery
depletion attacks on unmanned aerial vehicles in crisis management systems. In:
Kotenko, I., Badica, C., Desnitsky, V., El Baz, D., Ivanovic, M. (eds.) IDC 2019.
SCI, vol. 868, pp. 323–332. Springer, Cham (2020). https://doi.org/10.1007/978-
3-030-32258-8 38

13. Halperin, D., et al.: Pacemakers and implantable cardiac defibrillators: software
radio attacks and zero-power defenses. In: 2008 IEEE Symposium on Security and
Privacy (SP 2008), pp. 129–142 (2008). https://doi.org/10.1109/SP.2008.31

14. IANA: Internet Assigned Numbers Authority. https://www.iana.org/
15. Kolahi, S.S., Alghalbi, A.A., Alotaibi, A.F., Ahmed, S.S., Lad, D.: Performance

comparison of defense mechanisms against TCP SYN flood DDoS attack. In: 2014
6th International Congress on Ultra Modern Telecommunications and Control Sys-
tems and Workshops (ICUMT), pp. 143–147. IEEE (2014)

16. Lazos, L., Liu, S., Krunz, M.: Mitigating control-channel jamming attacks in multi-
channel ad hoc networks. In: Proceedings of the Second ACM Conference on Wire-
less Network Security, WiSec’09, pp. 169–180. Association for Computing Machin-
ery, New York (2009). https://doi.org/10.1145/1514274.1514299

https://www.3gpp.org/release-15
https://www.3gpp.org/specifications/specifications
https://www.3gpp.org/specifications/specifications
https://www.3gpp.org/specifications/specifications
https://www.3gpp.org/specifications/specifications
https://www.3gpp.org/specifications/specifications
https://www.alexa.com/topsites
https://doi.org/10.1109/TMC.2017.2693990
https://doi.org/10.1145/2348543.2348556
https://doi.org/10.1145/2348543.2348556
https://doi.org/10.1145/3317686
https://doi.org/10.1109/CNS48642.2020.9162166
https://doi.org/10.1007/978-3-030-32258-8_38
https://doi.org/10.1007/978-3-030-32258-8_38
https://doi.org/10.1109/SP.2008.31
https://www.iana.org/
https://doi.org/10.1145/1514274.1514299

154 M. Raavi et al.

17. Lee, P.P., Bu, T., Woo, T.: On the detection of signaling DoS attacks on 3G/WiMax
wireless networks. Comput. Netw. 53(15), 2601–2616 (2009)

18. Lichtman, M., Rao, R., Marojevic, V., Reed, J., Jover, R.P.: 5G NR jamming,
spoofing, and sniffing: threat assessment and mitigation. In: 2018 IEEE Interna-
tional Conference on Communications Workshops (ICC Workshops), pp. 1–6. IEEE
(2018)

19. Negi, R., Rajeswaran, A.: DoS analysis of reservation based MAC protocols. In:
IEEE International Conference on Communications, ICC 2005, vol. 5, pp. 3632–
3636 (2005). https://doi.org/10.1109/ICC.2005.1495094

20. Sattar, D., Matrawy, A.: Towards secure slicing: using slice isolation to mitigate
DDoS attacks on 5G core network slices. In: 2019 IEEE Conference on Communi-
cations and Network Security (CNS), pp. 82–90. IEEE (2019)

21. Silva, R.S., et al.: REPEL: a strategic approach for defending 5G control plane
from DDoS signalling attacks. IEEE Trans. Netw. Serv. Manag. 18(3), 3231–3243
(2020)

22. Sommers, J., Barford, P.: Cell vs. WiFi: on the performance of metro area mobile
connections. In: Proceedings of the 2012 Internet Measurement Conference, pp.
301–314 (2012)

23. Tung, Y.C., Han, S., Chen, D., Shin, K.G.: Vulnerability and protection of channel
state information in multiuser MIMO networks. In: Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security, CCS’14, pp. 775–
786. Association for Computing Machinery, New York (2014). https://doi.org/10.
1145/2660267.2660272

24. Yu, C., Chen, S.: On effects of mobility management signalling based DoS attacks
against LTE terminals. In: 2019 IEEE 38th International Performance Computing
and Communications Conference (IPCCC), pp. 1–8. IEEE (2019)

25. Zhang, T., Lee, R.B.: Host-based DoS attacks and defense in the cloud. In: Pro-
ceedings of the Hardware and Architectural Support for Security and Privacy, pp.
1–8 (2017)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1109/ICC.2005.1495094
https://doi.org/10.1145/2660267.2660272
https://doi.org/10.1145/2660267.2660272
http://creativecommons.org/licenses/by/4.0/

Author Index

Aliasgari, Mehrdad 90
Austin, Thomas H. 109

Balytskyi, Yaroslav 59
Basu, Kimaya 109
Basu, Sean 109

Chang, Sang-Yoon 59, 143
Cheong, Yun-Gyung 45

Di Troia, Fabio 3

Gao, Yifeng 33
GarzaPerez, Luis 33

Hedayatipour, Ava 90
Homayoun, Houman 22
Hyun, Jiwung 45

Izadifar, Arman 77

Jiang, Honglu 33

Khalimov, Gennady 59
Khalimova, Svitlana 59
Kim, Jinoh 143
Kim, Jong-Hyun 143

Kolisnyk, Maksym 59
Kotukh, Yevgen 59

Makrani, Hosein Mohammadi 22
Marukhnenko, Oleksandr 59
Monani, Ravi 90
Moosavi, Sanaz Rahimi 77

Nazari, Najmeh 22
Negi, Rohit 126

Raavi, Manohar 143
Rezaei, Amin 90
Robin, Mahmudul 33

Sarker, Arijet 143
Sarwar, S. M. 33
Sayadi, Hossein 22, 90
Seong, ChangMin 45
Shukla, Sandeep K. 126
Singh, Manikant 126
Song, YoungRok 45

Trehan, Harshit 3

Wuthier, Simeon 143

	Crowdfunding Non-fungible Tokens on the Blockchain
	Recommended Citation

	 Preface
	 Organization
	 Contents
	Machine Learning for Security
	Fake Malware Generation Using HMM and GAN
	1 Introduction
	2 Background
	2.1 Background and Related Work
	2.2 Hidden Markov Models
	2.3 Generative Adversarial Networks
	2.4 Wasserstein GAN
	2.5 WGAN with Gradient Penalty

	3 Methodology
	3.1 Fake Malware Using HMM
	3.2 Fake Malware Using GAN
	3.3 Feature Extraction
	3.4 Evaluation

	4 Implementation
	4.1 Dataset
	4.2 HMM Implementation
	4.3 GAN Implementation
	4.4 WGAN Implementation
	4.5 Wasserstein Distance
	4.6 WGAN with Gradient Penalty Implementation

	5 Results and Discussion
	5.1 HMM Results
	5.2 GAN Results
	5.3 WGAN Results
	5.4 Wasserstein GAN with Gradient Penalty
	5.5 Comparison of the Results

	6 Conclusion and Future Work
	6.1 Future Work

	References

	Security Threats in Cloud Rooted from Machine Learning-Based Resource Provisioning Systems
	1 Introduction
	2 Security Threats
	2.1 Threat Model
	2.2 Distributed Attack
	2.3 Attack's Setting: VM Co-location
	2.4 Locating Physical Hosts Running Victim Instances
	2.5 Avoidance of Detection and Migration

	3 ML Based Resource Provisioning System
	3.1 Reverse Engineering the Model
	3.2 Adversarial Sample Generator
	3.3 Case Study

	4 Conclusions
	References

	Differential Privacy in Privacy-Preserving Big Data and Learning: Challenge and Opportunity
	1 Introduction
	2 Preliminary of Differential Privacy
	2.1 Definition of Differential Privacy
	2.2 Noise Mechanism of Differential Privacy
	2.3 Local Differential Privacy

	3 Differentially Private Data Publishing
	3.1 Differential Privacy in Tabular Data Publishing
	3.2 Differential Privacy in Graph Data Publishing
	3.3 Challenges on Differentially Private Data Publishing

	4 Differentially Private Machine Learning
	4.1 Differential Privacy in Deep Learning
	4.2 Differential Privacy in Federated Learning
	4.3 Challenges on Differentially Private Machine Learning

	5 Future Directions and Conclusions
	5.1 Combination of Differential Privacy and Other Technologies
	5.2 Variation of Differential Privacy and Personalized Privacy
	5.3 Misunderstandings of Differential Privacy vs More Than Privacy

	References

	Towards Building Intrusion Detection Systems for Multivariate Time-Series Data
	1 Introduction
	2 Model
	3 Time-Series Anomaly Detection Datasets
	3.1 The UNSW-NB15 Dataset
	3.2 The HAI 2.0 Dataset

	4 Experiments
	4.1 Data Preparation
	4.2 Training
	4.3 The Evaluation Metrics

	5 The Experiment Results
	6 Conclusion
	References

	Encryption
	Encryption Scheme Based on the Generalized Suzuki 2-groups and Homomorphic Encryption
	1 Introduction
	2 Proposal
	2.1 Description of the Scheme

	3 Security Parameters Analysis and Cost Estimation
	4 Conclusions
	References

	End-to-End Security Scheme for E-Health Systems Using DNA-Based ECC
	1 Introduction
	2 Related Work
	3 End-to-End Security Through DNA-Based ECC
	3.1 ECC-Based Mutual Authentication and Authorization
	3.2 Health Caregiver Authentication Phase
	3.3 Medical Sensor Authentication and Verification Phase
	3.4 DNA-Based ECC Cryptography

	4 Security Analysis of the Proposed Scheme
	5 Conclusion and Future Work
	References

	A Comprehensive Analysis of Chaos-Based Secure Systems
	1 Introduction
	2 Chaotic Ciphering of Communication
	3 Design of Chaos for Integrated Circuits
	3.1 Continuous Time
	3.2 Discrete Time

	4 On-Chip Chaos Implementation and Simulation
	5 Discussion
	6 Conclusion
	References

	Miscellaneous Security
	Crowdfunding Non-fungible Tokens on the Blockchain
	1 Introduction
	2 Background
	3 Crowdfunding NFT Creation
	4 Creation of the NFT on the Blockchain
	5 Initial Sale of the NFT
	6 Implementation
	6.1 SpartanGold Overview
	6.2 NFT Basic Operations
	6.3 NFT Escrow
	6.4 Crowdfunding

	7 Storing Large NFTs on the 0Chain Blockchain
	7.1 0Chain Overview
	7.2 Modifications Needed for Storage
	7.3 Funding Storage

	8 Conclusion and Future Work
	References

	Automated Flag Detection and Participant Performance Evaluation for Pwnable CTF
	1 Introduction
	2 Background and Related Work
	3 Proposed Framework
	3.1 High Level System Architecture
	3.2 Behavioral Analysis and Data Sources

	4 Our Approach
	4.1 Feature Set
	4.2 The Grading Algorithm

	5 Case Study
	6 Conclusion and Future Work
	References

	Towards Securing Availability in 5G: Analyzing the Injection Attack Impact on Core Network
	1 Introduction
	2 Background of 5G Control Communications
	3 Injection Threat Against 5G
	4 Threat Impact Measurements and Analyses
	4.1 Experiment Methodology
	4.2 Networking Measurements for References
	4.3 Injection DoS Impact Estimation

	5 Related Work
	6 Future Work and Potential Countermeasure Discussions
	7 Conclusion
	References

	Author Index

