108 research outputs found

    KCRC-LCD: Discriminative Kernel Collaborative Representation with Locality Constrained Dictionary for Visual Categorization

    Full text link
    We consider the image classification problem via kernel collaborative representation classification with locality constrained dictionary (KCRC-LCD). Specifically, we propose a kernel collaborative representation classification (KCRC) approach in which kernel method is used to improve the discrimination ability of collaborative representation classification (CRC). We then measure the similarities between the query and atoms in the global dictionary in order to construct a locality constrained dictionary (LCD) for KCRC. In addition, we discuss several similarity measure approaches in LCD and further present a simple yet effective unified similarity measure whose superiority is validated in experiments. There are several appealing aspects associated with LCD. First, LCD can be nicely incorporated under the framework of KCRC. The LCD similarity measure can be kernelized under KCRC, which theoretically links CRC and LCD under the kernel method. Second, KCRC-LCD becomes more scalable to both the training set size and the feature dimension. Example shows that KCRC is able to perfectly classify data with certain distribution, while conventional CRC fails completely. Comprehensive experiments on many public datasets also show that KCRC-LCD is a robust discriminative classifier with both excellent performance and good scalability, being comparable or outperforming many other state-of-the-art approaches

    Graph-based Semi-supervised Learning: Algorithms and Applications.

    Get PDF
    114 p.Graph-based semi-supervised learning have attracted large numbers of researchers and it is an important part of semi-supervised learning. Graph construction and semi-supervised embedding are two main steps in graph-based semi-supervised learning algorithms. In this thesis, we proposed two graph construction algorithms and two semi-supervised embedding algorithms. The main work of this thesis is summarized as follows:1. A new graph construction algorithm named Graph construction based on self-representativeness and Laplacian smoothness (SRLS) and several variants are proposed. Researches show that the coefficients obtained by data representation algorithms reflect the similarity between data samples and can be considered as a measurement of the similarity. This kind of measurement can be used for the weights of the edges between data samples in graph construction. Each column of the coefficient matrix obtained by data self-representation algorithms can be regarded as a new representation of original data. The new representations should have common features as the original data samples. Thus, if two data samples are close to each other in the original space, the corresponding representations should be highly similar. This constraint is called Laplacian smoothness.SRLS graph is based on l2-norm minimized data self-representation and Laplacian smoothness. Since the representation matrix obtained by l2 minimization is dense, a two phrase SRLS method (TPSRLS) is proposed to increase the sparsity of graph matrix. By extending the linear space to Hilbert space, two kernelized versions of SRLS are proposed. Besides, a direct solution to kernelized SRLS algorithm is also introduced.2. A new sparse graph construction algorithm named Sparse graph with Laplacian smoothness (SGLS) and several variants are proposed. SGLS graph algorithm is based on sparse representation and use Laplacian smoothness as a constraint (SGLS). A kernelized version of the SGLS algorithm and a direct solution to kernelized SGLS algorithm are also proposed. 3. SPP is a successful unsupervised learning method. To extend SPP to a semi-supervised embedding method, we introduce the idea of in-class constraints in CGE into SPP and propose a new semi-supervised method for data embedding named Constrained Sparsity Preserving Embedding (CSPE).4. The weakness of CSPE is that it cannot handle the new coming samples which means a cascade regression should be performed after the non-linear mapping is obtained by CSPE over the whole training samples. Inspired by FME, we add a regression term in the objective function to obtain an approximate linear projection simultaneously when non-linear embedding is estimated and proposed Flexible Constrained Sparsity Preserving Embedding (FCSPE).Extensive experiments on several datasets (including facial images, handwriting digits images and objects images) prove that the proposed algorithms can improve the state-of-the-art results

    Graph-based Semi-supervised Learning: Algorithms and Applications.

    Get PDF
    114 p.Graph-based semi-supervised learning have attracted large numbers of researchers and it is an important part of semi-supervised learning. Graph construction and semi-supervised embedding are two main steps in graph-based semi-supervised learning algorithms. In this thesis, we proposed two graph construction algorithms and two semi-supervised embedding algorithms. The main work of this thesis is summarized as follows:1. A new graph construction algorithm named Graph construction based on self-representativeness and Laplacian smoothness (SRLS) and several variants are proposed. Researches show that the coefficients obtained by data representation algorithms reflect the similarity between data samples and can be considered as a measurement of the similarity. This kind of measurement can be used for the weights of the edges between data samples in graph construction. Each column of the coefficient matrix obtained by data self-representation algorithms can be regarded as a new representation of original data. The new representations should have common features as the original data samples. Thus, if two data samples are close to each other in the original space, the corresponding representations should be highly similar. This constraint is called Laplacian smoothness.SRLS graph is based on l2-norm minimized data self-representation and Laplacian smoothness. Since the representation matrix obtained by l2 minimization is dense, a two phrase SRLS method (TPSRLS) is proposed to increase the sparsity of graph matrix. By extending the linear space to Hilbert space, two kernelized versions of SRLS are proposed. Besides, a direct solution to kernelized SRLS algorithm is also introduced.2. A new sparse graph construction algorithm named Sparse graph with Laplacian smoothness (SGLS) and several variants are proposed. SGLS graph algorithm is based on sparse representation and use Laplacian smoothness as a constraint (SGLS). A kernelized version of the SGLS algorithm and a direct solution to kernelized SGLS algorithm are also proposed. 3. SPP is a successful unsupervised learning method. To extend SPP to a semi-supervised embedding method, we introduce the idea of in-class constraints in CGE into SPP and propose a new semi-supervised method for data embedding named Constrained Sparsity Preserving Embedding (CSPE).4. The weakness of CSPE is that it cannot handle the new coming samples which means a cascade regression should be performed after the non-linear mapping is obtained by CSPE over the whole training samples. Inspired by FME, we add a regression term in the objective function to obtain an approximate linear projection simultaneously when non-linear embedding is estimated and proposed Flexible Constrained Sparsity Preserving Embedding (FCSPE).Extensive experiments on several datasets (including facial images, handwriting digits images and objects images) prove that the proposed algorithms can improve the state-of-the-art results

    Robust Face Recognition With Kernelized Locality-Sensitive Group Sparsity Representation

    Get PDF
    In this paper, a novel joint sparse representation method is proposed for robust face recognition. We embed both group sparsity and kernelized locality-sensitive constraints into the framework of sparse representation. The group sparsity constraint is designed to utilize the grouped structure information in the training data. The local similarity between test and training data is measured in the kernel space instead of the Euclidian space. As a result, the embedded nonlinear information can be effectively captured, leading to a more discriminative representation. We show that, by integrating the kernelized local-sensitivity constraint and the group sparsity constraint, the embedded structure information can be better explored, and significant performance improvement can be achieved. On the one hand, experiments on the ORL, AR, extended Yale B, and LFW data sets verify the superiority of our method. On the other hand, experiments on two unconstrained data sets, the LFW and the IJB-A, show that the utilization of sparsity can improve recognition performance, especially on the data sets with large pose variation

    Face Recognition Based on Videos by Using Convex Hulls

    Get PDF
    International audienceA wide range of face appearance variations can be modeled by using set based recognition approaches effectively, but computational complexity of current methods is highly dependent on the set and class sizes. This paper introduces new video based classification methods designed for reducing the required disk space of data samples and speed up the testing process in large-scale face recognition systems. In the proposed method, image sets collected from videos are approximated with kernelized convex hulls and it was shown that it is sufficient to use only the samples that participate in shaping the image set boundaries in this setting. The kernelized Support Vector Data Description (SVDD) is used to extract those important samples that form the image set boundaries. Moreover, we show that these kernelized hypersphere models can also be used to approximate image sets for classification purposes. Then, we propose a binary hierarchical decision tree approach to improve the speed of the classification system even more. Lastly, we introduce a new video database that includes 285 people with 8 videos of each person since the most popular video data sets used for set based recognition methods include either a few people, or small number of videos per person. The experimental results on varying sized databases show that the proposed methods greatly improve the testing times of the classification system (we obtained speed-ups to a factor of 20) without a significant drop in accuracies

    Deep feature fusion through adaptive discriminative metric learning for scene recognition

    No full text
    With the development of deep learning techniques, fusion of deep features has demonstrated the powerful capability to improve recognition performance. However, most researchers directly fuse different deep feature vectors without considering the complementary and consistent information among them. In this paper, from the viewpoint of metric learning, we propose a novel deep feature fusion method, called deep feature fusion through adaptive discriminative metric learning (DFF-ADML), to explore the complementary and consistent information for scene recognition. Concretely, we formulate an adaptive discriminative metric learning problem, which not only fully exploits discriminative information from each deep feature vector, but also adaptively fuses complementary information from different deep feature vectors. Besides, we map different deep feature vectors of the same image into a common space by different linear transformations, such that the consistent information can be preserved as much as possible. Moreover, DFF-ADML is extended to a kernelized version. Extensive experiments on both natural scene and remote sensing scene datasets demonstrate the superiority and robustness of the proposed deep feature fusion method
    • …
    corecore