
Department of Computer Science and Artificial Intelligence

Departamento de Ciencias de la Computación e Inteligencia Artificial

Graph-based Semi-supervised Learning:

Algorithms and Applications

by

Libo Weng

Supervised by
Dr. Fadi Dornaika & Dr. Zhong Jin

Dissertation submitted to the Department of Computer Science and Artificial
Intelligence of the University of the Basque Country (UPV/EHU) as partial

fulfilment of the requirements for the PhD degree in Computer Science

Donostia - San Sebastián, May 2017

(c)2017 LIBO WENG

Acknowledgement

I would like to thank my supervisors, Dr. Fadi Dornaika and Dr. Zhong Jin,
for their instructive suggestions and valuable comments on the writing of this
research. Without their invaluable help and generous encouragement, this
work would not have been accomplished.

Besides, I wish to thank all my friends in Spain and France, and mainly
Alireza for his help during my stay in San Sebastian, and all the colleagues
and friends in both UPV and UTBM and all the friends Igñacio, Luca, Paolin,
etc. for their help and company in the residence LaSalle.

I also need to thank all my friends in Nanjing and all the members in
Lab-403 and later Lab-4053.

Finally, I am grateful to my family for their patience and love and for their
unconditional support.

iii

Abstract

Graph-based semi-supervised learning have attracted large numbers of re-
searchers and it is an important part of semi-supervised learning. Graph con-
struction and semi-supervised embedding are two main steps in graph-based
semi-supervised learning algorithms. In this thesis, we proposed two graph
construction algorithms and two semi-supervised embedding algorithms. The
main work of this thesis is summarized as follows:

1. A new graph construction algorithm named Graph construction based
on self-representativeness and Laplacian smoothness (SRLS) and several vari-
ants are proposed. Researches show that the coefficients obtained by data
representation algorithms reflect the similarity between data samples and can
be considered as a measurement of the similarity. This kind of measuremen-
t can be used for the weights of the edges between data samples in graph
construction. Each column of the coefficient matrix obtained by data self-
representation algorithms can be regarded as a new representation of original
data. The new representations should have common features as the original
data samples. Thus, if two data samples are close to each other in the orig-
inal space, the corresponding representations should be highly similar. This
constraint is called Laplacian smoothness. SRLS graph is based on ℓ2-norm
minimized data self representation and Laplacian smoothness. Since the rep-
resentation matrix obtained by ℓ2 minimization is dense, a two phrase SRLS
method (TPSRLS) is proposed to increase the sparsity of graph matrix. By
extending the linear space to Hilbert space, two kernelized versions of SRLS
are proposed. Besides, a direct solution to kernelized SRLS algorithm is also
introduced.

2. A new sparse graph construction algorithm named Sparse graph with
Laplacian smoothness (SGLS) and several variants are proposed. SGLS graph
algorithm is based on sparse representation and use Laplacian smoothness as
a constraint (SGLS). A kernelized version of the SGLS algorithm and a direct
solution to kernelized SGLS algorithm are also proposed.

3. SPP is a successful unsupervised learning method. To extend SPP to
a semi-supervised embedding method, we introduce the idea of in-class con-
straints in CGE into SPP and propose a new semi-supervised method for data
embedding named Constrained Sparsity Preserving Embedding (CSPE).

4. The weakness of CSPE is that it can not handle the new coming samples
which means a cascade regression should be performed after the non-linear
mapping is obtained by CSPE over the whole training samples. Inspired by
FME, we add a regression term in the objective function to obtain an approxi-
mate linear projection simultaneously when non-linear embedding is estimated
and proposed Flexible Constrained Sparsity Preserving Embedding (FCSPE).

iv

Extensive experiments on several datasets (including facial images, hand-
writing digits images and objects images) prove that the proposed algorithms
can improve the state-of-the-art results.

Keywords: Graph construction, Data self-representation, Laplacian smooth-
ness, Sparse representation, Face recognition, Semi-supervised embedding, Di-
mensionality reduction

Contents

1 Introduction . 1
1.1 Unsupervised learning . 2
1.2 Supervised learning . 2
1.3 Semi-supervised learning . 3
1.4 Graph-based semi-supervised learning . 4
1.5 Thesis organization . 5

2 Datasets and experimental setup . 7
2.1 Face datasets . 7
2.2 Object dataset . 8
2.3 Handwritten dataset . 8

Part I Graph Construction

3 Advances in graph construction . 13
3.1 Introduction . 13
3.2 Overview of the existing graph construction methods 14

3.2.1 Traditional graph construction methods 15
3.2.2 Locally Linear Embedding based graph construction . . . 16
3.2.3 Graph construction via ℓ2 minimization 17

3.2.3.1 Standard ℓ2 graph . 17
3.2.3.2 Weighted regularized least square minimization 17

3.2.4 Sparse graph construction via ℓ1 minimization 18
3.2.4.1 Standard sparse graph . 18
3.2.4.2 Constrained sparse graph 18

3.3 Learning and Inference . 19
3.3.1 Gaussian Random Fields . 20
3.3.2 Local and Global Consistency . 20
3.3.3 Label prediction via deformed graph Laplacian 21

3.4 Conclusion . 21

vi Contents

4 Graph Construction Based on Data Self-
representativeness and Laplacian Smoothness 23
4.1 Introduction . 23
4.2 Graph construction based on data self-representativeness and

Laplacian smoothness . 24
4.3 Two phase SRLS (TPSRLS) . 26
4.4 Kernelized variants . 27

4.4.1 Hilbert space . 27
4.4.2 Column generation . 28

4.5 A direct solution to Kernel SRLS . 29
4.6 Performance evaluation . 31

4.6.1 Comparison among several graph construction methods 32
4.6.2 Stability of the proposed method . 37
4.6.3 Sensitivity to parameters . 40
4.6.4 Computational complexity and CPU time 41

4.7 Conclusion . 42

5 Sparse graph with Laplacian Smoothness 43
5.1 Sparse graph with Laplacian Smoothness 43
5.2 Kernelized variants . 45
5.3 A direct solution to Kernel SGLS . 46
5.4 Performance evaluation . 49

5.4.1 Comparison among several graph construction methods 49
5.4.2 SGLS based Laplacian Eigenmaps 54
5.4.3 SGLS based Locality Preserving Projection 54
5.4.4 Stability of the proposed method . 56
5.4.5 Sensitivity to parameters . 58

5.5 Conclusion . 59

Part II Semi-supervised Embedding

6 Advances in semi-supervised embedding 63
6.1 Introduction . 63
6.2 Graph-based semi-supervised embedding methods 65

6.2.1 Locality Preserving Projection . 66
6.2.2 Neighborhood Preserving Embedding 67
6.2.3 Sparsity Preserving Projection . 67
6.2.4 Sparsity preserving discriminant analysis 68
6.2.5 Semi-supervised Discriminant Embedding 69
6.2.6 Constrained Graph Embedding. 70
6.2.7 Flexible Manifold Embedding . 71

6.3 Conclusion . 71

Contents vii

7 Flexible Constrained Sparsity Preserving Embedding 73
7.1 Introduction . 73
7.2 Constrained Sparsity Preserving Embedding (CSPE) 74
7.3 Flexible Constrained Sparsity Preserving Embedding (FCSPE) 75
7.4 Performance evaluation . 77

7.4.1 Comparisons of effectiveness . 77
7.4.2 Sensitivity to parameters . 82

7.5 Conclusion . 84

Part III Conclusions

8 Conclusions and perspectives . 89
8.1 Conclusions . 89
8.2 Perspectives . 90
8.3 Publications . 91

References . 93

List of Figures

1.1 Adjacency graph. The similarity score of connected nodes is 1,
0 for that of unconnected nodes. 4

2.1 Six image samples are shown for the nine datasets. 9

3.1 kNN and ε-neighborhood graphs constructed from a synthetic
dataset. 16

4.1 Laplacian smoothness criterion (if xi and xj are close, then bi

and bj should be similar). 25
4.2 Recognition rates variation different values of parameter λ

and ρ on ORL, FERET and Extended Yale B. 41

5.1 Average recognition rate variation different graphs based LE
on Extended Yale B (15% and 31% labeled). 54

5.2 Average recognition rate variation different graph based LE
on PF01 (30% and 70% labeled). 55

5.3 Average recognition rate variation different graph based LE
on PIE (30% and 70% labeled). 55

5.4 Recognition rate as a function of parameter λ and ρ on
FERET, Extended Yale B, PF01 and PIE. 60

7.1 Recognition rates of different embedding methods as a
function of feature dimension for FERET, PIE, Extended Yale
B and USPS data sets (test evaluation). Three samples per
class are labeled. The classifier is NN. 82

7.2 Recognition rates of different embedding methods as a
function of feature dimension for FERET, PIE, Extended Yale
B and USPS data sets (test evaluation). Three samples per
class are labeled. The classifier is SVM. 83

x List of Figures

7.3 Recognition rates variation as a function of different values of
parameter µ and γ on Yale, ORL and COIL-20. 84

7.4 Recognition rates variation as a function of different values of
parameter µ and γ on Yale, ORL and COIL-20. 85

List of Tables

4.1 Recognition rates (%) on ORL by GRF. 33
4.2 Recognition rates (%) on FERET by GRF. 34
4.3 Recognition rates (%) on Extended Yale B by GRF. 34
4.4 Recognition rates (%) on PF01 by GRF. 34
4.5 Recognition rates (%) on COIL-20 by GRF. 35
4.6 Recognition rates (%) on ORL by LGC. 35
4.7 Recognition rates (%) on FERET by LGC. 36
4.8 Recognition rates (%) on Extended Yale B by LGC. 36
4.9 Recognition rates (%) on Extended Yale B by LPDGL. 36
4.10 Recognition rates (%) on Extended Yale B with 6 labeled by

different label propagation algorithms. 37
4.11 Recognition rates (%) of each Bi in iteration on FERET with

3 labeled every class by LGC. 38
4.12 Differences between Bt and Bt+1 in iteration on FERET. 38
4.13 Differences between optimal Bs on FERET. 39
4.14 Recognition rates (%) of Bt in iteration on PF01 with 4

labeled every class by GRF. 39
4.15 Differences between Bt and Bt+1 in iteration on PF01. 39
4.16 Differences between optimal Bs on PF01. 39
4.17 Smoothness value, Tr(Bt LBT

t), at each iteration for different
Laplacians. 40

4.18 CPU time (s). 42

5.1 Average recognition rates (%) on ORL by GRF. 50
5.2 Average recognition rates (%) on FERET by GRF. 51
5.3 Average recognition rates (%) on Extended Yale B by GRF. . . . 51
5.4 Average recognition rates (%) on PF01 by GRF. 51
5.5 Average recognition rates (%) on PIE by GRF. 52
5.6 Average recognition rates (%) on Extended Yale B by LPDGL. 52
5.7 Average recognition rates (%) on PF01 by LPDGL. 53
5.8 Average recognition rates (%) on PIE by LPDGL. 53

xii List of Tables

5.9 LPP evaluation on Extended Yale B. 55
5.10 LPP evaluation on PF01. 56
5.11 LPP evaluation on PIE. 56
5.12 Average recognition rates (%) of each Bt in iteration on

FERET with 3 labeled samples per class. 57
5.13 Differences between Bt and Bt+1 in iteration on FERET. 57
5.14 Differences between optimal Bs on FERET. 57
5.15 Average recognition rates (%) of Bt in iteration on PF01 with

6 labeled every class. 58
5.16 Differences between Bt and Bt+1 in iteration on PF01. 58
5.17 Differences between optimal Bs on PF01. 58
5.18 The value of Tr(BtLB

T
t) in each iteration. 59

7.1 Average recognition rates (%) on Yale. 78
7.2 Average recognition rates (%) on ORL. 78
7.3 Average recognition rates (%) on FERET. 79
7.4 Average recognition rates (%) on PIE. 79
7.5 Average recognition rates (%) on Extended Yale B. 79
7.6 Average recognition rates (%) on USPS. 80
7.7 Average recognition rates (%) on COIL-20. 80
7.8 Recognition rates (%) on LFW-a. 80
7.9 Recognition rates (%) on LFW. 81
7.10 The comparison between the recognition rates (%) of the

optimal parameters and the fixed parameters(µ = 1, γ=1) 83

1

Introduction

Contents
1.1 Unsupervised learning . 2
1.2 Supervised learning . 2
1.3 Semi-supervised learning . 3
1.4 Graph-based semi-supervised learning 4
1.5 Thesis organization . 5

With the rapid development of computer technology and the widespread
application of sensor technology, the data collected is growing exponentially.
How to effectively utilize the information in these data to enhance the ability
of knowledge representation and acquirement is one of the long-term goals of
practitioners and researchers. The goal of machine learning is to discover and
explore the interesting information hidden in the data, to learn the law from
these data and to improve the system performance.

Machine learning is a core subject in the field of artificial intelligence and
pattern recognition, and is categorized into unsupervised learning, supervised
learning, and semi-supervised learning according to the use of sample labels.
Learning from limited amounts of labeled data, also referred to as supervised
learning, is one of the most popular research tasks in machine learning area.
The labels of the data is usually prepared based on human effort, which is
expensive to obtain, difficult to scale, and often error prone. At the same
time, unlabeled data is readily available in large quantities in many domains.
In order to benefit from such widely available unlabeled data, several semi-
supervised learning (SSL) algorithms have been developed over the years. The
semi-supervised learning algorithms use both labeled and unlabeled samples
thus benefit from unlabeled as well as labeled data.

With the explosive growth of the Internet, graph structured datasets are
becoming widespread and researchers have started to realize that graphs pro-
vide a natural way to represent data in a variety of different domains. In such
datasets, nodes correspond to data samples, while edges represent relation-
ships among nodes (samples).

2 1 Introduction

Graph-based SSL techniques bring together these two lines of research.
In particular, starting with the graph structure and label information about
a subset of the nodes, graph-based SSL algorithms classify the remainder of
the nodes in the graph. Graph-based SSL algorithms have been shown to
outperform non graph-based SSL approaches [75]. Furthermore, majority of
the graph-based SSL approaches can be optimized using convex optimization
techniques and are both easily scalable and parallelizable. Graph-based SSL
algorithms have been successfully used in many different applications areas.

In order to have a good understanding of graph-based SSL usefulness in
machine learning, we will briefly go through unsupervised learning, supervised
learning and semi-supervised learning.

Throughout the dissertation capital bold letters refer to matrices and small
bold letters refer to vectors.

1.1 Unsupervised learning

The training data in the case of unsupervised learning contains no supervisory
information. Let X = [x1,x2, . . . ,xn] ∈ ℜm×n be the data matrix, where n
is the number of training samples and m is the dimension of each sample. It
is assumed that each xi is sampled independently. Thus, these samples are
independent and identically distributed or i.i.d.

Examples of unsupervised learning problems include clustering and dimen-
sionality reduction. The goal of clustering is to group similar samples in ℜm,
while dimensionality reduction aims to represent each sample with a lower
dimensional feature vector with as little loss of information as possible.

Principal Component Analysis (PCA) [93] and Multidimensional Scaling
(MDS) [8] are two classic unsupervised learning methods.

1.2 Supervised learning

In supervised learning, every sample in X has both the input x ∈ ℜm and the
corresponding label y ∈ Y . Here the label can refer to class membership or
to one or more continuous variables. Formally, given a training set (xi, yi)

n
i=1,

the goal of a supervised learning algorithm is to train a function f : X→ Y .
When a trained model is obtained, f∗(x), the prediction of a new sample xnew

will be ytest = f∗(xtest).
Based on Y , supervised learning can be categorized into classification and

regression. When Y is discrete, the supervised learning tasks are referred to
as classification while Y is continuous are called regression.

Linear discriminant analysis (LDA) [29, 2, 18] is a famous supervised linear
dimensionality algorithm.

Supervised learning very often requires annotating large amounts of data.
This can be a drawback since it requires extensive human intervention and

1.3 Semi-supervised learning 3

supervision. This can be both time consuming and often error prone. Unsu-
pervised learning, on the other hand, requires no “labeled” training data but
suffers from the inability for one to specify the expected output for a given
input.

1.3 Semi-supervised learning

Semi-supervised learning (SSL) lies somewhere between supervised and unsu-
pervised learning. It combines the advantages of both supervised and unsu-
pervised learning. Here only a small amount of the training set X is labeled
while a relatively large fraction of the training data is left unlabeled. The goal
of a SSL algorithm is to learn a function f : X → Y , with a training set
X = [XL, XU] where XL is the data set with labels and XU represents the
set of unlabeled training samples.

However, it appears that the unlabeled data contain no information about
this mapping. In general, SSL algorithms make one or more of the following
assumptions so that information available in the unlabeled data can influence
f : X→ Y .

1. Smoothness Assumption: if two points in a high-density region are close
then their corresponding outputs are also close.

2. Cluster Assumption: if two points are in the same cluster, they are likely
to be of the same class. Another way to state this assumption would be
to say that the decision boundary should lie in a low-density region.

3. Manifold Assumption: high-dimensional data lies within a low-dimensional
manifold. This is very important owing to the fact that most machine
learning algorithms suffer from the “curse of dimensionality”. Thus, be-
ing able to handle the data on a relatively low-dimensional manifold can
often be very advantageous for the algorithms.

One of the earliest SSL algorithm is self-training [68]. In many instances,
expectation-maximization (EM) [24] can also be seen as an SSL algorithm. EM
is a general procedure to maximize the likelihood of the data given a model
with hidden variables and is guaranteed to converge to a local maximum.
EM lends itself naturally to SSL as the labels for the unlabeled data can be
treated as missing (hidden) variables. Example of algorithms that use EM
for SSL include [37, 53, 58]. Co-training is another SSL algorithm [7] that
is related to self-training and takes advantage of multiple views of the data.
Transductive support vector machines (TSVM) [85] are based on the premise
that the decision boundary must avoid high density regions in the input space.
Other SSL algorithms can be found in [15].

4 1 Introduction

1.4 Graph-based semi-supervised learning

Graph-based SSL algorithms are an important sub-class of SSL techniques
that have received much attention in the recent past. Here, one assumes that
the data (both labeled and unlabeled) is embedded within a low-dimensional
manifold that may be reasonably expressed by a graph. Each data sample
is represented by a vertex in a weighted graph with the weights providing a
measure of similarity between sample vertices.

Thus, taking a graph-based approach to solving a SSL problem involves
the following steps:

1. graph construction over the input data,
2. injecting seed labels on a subset of the nodes,
3. inferring labels on unlabeled nodes in the graph.

Fig. 1.1: Adjacency graph. The similarity score of connected nodes is 1, 0 for
that of unconnected nodes.

The graph construction step is quite important in graph-based SSL algo-
rithms. Figure 1.1 shows a sample of a simple graph in which the similarity
score is binary (1 if two nodes are connected, 0 otherwise). The affinity matrix
of the graph in Figure 1.1 is given by:

0 1 1 0 0
1 0 0 1 1
1 0 0 1 0
0 1 1 0 1
0 1 0 1 0

Thus, graph construction is an important step in graph-based SSL algo-

rithms. Compared to the normal semi-supervised learning, graph based SSL
methods has the following advantages over other approaches [76]:

1. For many applications, graph based SSL performs better than most other
SSL algorithms in comparative evaluations.

1.5 Thesis organization 5

2. Most graph based methods have a convex objective function providing
convergence guarantees, making them attractive for solving large-scale
problems.

3. For many graph-based SSL approaches, optimizing the objective can be
achieved via message passing on graphs. Each iteration of the algorithm
consists of a set of updates to each graph node. A node’s updated value is
computed based on the node’s current value as well as on the neighbors’
current set of values.

4. It is possible to derive simple fast heuristics that enable such algorithms
to scale to large parallel machines with good machine efficiency.

1.5 Thesis organization

The dissertation is structured in three parts.

• Part I, Graph construction which focuses on the problem of graph con-
struction.
It is composed of three chapters:
– Chapter 3 reviews some state-of-the-art graph construction methods.
– Chapter 4 describes the proposed graph construction method based on

data self-representativeness and Laplacian smoothness.
– Chapter 5 introduces a new sparse graph construction method using

Laplacian smoothness as a constraint.
• Part II, Semi-supervised manifold learning describes several approaches

developed for semi-supervised embedding.
Two chapters are deployed:
– Chapter 6 introduces the semi-supervised manifold learning concept

and describes different algorithms related.
– Chapter 7 presents the theory of our proposed Constrained Sparsity

Preserving Embedding and Flexible Constrained Sparsity Preserving
Embedding methods. Then the experiments on several datasets are
presented to evaluate the proposed methods and compare its perfor-
mance with other manifold learning techniques.

• Part III
– Chapter 8 summarizes and concludes the developed work and discusses

the advantages and limitations of the proposed methods. It also gives
some directions for future research.

2

Datasets and experimental setup

Contents
2.1 Face datasets . 7
2.2 Object dataset . 8
2.3 Handwritten dataset . 8

In our thesis, nine real datasets are used including face images, object
images, handwritten images and text datasets.

2.1 Face datasets

The following seven face datasets are used for experimental evaluations in the
thesis.

• Yale:1 This database contains 165 face images from 15 people and each
person has 11 images. The images are resized to 32× 32 for processing.

• ORL:2 This database contains 400 face images from 40 people and each
person has 10 images. The size of the original image is 92× 112. We resize
the images to 32× 32 for processing.

• FERET:3 The subset used contains 1400 face images of 20 individuals and
each person has 7 images. The images are resized to 32×32 for processing.

• PF01: This database contains 1751 images from 17 individuals. The im-
ages are resized to 32× 32 for processing.

• PIE:4 This database contains 1926 images from 68 individuals. The images
are resized to 32× 32 for processing.

1 http://vision.ucsd.edu/content/yale-face-database
2 http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
3 http://www.nist.gov/itl/iad/ig/colorferet.cfm
4 http://www.ri.cmu.edu/projects/project 418.html

8 2 Datasets and experimental setup

• Extended Yale B:5 The subset used contains 1680 face images of 28
individuals. The images are resized to 32× 32 for processing.

• LFW:6 The LFW (Labeled Faces in the Wild) data set is designed for
unconstrained face verification tasks. Images of this data set are collected
from the web. The original version contains more than 13000 images. The
face in this data set is misaligned. Our experiments are made on a set of
1551 images referring to 141 subjects (11 images for each subject). This
selection of images is motivated by the fact that LFW data set is designed
for face verification problems rather than face identification in our case.

• LFW-a:7 The LFW-a data set is the aligned version of LFW data set.
Our experiments are made on a set of 1551 images referring to 141 subjects
(11 images for each subject).

2.2 Object dataset

• COIL-20:8 A subset of this database contains 360 images of 20 objects
with different rotations. The square root of Local Binary Patterns (LBP)
feature is used for processing [98].

2.3 Handwritten dataset

• USPS:9 A subset of this database contains 1100 images of 10 handwritten
digits. The images are of size 16× 16 pixels.

Figure 2.1 shows image samples from the above nine datasets.

5 http://vision.ucsd.edu/∼leekc/ExtYaleDatabase/ExtYaleB.html
6 http://vis-www.cs.umass.edu/lfw
7 http://www.openu.ac.il/home/hassner/data/lfwa/
8 http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
9 http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/multiclass.html

2.3 Handwritten dataset 9

Fig. 2.1: Six image samples are shown for the nine datasets.

Part I

Graph Construction

3

Advances in graph construction

Abstract

In this chapter we will have a brief introduction about graph construc-
tion and then review the existing graph construction methods. And then we
introduce the label propagation methods which can be used to evaluate the con-
structed graphs by methods.

Contents
3.1 Introduction . 13
3.2 Overview of the existing graph construction

methods . 14
3.3 Learning and Inference . 19
3.4 Conclusion . 21

3.1 Introduction

Most real world data can have a graph structure that describes the pairwise
similarity or relationship among samples. It is realized that data graphs are a
natural way to represent the data [63, 26, 87, 104, 96]. Graph-based methods
operate on a data driven graph [112, 41, 88, 91, 94, 65, 81, 40]. In the graphs,
the nodes correspond to data samples and the weighted edges between nodes
encode the similarity between two nodes.

The most common way to construct a graph, or equivalently to esti-
mate its affinity matrix, is to construct k-nearest neighbor graphs [5] or ε-
neighborhoods graphs. Then edge weights are estimated using a similarity
function that quantifies the relationship between the sample and its neigh-
bors. It is noticed that the parameter setting in these two kinds of methods
will heavily influence the final task performance [23]. Indeed, there is no simple
way that can predict the best parameter setting for these methods. Jebara et

14 3 Advances in graph construction

al. [41] propose a graph construction method by b-matching in order to force
that all the nodes will have the same degree (degree means the number of the
edges connected to the node). In the past decade, different coding schemes
and code book generation methods have been proposed.

In [22], the authors aim at constructing hard graphs using a similar crite-
rion used by [66]. In this work, the neighborhood selection and edge weighting
are performed in a single step; the edge weight matrix is symmetric and only
non-negative edge weights are allowed. The edge weights are computed using
a constraint that forces the degree, or the weighted degree of every node, to
be equal to or greater than one. The authors devise a quadratic program that
computes the non-negative weights. In order to avoid the non-tractability of
solution, the graph is incrementally constructed by solving quadratic programs
with a subset of edges.

Wang et al. [88] use a similar criterion as Locally Linear Embedding (LLE)
to construct the graph by calculating the weights between pairs of samples.
Wei et al. [91] define a neighborhood preserving graph based on LLE criterion
for semi-supervised dimensionality reduction. Sparse representation is a wide-
ly used technique which assumes the complex signal can be represented by
some basic signals. Researchers start to be interested in sparse graphs since
they provide good performance in several post-graph learning tasks. it was
found that sparsity can be obtained by introducing ℓ1 regularization on the
unknown coefficients [94]. Qiao et al. [65] construct an ℓ1 graph with weight-
ed edges using the coefficients of the sparse coding based on the theory of
sparse representation and apply it to a locality preserving projection method
for human face recognition. Yan et al. [97] also use the coefficients of sparse
representation to construct the graph for semi-supervised classification [20]
and multi-label classification [86].

Moreover, different from the sparse representation, [90] proposed collab-
orative neighborhood representation (CNR) based on ℓ2 norm minimization.
The proposed coding was used as a variant to the Sparse Representation Clas-
sifier [94]. Thus, graph construction using the coefficients of CNR is also a good
choice. Locality-constrained Linear Coding (LLC) [89] is another algorithm
for data representation. Based on CNR and LLC, Dornaika et al. proposed a
graph construction method named weighted regularized least square [26] and
a two phase method in paper [27].

As mentioned previously, the two main steps of a graph-based SSL prob-
lem are: 1. constructing a graph over the data samples; 2. using appropriate
learning algorithm to infer the unlabeled samples in the constructed graph.

3.2 Overview of the existing graph construction methods

The graph-based SSL method acts on a graph in which a node represents a
data sample and the connected edge between the nodes is given a weight.

3.2 Overview of the existing graph construction methods 15

In the real world, the relationship between some data is naturally a well-
structured graph, but for most learning tasks it is necessary to assume that
the data samples are independent and identically distributed, and need to
construct a graph that is suitable for graph-based SSL tasks.

Consider a set of n data samples (measurements, signals or images), taken
from a m dimensional space, (x1,x2, . . . ,xn). This set is usually represented
by a m× n matrix X = [x1,x2, . . . ,xn] ∈ ℜm×n. A graph can be represented
by G = (V, E ;W), where V is the set of nodes (|V| = n), every node represents
a data sample, E is the set of edges and W is the n × n edge weight matrix
which is also called the affinity matrix. The weight of the edge (xi,xj) is given
by Wij which quantifies the similarity between the nodes xi and xj .

3.2.1 Traditional graph construction methods

k-nearest neighbor graphs and ε-neighborhood graphs are two traditional
graph construction methods.

kNN graphs: Samples xi, xj are connected by an edge if xi is in xj ’s k-
nearest neighborhood or vice versa. k is a parameter that controls the density
of the graph.

ε-neighborhood graphs: Samples xi, xj are connected by an edge if the
distance d(xi,xj) ≤ ε. The parameter ε controls neighborhood radius.

After the edges are decided, similarity will be measured to weight the
edges. The formula is shown as Eq.(3.1). For instance, sim(xi,xj) is set to 1

or to e−∥xi−xj∥2/σ2

, where σ is a parameter.

Wij =

{
sim(xi,xj), xi ∈ δk(xj) or xj ∈ δk(xi),

0, otherwise,
(3.1)

where δk(xi) represents the set of xi’s k-nearest neighbors.
Lots of work show that the choice of parameter k or ε can significantly af-

fect the results. Figure 3.1 shows kNN and ε-neighborhood graphs constructed
from a synthetic dataset [41]. We can see that the ε-neighborhood method is
quite sensitive to the choice of ε and it may return graphs with disconnected
components.

Since kNN graphs and ε-neighborhood graphs can not promise the degree
of all the nodes are the same, the authors propose an adjacency graph con-
struction via b-matching in [41] which can produce an undirected adjacency
graph matrix with the constraint that all the nodes in the graph will have the
same degree given by the parameter b. The solution was obtained by loopy
belief propagation. It was shown that the label propagation algorithm that
uses the resulting adjacency graph has better performance than that based
on kNN graph. However, the b-matching graph construction needs tuning the
parameter b.

16 3 Advances in graph construction

(a) The synthetic data (b) ε-neighborhood graph

(c) kNN graph

Fig. 3.1: kNN and ε-neighborhood graphs constructed from a synthetic
dataset.

3.2.2 Locally Linear Embedding based graph construction

Locally Linear Embedding (LLE) is a classic manifold learning method. LLE
preserves the neighborhood relationships of input samples [66]. It exploits the
local linear reconstructions by minimizing the reconstruction error of the set
of all local neighborhoods in the input space. It is discovered that the linear
coding used by LLE can be used for the graph weight matrix construction.

The affinity matrix W can be obtained by minimizing the reconstruction
error: For each original data xi, the corresponding representation coefficient
vector can be obtained by minimizing the following reconstruction error:

min
n∑

i=1

∥xi −Σxj∈δk(xi)Wijxj∥2,

s.t.
n∑

j=1

Wij = 1,

(3.2)

where δk(xi) represents the set of xi’s k-nearest neighbors.

3.2 Overview of the existing graph construction methods 17

3.2.3 Graph construction via ℓ2 minimization

3.2.3.1 Standard ℓ2 graph

Data representation methods provide coefficients between one sample and
the rest samples. Normally two similar samples will have large coefficient in
representation. Thus the coefficients obtained by representation methods can
be used for graph affinity matrix.

In paper [105], a representation method named collaborative representa-
tion is proposed. It is a standard ℓ2 coding based representation method which
is to solve an ℓ2 norm problem:

wi = argmin
wi

∥xi −Xwi∥22 + λ∥wi∥22, (3.3)

where the vectorwi is the set of coefficientsWij depicting the relation between
the sample xi and the samples xj .

The coefficients obtained above for each data sample can form the weight
matrix of the graph. The solution to wi is given by

wi = (XTX+ λI)−1XTxi. (3.4)

Thus, the affinity matrix W consists of all the coefficient vectors related
to each samples:

W = [w1,w2, · · · ,wn], (3.5)

where, wi is given by (3.4).

3.2.3.2 Weighted regularized least square minimization

The weighted regularized least square (WRLS) [26] is based on a weighted
ℓ2 regularizer that incorporates the locality of one sample by exploiting its
distances to the rest of samples. In WRLS method, the coding vector of sample
xi (i.e., the ith vector of the unknown affinity matrix W) is estimated by
minimizing the following criterion:

wi = argmin
wi

∥xi −Xwi∥22 + λ
n∑

j=1

(
P

(i)
jj wij

)2

, (3.6)

where wi = [wi1, . . . , wi,i−1, 0, wi,i+1, . . . , win]
T and P

(i)
jj = 1− e−∥xi−xj∥2

.
The solution is given by:

wi =
(
XTX+ λP(i)

)−1

XTxi, (3.7)

where P(i) is a diagonal matrix with P
(i)
jj .

When P
(i)
jj = 1, the problem will be reduced to the standard ℓ2 coding

Eq.(3.3).

18 3 Advances in graph construction

3.2.4 Sparse graph construction via ℓ1 minimization

3.2.4.1 Standard sparse graph

The traditional graphs need to choose some parameters in advance (e.g., the
neighborhood size k and the Gaussian parameter σ), while sparsity represen-
tation based graph is parameter-free. [65] and [97] proposed sparsity represen-
tation based graph construction methods in which every sample is represented
as a sparse linear combination of the rest of input samples and the coefficients
are considered as weights.

min ∥wi∥1,
s.t. xi = Xwi,

(3.8)

where wi = [wi1, . . . , wi,i−1, 0, wi,i+1, . . . , win]
T is an n-dimensional vector

in which the i-th element is equal to zero (implying that the xi is removed
from X), and the elements wij , j ̸= i denote the contribution of each xj to
reconstructing xi.

After the weight vector wi for each xi, i = 1, 2, . . . , n is obtained, the
sparse reconstructive weight matrix W = (wij)n×n can be defined as follows:

W = [w1,w2, . . . ,wn]
T , (3.9)

where wi is the optimal solution of Eq.(3.8).
A robust version of sparse reconstructive graph is to solve the following ℓ1

problem:
min ∥wi∥1 + ∥e∥1,
s.t. xi = Xwi + e.

(3.10)

The problem above can be rewritten as:

min ∥
[
wT

i eT
]T ∥1,

s.t. xi =
[
X 1

] [wi

ei

]
.

(3.11)

In the sequel, the graph obtained with the coding of Eq.(3.11) is called
robust sparse graph (ℓ1-r).

3.2.4.2 Constrained sparse graph

In [19], the authors propose a constrained sparse graph using a variant of s-
parse graph (linear reconstruction with ℓ1 norm regularization). Their method
tries to estimate the unknown graph affinity matrix by minimizing the follow-
ing criterion:

min
W
∥X−XW∥2F + α ∥W− S∥2F + β ∥W∥1,

s.t. Wij = Wji ≥ 0,Wii = 0,
(3.12)

3.3 Learning and Inference 19

where S is a known matrix that can quantify the pairwise similarity of da-
ta, and parameters α > 0, β > 0 are two balance parameters. The second
term in Eq.(3.12) can be seen as a constraint on the sought affinity matrix.
The authors deploy an algorithm that tries to iteratively update a predefined
similarity matrix until the objective criterion changes less than a threshold.
As can be seen, the algorithm can inherit the advantages of sparse graphs.
However, it needs a reference similarity matrix (the matrix S) that can be
affected by the parameter setting.

In the sequel, graph obtained with the coding of Eq.(3.12) is called con-
strained sparse graph (ℓ1-c).

3.3 Learning and Inference

Graph-based learning tasks are numerous. These include label propagation,
regression, spectral clustering, manifold learning, dimensionality reduction,
and feature selection. In the section, we focus on label propagation since it is
a key solution to many semi-supervised problems.

Once the graph is constructed, the next step in solving an SSL problem
using graph-based methods is the injection of seed labels on a subset of the
nodes in the graph followed by the process of inferring the labels for the
unlabeled nodes.

Label propagation algorithms can be very appealing since they learn from
limited amounts of labeled data combined with widely available unlabeled
data. Among the current SSL methods, graph based approaches have emerged
as methods of choice for general semi-supervised tasks in terms of accuracy and
computational efficiency. Most of the graph based SSL algorithms concentrate
primarily on the label inference part, i.e. assigning labels to nodes once the
graph is constructed.

Let’s assume a data matrixX = [x1,x2, . . . ,xl,xl+1, . . . ,xl+u] correspond-
ing to C classes, where l is the number of labeled samples and u is the number
of unlabeled ones. The total number of data samples is n = l + u. Denote
XL = [x1,x2, . . . ,xl] and XU = [xl+1,xl+2, . . . ,xl+u].

Let W denote the affinity matrix obtained by applying a given graph
construction method on the data. Let the label indicator matrix for the labeled
samples denoted byYL = [y1,y2, . . . ,yl]

T ∈ ℜl×C , where yij = 1 if xi belongs
to class j, 0 otherwise. The task is to estimate the label indicator matrix
F = [f1, f2, . . . , fn]

T ∈ ℜn×C so that the label of unlabeled samples can be
inferred.

There are several label propagation algorithms (also called classifiers):
Gaussian Random Fields (GRF) [114], Local and Global Consistency (LGC)
[111], Robust multi-class Graph Transduction (RMGT) [51]. Recently a new
label propagation method is proposed coined Label Prediction via Deformed
Laplacian (LPDGL) [32] which can be regarded as an extension of LGC. The

20 3 Advances in graph construction

author of LPDGL method claimed that their label propagation method can
out perform the other existing label propagation algorithms.

Moreover, Baluja et al. proposed Adsorption [3] which can be regarded as
a general framework for transductive learning. Talukdar and Crammer pro-
posed MAD (Modified Adsorption) [80] based on this. The objective used in
Quadratic Criteria (QC) [15] is similar to that in MAD. Orbach and Crammer
proposed transduction with Confidence (TACO) [61]. The other algorithms
can be found in [75, 51, 52].

The above SSL algorithms are transductive [16], which means that the
algorithms can not be used directly for new samples. The algorithms which
can be applied directly on new unseen data instances are called inductive
methods. The above trasductive methods can be suitable for multiclass classi-
fication tasks, while inductive methods are normally for binary classification.
Manifold Regularization [6, 72, 73, 59] is the representative example of the
inductive methods. Laplacian Regularized Least Squares (LapRLS) [?] and
Laplacian Support Vector Machine (LapSVM) [?] are two popular variants of
the manifold regularization.

3.3.1 Gaussian Random Fields

The GRF algorithm estimates the unknown labels by solving the following
optimization problem:

min Tr(FTLF),

s.t. FL = YL,
(3.13)

where FL = [f1, f2, . . . , fl]
T , L is the graph Laplaian and is given by L =

(Dr −W) + (Dc −WT), Dr and Dc are diagonal matrices whose elements
are the row and column sums of the matrix W, respectively.

The solution can be obtained by:

FU = −L−1
UULULYL, (3.14)

where FU = [fl+1, fl+2, . . . , fn]
T , and L =

[
LLL LLU

LUL LUU

]
.

3.3.2 Local and Global Consistency

The LGC algorithm infers the labels by minimizing the following criterion:

1

2

 n∑
i,j=1

Wij∥
1√
Dii

fi −
1√
Djj

fj∥2 + µ
l∑

i=1

∥fi − yi∥2
, (3.15)

where µ > 0 is a balance parameter.
The solution to Eq.(3.15) is:

F =
µ

1 + µ
(I− 1

1 + µ
W̃)−1Y, (3.16)

where W̃ = D−1/2WD−1/2 and I is an n× n identity matrix.

3.4 Conclusion 21

3.3.3 Label prediction via deformed graph Laplacian

Let W denote the affinity matrix obtained by applying a given graph con-
struction method on the data. Let the label indicator matrix for the labeled
samples denoted byY = [y1,y2, . . . ,yn]

T ∈ ℜn×C , where yij = 1 if xi belongs
to class j, yij = −1 if xi does not belong to class j, 0 if xi is unlabeled. The
task is to estimate the label indicator matrix F = [f1, f2, . . . , fn]

T ∈ ℜn×C so
that the label of unlabeled samples can be inferred.

The LPDGL algorithm estimates the unknown labels by solving the fol-
lowing optimization problem:

min
F

1

2
{βTr(FTLF) + γTr(FT (I−D/v)F) + ∥U(F−Y)∥2F }, (3.17)

where L is given by L = D−W, D is diagonal matrices with Dii =
∑

j Wij ,
v =

∑
i Dii, Un×n is a diagonal matrix with Jii = 1 if xi is labeled and 0

otherwise. β and γ are two parameters.
The solution can be obtained by:

F = [U+ βL+ γ(I−D/v)]−1UY. (3.18)

3.4 Conclusion

In this chapter, we described several existing graph construction techniques
and label propagation methods as semi-supervised classifiers.

4

Graph Construction Based on Data
Self-representativeness and Laplacian
Smoothness

Abstract

In this chapter, we will present our proposed method based on data self-
representativeness and Laplacian smoothness (SRLS). Then we will introduce
three variants of it. The first variant is given by a two phase SRLS method
(TPSRLS). The remaining variants are given by two kernelized versions of
SRLS. In addition to these three variants, we also propose a direct solution
to SRLS that is able to handle the complexity of the Laplacian smoothness
term that is cubic in the graph coefficients; The chapter includes experimental
evaluation of the graph when applied to the task of graph-based semi-supervised
learning.

Contents
4.1 Introduction . 23
4.2 Graph construction based on data

self-representativeness and Laplacian smoothness 24
4.3 Two phase SRLS (TPSRLS) 26
4.4 Kernelized variants . 27
4.5 A direct solution to Kernel SRLS 29
4.6 Performance evaluation . 31
4.7 Conclusion . 42

4.1 Introduction

In essence, the traditional graph construction methods including kNN graph,
ε-neighborhood graph and LLE graph are in two processes: adjacency con-
struction based on the neighbors of each sample and weight calculation.

The LLE graph is based on finding a linear combination for each sample
of its neighbors. The combination coefficients are are used as a measurement

24 4 Graph Construction Based on Data Self-representativeness and Laplacian Smoothness

of the weights between two samples. In paper [97], the authors point out that
the representation coefficients obtained by data representation methods based
on reconstruction error minimization affect the similarity between samples.
Thus, these coefficients can be used as a measurement of the weights over
the edges between samples. In this way, graph construction based on data
representation can construct the graph in one single process by solving a
minimization problem.

ℓ2-norm minimization based data representation methods are common da-
ta representation methods. Since the regularizer of these methods is quadratic
term, the closed-form solution to the problem can be obtained. At he same
time, the ℓ2-norm based methods are normally in low computational complex-
ity and easy to implement. Lots of ℓ2-norm minimization based data repre-
sentation methods have been proposed [105, 71, 90].

4.2 Graph construction based on data
self-representativeness and Laplacian smoothness

In classic self-representation problems, the goal is to obtain a representation
matrix B = [b1,b2, . . . ,bn], which is the solution to the following regularized
problem:

B = argmin
B
∥X−XB∥2F + λ ∥B∥2F . (4.1)

The norm ∥·∥F denotes the Frobenius norm of a matrix. B can be regarded
as the asymmetric weight matrix associated to the training samples. In other
words, B is the coding matrix obtained when the dictionary is set to the data
themselves. For every sample xi, bi is the coding vector needed to construct
the sample xi, from the whole data set of samples.

In ideal cases, the coding vectors of similar original samples should also
be similar. For instance, if xi is very similar to xj , then the corresponding
coding vectors bi and bj should be close to each other. Mathematically, this
property is known by Laplacian smoothness criterion. Figure 4.1 is a visual
illustration for principle of Laplacian smoothness.

For all data pairs, this criterion is given by:∑
i,j

∥bi − bj∥2 Wij = Tr(B (D−W)BT) = Tr(BLBT), (4.2)

where Tr(·) denotes the trace of a matrix; L is the graph Laplacian of the
weight matrix W, i.e. L = D−W, D is a diagonal matrix with Dii =

∑
j Wij

and W is a given graph.
We propose to construct an affinity matrix B that simultaneously uses

data self-representation and Laplacian smoothness. Thus, our coding matrix
will be the solution to the following minimization problem:

B = argmin
B
∥X−XB∥2F + λ ∥B∥2F + ρTr(BLB BT), (4.3)

4.2 Graph construction based on data self-representativeness and Laplacian smoothness 25

Fig. 4.1: Laplacian smoothness criterion (if xi and xj are close, then bi and
bj should be similar).

where LB is the Laplacian matrix of the affinity matrix B, and λ and ρ are
two positive balance parameters.

The proposed method (SRLS) is to solve the problem depicted in Eq.(4.3).
Notice that if LB is fixed, the functional in the Eq.(4.3) will be convex and have
a closed form solution with a global minimum. However, the graph Laplacian
is unknown since the graph itself is unknown. It can be seen that the optimiza-
tion criterion in (4.3) poses a chicken-and-egg problem because the Laplacian
matrix LB needs to be known for computing B. To solve that, we propose
a new recursive method to get the optimal coding matrix (equivalently the
graph). The intuition behind our idea is as follows. If we start with a rough
graph, its corresponding Laplacian will impose smoothness of the vectors of
the unknown coding matrix B. Solving for B using the optimization problem
in Eq.(4.3) with a fixed Laplacian matrix, the obtained solution satisfies data
self-representation, regularized norm, and the Laplacian smoothness. The de-
rived symmetric graph for the current estimated B will be better graph (in the
sense of Laplacian smoothness). Therefore, successive minimizations having
the form of Eq.(4.3) will improve the estimation of the coding matrix from
which the final graph is derived. Note that in each minimization the current
estimated coding matrix is used to generate the Laplacian matrix in the next
minimization. In practice, we find that three to four successive minimizations
of Eq.(4.3)) are enough to get a stable graph. This will be demonstrated in
the experimental section.

The algorithm proceeds as follows. Firstly, a rough weight matrix W is
computed by using any traditional graph construction method1. The graph
Laplacian is then calculated by L = D−W.

Secondly, the matrix B is estimated by minimizing the following criterion:

B = argmin
B
∥X−XB∥2F + λ ∥B∥2F + ρTr(BLBT). (4.4)

Let Q(B) = ∥X−XB∥2F + λ ∥B∥2F + ρTr(BLBT), we have

1 The experimental section will show that even random graphs can also be used as
initial graphs.

26 4 Graph Construction Based on Data Self-representativeness and Laplacian Smoothness

∂Q(B)

∂B
= −2XTX+ 2XTXB+ 2λB+ 2ρBL

= 2(XTX+ λ I)B+ 2ρBL− 2XTX.

(4.5)

The derivatives of Q(B) w.r.t. the B should equal to 0 when Q(B) reaches

the minimum. ∂Q(B)
∂B = 0 yields:

(XTX+ λ I)B+ ρBL = XTX. (4.6)

The above has the form of a Sylvester equation (YB + BZ = C). By
solving this equation, we get the matrix B.

Thirdly, W is obtained by W = (|B|+ |BT |)/2.
The last two steps are repeated until B does not change. Thus, the proce-

dure of SRLS is summarized in Algorithm 1.

Input: The original data matrix X, a given rough weight matrix W0, λ, and
ρ

Output: SRLS graph W

Set t = 0, W0, ϵ (a small positive threshold);
repeat

Calculate the graph Laplacian of Wt, i.e. Lt = Dt −Wt;
Get Bt+1 by solving the following Sylvester equation
(XTX+ λ I)B+ ρBLt = XTX ;

Calculate new Wt+1 = (|Bt+1|+ |BT
t+1|)/2;

t = t+ 1;

until ∥Wt −Wt−1∥2F /n2 < ϵ;
Get final SRLS graph W = Wt.

Algorithm 1: SRLS graph construction

It should be noticed that by setting the parameter ρ to zero, we get a
graph construction method that is based on data self-representativeness only.
In the sequel, we call this method ℓ2 graph method. Indeed, if ρ = 0, the
problem depicted in Eq.(4.3) reduces to n problems having exactly the form
of Eq.(3.3).

Several iterative schemes to solve Sylvester equations have been proposed;
for methods focusing on large sparse systems one can use the method described
in [12].

4.3 Two phase SRLS (TPSRLS)

The proposed SRLS method is mainly based on data self-representativeness
and Laplacian smoothness. In order to incorporate a kind of sparsity in the

4.4 Kernelized variants 27

final graph, we invoke a second phase of coding aiming at pruning many
samples and estimating new coding coefficients.

Let B = [b1,b2, . . . ,bn] be the optimal graph affinity obtained by the S-
RLS method mentioned above. LetW be the corresponding symmetric affinity
matrix. The row vector (or column vector) wi contains a lot of elements that
are small. This means that the corresponding samples and xi are not highly
similar. To make the final graph sparser, we remove the edges in the graph
with small weight (i.e., we vanish these weights) and perform a new coding
over the remaining samples. It is reasonable to set an adaptive threshold to
eliminate small weights in each wi. The threshold function can be set as

Th(wi) = STAT (wi1, wi2, . . . , win), (4.7)

where STAT (wi1, wi2, . . . , win) is a statistical function that can be set as a
threshold. One simple choice is the mean, i.e. Th(z) = 1

n

∑n
j=1 zj , where z is

any n-dimensional vector.
Let Ri denote the set of samples whose Wij is greater than the chosen

threshold Th(wi), i.e., Ri = {xj | Wij > Th(wi)} = {x1,x2, . . . ,xns} where
ns is the cardinality of Ri. Let X

(i)
s be the d×ns data matrix associated with

Ri. Then, the new coding vector w′
i associated with the selected examples

will be solved using the Locality-constrained Linear Coding formula [27]:

w′
i =

(
X

(i)T
i X

(i)
i + σP(i)

)−1

X
(i)T
i xi, (4.8)

where P(i) is a diagonal matrix and P
(i)
jj is given by:

P
(i)
jj =

1

Wij
. (4.9)

Thus, the procedure of TPSRLS is shown in Algorithm 2.

4.4 Kernelized variants

In this section, we introduce two kernelized versions of the proposed SRLS
method.

4.4.1 Hilbert space

The motivation behind the use of Kernel trick is that the original SRLS as-
sumes a linear model for the data self-representativeness. However, for some
data sets this assumption may not be very realistic. Thus, by adopting a
non-linear model for the data self-representativeness, it is expected that the
resulting coding coefficients can better quantify the similarity among sam-
ples and hence, better graphs can be obtained whenever data have non-linear
distribution.

28 4 Graph Construction Based on Data Self-representativeness and Laplacian Smoothness

Input: The original data matrix X, a given rough weight matrix W0, λ, and
ρ

Output: TPSRLS graph W′

First Phase: SRLS graph;
Calculate SRLS graph W using Algorithm 1;

Second Phase: TPSRLS graph;
for i = 1, . . . , n do

Compute a sample based threshold using Eq.(4.7);
Form the set of samples Ri = {xj |Wij > Th(wi)};
Form the reduced d× ns data matrix X

(i)
s from Ri where |Ri| = ns;

Form the new diagonal weight matrix P(i) using Eq.(4.9) ;

Calculate the vector w′
i as w

′
i =

(
X

(i)T
s X

(i)
s + σP(i)

)−1

X
(i)T
s xi;

Set the i-th row of W′ by using w′
i ;

end

Algorithm 2: TPSRLS graph construction

Let Φ : X → Φ(X) be a non-linear projection that maps original samples
onto a space of high dimension. In the new space, the data are represented by
the matrix Φ = [ϕ(x1), ϕ(x2), . . . , ϕ(xn)]. LetKij = ϕT (xi)ϕ(xj) be a similar-
ity measure between samples xi and xj . K(·, ·) can be Gaussian, polynomial,
or any other function that satisfy Mecer’s conditions. It is easy to show that
the matrix K will be given by ΦT Φ.

The kernelized version of the SRLS method can be obtained by replacing
the data with their non-linear projection. Thus, we have:

B = argmin
B
∥Φ− ΦB∥2F + λ ∥B∥2F + ρTr(BLB BT). (4.10)

After some algebraic manipulation, we can get a similar expression for the
criterion to be minimized. Indeed, the term XT X is replaced by K = ΦT Φ.
Thus, we can use a similar iterative algorithm. The steps of the kernel version
are described in Algorithm 3.

4.4.2 Column generation

Column generation replaces each sample xi by a vector of similarities of that
sample with the training samples. The data matrix X is thus replaced by the
matrixG = [g1,g2, . . . ,gn], where each gi is formed by Gij = sim(xi,xj), j =
1, ..., n is one kind of similarity between the sample xi with sample xj .

The optimization problem becomes:

B = argmin
B
∥G−GB∥2F + λ ∥B∥2F + ρTr(BLB BT). (4.11)

The solution to Eq.(4.11) is again similar to Algorithm 1, replacing X by
G. We can notice that G = K.

4.5 A direct solution to Kernel SRLS 29

Input: The original data matrix X, a given rough weight matrix W0, λ, and
ρ

Output: Kernel SRLS graph W

Set t = 0, B0 = W0, ϵ (small positive threshold);
Compute K, where Kij = sim(xi,xj);
repeat

Calculate the graph Laplacian of Wt, i.e. Lt = Dt −Wt;
Get Bt+1 by solving the Sylvester equation (K+ λ I)B+ ρBLt = K ;
Calculate new Wt+1 from Bt+1;
t = t+ 1;

until ∥Bt −Bt−1∥2F /n2 < ϵ;
Get final Kernel SRLS graph W = Wt.

Algorithm 3: Kernel SRLS graph construction

The steps of the column generation algorithm are described in Algorithm
4.

Input: The original data matrix X, a given rough weight matrix W0, λ, and
ρ

Output: CG SRLS graph W

Set t = 0, B0 = W0, ϵ (small positive threshold);
Compute G, where Gij = sim(xi,xj);
repeat

Calculate the graph Laplacian of Wt, i.e. Lt = Dt −Wt;
Get Bt+1 by solving the Sylvester equation
(GTG+ λ I)B+ ρBLt = GTG ;
Calculate new Wt+1 from Bt+1;
t = t+ 1;

until ∥Bt −Bt−1∥2F /n2 < ϵ;
Get final CG SRLS graph W = Wt.

Algorithm 4: Column Generation of SRLS graph construction

4.5 A direct solution to Kernel SRLS

In the previous section, we solve the Kernel SRLS problem in a cascade way.
In this section, we try to solve it in one step. Let’s look into the Kernel SRLS
criterion: minB {∥Φ− ΦB∥2F + λ ∥B∥2F + ρTr(BLB BT)}.

Since B is asymmetric, its Laplacian matrix will be given by: LB = Dr +
Dc −B−BT . Then the above criterion becomes:

30 4 Graph Construction Based on Data Self-representativeness and Laplacian Smoothness

min ∥Φ− ΦB∥2F + λ ∥B∥2F
+ ρTr(B(Dr +Dc −B−BT)BT),

s.t. Bij ≥ 0 andBii = 0,

(4.12)

where Dr and Dc are two diagonal matrix whose elements are the row sums
and the column sums of B, respectively.

Note that minimizing Eq.(4.12) is subject to Bij ≥ 0. Let Z with Zij ≥ 0
be the corresponding Lagrange multipliers. Consider the Lagrange function
F (B) as:

F (B) =∥Φ− ΦB∥2F + λ ∥B∥2F
+ ρTr(B(Dr +Dc −B−BT)BT) + Tr(ZBT).

(4.13)

It’s easy to show that we have Tr(ZBT) =
∑

ZijBij .
Then taking the derivative of F (B) with respect to B leads to:

∂F (B)

∂B
=2KB− 2K+ 2λB+ ρ(Mr(B) +Mc(B))

− 2ρ(BB+BTB+BBT) + Z,

(4.14)

where Mr(B) = ∂Tr(BDrB
T)/∂B, Mc(B) = ∂Tr(BDcB

T)/∂B and K =

ΦTΦ. One suggestion for K is Gaussian Kernel, i.e. Kij = e−∥xi−xj∥2/σ2

.
It’s difficult to have simple expressions for Mr(B) and Mc(B). But we can

have a detailed look into every elements of them. Let B = [b1,b2, . . . ,bn].
Then we can have Tr(BDrB

T) =
∑

k Dr(k)∥bk∥2, where Dr(k) is the k-

th diagonal elements of Dr, i.e. Dr(k) =
∑

t Bkt. Similarly, Tr(BDcB
T) =∑

k Dc(k)∥bk∥2, where Dc(k) =
∑

t Btk.

Then the derivative of Tr(BDrB
T) and Tr(BDcB

T) with respect to Bij

can be obtained:

∂Tr(BDrB
T)

∂Bij
= ∥bi∥2 + 2BijDr(j), (4.15)

and
∂Tr(BDcB

T)

∂Bij
= ∥bj∥2 + 2BijDc(j). (4.16)

With these, every element of M = Mr(B) +Mc(B) can be obtained:

Mij = (Mr(B) +Mc(B))ij

=
∂Tr(BDrB

T)

∂Bij
+

∂Tr(BDcB
T)

∂Bij

= ∥bi∥2 + ∥bj∥2 + 2BijDr(j) + 2BijDc(j).

(4.17)

Then ∂F (B)/∂Bij can be:

4.6 Performance evaluation 31

∂F (B)

∂Bij
=(2KB− 2K+ 2λB− 2ρ(BB+BTB+BBT))ij

+ Zij + ρMij .

(4.18)

With ∂F (B)/∂B = 0 and the Karush-Kuhn-Tucker (KKT) [38, 28] con-
dition ZijBij = 0, we will have:

(2KB− 2K+ 2λB− 2ρ(BB+BTB+BBT) + ρM)ijBij = 0. (4.19)

An iteratively updating rule on B is designed as

Bij ←
2Kij + 2ρ(BB+BTB+BBT)ij

(2KB+ 2λB+ ρM)ij
Bij . (4.20)

Thus, we can use an iterative algorithm. Note the initial B0 will be impor-
tant since when Bij will maintain 0 when it once become 0 in the iteration.
One simple choice of the initial B0 is a matrix with all the elements is 1 except
the diagonal elements is 0. In other word, B0 = E− I, where I is the identity
matrix.

The steps of the proposed method are described in Algorithm 5.

Input: The original data matrix X, initial matrix B0 λ, ρ and ϵ (a small
positive threshold)

Output: DSRLS graph W

Set t = 0;

Calculate matrix K = XTX;
repeat

Calculate matrix Mt using Eq.(4.17);
Update matrix B with updating rule

Bij ← 2Kij+2ρ(BtBt+B
T
t Bt+BtB

T
t)ij

(2KBt+2λB+ρMt)ij
Bij ;

t = t+ 1;

until ∥Bt −Bt−1∥2F /n2 < ϵ;

Calculate final DSRLS graph matrix W = (|B|+ |BT |)/2;
Algorithm 5: DSRLS graph construction

4.6 Performance evaluation

In general, the estimated graph alone cannot lend itself to an easy assessment
of the method that constructs it. Indeed, given a real data set as well as a
machine learning task that uses this data set, it is very often challenging if
not unfeasible to know in advance the ideal graph for that data set and for

32 4 Graph Construction Based on Data Self-representativeness and Laplacian Smoothness

that task. Thus, in our work, the graph-construction methods are assessed
by the performance of the post-graph construction tasks. In this section, we
evaluate the proposed graph construction methods in two main applications
of computer vision: face recognition and object categorization. For both prob-
lems, we use semi-supervised label propagation based on the built graph. The
performance will be mainly given by recognition and classification accuracy.
The construction methods used for comparison are kNN graph [5], LLE graph
[88], ℓ2 graph [105], Standard ℓ1 graph (ℓ1-s) [65], Robust ℓ1 graph (ℓ1-r) [94],
and WRLS graph [26].

In this section, we evaluate the proposed algorithm on several real databas-
es. To this end, four face databases are used: ORL, FERET, Extended Yale
B and PF01, and one object database COIL-20 is used.

4.6.1 Comparison among several graph construction methods

To evaluate the performance of our proposed methods, we compare them with
several other graph construction methods including KNN graph and LLE
graph, standard ℓ1 graph and robust ℓ1 graph, the simple linear coding graph
(ℓ2 graph) and WRLS method. Our proposed methods are: SRLS, TPSRL-
S, SRLS-CG, SRLS-K, and DSRLS. For every graph construction method,
several values for the parameter are used. We then report the best recogni-
tion accuracy (best average recognition rate) of all methods from the best
parameter configuration.

kNN and LLE methods have the neighborhood size parameter k. WRLS
method has the parameter λ. The five proposed methods have two parameters
λ and ρ, the initial W0 and the threshold ϵ to set. In our experiments, k is
chosen from 3 to 60 with a step of 3, λ in the WRLS method is simply set
to 1, λ and ρ are chosen from {10−4, 10−3, 0.01, 0.1, 1, 10}, W0 is set by the
kNN graph when k = 3 and ϵ = 10−6. For the two kernel versions of SRLS,
we use the Gaussian Kernel sim(xi,xj) = e−∥xi−xj∥2/σ2

. The parameter of
the Gaussian is set to the average distances among the samples.

After we construct the graphs on the original data, we run the label prop-
agation methods LGC and GRF as classifiers. In LPDGL, the parameter β
and γ are simply set to 1. For label propagation, we randomly split the whole
data set into a labeled part and unlabeled part and repeat this process 10
times. The final performance (recognition rate) is given by the average.

Tables 4.1, 4.2, 4.3, 4.4, 4.5 illustrate the method comparison obtained
with the GRF label propagation method on five datasets.

Table 4.1 shows the mean recognition rates over the 10 random splits on
ORL with different graph construction methods. In this table, different label
numbers l are used.

For ORL data set, the column generation version of SRLS performs best
among all the graph construction methods. For this dataset, the two phase
method and kernelized variants have improved the quality of the final graph.
The direct method DSRLS has also improved its quality.

4.6 Performance evaluation 33

Table 4.1: Recognition rates (%) on ORL by GRF.

Method\l 1 2 3 4 5

kNN [5] 75.1 85.2 89.6 92.3 94.2
LLE [88] 74.1 83.7 88.6 93.1 96.2
ℓ1-s [65] 76.8 86.7 91.4 93.9 95.6
ℓ1-r [94] 64.8 80.4 87.6 91.2 93.8
ℓ2 [105] 66.3 80.9 86.9 91.0 93.5
WRLS [26] 60.3 76.8 85.6 90.5 93.1

SRLS 67.4 82.5 87.9 91.0 93.4
TPSRLS 74.6 85.5 91.1 93.7 95.5
SRLS-CG 83.8 89.6 93.7 95.3 97.1
SRLS-K 71.1 84.1 89.3 92.8 94.3
DSRLS 75.1 85.9 92.0 94.2 96.3

Table 4.2 shows the mean recognition rates on FERET with different graph
construction methods. In the table, the number of labeled samples varies from
1 to 5 samples per class. On FERET, the kernel version of SRLS method
performs best among all the graph construction methods. We can observe
that the performance of five proposed methods was similar to or better than
the best sparse method (i.e., ℓ1-s).

Table 4.3 shows the mean recognition rates on Extended Yale B with
different graph construction methods. Several label percentages are used in the
interval 10%-30%. For Extended Yale B data set, the robust ℓ1 graph performs
best among all the graph construction methods. SRLS method performs a
slightly less than the robust ℓ1 graph. The recognition rates of the TPSRLS
is quite close to that of the robust ℓ1 graph.

Table 4.4 shows the mean recognition rates on PF01. Several label numbers
are used (2-10 samples). On PF01, the recognition rates of SRLS is quite close
to that of the robust ℓ1 graph. The column generation one and the kernel one
outperform the other graph construction methods.

Table 4.5 shows the mean recognition rates on COIL-20 with different
graph construction methods. 6, 9 and 12 labeled samples per class are used
for label propagation. On COIL-20, TPSRLS performs best among all the
methods in general.

Table 4.6 shows the mean recognition rates on ORL with different graph
construction methods when the label propagation method is the LGC. On
ORL, the basic kernel version of SRLS performs best among all the graph
construction methods.

Table 4.7 shows the mean recognition rates on FERET with different graph
construction methods when the label propagation method is the LGC. On
FERET, the column generation version of SRLS method performs best among
all the graph construction methods.

34 4 Graph Construction Based on Data Self-representativeness and Laplacian Smoothness

Table 4.2: Recognition rates (%) on FERET by GRF.

Method\l 1 2 3 4 5

kNN 22.4 30.9 39.0 45.2 51.0
LLE 31.3 43.9 55.7 66.9 72.7
ℓ1-s 40.2 56.0 66.5 72.7 74.8
ℓ1-r 39.1 57.3 70.6 79.3 81.4
ℓ2 34.7 52.5 64.3 69.9 71.5
WRLS 39.1 57.0 71.4 78.6 80.4

SRLS 37.9 54.8 66.6 71.9 72.5
TPSRLS 36.5 55.4 69.7 78.5 80.6
SRLS-CG 47.4 65.7 77.7 84.3 85.3
SRLS-K 47.5 65.8 78.0 84.7 86.4
DSRLS 44.5 61.4 72.1 79.4 81.9

Table 4.3: Recognition rates (%) on Extended Yale B by GRF.

Method\l 6 13 19

kNN 81.7 89.1 84.1
LLE 66.3 74.9 89.3
ℓ1-s 79.3 86.6 90.0
ℓ1-r 90.5 94.0 96.1
ℓ2 85.4 93.3 95.3
WRLS 82.7 91.3 94.7

SRLS 86.1 93.4 95.5
TPSRLS 88.5 93.4 95.7
SRLS-CG 83.7 91.8 95.0
SRLS-K 82.8 91.5 95.4
DSRLS 87.2 93.9 91.7

Table 4.4: Recognition rates (%) on PF01 by GRF.

Method\l 2 4 6 8 10

kNN 35.5 43.3 47.0 50.6 53.8
LLE 34.6 43.6 51.2 64.9 73.7
ℓ1-s 40.3 50.4 55.9 59.3 63.6
ℓ1-r 57.5 69.7 75.6 80.1 86.0
ℓ2 54.3 69.8 76.6 80.7 85.1
WRLS 54.7 69.6 75.5 79.7 85.1

SRLS 57.2 71.6 77.4 81.2 85.8
TPSRLS 59.0 71.1 78.0 82.4 87.7
SRLS-CG 60.5 74.4 79.6 83.6 88.4
SRLS-K 58.8 73.9 79.3 83.7 89.0
DSRLS 47.9 62.3 68.1 72.7 78.7

4.6 Performance evaluation 35

Table 4.5: Recognition rates (%) on COIL-20 by GRF.

Method\l 6 9 12

kNN 87.8 88.9 90.3
LLE 91.6 94.3 96.7
ℓ1-s 57.0 59.1 60.4
ℓ1-r 92.9 94.9 96.9
ℓ2 84.9 87.7 90.2
WRLS 83.7 85.3 88.6

SRLS 85.5 87.9 90.5
TPSRLS 93.7 95.3 96.7
SRLS-CG 90.9 92.3 94.1
SRLS-K 90.2 92.1 94.0

Table 4.8 shows the mean recognition rates on Extended Yale B with
different graph construction methods when the label propagation method is
the LGC. On Extended Yale B, the column generation version of SRLS method
performs best among all the graph construction methods.

Table 4.6: Recognition rates (%) on ORL by LGC.

Method\l 1 2 3 4 5

kNN 67.0 81.5 85.2 90.4 92.4
LLE 69.0 83.1 85.0 86.2 89.0
ℓ1-s 68.6 83.0 89.4 92.5 94.6
ℓ1-r 47.6 65.6 77.3 84.2 88.8
ℓ2 68.8 81.4 86.7 90.5 93.1
WRLS 53.8 71.6 80.4 87.0 90.4

SRLS 70.0 82.7 88.1 91.0 93.5
TPSRLS 69.7 82.5 88.9 92.3 94.0
SRLS-CG 70.7 83.7 89.2 92.4 94.3
SRLS-K 75.1 86.1 90.2 93.7 95.9

Table 4.9 shows the mean recognition rates on Extended Yale B with
different graph construction methods when the label propagation method is
the LPDGL. Generally, the proposed algorithms can be better than the other
graph construction method on Extended Yale B by LPDGL.

Table 4.10 shows the mean recognition rates on Extended Yale B with 6
labeled samples when different label propagation methods are used. In general,
the proposed methods can outperform the other graph construction methods
whatever label propagation method is used.

Analysis of results: According to the results reported in the previous
tables, we can make the following observations:

36 4 Graph Construction Based on Data Self-representativeness and Laplacian Smoothness

Table 4.7: Recognition rates (%) on FERET by LGC.

Method\l 1 2 3 4 5

kNN 19.6 27.9 34.7 40.8 45.8
LLE 32.3 49.5 62.4 71.8 75.8
ℓ1-s 45.7 61.4 71.2 77.0 78.7
ℓ1-r 30.2 47.8 62.0 73.7 77.7
ℓ2 44.9 59.5 68.7 72.6 72.7
WRLS 32.2 50.3 63.5 71.3 73.9

SRLS 45.2 59.5 69.0 73.4 73.6
TPSRLS 37.1 54.4 67.5 76.6 79.4
SRLS-CG 50.3 67.7 78.6 85.2 87.0
SRLS-K 50.0 67.0 78.4 84.7 86.0

Table 4.8: Recognition rates (%) on Extended Yale B by LGC.

Method\l (%) 10 20 30

kNN 81.2 83.3 84.9
LLE 84.1 88.1 89.7
ℓ1-s 83.2 89.3 91.9
ℓ1-r 75.9 86.3 91.8
ℓ2 88.1 92.3 94.4
WRLS 82.7 91.4 94.6

SRLS 89.2 94.1 95.8
TPSRLS 87.2 92.9 95.2
SRLS-CG 84.5 92.2 92.5
SRLS-K 85.7 92.4 95.2

Table 4.9: Recognition rates (%) on Extended Yale B by LPDGL.

Method\l (%) 10 20 30

kNN 81.3 83.7 85.1
LLE 84.5 86.2 87.8
ℓ1-s 84.8 91.5 94.9
ℓ1-r 83.2 89.1 91.7
ℓ2 89.3 93.8 95.2
WRLS 84.6 91.4 94.5

SRLS 89.3 93.9 95.4
TPSRLS 89.8 93.6 95.5

4.6 Performance evaluation 37

Table 4.10: Recognition rates (%) on Extended Yale B with 6 labeled by
different label propagation algorithms.

Method GRF LGC LPDGL

kNN 81.7 81.2 81.3
LLE 66.3 84.1 84.5
ℓ1-s 79.3 83.2 84.8
ℓ1-r 90.5 75.9 83.2
ℓ2 85.4 88.1 89.3
WRLS 82.7 82.7 84.6

SRLS 86.1 89.2 89.3
TPSRLS 88.5 87.2 89.8

• In general, the proposed methods (including the two kernelized versions)
outperform the other methods. The two phase SRLS can improve the
recognition rate for both label propagation methods (GRF and LGC).

• The proposed SRLS is almost always superior to the classic ℓ2 method
suggesting that Laplacian smoothness has contributed to get more infor-
mative graphs.

• In most cases, the kernelized versions of SRLS provided the best perfor-
mances except for Extended Yale B.

• The proposed SRLS graph can be competitive to the robust ℓ1 graph. It
can outperform it when LGC is used. We stress the fact that it is more
efficient to construct SRLS graph than robust ℓ1 graph.

• In general, DSRLS performance depends on the datasets used. in general,
it outperforms the SRLS and many existing state-of-the art methods.

• For the used datasets, the kernelized versions of the SRLS gave the best
results in most cases.

4.6.2 Stability of the proposed method

In this section, we will empirically show that independently of the initial
weight matrix W0 used by the Laplacian smoothness criterion, the successive
minimizations adopted by the SRLS method will provide the same graph. This
will validate our assumption for the adopted algorithm for SRLS, TPSRLS,
and the two kernel versions. To this end, we conduct the following experiment.
We initialize the SRLS method with different weight matrices W0. Here we
use the kNN graph, the robust ℓ1 graph and a random one for initial graphs.
For each such initialization, we run the iterative SRLS method in order to
compute the optimal matrix B. We then compare the obtained graphs as
well as performance obtained with them. To evaluate the trend of Laplacian
smoothness term, we calculate the values of Tr(BLBT) in every iteration with
a fixed L. The fixed Laplacian matrix is set for two types of graphs (KNN

38 4 Graph Construction Based on Data Self-representativeness and Laplacian Smoothness

graph, robust l1 graph). We also use the graph that is iteratively provided by
SRLS.

In this comparison, we use the performance of the GRF label propagation
method based on the affinity matrices B obtained at convergence (for all types
of initialization). We also calculate the differences between the B’s for every
iteration and the differences between the optimal B computed with different
initial weight matrices. For PF01, λ is set to 0.01 and ρ = 0.1 , while for the
other data sets, we set λ = 1, ρ = 1. We used 3 labeled samples per class with
LGC for FERET and 4 labeled samples with GRF for PF01.

Table 4.11-Table 4.13 show the obtained results on FERET and Table
4.14-Table 4.16 show the results on PF01. Table 4.17 illustrates the values of
Tr(BLBT) in every iteration for five different data sets.

Table 4.11 and Table 4.14 show the average recognition rates associated
with the affinity matrix B obtained at each iteration of the SRLS method. In
each Table, three different initial weight matrices are used.

Table 4.12 and Table 4.15 illustrate the difference between the graphs
obtained in two consecutive iterations Bt and Bt+1, that is the Frobenius
norm ∥Bt−Bt−1∥2, B0 = W0. Table 4.13 and Table 4.16 show the difference
between the optimal Bs obtained by different initial weight matrices W0.
Here, B∗

knn refer to the optimal B obtained by SRLS when the initial weight
matrix was the kNN. B∗

ℓ1 refer to the optimal B obtained by SRLS when the
initial weight matrix was set to the robust ℓ1 graph.B

∗
rand refers to the optimal

B obtained by SRLS when the initial weight matrix was set to completely
random graph.

Table 4.11: Recognition rates (%) of each Bi in iteration on FERET with 3
labeled every class by LGC.

W0\Iteration (t) 0 1 2 3 4

kNN 34.7 67.0 69.0 69.0 69.0
ℓ1-r 62.0 69.4 69.0 69.0 69.0
random 0.6 68.6 69.0 69.0 69.0

Table 4.12: Differences between Bt and Bt+1 in iteration on FERET.

W0 ϵ1 ϵ2 ϵ3 ϵ4

kNN 1.8e4 6.2e-1 2.8e-4 7.1e-7
ℓ1-r 3.0e2 2.3e-1 7.8e-5 2.1e-7
random 5.7e5 1.2e-3 2.4e-5 7.8e-8

4.6 Performance evaluation 39

Table 4.13: Differences between optimal Bs on FERET.

∥B∗
knn −B∗

ℓ1
∥2 ∥B∗

knn −B∗
rand∥2

2.6e-9 1.5e-9

Table 4.14: Recognition rates (%) of Bt in iteration on PF01 with 4 labeled
every class by GRF.

W0\Iteration (t) 0 1 2 3 4 5

kNN 37.9 70.6 71.4 71.4 71.4 71.4
ℓ1-r 69.6 72.2 71.4 71.4 71.4 71.4
random 0.9 71.0 71.4 71.4 71.4 -

Table 4.15: Differences between Bt and Bt+1 in iteration on PF01.

W0 ϵ1 ϵ2 ϵ3 ϵ4 ϵ5

kNN 2.2e4 1.9 7.1e-4 1.8e-6 5.9e-9
ℓ1-r 5.3e2 1.4 4.5e-4 1.0e-6 3.2e-9
random 9.6e5 4.3e-2 1.1e-4 3.3e-7 -

Table 4.16: Differences between optimal Bs on PF01.

∥B∗
knn −B∗

ℓ1
∥2 ∥B∗

knn −B∗
rand∥2

2.8e-11 1.1e-9

According to the recognition rates in Table 4.11 and Table 4.14, we can see
that in less than 5 iterations, the optimal recognition rates will be obtained. As
shown in Table 4.12 and Table 4.15, the value of ∥Bt−Bt−1∥2 will be less than
1e-3 around 3 or 4 iterations which means the proposed method can obtain
the optimal B within 3 or 4 iterations. The results in Table 4.13 and Table
4.16 show that the values of the difference between the optimal Bs obtained
by different initial Ws is quite small which means that the same optimal B
can be obtained regardless of the initial W0. From the results depicted in
the above tables, we can conclude that regardless of the initialization used,
the SRLS is able to estimate the same optimal graph. In particular, Table
4.13 and Table 4.16 show that different initial W0 will lead to the same
optimal SRLS graph B. This fact makes the SRLS not dependent on a given
initialization. Thus, SRLS can provide the same optimal graph regardless of
the initial affinity matrix used as a Laplacian. This can be explained by the
fact that data self-representativeness is a strong constraint.

40 4 Graph Construction Based on Data Self-representativeness and Laplacian Smoothness

Table 4.17: Smoothness value, Tr(Bt LBT
t), at each iteration for different

Laplacians.

Dataset L t = 1 t = 2 t = 3 t = 4 t = 5

ORL kNN 5915.1 10.9 9.9 9.9 9.9
ℓ1-r 5899.8 13.5 10.8 10.8 10.8
Lt 5915.1 24.2 19.4 19.3 19.3

FERET kNN 30106.1 36.0 33.2 33.2 -
ℓ1-r 31970.3 46.5 39.5 39.5 -
Lt 30106.1 66.6 56.5 56.5 -

Extended kNN 30909.1 27.2 22.4 22.4 22.4
Yale B ℓ1-r 31325.5 34.5 26.6 26.7 26.7

Lt 30909.1 74.3 57.6 57.5 57.5

PF01 kNN 33134.4 159.1 154.9 155.0 155.0
ℓ1-r 35482.6 162.0 148.5 148.6 148.6
Lt 33134.4 244.8 221.2 221.4 221.4

COIL-20 kNN 4541.7 8.6 7.7 7.8 7.8
ℓ1-r 4567.9 11.4 9.3 9.3 9.3
Lt 4541.7 21.3 17.1 17.1 17.1

As illustrated in Table 4.12 and Table 4.15, the proposed methods con-
verge within 5 iterations. Actually, the SRLS algorithm can almost obtain the
optimal B in 2 iterations.

Finally, Table 4.17 illustrates the evolution of the smoothness term Tr(BtL
BT

t) when the graph asymmetric matrix B is estimated by the recursive min-
imization of Eq.(4.3). The results correspond to five datasets and to three
graph Laplacians: kNN graph, robust ℓ1 graph and SRLS graph Bt in every
iteration. For kNN graph and robust ℓ1 graph, the corresponding Laplacian
matrix L is kept fixed. From this table, we can see that, independently of the
used Laplacian, the smoothness value Tr(BLBT) decreases by the successive
minimizations, which indicates that the Laplacian smoothness term of the
estimated graph is really decreasing over the recursions.

4.6.3 Sensitivity to parameters

In the SRLS algorithm, parameters λ and ρ should be set. We aim to study the
recognition rates obtained by SRLS when these two parameters vary. Figure
4.2 illustrates the recognition rates with different parameter value for ORL,
FERET and Extended Yale B.

On ORL, 3 samples for each person are labeled. According to Fig.4.2a, λ
and ρ near 1 will lead to a better graph for final recognition rates.

On FERET, 3 samples for each person are labeled. According to Fig.4.2b,
λ and ρ near 1 will lead to a better graph for final recognition rates.

4.6 Performance evaluation 41

On Extended Yale B, 13 samples for each person are labeled. According
to Fig.4.2c, λ and ρ near 1 will lead to a better graph for final recognition
rates and the differences are small when λ and ρ are not larger than 1.

We can observe that the optimal domain for the two parameters λ and
ρ is almost the same for the three face datasets. This tends to confirm that
using SRLS and its variants does not need a tedious task for choosing the two
parameters.

0.0001
0.001

0.01
0.1

1
10

0.0001
0.001

0.01
0.1

1
10

50

60

70

80

90

λρ

R
ec

og
ni

tio
n

ra
te

 (
%

)

(a) ORL

0.0001
0.001

0.01
0.1

1
10

0.0001
0.001

0.01
0.1

1
10

20

30

40

50

60

70

λρ
R

ec
og

ni
tio

n
ra

te
 (

%
)

(b) FERET

0.0001
0.001

0.01
0.1

1
10

0.0001
0.001

0.01
0.1

1
10
70

75

80

85

90

95

λρ

R
ec

og
ni

tio
n

ra
te

 (
%

)

(c) Extended Yale B

Fig. 4.2: Recognition rates variation different values of parameter λ and ρ on
ORL, FERET and Extended Yale B.

4.6.4 Computational complexity and CPU time

In the SRLS algorithm, the complexity of computing XTX before iteration
will be O(dn2). In each iteration, SRLS mainly solves the Sylvester equation.
According to [42, 69], the computational complexity to solve the Sylvester
equation is O(n3). Thus, the computational complexity of SRLS will be
O(dn2 + τn3), where τ is the number of iterations. In this case, when n is

42 4 Graph Construction Based on Data Self-representativeness and Laplacian Smoothness

large, i.e. the number of the train data is huge, the graph construction meth-
ods will be time consuming. To solve the problem of huge data, data sample
can be compacted using instance selection or data representation methods
such as described in article [25].

Table 4.18 illustrates the CPU time needed by the SRLS method and
the robust ℓ1 graph method for constructing the graph associated with ORL,
FERET, PF01 and Extended Yale B data sets. We set λ = ρ = 1 in SRLS.
All tests are conducted using Matlab codes running on a PC equipped with
an Intel Core i7-4771 CPU at 3.5GHz and 8 GB of RAM. According to Table
4.18, the proposed SRLS methods is far more efficient than the robust ℓ1
graph method.

Table 4.18: CPU time (s).

Dataset\Method SRLS ℓ1-r

ORL 3.0 50.8
FERET 84.4 1689.2
PF01 167.0 2421.4
Extended Yale B 209.9 1579.4

4.7 Conclusion

In this chapter, we proposed a graph construction method based on self rep-
resentation and Laplacian smoothness. The proposed method preserves the
smoothness of the self representation matrix. Moreover we introduce the col-
umn generation and kernel version of SRLS. According to the experimental
results, the proposed methods can handle real data sets with a better per-
formance than other graph construction methods in general. The proposed
methods is more efficient but can perform as well as and even better than the
robust ℓ1 graph.

One of the disadvantages of the proposed method is the choice of param-
eters. Although the experiments show that the parameters λ and ρ in the
proposed criterion should be near 1, still no evidences show that the parame-
ters can be decided directly.

5

Sparse graph with Laplacian Smoothness

Abstract

In this chapter, we introduce a new sparse graph construction method using
Laplacian smoothness as a constraint (SGLS). We also propose a kernelized
version of the SGLS method and a direct solution to SGLS.

Contents
5.1 Sparse graph with Laplacian Smoothness 43
5.2 Kernelized variants . 45
5.3 A direct solution to Kernel SGLS 46
5.4 Performance evaluation . 49
5.5 Conclusion . 59

5.1 Sparse graph with Laplacian Smoothness

Adding constraints to the ℓ1 graph construction can lead to better perfor-
mances as it was shown in [19]. In the latter work, the method needs the setting
of a similarity matrix that will be used to constrain the unknown sparse affini-
ty matrix. In practice, knowing this optimal matrix is very challenging. In this
chapter, we propose a constrained sparse graph that uses a natural constraint
given by the Laplacian smoothness. In the construction of classic sparse graph,
the goal is to obtain a representation matrix B = [b1,b2, . . . ,bn], which is
the solution to the following ℓ1 problem:

B = argmin
B
{∥X−XB∥2F + λ ∥B∥1}. (5.1)

B can be regarded as the asymmetric weight matrix associated with the
training samples. In other words, B is the coding matrix obtained when the
dictionary is set to the data themselves. For every sample xi, bi is the sparse

44 5 Sparse graph with Laplacian Smoothness

coding vector needed to construct the sample xi, from the whole data set of
samples.

In ideal cases, the coding vectors of similar original samples should also be
similar. For instance, if xi is very similar to xj , then the corresponding coding
vectors bi and bj should be close to each other. Mathematically, this property
is known by Laplacian smoothness criterion. For all pairs, this criterion is given
by: ∑

i,j

∥bi − bj∥2 Bij = Tr(B (D−W)BT) = Tr(BLBT), (5.2)

where L is the graph Laplacian of the weight matrix W, i.e. L = D −W,
where D is a diagonal matrix with Dii =

∑
j Wij and W is a given graph.

We propose to construct an affinity matrixB that simultaneously uses data
sparse representation and Laplacian smoothness. Thus, our coding matrix will
be the solution to the following minimization problem:

B = argmin
B

{
1

2
∥X−XB∥2F + λ ∥B∥1 + ρTr(BLB BT)

}
, (5.3)

where LB is the Laplacian matrix of the affinity matrix B, and λ and ρ are
two positive balance parameters.

Our proposed method (SGLS) is to solve the problem depicted in Eq.(5.3).
Notice that if LB is fixed, the functional in the Eq.(5.3) will become an ℓ1
problem which can be solved by the Alternating Direction Method of Mul-
tipliers (ADMM). However, the graph Laplacian is unknown since the graph
itself is unknown. To solve that, we propose a new recursive method to get
the optimal coding matrix (equivalently the graph). The intuition behind our
idea is as follows. If we start with a rough graph, its corresponding Laplacian
will impose smoothness of the vectors of the unknown coding matrix B.

Solving for B using the optimization problem in Eq.(5.3) with a fixed
Laplacian matrix, we obtain a solution that satisfies data self-representation,
regularized norm, and the Laplacian smoothness. The derived symmetric
graph for the current estimated B will be better graph (in the sense of Lapla-
cian smoothness). Therefore, successive minimizations having the form of E-
q.(5.3) will improve the estimation of the coding matrix from which the final
graph is derived.

Firstly, a rough weight matrix W is computed by using any traditional
graph construction method1. The graph Laplacian is then calculated by L =
D−W.

Secondly, the matrix B is estimated by minimizing the following criterion:

B = argmin
B

{
1

2
∥X−XB∥2F + λ ∥B∥1 + ρTr(BLBT)

}
. (5.4)

1 The experimental section will show that even random graphs can also be used as
initial graphs.

5.2 Kernelized variants 45

We can apply Alternating Direction Method of Multipliers to solve the
Eq.(5.4). To follow the general form of ADMM, we employ a variable into the
objective such that:

min
1

2
∥X−XB∥2F + λ ∥C∥1 + ρTr(BLBT),

s.t. B = C.
(5.5)

To form the augmented Lagrangian of the above objective, letQ(B,C,M) =
1
2∥X−XB∥2F + λ ∥C∥1 + ρTr(BLBT) + Tr(MT (B −C)), where M is the
matrix of Lagrangian multipliers.

The ADMM algorithm consists of iterating the following three substeps:
1) Fix Ck and estimate Bk+1 by vanishing the derivatives of Q(B,C,M).

This will lead to solve a Sylvester equation:

(XTX+ γ I)B+ 2ρBL = XTX+ γCk −Mk. (5.6)

2) Fix Bk+1 and estimate Ck+1:

Ck+1 = argmin
C

Q(Bk+1,C,Mk) (5.7)

This is solved element wise using soft-thresholding.
3) Fix Bk+1 and Ck+1 and estimate Mk+1:

Mk+1 = Mk + γ(Bk+1 −Ck+1) (5.8)

The stopping condition of the ADMM can be given by clapping the number
of iterations or if the current ∥B−C∥2 becomes below a predefined threshold.

Thirdly, W is obtained by Wij = (|Bij |+ |Bji|)/2.
The last two steps are repeated until B does not change. Thus, the proce-

dure is summarized in Algorithm 6.
It should be noticed that by setting the parameter ρ to zero, we get a

sparse graph only since Eq. (5.4) reduces to Eq.(5.1).
Several iterative schemes to solve Sylvester equations have been proposed;

for methods focusing on large sparse systems one can use the method described
in [12].

5.2 Kernelized variants

In this section, we introduce a kernelized version of the proposed SGLS
method.

The motivation behind the use of Kernel trick is that the original SGLS
assumes a linear model for sparse representation. However, for some data
sets this assumption may not be very realistic. Thus, by adopting a non-
linear model for sparse representation, it is expected that the resulting coding

46 5 Sparse graph with Laplacian Smoothness

Input: The original data matrix X, a rough weight matrix W0, λ, ρ, and ϵ1
and ϵ2 (two small positive thresholds)

Output: SGLS graph W

Set t = 0;
repeat

Calculate the graph Laplacian of Wt, i.e. Lt = Dt −Wt;
Set k = 0, C0 to a random matrix, and M0 to 0;
repeat ADMM iterations

Get Bt,k+1 by solving the following Sylvester equation
(XT X+ λI)B + 2ρBLt = XT X+ γCk −Mk ;
Get Ck+1 = argminC Q(Bt,k+1,C,Mk);
Mk+1 = Mk + γ(Bt,k+1 −Ck+1);
k = k + 1;

until ∥Bt,k −Ck∥2F < ϵ2;
Bt+1 = Bt,k;

Calculate new Wt+1 = (|Bt+1|+ |BT
t+1|)/2;

t = t+ 1;

until ∥Bt −Bt−1∥2F /n2 < ϵ1;
Get final SGLS graph W = Wt.

Algorithm 6: SGLS graph construction

coefficients can better quantify the similarity among samples and hence, better
graphs can be obtained whenever data have non-linear distribution.

Let Φ : X → Φ(X) be a non-linear projection that maps original samples
onto a space of high dimension. In the new space, the data are represented by
the matrix Φ = [ϕ(x1), ϕ(x2), ..., ϕ(xn)]. Let Kij = ϕT (xi)ϕ(xj) be a similar-
ity measure between samples xi and xj . K(., .) can be Gaussian, polynomial,
or any other function that satisfy Mecer’s conditions. It is easy to show that
the matrix K will be given by ΦT Φ.

The kernelized version of the SGLS method can be obtained by replacing
the data with their non-linear projection. Thus, we have:

B = argmin
B
∥Φ− ΦB∥2F + λ ∥B∥1 + ρTr(BLB BT). (5.9)

After some algebraic manipulation, we can get a similar expression for the
criterion to be minimized. Indeed, the term XT X is replaced by K = ΦT Φ.
Thus, we can use a similar iterative algorithm. The steps of the kernel version
are described in Algorithm 7.

5.3 A direct solution to Kernel SGLS

In the previous section, we solve the Kernel SGLS problem in a cascade way.
In this section, we try to solve it in one step. Let’s look into the Kernel SGLS
criterion: minB {∥Φ− ΦB∥2F + λ ∥B∥1 + ρTr(BLB BT)}.

5.3 A direct solution to Kernel SGLS 47

Input: The kernel matrix K, a given rough weight matrix W0, λ, ρ, and ϵ1
and ϵ2 (two small positive thresholds)

Output: Kernel SGLS graph W

Set t = 0;
repeat

Calculate the graph Laplacian of Wt, i.e. Lt = Dt −Wt;
Set k = 0, C0 to a random matrix, and M0 to 0;
repeat ADMM iterations

Get Bt,k+1 by solving the following Sylvester equation
(K+ λI)B + 2ρBLt = K+ γCk −Mk ;
Get Ck+1 = argminC Q(Bt,k+1,C,Mk);
Mk+1 = Mk + γ(Bt,k+1 −Ck+1);
k = k + 1;

until ∥Bt,k −Ck∥2F < ϵ2;
Bt+1 = Bt,k;

Calculate new Wt+1 = (|Bt+1|+ |BT
t+1|)/2;

t = t+ 1;

until ∥Bt −Bt−1∥2F /n2 < ϵ1;
Get final Kernel SGLS graph W = Wt.

Algorithm 7: Kernel SGLS graph construction

Since B is asymmetric, its Laplacian matrix will be given by: LB = Dr +
Dc −B−BT . Then the above criterion becomes:

min ∥Φ− ΦB∥2F + λ ∥B∥1
+ ρTr(B(Dr +Dc −B−BT)BT),

s.t. Bij ≥ 0 andBii = 0,

(5.10)

where Dr and Dc are two diagonal matrix whose elements are the row sums
and the column sums of B, respectively.

Note that minimizing Eq.(5.10) is subject to Bij ≥ 0. Let Z with Zij ≥ 0
be the corresponding Lagrange multipliers. Consider the Lagrange function
F (B) as:

F (B) =∥Φ− ΦB∥2F + λ ∥B∥1
+ ρTr(B(Dr +Dc −B−BT)BT) + Tr(ZBT).

(5.11)

It’s easy to show that we have Tr(ZBT) =
∑

ZijBij .
Then taking the derivative of F (B) with respect to B leads to:

∂F (B)

∂B
=2KB− 2K+ λE+ ρ(Mr(B) +Mc(B))

− 2ρ(BB+BTB+BBT) + Z,

(5.12)

48 5 Sparse graph with Laplacian Smoothness

where K = ΦTΦ. One suggestion for K is Gaussian Kernel, i.e. Kij =

e−∥xi−xj∥2/σ2

. Every element of E is 1, and Mr(B) = ∂Tr(BDrB
T)/∂B,

Mc(B) = ∂Tr(BDcB
T)/∂B.

It’s difficult to have simple expressions for Mr(B) and Mc(B). But we can
have a detailed look into every elements of them. Let B = [b1,b2, . . . ,bn].
Then we can have Tr(BDrB

T) =
∑

k Dr(k)∥bk∥2, where Dr(k) is the k-

th diagonal elements of Dr, i.e. Dr(k) =
∑

t Bkt. Similarly, Tr(BDcB
T) =∑

k Dc(k)∥bk∥2, where Dc(k) =
∑

t Btk.

Then the derivative of Tr(BDrB
T) and Tr(BDcB

T) with respect to
Bvectij can be obtained:

∂Tr(BDrB
T)

∂Bij
= ∥bi∥2 + 2BijDr(j), (5.13)

and
∂Tr(BDcB

T)

∂Bij
= ∥bj∥2 + 2BijDc(j). (5.14)

With these, every element of M = Mr(B) +Mc(B) can be obtained:

Mij = (Mr(B) +Mc(B))ij

=
∂Tr(BDrB

T)

∂Bij
+

∂Tr(BDcB
T)

∂Bij

= ∥bi∥2 + ∥bj∥2 + 2BijDr(j) + 2BijDc(j).

(5.15)

Then ∂F (B)/∂Bij can be:

∂F (B)

∂Bij
=(2KB− 2K+ λE− 2ρ(BB+BTB+BBT))ij

+ Zij + ρMij .

(5.16)

With ∂F (B)/∂B = 0 and the Karush-Kuhn-Tucker (KKT) condition
ZijBij = 0, we will have:

(2KB− 2K+ λE− 2ρ(BB+BTB+BBT) + ρM)ijBij = 0. (5.17)

An iteratively updating rule on B is designed as

Bij ←
2Kij + 2ρ(BB+BTB+BBT)ij

(2KB+ λE+ ρM)ij
Bij . (5.18)

Thus, we can use an iterative algorithm. Note the initial B0 will be impor-
tant since when Bij will maintain 0 when it once become 0 in the iteration.
One simple choice of the initial B0 is a matrix with all the elements is 1 except
the diagonal elements is 0. In other word, B0 = E− I, where I is the identity
matrix.

The steps of the proposed method are described in Algorithm 8.

5.4 Performance evaluation 49

Input: The original data matrix X, initial matrix B0 λ, ρ and ϵ (a small
positive threshold)

Output: DSGLS graph W

Set t = 0;
Calculate the kernel matrix K;
repeat

Calculate matrix Mt using Eq.(5.15);
Update matrix B with updating rule

Bij ← 2Kij+2ρ(BtBt+B
T
t Bt+BtB

T
t)ij

(2KBt+λE+ρMt)ij
Bij ;

t = t+ 1;

until ∥Bt −Bt−1∥2F /n2 < ϵ;

Get DSGLS graph W = (∥B∥+ ∥BT ∥)/2.
Algorithm 8: DSGLS graph construction

5.4 Performance evaluation

In general, the estimated graph alone cannot lend itself to an easy assessment
of the method that constructs it. Indeed, given a real data set as well as a
machine learning task that uses this data set, it is very often challenging if not
unfeasible to know in advance the ideal graph for that data set and for that
task. Thus, in our work, the graph-construction methods are assessed by the
performance of the post-graph construction tasks, i.e. two label propagation
methods (GRF and LPDGL) and two dimensionality reduction methods: one
non-linear dimensionality reduction method (LE) and one linear dimensional-
ity reduction method (LPP). In this section, we evaluate the proposed graph
construction methods in the main application of computer vision: face recog-
nition. We use semi-supervised label propagation based on the built graph.
The performance will be mainly given by recognition and classification accu-
racy. The construction methods used for comparison are kNN graph [5], LLE
graph [88], standard sparse graph (ℓ1-s) [65], robust sparse graph (ℓ1-r) [94],
and constrained sparse graph (ℓ1-c) [19].

In this section, we evaluate the proposed algorithm on several real databas-
es. To this end, five face databases are used: ORL, FERET, Extended Yale
B, PF01 and PIE.

5.4.1 Comparison among several graph construction methods

To evaluate the performance of our proposed methods, we compare them with
several other graph construction methods including KNN graph, LLE graph,
standard sparse graph, robust sparse graph and constrained sparse graph. For
every graph construction method, several values for the parameter are used.
We then report the top-1 recognition accuracy (best average recognition rate)
of all methods from the best parameter configuration.

50 5 Sparse graph with Laplacian Smoothness

kNN and LLE methods have the neighborhood size parameter k. The
robust sparse graph has the parameter λ and the constrained sparse graph
has α and β to set. The two proposed methods have parameters λ and ρ,
the initial W0 and the threshold ϵ1 and ϵ2 to set. In our experiments, k is
chosen from 3 to 60 with a step of 3 for kNN and LLE graph construction
methods; λ = 0.1 for robust graph and α = β = 1 for the constrained sparse
graph; for the proposed methods, λ is chosen from {10−4, 10−3, 0.01, 0.1} and
ρ is chosen from {10−4, 10−3, 0.01, 0.1, 1}, W0 is set by the kNN graph when
k = 3 and ϵ1 = ϵ2 = 10−3. For the kernel version of SGLS, we use the Gaussian
Kernel K(xi,xj) = e−∥xi−xj∥2/σ2

. The parameter of the Gaussian is set to
the average distances among the samples.

After we construct the graphs on the original data, we run the label prop-
agation method GRF and LPDGL as classifiers. For LPDGL, β and γ are
set to 1. For label propagation, we randomly split the whole data set into a
labeled part and unlabeled part and repeat this process 10 times. The final
performance (recognition rate) is given by the average.

Tables 5.1, 5.2, 5.3, 5.4, and 5.5 illustrate the method comparison obtained
with the GRF label propagation method on five data sets.

Table 5.1: Average recognition rates (%) on ORL by GRF.

Method\l 1 2 3 4 5

kNN [5] 75.1 85.2 89.6 92.3 94.2
LLE [88] 74.1 83.7 88.6 93.1 96.2
ℓ1-s [65] 76.8 86.7 91.4 93.9 95.6
ℓ1-r [94] 64.8 80.4 87.6 91.2 93.8
ℓ1-c [19] 78.9 87.2 91.9 94.4 96.1

SGLS 79.3 88.0 92.0 94.4 96.3
CKSGLS 82.3 88.8 92.9 94.7 96.5
KSGLS 74.5 84.8 91.5 94.0 96.1

Table 5.1 shows the mean recognition rates over the 10 random splits on
ORL with different graph construction methods. In this table, different label
numbers l are used. On ORL, the DSGLS method outperforms the other
methods.

Table 5.2 shows the average recognition rates on FERET with different
graph construction methods. In the table, the number of labeled samples
varies from 1 to 5 samples per class. On FERET, the SGSL method and
kernelized version out-perform the other graph construction methods and the
kernelized SGSL method performs best.

Table 5.3 shows the mean recognition rates on Extended Yale B with
different graph construction methods. Several label percentages are used in
the interval 10%-30%. For Extended Yale B data set, the SGSL method and

5.4 Performance evaluation 51

Table 5.2: Average recognition rates (%) on FERET by GRF.

Method\l 1 2 3 4 5

kNN 22.4 30.9 39.0 45.2 51.0
LLE 31.3 43.9 55.7 66.9 72.7
ℓ1-s 40.2 56.0 66.5 72.7 74.8
ℓ1-r 39.1 57.3 70.6 79.3 81.4
ℓ1-c 37.0 51.2 61.0 68.8 72.5

SGLS 42.8 61.4 74.2 80.6 82.0
DSGLS 44.5 61.4 72.3 79.5 82.1
KSGLS 49.6 67.8 78.0 84.6 86.0

Table 5.3: Average recognition rates (%) on Extended Yale B by GRF.

Method\l 10% 20% 30%

kNN 81.7 89.1 84.1
LLE 66.3 74.9 89.3
ℓ1-s 79.3 86.6 90.0
ℓ1-r 90.5 94.0 96.1
ℓ1-c 75.7 83.7 87.3

SGLS 92.7 95.3 96.8
DSGLS 88.4 92.0 93.9
KSGLS 91.0 94.1 95.6

Table 5.4: Average recognition rates (%) on PF01 by GRF.

Method\l 2 4 6 8 10

kNN 35.5 43.3 47.0 50.6 53.8
LLE 34.6 43.6 51.2 64.9 73.7
ℓ1-s 40.3 50.4 55.9 59.3 63.6
ℓ1-r 57.5 69.7 75.6 80.1 86.0
ℓ1-c 39.5 50.4 55.7 60.7 65.6

SGLS 61.7 72.9 79.7 84.0 88.8
DSGLS 47.7 62.1 67.8 72.5 78.5
KSGLS 61.8 74.7 80.5 85.2 90.7

52 5 Sparse graph with Laplacian Smoothness

Table 5.5: Average recognition rates (%) on PIE by GRF.

Method\l 2 4 6 8 10

kNN 22.5 32.0 40.0 43.6 46.6
LLE 17.1 25.8 36.5 40.6 46.8
ℓ1-s 38.8 49.2 57.1 62.0 67.9
ℓ1-r 51.4 68.0 76.8 81.9 85.7
ℓ1-c 29.6 40.5 50.1 54.9 59.2

SGLS 52.8 69.3 78.2 83.1 86.7
DSGLS 37.1 51.1 61.4 66.5 70.2
KSGLS 42.5 55.7 65.1 70.9 77.3

kernelized version out-perform the other graph construction methods and the
SGSL method performs best.

Table 5.4 shows the mean recognition rates on PF01. Several label numbers
are used (2-10 samples). On PF01, the SGSL method and kernelized version
out-perform the other graph construction methods and the kernelized SGSL
method performs best.

Table 5.5 shows the mean recognition rates on PIE. Several label numbers
are used (2-10 samples). On PIE, the SGLS method outperforms the other
methods.

Tables 5.6, 5.7, and 5.8 illustrate the method comparison obtained with
the LPDGL label propagation method on Extended Yale B, PF01 and PIE.

Table 5.6: Average recognition rates (%) on Extended Yale B by LPDGL.

Method\l 10% 20% 30%

kNN 81.3 83.7 85.1
LLE 84.5 86.2 87.8
ℓ1-s 84.8 91.5 94.9
ℓ1-r 83.2 89.1 91.7
ℓ1-c 81.1 87.0 89.5

SGLS 90.1 94.2 96.2

Table 5.6 shows the mean recognition rates on Extended Yale B with d-
ifferent graph construction methods when the label propagation method is
LPDGL. Several label percentages are used in the interval 10%-30%. For Ex-
tended Yale B data set, the SGSL method performs best.

Table 5.7 shows the mean recognition rates on PF01 when the label propa-
gation method is LPDGL. Several label numbers are used (2-10 samples). On
PF01, the SGSL method out-performs the other graph construction methods.

5.4 Performance evaluation 53

Table 5.7: Average recognition rates (%) on PF01 by LPDGL.

Method\l 2 4 6 8 10

kNN 33.9 42.0 46.1 49.5 53.4
LLE 34.6 43.9 50.3 55.0 61.9
ℓ1-s 49.9 65.2 72.7 78.0 84.8
ℓ1-r 49.4 57.8 61.5 63.9 67.0
ℓ1-c 44.7 55.0 59.9 64.4 69.6

SGLS 62.4 74.2 79.3 83.8 88.8

Table 5.8: Average recognition rates (%) on PIE by LPDGL.

Method\l 2 4 6 8 10

kNN 19.9 28.8 36.3 39.0 41.7
LLE 22.6 31.6 40.1 43.3 46.2
ℓ1-s 44.3 61.4 72.2 78.4 82.7
ℓ1-r 41.5 51.0 58.5 62.6 66.2
ℓ1-c 33.7 43.5 51.5 55.6 59.9

SGLS 51.3 67.0 76.1 81.5 85.7

Table 5.8 shows the average recognition rates on PIE when the label prop-
agation method is LPDGL. Several label numbers are used (2-10 samples).
On PIE, the SGLS method outperforms the other methods.

Analysis of results: According to the results reported in the previous
tables, we can make the following observations:

• In general, the proposed methods (including the DSGLS method and the
kernelized version) outperform the other methods.

• The proposed SGLS method is almost always superior to the robust sparse
graph method suggesting that Laplacian smoothness has contributed to
get more informative graphs.

• The proposed SGLS method can improve the performance significantly for
big data sets (like PF01 and PIE) even when the number of the labeled
samples is small.

• The proposed SGLS and DSGLS methods can out-perform the other graph
construction method under different label propagation method.

• From some datasets, the direct method DSGLS has not provided very good
results. This can be explained by the fact that the kernel used was fixed.
Possibly, one can expect that with other kernel types performance of the
direct method can be improved. The same observation can be also true for
the behavior of the kernelized version of SGLS (KSGLS).

54 5 Sparse graph with Laplacian Smoothness

5.4.2 SGLS based Laplacian Eigenmaps

Laplacian Eigenmaps (LE) is a non-linear dimensionality reduction method
[4]. In this section, we use different graphs as the W in LE method for di-
mensionality reduction and then for classification. We construct graphs on the
whole data using kNN, robust sparse graph, constrained sparse graph and the
proposed SGLS method. Then the graphs are used for LE and nearest clas-
sifier will be employed for classification in a range dimension from 1 to 200.
15% and 31% samples every class are randomly labeled for Extended Yale B,
while 30% and 70% samples are randomly chosen for label for PF01 and PIE.
The experiment repeats 10 times.

0 50 100 150 200
0

10

20

30

40

50

60

70

80

90

100

A
cc

ur
ac

y
ra

te
 (

%
)

Dim

KNN
l1−r
l1−c
SGLS

(a) 15% labeled

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

70

80

90

100

A
cc

ur
ac

y
ra

te
 (

%
)

Dim

KNN
l1−r
l1−c
SGLS

(b) 31% labeled

Fig. 5.1: Average recognition rate variation different graphs based LE on Ex-
tended Yale B (15% and 31% labeled).

Figures 5.1, 5.2 and 5.3 show the average recognition rates with different
graphs. According to the figures shown and the other results we have, it can
be drawn that the graph constructed by the SGLS method performs best in
LE among the other graph construction methods.

5.4.3 SGLS based Locality Preserving Projection

Locality Preserving Projection [36] can be regarded as a linearized version of
LE.

In this section, we use different graphs as theW in LPP method for dimen-
sionality reduction and then for classification. We choose different percentages
(15%, 23% and 31% for Extended Yale B and 30%, 50% and 70% for PF01 and
PIE) of data as training set and the rest testing set. We perform LPP on the
training set and then apply nearest neighborhood classifier for classification.

Table 5.9, 5.10 and 5.11 show the recognition rates using LPP with differ-
ent graphs.

5.4 Performance evaluation 55

0 50 100 150 200
0

10

20

30

40

50

60

70

A
cc

ur
ac

y
ra

te
 (

%
)

Dim

KNN
l1−r
l1−c
SGLS

(a) 30% labeled

0 50 100 150 200
0

10

20

30

40

50

60

70

80

A
cc

ur
ac

y
ra

te
 (

%
)

Dim

KNN
l1−r
l1−c
SGLS

(b) 70% labeled

Fig. 5.2: Average recognition rate variation different graph based LE on PF01
(30% and 70% labeled).

0 50 100 150 200
0

10

20

30

40

50

60

70

80

Dim

A
cc

ur
ac

y
ra

te
 (

%
)

KNN
l1−r
l1−c
SGLS

(a) 30% labeled

0 50 100 150 200
0

10

20

30

40

50

60

70

80

90

Dim

A
cc

ur
ac

y
ra

te
 (

%
)

KNN
l1−r
l1−c
SGLS

(b) 70% labeled

Fig. 5.3: Average recognition rate variation different graph based LE on PIE
(30% and 70% labeled).

Table 5.9: LPP evaluation on Extended Yale B.

W 15% 23% 31%

kNN 49.0 58.3 66.1
ℓ1-r 54.9 59.8 65.0
ℓ1-c 49.3 51.3 58.8
SGLS 74.4 79.4 80.3

56 5 Sparse graph with Laplacian Smoothness

Table 5.10: LPP evaluation on PF01.

W 30% 50% 70%

kNN 32.3 41.7 32.9
ℓ1-r 34.9 43.0 31.4
ℓ1-c 35.2 42.8 30.1
SGLS 43.8 54.6 40.4

Table 5.11: LPP evaluation on PIE.

W 30% 50% 70%

kNN 29.7 42.3 46.8
ℓ1-r 36.6 44.4 49.3
ℓ1-c 26.6 38.4 38.9
SGLS 41.5 56.1 61.8

According to the tables, the SGLS method can out-perform the other
graph construction methods in LPP.

5.4.4 Stability of the proposed method

In this section, we will empirically show that independently of the initial
weight matrix W0 used by the Laplacian smoothness criterion, the SGLS
method will provide the same graph. To this end, we conduct the following
experiment. We initialize the SGLS method with different weight matrices
W0. Here we use the kNN graph, the robust sparse graph and a random
one for initial graphs. For each such initialization, we run the iterative SGLS
method in order to compute the optimal B. We then compare the obtained
graphs as well as performance obtained with them. To evaluate the trend of
Laplacian smoothness term, we calculate the values of Tr(BLBT) in every
iteration with a fixed L (here we use the kNN graph, the robust ℓ1 graph and
the SGLS graph in every iteration to calculate the Laplacian matrix L).

In this comparison, we use the performance of the GRF label propagation
method based on the affinity matrices B obtained at convergence (for all types
of initialization). We also calculate the differences between the B’s for every
iteration and the differences between the optimal B computed with different
initial weight matrices. We set λ = 0.01, ρ = 0.1 and 3 labeled samples for
FERET and 6 labeled samples for PF01.

Table 5.12, 5.13 and 5.14 show the obtained results on FERET and Table
5.15, 5.16 and 5.17 show the results on PF01. Table 5.12 and Table 5.15 show
the average recognition rates associated with the affinity matrix B obtained
at each iteration of the SGLS method. In each Table, three different initial
weight matrices are used.

5.4 Performance evaluation 57

Table 5.13 and Table 5.16 illustrate the difference between the graphs
obtained in two consecutive iterations Bt and Bt+1, that is the Frobenius
norm ∥Bt−Bt−1∥2, B0 = W0. Table 5.14 and Table 5.17 show the difference
between the optimal Bs obtained by different initial weight matrices W0.
Here, B∗

knn refers to the optimal B obtained by SGLS when the initial weight
matrix is the kNN. B∗

ℓ1 refers to the optimal B obtained by SGLS when the
initial weight matrix is set to the robust sparse graph (ℓ1-r). B

∗
rand refers to

the optimal B obtained by SGLS when the initial weight matrix is set to
completely random graph.

Table 5.12: Average recognition rates (%) of each Bt in iteration on FERET
with 3 labeled samples per class.

Initial W0\Iteration (t) 0 1 2 3 4

kNN 28.2 72.5 74.1 74.1 74.1
ℓ1-r 69.0 75.1 74.2 74.1 74.1
random 0.7 73.3 74.0 74.1 74.1

Table 5.13: Differences between Bt and Bt+1 in iteration on FERET.

Initial W0 ϵ1 ϵ2 ϵ3 ϵ4

kNN 1.8e4 4.9 5.8e-2 1.0e-3
ℓ1-r 2.4e2 7.1 1.0e-2 2.8e-4
random 5.7e5 1.2 3.5e-2 1.2e-3

Table 5.14: Differences between optimal Bs on FERET.

∥B∗
knn −B∗

ℓ1
∥2 ∥B∗

knn −B∗
rand∥2

2.3e-6 2.7e-6

According to the recognition rates in Table 5.12 and Table 5.15, we can
see that in less than 5 iterations, the optimal B can be obtained. From the
results depicted in the above tables, we can conclude that regardless of the
initialization used, the SGLS is able to estimate the same optimal graph. In
particular, Table 5.14 and Table 5.17 show that different initial W0 will lead
to the same optimal SGLS graph B. This fact makes the SGLS not dependent
on a given initialization.

58 5 Sparse graph with Laplacian Smoothness

Table 5.15: Average recognition rates (%) of Bt in iteration on PF01 with 6
labeled every class.

W0\Iteration (t) 0 1 2 3 4

kNN 40.0 74.6 77.1 77.3 77.3
ℓ1-r 75.5 78.1 77.4 77.4 77.3
random 1.1 76.9 77.2 77.3 77.3

Table 5.16: Differences between Bt and Bt+1 in iteration on PF01.

Initial W0 ϵ1 ϵ2 ϵ3 ϵ4

kNN 2.2e4 4.2 6.1e-2 1.4e-3
ℓ1-r 3.1e2 1.6 4.8e-2 2.2e-3
random 9.6e5 1.5 5.6e-2 2.7e-3

Table 5.17: Differences between optimal Bs on PF01.

∥B∗
knn −B∗

ℓ1
∥2 ∥B∗

knn −B∗
rand∥2

8.8e-4 1.9e-3

As illustrated in Table 5.13 and Table 5.16, the proposed methods will
be convergence within 5 iterations. Actually, the SGLS algorithm can almost
obtain the optimal B in 2 iterations.

Finally, Table 5.18 illustrates the evolution of the smoothness term, i.e.
the third term in the criterion Tr(BLBT) when the Laplacian matrix is fixed
and the graph asymmetric matrix B is estimated by minimizing Eq.(5.3).
The results correspond to five data sets and to three graphs: kNN graph, ℓ1
graph and SGLS graph Bt in every iteration. From this Table, we can see
that the value of Tr(BLBT) decreases by the successive minimizations which
indicates that the Laplacian smoothness term of the estimated graph is really
decreasing over over the recursions.

5.4.5 Sensitivity to parameters

In the SGLS algorithm, parameters λ and ρ should be set. We aim to study
the recognition rates obtained by SGLS when these two parameters vary.
Figure 5.4 illustrates the recognition rates with different parameter values for
FERET, Extended Yale B, PF01 and PIE.

On FERET, 5 samples for each person are labeled. According to Fig.5.4a,
λ = 0.01 and ρ = 0.1 will lead to a better graph for final recognition rates.

On Extended Yale B, 13 samples for each person are labeled. According to
Fig.5.4b, λ = 0.1 and ρ = 0.1 will lead to a better graph for final recognition
rates.

5.5 Conclusion 59

Table 5.18: The value of Tr(BtLB
T
t) in each iteration.

Data sets L t = 1 t = 2 t = 3 t = 4 t = 5

kNN 5915.1 67.5 84.7 90.0 91.6
ORL ℓ1-r 5627.3 61.0 71.3 74.9 76.0

Lt 5915.1 64.6 69.3 70.9 71.3

kNN 28588.0 191.4 205.3 207.8 208.1
FERET ℓ1-r 32203.1 227.3 219.3 219.8 219.9

Lt 28588.0 214.1 204.1 204.0 204.0

kNN 30909.1 132.8 136.0 137.0 137.2
Extended ℓ1-r 34913.7 176.3 169.6 169.6 169.7
Yale B Lt 30909.1 162.0 154.8 154.5 154.5

kNN 32888.7 131.5 135.5 136.3 136.3
PF01 ℓ1-r 40770.5 195.5 178.7 177.3 177.0

Lt 32888.7 165.3 152.3 151.3 151.1

kNN 40009.3 232.6 253.1 257.8 259.0
PIE ℓ1-r 45625.0 269.4 265.9 268.2 269.1

Lt 40009.3 256.0 246.3 246.9 246.5

On PF01, 10 samples for each person are labeled. According to Fig.5.4c,
λ = 0.01 and ρ = 0.1 will lead to a better graph for final recognition rates.

On PIE, 10 samples for each person are labeled. According to Fig.5.4d,
λ = 0.01 and ρ = 0.1 will lead to a better graph for final recognition rates.

Also the other results in our experiments show that the optimal can be
reached when λ ∈ {0.01, 0.1} and ρ ∈ {0.01, 0.1}.

5.5 Conclusion

In this chapter, we proposed a sparse graph construction method using Lapla-
cian smoothness as a constraint. The proposed method preserves the smooth-
ness of the sparse representation matrix. Moreover we introduce kernel version
of SGLS and a direct solution to the SGLS criterion. According to the exper-
imental results, the proposed methods can handle real data sets with a better
performance than other graph construction methods in general. The proposed
SGLS method is more efficient but can perform as well as and even better than
the other graph construction methods.

One of the disadvantages of the proposed method is the choice of param-
eters. Although the experiments show that the parameters λ and ρ in the
proposed criterion should be around 0.01 and 0.1, still no evidences show that
the parameters can be decided directly.

60 5 Sparse graph with Laplacian Smoothness

−4
−3

−2
−1

0
1

−4

−3

−2

−1
0

20

40

60

80

100

log ρlog λ

A
cc

ur
ac

y
ra

te
 (

%
)

(a) FERET

−4
−3

−2
−1

0
1

−4

−3

−2

−1
50

60

70

80

90

100

log ρ
log λ

A
cc

ur
ac

y
ra

te
 (

%
)

(b) Extended Yale B

−4
−3

−2
−1

0
1

−4

−3.5

−3

−2.5

−2

−1.5

−1
0

20

40

60

80

100

log ρ
log λ

A
cc

ur
ac

y
ra

te
 (

%
)

(c) PF01

−4
−3

−2
−1

0
1

−4

−3

−2

−1
20

40

60

80

100

log ρlog λ

A
cc

ur
ac

y
ra

te
 (

%
)

(d) PIE

Fig. 5.4: Recognition rate as a function of parameter λ and ρ on FERET,
Extended Yale B, PF01 and PIE.

Part II

Semi-supervised Embedding

6

Advances in semi-supervised embedding

Abstract

In this chapter we will have a brief introduction about semi-supervised
learning and then describe three techniques that represent the state-of-the art
in graph-based semi-supervised embedding.

Contents
6.1 Introduction . 63
6.2 Graph-based semi-supervised embedding

methods . 65
6.3 Conclusion . 71

6.1 Introduction

In many real world applications, such as face recognition and text catego-
rization, the data are usually provided in a high dimension space. Learning
from the high-dimensional data becomes the primary problem in the area of
machine learning and data mining technology. Dimensionality learning can
overcome the problem of “curse of dimensionality”. In general, dimension-
ality reduction methods can be classified into feature selection and feature
extraction [29]. Feature selection reduces the dimension of the original data
by selecting fewer features which can well represent the original, have dis-
tinguishing ability and also should be convenient for the follow-up learning
tasks [33]. Feature extraction (dimension reduction or manifold learning), also
regarded as embedding, reduces the dimension of the original data by combin-
ing multiple features linearly and nonlinearly while preserving the structural
information within the original data [84]. How to extract features effectively
and provide the best feature subset for subsequent learning tasks (such as
classification, clustering, etc.) becomes the key to learning a successful model.

64 6 Advances in semi-supervised embedding

A lot of supervised and unsupervised embedding methods for dimension
reduction have been proposed. Principal Component Analysis (PCA) [93] and
Multidimensional Scaling (MDS) [8] are two classic linear unsupervised em-
bedding methods. PCA tries to obtain the best projection direction of the data
by maximizing the covariance of the data. PCA is widely used in face recog-
nition and other application tasks because of its high efficiency and simple
calculation. Linear Discriminant Analysis (LDA) [2, 18] is a classic supervised
method for dimensionality reduction which seeks the best projection direction
by maximizing the intra-class covariance while minimizing inter-class covari-
ance. LDA is also widely used in face recognition, font recognition and speech
recognition due to its effectiveness and intuition. Both PCA and LDA mainly
study the linear projection in the high-dimensional space and their advan-
tages include simple computation and can produce a simple transformation
function. They are effective for high-dimensional data in linear structures but
can rarely well perform for non-linear high-dimensional data.

Most of high-dimensional data in the real-world are nonlinear which makes
it difficult to find out the geometric structure and correlation of the high-
dimensional data and reveal the manifold distribution by using the above
linear methods. In recent years, many non-linear manifold learning method-
s have been proposed for the nonlinear properties of the high-dimensional
data. In 2000, Locally Linear Embedding [66] (LLE) and Isometric Feature
Mapping (ISOMAP) [82] were separately proposed in science which laid a
foundation of manifold learning. Soon afterward, M. Belkin et al. proposed
Laplacian Eigenmaps [5] (LE). And lots of manifold learning methods are pro-
posed [110, 92, 70, 43]. However these nonlinear manifold learning methods
are transductive which can hardly deal with the out-of-sample problem, i.e.
they can not provide a direct embedding for new data samples.

He et al. proposed both Locality Preserving Projection (LPP) [36], es-
sentially a linearized version of LE, and Neighborhood Preserving Embedding
[34] (NPE), a linearized version of LLE. LPP and NPE can be interpreted in a
general graph embedding framework with different choices of graph structure.
Cai et al. proposed Spectral Regression (SR) [11] which avoid the computa-
tion of eigenvalues. Moreover, most of the linear methods can be extended to
nonlinear variants using kernel techniques, such as kernel PCA (KPCA) [67],
kernel LDA (KDA) [48].

Afterwards, sparse representation [45, 97, 65] based methods have attract-
ed extensive attention. Lai et al. proposed a 2-D feature extraction method
called sparse 2-D projections for image feature extraction [44]. In [46], a robust
tensor learning method called sparse tensor alignment (STA) is then proposed
for unsupervised tensor feature extraction based on the alignment framework.
In [47], multilinear sparse principal component analysis (MSPCA) inherit-
s the sparsity from the sparse PCA and iteratively learns a series of sparse
projections that capture most of the variation of the tensor data.

In many real-world problems, collecting a large number of labeled samples
is practically impossible. The reason is twofold. Firstly, these labeled samples

6.2 Graph-based semi-supervised embedding methods 65

can be very few. Secondly, acquiring labels requires expensive human labor.
To deal with this problem, semi-supervised embedding methods can be used
to project the data in the high-dimensional space into a space with fewer
dimensions. In the last decade, semi-supervised learning algorithms have been
developed to effectively utilize a large amount of unlabeled samples as well
as the limited number of labeled samples for real world applications [112, 55,
113, 54, 99, 21, 50, 78, 49].

Cai et al. proposed semi-supervised discriminant analysis (SDA) [10]. S-
ince SDA is sensitive to the noise, Zhang et al. proposed Semi-Supervised Dis-
criminant Analysis (SSDA) [109]. Sugiyama et al. proposed Semi-supervised
Local Fisher discriminant analysis (SELF) [77] which has an analytic for-
m of the globally optimal solution and it can be computed based on eigen-
decomposition. Qiao et al. proposed Sparsity preserving discriminant analysis
(SPDA) [64].

In the past years, many graph-based methods for semi-supervised learning
have been developed [106, 13, 1, 100, 52, 95, 56, 62, 39, 107, 27, 108, 83]. Some
edge based (constraints of sample pairs) methods are proposed. Zhang et al.
proposed Semi-Supervised Dimensionality Reduction (SSDR) [103] which can
preserve the intrinsic structure of the unlabeled data as well as both the must-
link and cannot-link constraints defined on some examples in the projected
low-dimensional space. Wei et al. proposed neighbourhood preserving based
semi-supervised dimensionality reduction algorithm [91]. Cevikalp proposed
Constrained Locality Preserving Projections (CLPP) [14] that incorporates
pairwise equivalence constraints for finding a better embedding space. Zhang
et al. proposed two pairwise constraints preserving projection methods [102]
by using the bagging [9] and boosting [31] techniques.

Constrained Laplacian Eigenmaps [17] (CLE) is a semi-supervised em-
bedding method. CLE constrains the solution space of Laplacian Eigenmaps
only to contain embedding results that are consistent with the labels. Labeled
points belonging to the same class are merged together, labeled points be-
longing to different classes are separated, and similar points are close to one
another. Similarly, Constrained Graph Embedding (CGE) [35] tries to project
the data points from a same class onto one single point in the projection space
with a constraint matrix.

Flexible Manifold Embedding (FME) [57] is a label propagation method.
FME simultaneously estimates the non-linear embedding of unlabeled samples
and the linear regression over these non-linear representations. In [30], the
authors propose a whole learning process that can provide the data graph
and a linear regression within a same framework.

6.2 Graph-based semi-supervised embedding methods

In this section, we introduce several existing graph-based semi-supervised
embedding methods including Sparsity preserving discriminant analysis (SP-

66 6 Advances in semi-supervised embedding

DA), Semi-supervised Discriminant Embedding (SDE) [101] and Constrained
Graph Embedding (CGE).

Some mathematical notations are listed and will be used in the next several
sections. Let X = [x1,x2, . . . ,xn] ∈ ℜm×n be the data matrix, where n is
the number of training samples and m is the dimension of each sample. Let
y = [y1, y2, . . . , yn]

T be a one-dimensional map ofX. Under a linear projection
yT = pTX, each data point xi in the input space ℜm is mapped into yi = pTxi

in the real line. Here p ∈ ℜm is a projection axis. Let Y ∈ ℜd×n be the data
projections in a d dimensional space.

6.2.1 Locality Preserving Projection

Locality Preserving Projection [36] (LPP) is a classic unsupervised embedding
method which aims to preserve the local structure of the data by keeping two
sample points close in the projection space when they are similar in the original
space. The reasonable criterion of LPP is to optimize the following objective
function under some constraints:

min
∑
i,j

(yi − yj)
2Wij , (6.1)

where W is the affinity matrix associated with the data and Wij represents
the similarity between sample xi and sample xj . Estimating the graph affinity
W from data can be carried out by many graph construction methods [74].
The simplest method is based on the use of kNN graph as defined in Eq.(3.1).

After some simple algebraic formulations, we obtain:∑
i,j

(yi − yj)
2Wij = 2pTXLXTp, (6.2)

where L = D −W is the Laplacian matrix and D is a diagonal matrix with
Dii =

∑
j Wij .

With the constraint pTXDXTp = 1, the problem becomes:

min
p

pTXLXTp

pTXDXTp
. (6.3)

The optimal p is given by solving the minimum eigenvalue problem:

XLXTp = λXDXTp. (6.4)

The eigenvectors p1, . . . ,pd corresponding to the d smallest eigenvalues are
then used as the columns of the projection matrix P, i.e. P = [p1, . . . ,pd].
The projected samples are obtained by Y = PTX.

6.2 Graph-based semi-supervised embedding methods 67

6.2.2 Neighborhood Preserving Embedding

Similar to LPP, Neighborhood Preserving Embedding [34] (NPE) tries to
preserve the local structure of the data which aims to keep the neighborhood
representation in the projection space.

For each sample, local least squares approximation is used to obtain the
representative coefficients by the k nearest neighbors. Denote N the represen-
tative matrix which can be obtained by minimizing the following cost function:

ϕ(N) =
∑

xj∈δk(xi)

∥xi −
∑
j

Nij xj∥2. (6.5)

Let yi = pTxi be the one dimension projection of xi. The problem of NPE
is given by:

min
p

∑
i

(yi −
∑
j

Nij yj)
2. (6.6)

With constraint pTXXTp = 1, Eq.(6.6) becomes:

min
p

pTXMXTp

pTXXTp
, (6.7)

where M = I−N−NT +NTN and I is the identity matrix.
The corresponding minimum eigenvalue problem is given by:

XMXTp = λXXTp. (6.8)

The eigenvectors p1, . . . ,pd corresponding to the d smallest eigenvalues
are the columns of the sought linear transform P, i.e. P = [p1, . . . ,pd]. The
projected samples are obtained by Y = PTX.

6.2.3 Sparsity Preserving Projection

As LPP tries to preserve the neighborhood structure, Sparsity Preserving
Projection [97, 65] (SPP) aims to keep the structure over the whole data set
by using sparse representation instead of the linear representation of k nearest
neighbors to get the weight matrix. For xi, the representative coefficients of
the rest samples are obtained by solving an ℓ1 problem:

min
si

∥si∥1,

s.t. xi = Xsi,
(6.9)

where si = [si1, . . . , si(i−1), 0, si(i+1), . . . , sin]
T . The problem of SPP is:

min
p

∑
i

(yi −
∑
j

sijyj)
2 = min

p

∑
i

(pTxi − pTXsi)
2. (6.10)

68 6 Advances in semi-supervised embedding

With the constraint pTXXTp = 1, Eq.(6.10) becomes:

min
p

pTX(I− S− ST + STS)XTp

pTXXTp
= max

p

pTXS̃XTp

pTXXTp
, (6.11)

where S̃ = S+ST −STS, and S = [s1, . . . , sn]
T . The corresponding eigenvalue

problem is:
XS̃XTp = λXXTp. (6.12)

The eigenvectors p1, . . . ,pd corresponding to the d largest eigenvalues are the
columns of the sought linear transform, i.e., P = [p1, . . . ,pd], and Y = PTX.

6.2.4 Sparsity preserving discriminant analysis

Cai et al. extended LDA to SDA by adding a geometrically-based regulariza-
tion term in the objective function of LDA. Qiao et al. added the idea of SPP
and proposed SPDA [64].

Let XL = [x1,x2, . . . ,xl] denote the label data amtrix. LDA can be re-
garded as a particular case of a graph-based embedding. Let Sw ∈ ℜl×l and
Sb ∈ ℜl×l denote two graph similarity matrices, where Sw(i, j) = 1/nc if xi

and xj belong to class c; Sw(i, j) = 0, otherwise, and Sb(i, j) = 1/l−Sw(i, j).
Here nc is the number of the samples which belongs to class c. The corre-
sponding Laplacian matrices of Sw and Sb are represented as Lw and Lb. The
intra-class scatter and the inter-class scatter of LDA can be rewritten as:

Mw =

C∑
c=1

nc∑
i=1

(xi − x̄c)(xi − x̄c)
T = XLLwX

T
L, (6.13)

and

Mb =
C∑

c=1

nc∑
i=1

(x̄c − x̄)(x̄c − x̄)T = XLLbX
T
L, (6.14)

where x̄c is the mean of the samples in the cth class and x̄ is the mean of all
the labeled samples.

The SPDA method can be solved by optimizing the following objective
function:

W = argmax
W

Tr(WTXLLbX
T
LW)

Tr(WT (XL(Lw + Lb)X
T
L + αXLSX

T + βI)W)
, (6.15)

where α and β are two balance parameters, and the LS matrix is given by

LS = I−S−ST +STS. The term trace WTXLSX
TW represent the sparsity

preserving term associated with training data.
The trace ratio can be approximated by: Tr((WT (XL(Lw + Lb)X

T
L +

αXLSX
T + βI)W)−1(WTXLLbX

T
LW)).

Thus, the optimal W is given by the eigenvectors of (WT (XL(Lw +
Lb)X

T
L + αXLSX

T + βI)W)−1(WTXLLbX
T
LW) associated with the largest

eigenvalues.

6.2 Graph-based semi-supervised embedding methods 69

6.2.5 Semi-supervised Discriminant Embedding

SDE can be seen as the semi-supervised variant of the Local Discriminant
Embedding (LDE) method. In order to discover both geometrical and dis-
criminant structure of the data manifold, SDE relies on three graphs: the
within-class graph Gw (intrinsic graph), the between-class graph Gb, and the
graph defined over the whole set. For each data sample xi, two subsets,Nw(xi)
and Nb(xi) are computed. Nw(xi) contains the neighbors sharing the same
label with xi while Nb(xi) contains the neighbors having different labels.

Each of the graphs mentioned before, Gw and Gb, is characterized by its
corresponding similarity (weight) matrix Sw and Sb, respectively. The entries
of these symmetric matrices are defined by:

Sw(i, j) =

{
sim(xi,xj), if xi ∈ Nw(xj) or xj ∈ Nw(xi),

0, otherwise.
(6.16)

Sb(i, j) =

{
sim(xi,xj), if xi ∈ Nb(xj) or xj ∈ Nb(xi),

0, otherwise.
(6.17)

Let Lw, Lb and L denote the Laplacian matrices associated with the graph
similarity matrices Sw, Sb and S (the kNN graph), respectively. SDE seeks a
linear mapping W by maximizing the following criterion:

W = argmax
W

Tr(WTXLLbX
T
LW)

Tr(WT (XLLwX
T
L + αXLXT + βI)W)

(6.18)

Let L̃w ∈ ℜn×n and L̃b ∈ ℜn×n denote the augmented Laplacian matrices,
namely:

L̃w =

(
Lw 0
0 0

)
, (6.19)

L̃b =

(
Lb 0
0 0

)
. (6.20)

The above criterion becomes:

W = argmax
W

Tr(WTXL̃bX
TW)

Tr(WT (XL̃wX
T + αXLXT + βI)W)

. (6.21)

The trace ratio can be approximated by: Tr((WT (XL̃wX
T + αXLXT +

βI)W)−1(WTXL̃bX
TW)).

Thus, W is given by the eigenvectors of (WT (XL̃wX
T + αXLXT +

βI)W)−1(WTXL̃bX
TW) associated with the largest eigenvalues.

70 6 Advances in semi-supervised embedding

6.2.6 Constrained Graph Embedding

Constrained Graph Embedding [35] (CGE) is a semi-supervised non-linear
embedding method which uses the label information as additional constraints
mapping the samples with a same label to one point in the projection space.
We assume that the first l samples are with labels from c classes. In the
projection space, a constraint matrix U is used to keep the samples with a
same label in one point. The definition of U is as follows:

U =

(
J 0
0 I

)
, (6.22)

where U ∈ ℜn×(c+(n−l)), I is the (n− l)× (n− l) identity matrix and the i -th
row of J is an indictor vector of xi:

Jij =

{
1, if xi is labeled from class j,
0, otherwise,

(6.23)

where j = 1, . . . , c.
An auxiliary vector z is adopted to implement the constraint (y is the

one-dimensional map of data matrix X):

y = Uz. (6.24)

With the above constraint, it is clear to see that if xi and xj share the same
label, then yi = yj .

With simple algebraic formulation, we have:∑
i,j

(yi − yj)
2Wij = yTLy = zTUTLUz, (6.25)

and
yTDy = zTUTDUz, (6.26)

where the affinity matrix W can be given by the simple kNN graph as defined
in Eq.(3.1), L = D−W and D is diagonal with Dii =

∑
j Wij .

The problem of CGE is as follows:

min
z

zTUTLUz,

s.t. zTUTDUz = 1.
(6.27)

The optimal vector z is given by the minimum eigenvalue solution to the
generalized eigenvalue problem:

UTLUz = λUTDUz. (6.28)

The eigenvectors z1, . . . , zd corresponding to the d smallest eigenvalues, yield
the auxiliary matrix Z = [z1, . . . , zd]. We have Y = (UZ)T . Y is a d × n
matrix and it represents the data projection of X.

6.3 Conclusion 71

6.2.7 Flexible Manifold Embedding

Flexible Manifold Embedding [57] (FME) is a label propagation method. FME
can simultaneously estimate a prediction matrix over the whole input sam-
ples and an approximate linear projection from the original samples to their
prediction vectors by a regression term.

FME algorithm solves the following problem:

min
F,P,b

Tr(F−T)TΛ (F−T) + Tr(FTLF)

+µ (∥P∥2 + γ∥XTP+ 1bT − F∥2)
(6.29)

where Λ is a diagonal matrix with the first l and the rest u diagonal elements
as 1 and 0. L is a graph Laplacian matrix of some similarity matrix. P is the
unknown projection matrix and b is a bias vector. Assuming c is the number
of classes, T in Eq.(6.29) is a n×c matrix: T = [t1, t2, . . . , tn]

T ∈ ℜn×c, where
tij = 1 if xi belongs to class j, 0 otherwise. The task is to estimate the label
indicator matrix F = [f1, f2, . . . , fn]

T ∈ ℜn×c so that the label of unlabeled
samples can be inferred.

The solution to Eq.(6.29) is as follows:

F = (Λ+ L+ µγHc − µγ2 N)−1ΛT, (6.30)

where N = XT
c (γXc X

T
c + I)−1Xc and Xc = XHc with Hc = I− 1

n11
T . I is

an identity matrix of size n.

6.3 Conclusion

In this chapter, we reviewed several manifold embedding methods including
unsupervised and semi-supervised algorithms. We presented in some details
three unsupervised embedding algorithms (namely LPP, NPE and SPP) and
four semi-supervised embedding techniques (namely SPDA, SDE, CGE and
FME).

7

Flexible Constrained Sparsity Preserving
Embedding

Abstract

In this chapter, we propose a semi-supervised learning method named Con-
strained Sparsity Preserving Embedding (CSPE). Afterwards, we introduce an-
other flexible semi-supervised embedding method named Flexible Constrained
Sparsity Preserving Embedding (FCSPE).

The framework of CSPE does not provide a straightforward solution to
the out-of-sample problem. Indeed, the regression is carried out as an extra
step. With the flexible method, FCSPE, both the non-linear mapping and the
regression are simultaneously estimated within one single framework. This will
lead to more flexibility in the final solution as shown by the experimental
results.

Contents
7.1 Introduction . 73
7.2 Constrained Sparsity Preserving Embedding

(CSPE) . 74
7.3 Flexible Constrained Sparsity Preserving

Embedding (FCSPE) . 75
7.4 Performance evaluation . 77
7.5 Conclusion . 84

7.1 Introduction

SPP is a successful unsupervised learning method. To extend SPP to a semi-
supervised embedding method, we introduce the idea of in-class constraints in
CGE into SPP and propose a new semi-supervised method for data embedding
named Constrained Sparsity Preserving Embedding (CSPE). The weakness of
CSPE is that it can not handle the new coming samples which means a cascade

74 7 Flexible Constrained Sparsity Preserving Embedding

regression should be performed after the non-linear mapping is obtained by
CSPE over the whole training samples. Inspired by FME, we add a regression
term in the objective function to obtain an approximate linear projection
simultaneously when non-linear embedding is estimated and proposed Flexible
Constrained Sparsity Preserving Embedding (FCSPE). So in this chapter, two
semi-supervised embedding methods namely CSPE and FCSPE are proposed.
Compared to the existing works, the proposed CSPE retains the advantages of
both CGE and SPP. On the other hand, the proposed FCSPE simultaneous
estimates the non-linear mapping over the training samples and the linear
projection for solving the out-of-sample problem, which is usually not provided
by existing graph-based semi-supervised non-linear mapping methods.

7.2 Constrained Sparsity Preserving Embedding (CSPE)

In this section, we introduce a semi-supervised embedding method named
Constrained Sparsity Preserving Embedding (CSPE). In CSPE, the construc-
tion of the affinity matrix is parameter free and the sparse structure is pre-
served in the projection space. In addition, the idea of in-class constraints
from CGE is also integrated in the algorithm which merges the sample points
with the same label together in the projection space. The affinity matrix is ob-
tained by sparse representation as in Eq.(6.9). In this way, the affinity matrix
can be obtained without setting any parameters.

To keep the sparse representation in the projection space as explained in
SPP, every yi should have a similar combination of the rest samples in the
projection space as xi in the original space. So the problem of CSPE is the
same like in SPP:

min
y

∑
i

(yi − yT si)
2, (7.1)

where si is provided by Eq.(6.9). y is the 1D projection of the whole set. The
definition of the constraint matrix U is the same as Eq.(6.22) to constrain the
projection sample points, i.e. let y = Uz. We note yi = yT

∗ ei, where the i -th
item of the vector ei is 1, 0 otherwise. Then, Eq.(7.1) becomes:

min
z

∑
i

(zTUTei − zTUT si)
2. (7.2)

With simple algebraic manipulations, the objective function can be rewrit-
ten as: ∑

i

(zTUTei − zTUT si)
2 = zTUT (I− S− ST + STS)Uz

= zTUTUz− zTUT S̃U z,

(7.3)

where S̃ = S + ST − STS. With the constraint zTUTUz = 1, the objective
function Eq.(7.3) can be recasted into:

7.3 Flexible Constrained Sparsity Preserving Embedding (FCSPE) 75

max
z

zTUT S̃U z

zTUTUz
. (7.4)

The optimal vector z is given by the maximum eigenvalue solution to the
following generalized eigenvalue problem:

UT S̃Uz = λUTUz. (7.5)

The eigenvectors z1, . . . , zd corresponding to the d largest eigenvalues,
yield the auxiliary matrix Z = [z1, . . . , zd]. The data projections of X in the
d -dimensional space is given by:

Y = (UZ)T . (7.6)

The projection matrix of CSPE could not be obtained directly since C-
SPE provides a non-linear mapping. The traditional way to deal with a new
incoming sample is to re-perform the whole algorithm again which will be
time-consuming.

We assume a linear projection y(x) = PTx to approximate the original
non-linear mapping, where P = [p1, . . . ,pd]. One simple idea to calculate the
matrix P is to fit the following function which minimizes the least square error
on the existing samples.

P = argmin
P

(
∥PTX−Y∥2 + γ ∥P∥2

)
, (7.7)

where γ is a positive balance parameter that controls the regularization.
By vanishing the derivative of the right side w.r.t. P, the optimal P can

be obtained as:
P = (XXT + γI)−1XYT . (7.8)

For a new incoming sample xtest, its embedding ytest is given by

ytest = PT xtest = ((XXT + γI)−1XUZ)Txtest. (7.9)

Over the training samples, the approximate linear projection P can also
be used.

7.3 Flexible Constrained Sparsity Preserving Embedding
(FCSPE)

CSPE is a semi-supervised embedding method which does not provide a di-
rect linear projection within its criterion. Thus, in order to deal with unseen
data samples, regression should be applied to estimate a linear projection as
a cascade process after the non-linear embedding is obtained. To deal with
the out-of-sample problem, we introduce Flexible Constrained Sparsity P-
reserving Embedding (FCSPE), a new flexible embedding method based on

76 7 Flexible Constrained Sparsity Preserving Embedding

CSPE which simultaneously utilizes the core idea of CSPE and generates a
projection matrix by optimizing one objective criterion. This criterion aims
at getting both the non-linear representations and the linear regression based
on minimizing the residual errors (choosing a linear subspace that are close
to the non-linear one). This flexible optimization is usually better then a cas-
cade estimation which simultaneously computes non-linear embedding of the
samples and the regression over these non-linear representations.

Assuming YT = XTP + 1bT , we try to minimize the following optimal
function:

min
Z,P,b

Tr(ZTUT (I− S− ST + STS)UZ)

+ µ(∥P∥2 + γ ∥XTP+ 1bT −UZ∥2),
s.t. ZTUTUZ = I.

(7.10)

Define cost function Q(Z,P,b) as follows:

Q(Z,P,b) = Tr(ZTUT (I− S− ST + STS)UZ)

+ µ(∥P∥2 + γ ∥XTP+ 1bT −UZ∥2).
(7.11)

Let ∂Q(Z,P,b)/∂b = 0, we obtain

b =
1

n
ZTUT1−PTX1. (7.12)

Then we can have Q(Z,P).
Again let ∂Q(Z,P)/∂P = 0, we get

P = γ (γXHcX
T + I)−1XHcUZ = AUZ, (7.13)

where Hc = I− 1
n11

T and A = γ (γXHcX
T + I)−1XHc.

We have XTP + 1bT = HcX
TAUZ + 1

n11
TUZ = BUZ, where B =

XHcA+ 1
n11

T . Hence,

Q(Z) = Tr(ZTEZ), (7.14)

where E = UT (I−S−ST +STS)U+µUTATAU+µγU (B−I)T (B−I)U.
Now we want to solve the following problem which is only related to Z:

min
Z

Tr(ZTEZ),

s.t. ZTUTUZ = I.
(7.15)

Then a Lagrangian multiplier is used. The optimal vector z is given by the
minimum eigenvalue solution to the following generalized eigenvalue problem:

Ez = λUTUz. (7.16)

The eigenvectors z1, . . . , zd corresponding to the d smallest eigenvalues,
yield the auxiliary matrix Z = [z1, . . . , zd].

7.4 Performance evaluation 77

Then the approximate linear projection matrix P is given by Eq.(7.13),
i.e. P = AUZ.

The linear projection can be used over both the training samples and the
testing samples.

7.4 Performance evaluation

In this section, we evaluate the proposed methods on eight real image databas-
es: Yale, ORL, FERET, PIE, Extended Yale B, LFW (the original data set
and the aligned version), COIL-20, and USPS.

7.4.1 Comparisons of effectiveness

To evaluate the proposed methods, we compare them with several compet-
ing methods including Locality Preserving Projection (LPP) [36], Sparsity
Preserving Projection (SPP) [65], Sparsity preserving discriminant analysis
(SPDA) [64], Semi-supervised Discriminant Embedding (SDE) [101], and Con-
strained Graph Embedding (CGE) [35]. We also use three label propagation
methods Gaussian Random Fields (GRF) [114], Robust multi-class Graph
Transduction (RMGT) [51], and FME [57] which can be regarded as classi-
fiers.

The FCSPE method has two parameters to tune: µ and γ. In the ex-
periments, they are chosen from {10−6, 10−3, 1, 103, 106}. For every method,
several values for the parameters are used. We then report the top-1 recog-
nition accuracy (best average recognition rate) of all methods from the best
parameter configuration. In all experiments, PCA is used as a preprocessing
step to preserve 98% energy of the data.

For every data sets except LFW-a, we randomly choose 50% of samples
to be in the training set and the rest 50% form the test set. For each class,
l samples are randomly chosen (from the training set) as labeled samples
(l = 1, 2 & 3). All compared methods use the training set (labeled and unla-
beled samples) to build the projection model. Then, the obtained projection
of the unlabeled train data and test data samples are classified using the N-
earest Neighbor (NN) classifier. We repeat every experiments 10 times, i.e.,
we generate 10 random splits (Train/Test) for every data set. We depict the
average recognition rates over the 10 splits. In general, the recognition rates
varies with the dimension of the subspace. Thus, the average recognition rate
is given by a curve depicting the rate as a function of the dimension of the
new subspace.

Tables 7.1-7.7 show the average recognition rates and the standard de-
viations for six databases. For each database, 1-3 samples for each class are
labeled and recognition rates are shown on both unlabeled training sets and
testing sets. In the tables, ‘Unlabeled’ means the unlabeled training set and
‘Test’ means the testing set.

78 7 Flexible Constrained Sparsity Preserving Embedding

We conducted one experiment on LFW and LFW-a. The main purpose of
this data set is to evaluate face verification in the wild. Since we are addressing
face recognition problem (one to many matching), we use another protocol
for evaluating the proposed methods. For every person we randomly select 7
images and the remaining 4 images are used for testing. These test images are
used as unlabeled data sample. In other worlds, the whole data set is used
for training. We just test on one split using the original color feature and
the LBP image [60, 79], respectively. For comparison, we use SPDA, SDE,
FME and CGE. The NN classifier is used for classification. Table 7.8 shows
the recognition rates for LFW-a and Table 7.9 shows the recognition rates for
LFW.

Table 7.1: Average recognition rates (%) on Yale.

Labeled 1 2 3

Method Unlabeled Test Unlabeled Test Unlabeled Test

GRF [114] 66.5±12.0 - 70.8±12.1 - 70.4±12.5 -
RMGT [51] 69.9±10.4 - 72.3±11.1 - 71.1±12.0 -
LPP [36] 79.2±7.4 82.5±6.8 81.5±5.9 86.9±3.8 83.6±6.4 87.9±4.2
SPP [65] 80.8±5.3 83.6±8.1 86.0±5.8 88.9±4.6 86.7±4.2 91.5±5.4
SPDA [64] 76.5±7.1 80.7±8.1 83.0±7.7 88.6±3.1 84.4±7.8 91.4±2.9
SDE [101] 63.6±12.0 72.2±13.4 71.5±8.8 80.4±6.1 73.4±9.8 86.1±5.5
FME [57] 74.1±8.8 75.6±8.3 78.8±9.4 82.6±4.8 79.8±9.9 85.4±4.4
CGE [35] 77.1±9.0 73.8±6.9 82.5±7.8 82.1±6.9 82.9±12.8 86.3±7.1
CSPE 83.1±4.8 83.5±6.7 90.5±5.0 89.4±3.0 94.9±3.6 93.5±5.2
FCSPE 83.6±4.3 82.9±7.6 90.3±5.3 89.6±3.4 95.1±3.3 92.4±5.2

Table 7.2: Average recognition rates (%) on ORL.

Labeled 1 2 3

Method Unlabeled Test Unlabeled Test Unlabeled Test

GRF 59.1±6.1 - 68.7±5.1 - 75.4±4.8 -
RMGT 60.1±5.9 - 69.9±4.9 - 76.9±4.4 -
LPP 65.5±4.0 61.1±4.1 73.1±5.0 69.1±4.5 77.4±4.3 75.3±3.0
SPP 67.9±2.8 63.6±4.8 79.0±4.4 76.4±5.5 87.6±3.1 84.0±2.1
SPDA 56.8±4.0 56.4±4.9 72.3±2.8 74.4±5.2 83.5±3.3 84.8±1.7
SDE 38.9±2.4 44.9±6.1 50.1±5.2 60.4±4.1 62.0±5.4 72.6±3.4
FME 58.6±5.2 56.0±5.0 76.0±4.3 75.3±4.8 84.8±3.7 84.6±1.9
CGE 61.3±6.5 56.4±3.6 74.7±7.0 70.8±5.3 83.5±5.5 81.8±5.4
CSPE 66.9±3.7 62.0±4.3 79.8±5.7 78.9±3.7 88.4±2.8 88.5±1.8
FCSPE 68.5±3.1 64.5±4.1 82.8±3.0 80.0±3.7 88.8±2.4 88.8±2.0

7.4 Performance evaluation 79

Table 7.3: Average recognition rates (%) on FERET.

Labeled 1 2 3

Method Unlabeled Test Unlabeled Test Unlabeled Test

GRF 17.8±10.8 - 24.5±15.3 - 31.1±22.4 -
RMGT 18.6±10.6 - 24.9±15.5 - 32.0±23.3 -
LPP 17.3±11.7 18.3±8.8 21.3±14.4 26.0±9.0 27.2±22.6 31.5±6.5
SPP 37.7±16.9 29.0±15.0 50.4±20.0 42.0±13.9 57.3±30.5 53.4±12.2
SPDA 24.3±15.6 23.6±12.9 45.5±21.0 45.9±16.8 53.3±33.0 65.7±17.0
SDE 20.6±13.2 20.0±11.8 30.8±15.5 33.6±13.4 39.2±27.3 47.6±12.3
FME 25.3±17.5 24.5±12.3 44.2±22.9 46.6±13.6 57.3±34.9 64.0±13.3
CGE 24.7±11.5 24.3±12.5 40.1±14.4 40.3±15.1 55.1±26.5 57.6±13.2
CSPE 39.6±15.6 34.4±15.5 58.3±20.2 55.7±17.1 67.5±31.2 69.0±13.7
FCSPE40.8±13.0 37.3±13.2 60.7±18.3 62.2±15.9 70.4±28.2 73.3±15.2

Table 7.4: Average recognition rates (%) on PIE.

Labeled 1 2 3

Methods Unlabeled Test Unlabeled Test Unlabeled Test

GRF 9.8±5.8 - 16.9±6.8 - 22.2±5.9 -
RMGT 10.3±5.7 - 17.3±6.7 - 22.5±5.9 -
LPP 11.0±5.2 11.3±2.7 16.4±7.4 17.0±4.0 21.9±6.8 18.5±4.5
SPP 20.7±6.8 25.0±5.6 32.0±7.2 36.0±5.1 38.7±6.6 41.9±7.0
SPDA 14.3±6.0 17.9±3.7 29.4±10.7 35.1±9.7 41.8±7.0 46.8±9.6
SDE 15.2±5.5 19.8±5.0 24.5±6.6 29.3±5.6 31.8±5.7 35.3±6.8
FME 9.6±4.7 10.5±2.7 20.5±9.4 23.2±6.9 29.6±7.6 29.5±7.6
CGE 18.7±6.3 22.5±5.5 29.7±6.4 34.0±5.8 37.1±5.2 39.9±7.4
CSPE 27.6±9.4 31.0±7.5 36.9±8.6 41.1±7.6 46.7±6.1 50.4±8.3
FCSPE 27.7±9.3 31.0±4.3 39.3±7.9 43.0±6.4 48.2±7.7 51.9±8.1

Table 7.5: Average recognition rates (%) on Extended Yale B.

Labeled 1 2 3

Method Unlabeled Test Unlabeled Test Unlabeled Test

GRF 25.0±19.8 - 41.7±16.8 - 50.1±8.8 -
RMGT 30.0±19.2 - 44.2±16.3 - 53.4±6.4 -
LPP 25.8±17.2 24.1±13.1 40.2±15.6 38.6±14.3 47.6±8.7 43.8±8.9
SPP 36.8±17.4 34.7±14.3 52.4±18.4 51.6±19.2 63.4±8.2 60.0±10.1
SPDA 36.5±17.3 34.7±13.9 52.8±18.6 50.9±18.3 61.8±12.0 57.7±11.9
SDE 33.6±15.2 32.4±13.3 50.9±18.6 50.4±18.4 61.9±9.2 59.1±9.9
FME 28.8±20.2 27.1±16.5 47.7±20.4 46.3±19.8 58.3±12.0 54.5±11.7
CGE 36.6±14.9 34.9±12.7 51.8±16.3 49.7±15.9 62.5±9.6 58.4±10.1
CSPE 41.6±17.0 39.1±15.1 57.4±18.1 56.0±18.6 68.4±8.4 64.5±9.9
FCSPE41.6±16.7 39.3±15.2 57.5±18.1 55.8±18.7 68.8±8.8 64.7±9.9

80 7 Flexible Constrained Sparsity Preserving Embedding

Table 7.6: Average recognition rates (%) on USPS.

Labeled 1 2 3

Method Unlabeled Test Unlabeled Test Unlabeled Test

GRF 33.4±8.6 - 46.8±6.9 - 56.2±5.7 -
RMGT 48.5±5.5 - 55.6±6.6 - 61.8±5.3 -
LPP 43.4±7.0 43.3±5.9 54.3±5.9 52.8±5.6 61.6±4.5 59.8±3.7
SPP 40.8±5.0 40.7±4.5 52.3±4.4 50.6±4.4 59.3±4.3 57.3±3.6
SPDA 33.0±5.4 33.1±6.0 43.5±3.7 42.8±4.5 51.3±3.1 51.1±3.3
SDE 29.0±6.7 29.3±5.8 35.6±5.6 35.7±4.5 40.6±3.6 40.3±4.1
FME 31.4±6.0 31.3±6.5 45.3±4.6 44.4±4.9 53.9±4.1 52.5±3.0
CGE 37.9±9.0 38.3±4.3 49.3±5.5 49.7±4.4 57.6±4.9 56.1±3.3
CSPE 43.0±6.6 42.6±6.6 56.9±5.7 55.1±5.0 64.4±3.1 62.4±3.7
FCSPE 42.9±7.2 41.5±6.7 57.8±5.4 55.0±5.1 65.5±3.8 62.2±3.5

Table 7.7: Average recognition rates (%) on COIL-20.

Labeled 1 2 3

Method Unlabeled Test Unlabeled Test Unlabeled Test

GRF 58.4±4.8 - 64.4±4.6 - 68.3±4.4 -
RMGT 60.7±4.6 - 66.1±4.2 - 72.3±4.5 -
LPP 61.9±4.7 56.7±3.8 68.6±3.8 63.4±4.9 72.7±5.0 67.1±3.7
SPP 64.8±6.8 60.2±4.4 72.2±3.8 66.5±5.1 76.1±6.3 71.2±5.2
SPDA 56.4±4.7 53.7±4.4 64.1±3.3 63.6±4.9 68.8±3.9 69.2±5.0
SDE 42.2±4.5 41.8±3.0 46.6±3.4 50.6±3.8 53.4±5.1 58.2±5.6
FME 57.9±5.2 54.6±3.4 66.4±2.9 64.8±5.4 71.0±4.5 71.7±5.5
CGE 63.6±8.8 60.2±6.3 71.3±5.1 69.8±8.8 75.5±4.9 74.3±6.1
CSPE 67.1±6.8 63.7±5.0 70.6±5.1 69.7±5.4 76.3±5.3 73.6±5.7
FCSPE 65.8±6.9 60.9±5.6 73.6±6.5 70.9±8.5 77.7±6.5 73.3±6.0

Table 7.8: Recognition rates (%) on LFW-a.

XXXXXXXXXMethod
Feature

Raw images LBP feature

SPDA 43.6 23.2
SDE 20.9 18.4
FME 35.3 22.7
CGE 30.9 41.0

CSPE 41.3 45.9
FCSPE 45.0 48.9

7.4 Performance evaluation 81

Table 7.9: Recognition rates (%) on LFW.

XXXXXXXXXMethod
Feature

Raw images LBP feature

SPDA 15.1 12.1
SDE 16.0 14.5
FME 23.0 12.8
CGE 23.9 29.6

CSPE 30.9 33.0
FCSPE 33.0 33.2

Figure 7.1 illustrates the average recognition rate curves among the range
of feature dimension. NN classifier is used for classification. These curves are
obtained on the test set with three labeled samples per class. We recall that
FME method does not depend on the dimension since it is a label propagation
technique. We stress the fact that the range of feature dimensions is not
the same for all compared methods. Thus, the maximum dimensions of the
methods are not the same. The maximum dimension of SPDA method is given
by c − 1, and that of SDE is given by the dimension of input samples. For
CGE, CSPE and FCSPE, the maximum dimension relying on the constraint
matrix U is given by n− l + c.

Figure 7.2 illustrates the average recognition rate curves among the range
of reduced dimension as well. The classifier is non-linear SVM, and the rest
settings are the same as those in Figure 7.1.

Analysis of results: According to the results reported in the previous
tables and figures, we can make the following observations:

• The proposed CSPE and FCSPE algorithms can out-perform the other
embedding algorithms both on the unlabeled training sets and the test
sets. These results show the the effectiveness of CSPE and FCSPE.

• Almost all algorithms perform better on the unlabeled training sets than
on the test sets for most of the datasets. This is intuitive since the unla-
beled training sets are used in the learning model.

• The CSPE and FCSPE algorithms can outperform the other algorithms
for NN and SVM classifier. According to the figures, the superiority of the
proposed methods are independent from the classifier used.

• In most cases, the proposed FCSPE algorithm provides better performance
than the proposed CSPE algorithm. As we mentioned in the previous sec-
tion, FCSPE simultaneously computes a non-linear embedding of training
samples and the linear transform based on a regression over these non-
linear representations. This provides better data projections than those
obtained by CSPE which performs a cascaded estimation, in the sense it
calculates the non-linear embedding first and then perform a linear regres-
sion over the non-linear embedding.

82 7 Flexible Constrained Sparsity Preserving Embedding

20 40 60 80 100 120 140 160 180 200
35

40

45

50

55

60

65

70

Reduced Dimension

R
ec

og
ni

tio
n

R
at

e
(%

)

FERET

SPDA
SDE
FME
CGE
CSPE
FCSPE

(a) FERET

0 50 100 150 200 250 300 350 400
25

30

35

40

45

50

Reduced Dimension

R
ec

og
ni

tio
n

R
at

e
(%

)

PIE

SPDA
SDE
FME
CGE
CSPE
FCSPE

(b) PIE

0 50 100 150 200 250 300 350 400 450
35

40

45

50

55

60

65

70

Reduced Dimension

R
ec

og
ni

tio
n

R
at

e
(%

)

Extended Yale B

SPDA
SDE
FME
CGE
CSPE
FCSPE

(c) Extended Yale B

0 50 100 150 200 250
35

40

45

50

55

60

Reduced Dimension

R
ec

og
ni

tio
n

R
at

e
(%

)

USPS

SPDA
SDE
FME
CGE
CSPE
FCSPE

(d) USPS

Fig. 7.1: Recognition rates of different embedding methods as a function of
feature dimension for FERET, PIE, Extended Yale B and USPS data sets
(test evaluation). Three samples per class are labeled. The classifier is NN.

• According to the depicted curves, we can observe that the two proposed
methods provide good performance even with small feature dimensions.
This means that the proposed method can out-perform the other methods
even in the low dimensional projection spaces.

• For the face images captured in the wild, both proposed methods keep their
superiority with respect to the competing methods even for the misaligned
faces. Moreover, the results show that the out-performance of the proposed
methods can also be obtained with other types of image descriptors.

• In most cases, the performance of FCSPE is superior to the CSPE algo-
rithm even for the unlabeled train set.

7.4.2 Sensitivity to parameters

The FCSPE method has two parameters µ and γ. In this section, we aim to
study the recognition rates obtained by FCSPE when these two parameter-
s vary. Figure 7.3 illustrates the recognition rates with different parameter

7.4 Performance evaluation 83

20 40 60 80 100 120 140 160 180 200
35

40

45

50

55

60

65

70

Reduced Dimension

R
ec

og
ni

tio
n

R
at

e
(%

)

FERET

SPDA
SDE
FME
CGE
CSPE
FCSPE

(a) FERET

0 100 200 300 400 500 600 700 800 900
0

10

20

30

40

50

60

Reduced Dimension

R
ec

og
ni

tio
n

R
at

e
(%

)

PIE

SPDA
SDE
FME
CGE
CSPE
FCSPE

(b) PIE

0 50 100 150 200 250 300 350 400 450

30

35

40

45

50

55

60

Reduced Dimension

R
ec

og
ni

tio
n

R
at

e
(%

)

Extended Yale B

SPDA
SDE
FME
CGE
CSPE
FCSPE

(c) Extended Yale B

0 50 100 150 200 250 300 350 400 450

30

35

40

45

50

55

60

Reduced Dimension

R
ec

og
ni

tio
n

R
at

e
(%

)

Extended Yale B

SPDA
SDE
FME
CGE
CSPE
FCSPE

(d) USPS

Fig. 7.2: Recognition rates of different embedding methods as a function of
feature dimension for FERET, PIE, Extended Yale B and USPS data sets
(test evaluation). Three samples per class are labeled. The classifier is SVM.

values for Yale, ORL and COIL-20 datasets. Figures 7.4 illustrates the recog-
nition rates with a smaller range of parameter µ (from 10−2 to 102) for Yale,
ORL and COIL-20.

Table 7.10: The comparison between the recognition rates (%) of the optimal
parameters and the fixed parameters(µ = 1, γ=1)

XXXXXXXXXParameters
Datasets

Yale ORL COIL-20

Optimal 92.2 88.8 76.3
Fixed 91.1 88.1 74.3

We can observe that the optimal domain for the two parameters µ and γ is
almost the same for the three face datasets. Generally, µ should be near to 1
and the influence of γ is not significant when µ is fixed. We can conclude that

84 7 Flexible Constrained Sparsity Preserving Embedding

1e−06
0.0001

0.01
1

100
10000

1e+06

1e−06

0.0001

0.01

1

100

10000

1e+06
60

70

80

90

100

µγ

R
ec

og
ni

tio
n

ra
te

 (
%

)

(a) Yale

1e−06
0.0001

0.01
1

100
10000

1e+06

1e−06

0.0001

0.01

1

100

10000

1e+06
70

75

80

85

90

µ
γ

R
ec

og
ni

tio
n

ra
te

 (
%

)

(b) ORL

1e−06
0.0001

0.01
1

100
10000

1e+06

1e−06

0.0001

0.01

1

100

10000

1e+06
40

50

60

70

80

µ
γ

R
ec

og
ni

tio
n

ra
te

 (
%

)

(c) COIL-20

Fig. 7.3: Recognition rates variation as a function of different values of pa-
rameter µ and γ on Yale, ORL and COIL-20.

despite the fact that our proposed algorithms have two parameters, optimal
values of theses parameters are simply limited to a small interval of values.
The setting of these parameters is not a difficult task. Table 7.10 depicts
a comparison between the recognition rates obtained with fixed parameters
(µ = 1, γ = 1) and the rates obtained with the optimal ones. This shows that
by fixing the two parameters to the values of µ = 1, γ = 1 the associated
performance is almost similar to the optimal results. In this case, one can
simply fix the parameters when the proposed method is used.

7.5 Conclusion

In this chapter, two semi-supervised methods for data embedding are pro-
posed. For semi-supervised data embedding, the proposed methods utilize the
label information from the labeled data and the manifold regularization (de-
rived from sparsity preserving criterion) on both labeled and unlabeled train-
ing data. The FCSPE method can generate a linear projection for unseen data
samples through a linear regression term in the optimal function.

7.5 Conclusion 85

0.01

0.1

1

10

100

1e−06

0.0001

0.01

1

100

10000

1e+06
60

70

80

90

100

µ
γ

R
ec

og
ni

tio
n

ra
te

 (
%

)

(a) Yale

0.01

0.1

1

10

100

1e−06

0.0001

0.01

1

100

10000

1e+06
70

75

80

85

90

µ
γ

R
ec

og
ni

tio
n

ra
te

 (
%

)

(b) ORL

0.01
0.1

1
10

100

1e−06

0.0001

0.01

1

100

10000

1e+06
50

60

70

80

µ
γ

R
ec

og
ni

tio
n

ra
te

 (
%

)

(c) COIL-20

Fig. 7.4: Recognition rates variation as a function of different values of pa-
rameter µ and γ on Yale, ORL and COIL-20.

The experimental results on eight real image databases clearly demonstrate
that the proposed methods can outperform the other competing embedding
methods. Moreover, for misaligned faces, the proposed methods retained their
superiority. The experimental results also give some hints for parameter se-
lection in the proposed methods.

Part III

Conclusions

8

Conclusions and perspectives

Abstract

In this chapter, we summarize and conclude the developed work and discuss
the advantages of the proposed methods as well as their limitations. Then we
show some directions for future work. Finally, the publications extracted from
the dissertation are listed.

Contents
8.1 Conclusions . 89
8.2 Perspectives . 90
8.3 Publications . 91

8.1 Conclusions

The contributions of the present research work can be categorized into two
main areas:

• Development of two graph construction methods via ℓ2 and ℓ1 minimiza-
tion respectively which are based on data self-representativeness integrated
by the constraints of Laplacian smoothness in the representation space.

• Development of two semi-supervised embedding methods.

In the case of graph construction, we integrate Laplacian smoothness as
constraint with data self-representativeness. Take advantage of ℓ2 coding, i.e.
efficient and can easily receive optimal, we proposed a garph construction
method based on data self-representativeness and Laplacian smoothness (S-
RLS). Besides, we also introduced its kernelized variants and a direct solution.
Since the ℓ2 based representation can not promise the sparsity of the represen-
tation vector, we proposed two-phase SRLS (TPSRLS) to improve the sparsity
of the affinity matrix.

90 8 Conclusions and perspectives

Sparse graphs inherit advantages of sparse representation, sparsity and ro-
bust for noise. We proposed a sparse graph construction method with Lapla-
cian smoothness (SGLS). We also introduce its kernelized variants and a direct
solution.

In the case of semi-supervised learning, we proposed two semi-supervised
methods for data embedding Constrained Sparsity Preserving Embedding (C-
SPE) and flexible semi-supervised embedding method named Flexible Con-
strained Sparsity Preserving Embedding (FCSPE). The framework of CSPE
does not provide a straightforward solution to the out-of-sample problem. In-
deed, the regression is carried out as an extra step. With the flexible method,
FCSPE, both the non-linear mapping and the regression are simultaneously
estimated within one single framework.

8.2 Perspectives

1. Investigation on the efficient graph construction for large datasets. In
graph construction, it will be time consuming when the dataset is very
large since the size of affinity matrix is related to the number of samples.
To improve the efficiency, subset selection methods can be used to reduce
the dataset size. However graph construction over large dataset is still a
big challenge.

2. Development of efficient label propagation methods and other semi-
supervised classification methods. When graph is available, the next in-
ferring task is also important. Label propagation methods or other semi-
supervised classifier have some limitations such as most of them are trans-
ductive. One track is to develop some inductive semi-supervised classifier.

3. The integration of the technique of active learning into semi-supervised
learning tasks. In real classification applications, it’s normal that some
samples are difficult to be classified. For instance, some data points near
the decision boundary are difficult to be classified when a linear classifier
is used. The technique of active learning can benefit such circumstance
and improve the final performance.

4. The usage of other feature extraction methods in the experiments. In our
experiments, we only use the gray level and LBP features of images as
features. The other feature of images can also be a choice.

5. Different classifier can be used in semi-supervised embedding methods.
we use nearest neighbor and SVM as classifier, the use of the other clas-
sifiers such as random forest, classifier based on neural network might be
interesting to explore.

6. Development of a new framework which can obtain a non-linear mapping,
a affinity graph and an approximate linear projection are estimated within
one criterion.

7. Extension of the graph construction method to the case of multi-modal
features.

8.3 Publications 91

8.3 Publications

The research work described produced some publications which are listed be-
low.

International journal articles

1. L. Weng, F. Dornaika and Z. Jin, Flexible constrained sparsity preserving
embedding, Pattern Recognition, Volume 60, December 2016, Pages
813-823.

2. L. Weng, F. Dornaika and Z. Jin, Graph construction based on data self-
representativeness and Laplacian smoothness, Neurocomputing, Volume
207, September 2016, Pages 476-487.

3. L. Weng, F. Dornaika and Z. Jin, Learning with Constrained Sparse Graph
for Image Classification, Submitted to Artificial Intelligence.

4. L. Weng, F. Dornaika and Z. Jin, Structured Sparse Graphs Using Man-
ifold constraints for visual data analysis, Submitted to IEEE Trans. on
Neural Networks and Learning Systems.

Book chapter

1. L. Weng, F. Dornaika and Z. Jin. Constrained graph embedding based on
Sparsity Preserving Projection, Advances in Face Image Analysis: Theory
and Applications, Bentham Science Publishers, 2015, Pages 23-38.

2. L. Weng, F. Dornaika and Z. Jin. Constrained data self-representative
graph construction, semi-supervised Learning: Background, Applications
and Future Directions, Nova Publisher, 2017.

3. L. Weng, F. Dornaika, and Z. Jin. Efficient graph construction through

constrained data self-representativeness. International Conference on
Artificial Neural Networks. ICANN, Alghero, Sardinia, Italy, 2017.

References

1. Jacob Abernethy, Olivier Chapelle, and Carlos Castillo, Web spam identifica-
tion through content and hyperlinks, In proceedings of International Workshop
on Adversarial Information Retrieval on the Web, ACM, 2008, pp. 41–44.

2. Suresh Balakrishnama and Aravind Ganapathiraju, Linear discriminan-
t analysis-a brief tutorial, Institute for Signal and Information Processing 18
(1998), 1–9.

3. Shumeet Baluja, Rohan Seth, D Sivakumar, Yushi Jing, Jay Yagnik, Shankar
Kumar, Deepak Ravichandran, and Mohamed Aly, Video suggestion and dis-
covery for youtube: taking random walks through the view graph, In proceedings
of International Conference on World Wide Web, ACM, 2008, pp. 895–904.

4. Mikhail Belkin and Partha Niyogi, Laplacian eigenmaps and spectral techniques
for embedding and clustering, In proceedings of Neural Information Processing
Systems, vol. 14, 2001, pp. 585–591.

5. , Laplacian eigenmaps for dimensionality reduction and data represen-
tation, Neural Computation 15 (2003), no. 6, 1373–1396.

6. Mikhail Belkin, Partha Niyogi, and Vikas Sindhwani, Manifold regularization:
A geometric framework for learning from labeled and unlabeled examples, Jour-
nal of Machine Learning Research 7 (2006), 2399–2434.

7. Avrim Blum and Tom Mitchell, Combining labeled and unlabeled data with
co-training, In proceedings of Conference on Computational Learning Theory,
ACM, 1998, pp. 92–100.

8. Ingwer Borg and Patrick JF Groenen, Modern multidimensional scaling: The-
ory and applications, Springer Science & Business Media, 2005.

9. Leo Breiman, Bagging predictors, Machine learning 24 (1996), no. 2, 123–140.
10. Deng Cai, Xiaofei He, and Jiawei Han, Semi-supervised discriminant analysis,

In proceedings of International Conference on Computer Vision, IEEE, 2007,
pp. 1–7.

11. , Spectral regression for efficient regularized subspace learning, In pro-
ceedings of International Conference on Computer Vision, IEEE, 2007, pp. 1–8.

12. D. Calvetti and L. Reichel, Application of ADI iterative methods to the restora-
tion of noisy images, SIAM Journal on Matrix Analysis and Applications 17
(1996), 165–186.

94 References

13. Gustavo Camps-Valls, Tatyana V Bandos Marsheva, and Dengyong Zhou,
Semi-supervised graph-based hyperspectral image classification, IEEE Transac-
tions on Geoscience and Remote Sensing 45 (2007), no. 10, 3044–3054.

14. Hakan Cevikalp, Jakob Verbeek, Frédéric Jurie, and Alexander Klaser, Semi-
supervised dimensionality reduction using pairwise equivalence constraints, In
proceedings of International Conference on Computer Vision Theory and Ap-
plications, vol. 1, INSTICC, 2008, pp. 489–496.

15. O. Chapelle, B. Scholkopf, and A. Zien, Semi-supervised learning, MIT Press,
2006.

16. Olivier Chapelle, Bernhard Schölkopf, and Alexander Zien, A discussion of
semi-supervised learning and transduction, MIT Press, 2006.

17. Chun Chen, Lijun Zhang, Jiajun Bu, Can Wang, and Wei Chen, Constrained
laplacian eigenmap for dimensionality reduction, Neurocomputing 73 (2010),
no. 4, 951–958.

18. Hwann Tzong Chen, Huang Wei Chang, and Tyng Luh Liu, Local discriminant
embedding and its variants, In proceedings of IEEE Conference on Computer
Vision and Pattern Recognition, vol. 2, IEEE, 2005, pp. 846–853.

19. S B Chen, Chris HQ Ding, and Bin Luo, Similarity learning of manifold data,
IEEE Transactions on Cybernetics 99 (2014), 1–13.

20. Bin Cheng, Jianchao Yang, Shuicheng Yan, Yun Fu, and Thomas S Huang,
Learning with l1 graph for image analysis, IEEE Transactions on Image Pro-
cessing 19 (2010), no. 4, 858–866.

21. Yan Cui, Xiaodong Cai, and Zhong Jin, Semi-supervised classification using
sparse representation for cancer recurrence prediction, In proceedings of IEEE
International Workshop on Genomic Signal Processing and Statistics, 2013,
pp. 102–105.

22. S.I. Daitch, J.A. Kelner, and D.A. Spielman, Fitting a graph to vector data, In
proceedings of International Conference on Machine Learning, 2009, pp. 201–
208.

23. Celso André R de Sousa, Solange O Rezende, and Gustavo EAPA Batista,
Influence of graph construction on semi-supervised learning, Machine Learning
and Knowledge Discovery in Databases, Springer, 2013, pp. 160–175.

24. Arthur P Dempster, Nan M Laird, and Donald B Rubin, Maximum likelihood
from incomplete data via the em algorithm, Journal of the royal statistical
society. Series B (methodological) (1977), 1–38.

25. F Dornaika and I Kamal Aldine, Decremental sparse modeling representative
selection for prototype selection, Pattern Recognition 48 (2015), no. 11, 3714–
3727.

26. F. Dornaika, A. Bosaghzadeh, and B. Raducanu, Efficient graph construction
for label propagation based multi-observation face recognition, In proceedings
of International Workshop on Human Behavior Understanding, 2013, pp. 124–
135.

27. F Dornaika, A Bosaghzadeh, H Salmane, and Y Ruichek, Graph-based semi-
supervised learning with local binary patterns for holistic object categorization,
Expert Systems with Applications 41 (2014), no. 17, 7744–7753.

28. Axel Dreves, Francisco Facchinei, Christian Kanzow, and Simone Sagratella,
On the solution of the kkt conditions of generalized nash equilibrium problems,
SIAM Journal on Optimization 21 (2011), no. 3, 1082–1108.

29. Richard O Duda, Peter E Hart, and David G Stork, Pattern classification,
John Wiley & Sons, 2012.

References 95

30. X. Fang, Y. Xu, X. Li, Z. Lai, and W.K. Wong, Learning a nonnegative sparse
graph for linear regression, IEEE Transactions on Image Processing 24 (2015),
no. 9, 2760–2771.

31. Yoav Freund and Robert E Schapire, A desicion-theoretic generalization of
on-line learning and an application to boosting, In proceedings of European
Conference on Computational Learning Theory, Springer, 1995, pp. 23–37.

32. C. Gong, T. Liu, D. Tao, K. Fu, E. Tu, and J. Yang, Deformed graph lapla-
cian for semi-supervised learning, IEEE Transactions on Neural Networks and
Learning Systems 26 (2015), no. 10, 2261–2274.

33. Isabelle Guyon and André Elisseeff, An introduction to variable and feature
selection, Journal of Machine Learning Research 3 (2003), 1157–1182.

34. Xiaofei He, Deng Cai, Shuicheng Yan, and Hong-Jiang Zhang, Neighborhood p-
reserving embedding, In proceedings of IEEE International Conference on Com-
puter Vision, vol. 2, IEEE, 2005, pp. 1208–1213.

35. Xiaofei He, Ming Ji, and Hujun Bao, Graph embedding with constraints, In
proceedings of International Joint Conference on Artificial Intelligence, vol. 9,
2009, pp. 1065–1070.

36. Xiaofei He and Partha Niyogi, Locality preserving projections, In proceedings
of Neural Information Processing Systems, vol. 16, 2003, pp. 234–241.

37. David W Hosmer Jr, A comparison of iterative maximum likelihood estimates
of the parameters of a mixture of two normal distributions under three different
types of sample, Biometrics (1973), 761–770.

38. Yao Hu, Debing Zhang, Jieping Ye, Xuelong Li, and Xiaofei He, Fast and
accurate matrix completion via truncated nuclear norm regularization, IEEE
Transactions on Pattern Analysis and Machine Intelligence 35 (2013), no. 9,
2117–2130.

39. Yi Huang, Dong Xu, and Feiping Nie, Semi-supervised dimension reduction us-
ing trace ratio criterion, IEEE Transactions on Neural Networks and Learning
Systems 23 (2012), no. 3, 519–526.

40. A. Iosifidis, A. Tefas, and I. Pitas, Graph embedded extreme learning machine,
IEEE Transactions on Cybernetics 46 (2016), no. 1, 311–324.

41. Tony Jebara, Jun Wang, and Shih Fu Chang, Graph construction and b-
matching for semi-supervised learning, In proceedings of International Con-
ference on Machine Learning, ACM, 2009, pp. 441–448.

42. Bryn Ll Jones, Eric C Kerrigan, and Jonathan F Morrison, A modeling and
filtering framework for the semi-discretised navier-stokes equations, In proceed-
ings of European Control Conference, IEEE, 2009, pp. 1215–1220.

43. Minyoung Kim and Fernando Torre, Local minima embedding, In proceedings
of International Conference on Machine Learning, 2010, pp. 527–534.

44. Z. Lai, W. K. Wong, Z. Jin, J. Yang, and Y. Xu, Sparse approximation to the
eigensubspace for discrimination, IEEE Transactions on Neural Networks and
Learning Systems 23 (2012), no. 12, 1948–1960.

45. Z. Lai, W. K. Wong, Y. Xu, J. Yang, and D. Zhang, Approximate orthogonal
sparse embedding for dimensionality reduction, IEEE Transactions on Neural
Networks and Learning Systems 27 (2016), no. 4, 723–735.

46. Z. Lai, W. K. Wong, Y. Xu, C. Zhao, and M. Sun, Sparse alignment for robust
tensor learning, IEEE Transactions on Neural Networks and Learning Systems
25 (2014), no. 10, 1779–1792.

96 References

47. Z. Lai, Y. Xu, Q. Chen, J. Yang, and D. Zhang, Multilinear sparse princi-
pal component analysis, IEEE Transactions on Neural Networks and Learning
Systems 25 (2014), no. 10, 1942–1950.

48. Yongmin Li, Shaogang Gong, and Heather Liddell, Kernel discriminant anal-
ysis, ACM Transactions on Programming Languages and Systems 15 (1998),
no. 5, 745–770.

49. Z. Li, Z. Lai, Y. Xu, J. Yang, and D. Zhang, A locality-constrained and label
embedding dictionary learning algorithm for image classification, IEEE Trans-
actions on Neural Networks and Learning Systems PP (2015), no. 99, 1–16.

50. Chien Liang Liu, Wen Hoar Hsaio, Chia Hoang Lee, and Fu Sheng Gou, Semi-
supervised linear discriminant clustering, IEEE Transactions on Cybernetics
44 (2014), no. 7, 989–1000.

51. Wei Liu and Shih Fu Chang, Robust multi-class transductive learning with
graphs, In proceedings of IEEE Conference on Computer Vision and Pattern
Recognition, IEEE, 2009, pp. 381–388.

52. Wei Liu, Junfeng He, and Shih Fu Chang, Large graph construction for scal-
able semi-supervised learning, In proceedings of International Conference on
Machine Learning, 2010, pp. 679–686.

53. Geoffrey J McLachlan and S Ganesalingam, Updating a discriminant function
on the basis of unclassified data, Communications in Statistics-Simulation and
Computation 11 (1982), no. 6, 753–767.

54. Feiping Nie, Hua Wang, Heng Huang, and Chris Ding, Adaptive loss mini-
mization for semi-supervised elastic embedding, In proceedings of International
Joint Conference on Artificial Intelligence, AAAI Press, 2013, pp. 1565–1571.

55. Feiping Nie, Shiming Xiang, Yangqing Jia, and Changshui Zhang, Semi-
supervised orthogonal discriminant analysis via label propagation, Pattern
Recognition 42 (2009), no. 11, 2615–2627.

56. Feiping Nie, Dong Xu, Xuelong Li, and Shiming Xiang, Semi-supervised di-
mensionality reduction and classification through virtual label regression, IEEE
Transactions on Systems, Man, and Cybernetics, Part B 41 (2011), no. 3,
675–685.

57. Feiping Nie, Dong Xu, Ivor Wai Hung Tsang, and Changshui Zhang, Flexible
manifold embedding: A framework for semi-supervised and unsupervised di-
mension reduction, IEEE Transactions on Image Processing 19 (2010), no. 7,
1921–1932.

58. Kamal Paul Nigam, Using unlabeled data to improve text classification, Ph.D.
thesis, Carnegie Mellon University, Pittsburgh, May 2001.

59. Partha Niyogi, Manifold regularization and semi-supervised learning: some the-
oretical analyses., Journal of Machine Learning Research 14 (2013), no. 1,
1229–1250.

60. T. Ojala, M. Pietikäinen, and T. Maenpaa, Multiresolution gray-scale and ro-
tation invariant texture classification with local binary patterns, IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 24 (2002), 971–987.

61. Matan Orbach and Koby Crammer, Graph-based transduction with confidence,
In proceedings of Joint European Conference on Machine Learning and Knowl-
edge Discovery in Databases, Springer, 2012, pp. 323–338.

62. Feng Pan, Jiandong Wang, and Xiaohui Lin, Local margin based semi-
supervised discriminant embedding for visual recognition, Neurocomputing 74
(2011), no. 5, 812–819.

References 97

63. P. Qian, F. Chung, S. Wang, and Z. Deng, Fast graph-based relaxed clustering
for large data sets using minimal enclosing ball, IEEE Transactions on Systems,
Man, and Cybernetics, Part B: Cybernetics 42 (2012), no. 3, 672–687.

64. Lishan Qiao, Songcan Chen, and Xiaoyang Tan, Sparsity preserving discrim-
inant analysis for single training image face recognition, Pattern Recognition
Letters 31 (2010), no. 5, 422 – 429.

65. Lishan Qiao, Songcan Chen, and Xiaoyang Tan, Sparsity preserving projections
with applications to face recognition, Pattern Recognition 43 (2010), no. 1, 331–
341.

66. Sam T. Roweis and Lawrence K. Saul, Nonlinear dimensionality reduction by
locally linear embedding, Science 290 (2000), no. 5500, 2323–2326.

67. Bernhard Schölkopf, Alexander Smola, and Klaus Robert Müller, Kernel prin-
cipal component analysis, In proceedings of International Conference on Arti-
ficial Neural Networks, Springer, 1997, pp. 583–588.

68. H Scudder, Probability of error of some adaptive pattern-recognition machines,
IEEE Transactions on Information Theory 11 (1965), no. 3, 363–371.

69. Amir Shahzad, Bryn Ll Jones, Eric C Kerrigan, and George A Constantinides,
An efficient algorithm for the solution of a coupled sylvester equation appearing
in descriptor systems, Automatica 47 (2011), no. 1, 244–248.

70. Blake Shaw and Tony Jebara, Structure preserving embedding, In proceedings
of International Conference on Machine Learning, ACM, 2009, pp. 937–944.

71. Qinfeng Shi, Anders Eriksson, Anton Van Den Hengel, and Chunhua Shen,
Is face recognition really a compressive sensing problem?, In proceedings of
IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 2011,
pp. 553–560.

72. Vikas Sindhwani, Partha Niyogi, and Mikhail Belkin, Beyond the point cloud:
from transductive to semi-supervised learning, In proceedings of International
Conference on Machine learning, ACM, 2005, pp. 824–831.

73. Vikas Sindhwani, Partha Niyogi, Mikhail Belkin, and Sathiya Keerthi, Linear
manifold regularization for large scale semi-supervised learning, In proceedings
of International Conference on Machine Learning Workshop on Learning with
Partially Classified Training Data, vol. 28, 2005.

74. C. Sousa, S. Rezende, and G. Batista, Influence of graph construction on semi-
supervised learning, In proceedings of European Conferene on Machine Learn-
ing, 2013, pp. 160–175.

75. Amarnag Subramanya and Jeff Bilmes, Semi-supervised learning with measure
propagation, Journal of Machine Learning Research 12 (2011), 3311–3370.

76. Amarnag Subramanya and Partha Pratim Talukdar, Graph-based semi-
supervised learning, Synthesis Lectures on Artificial Intelligence and Machine
Learning 8 (2014), no. 4, 1–125.

77. Masashi Sugiyama, Tsuyoshi Idé, Shinichi Nakajima, and Jun Sese, Semi-
supervised local fisher discriminant analysis for dimensionality reduction, Ma-
chine learning 78 (2010), no. 1-2, 35–61.

78. Shiliang Sun, Zakria Hussain, and John Shawe Taylor, Manifold-preserving
graph reduction for sparse semi-supervised learning, Neurocomputing 124
(2014), 13–21.

79. V. Takala, T. Ahonen, and M. Pietikäinen, Block-based methods for image
retrieval using local binary patterns, In proceedings of Scandinavian Conference
on Image Analysis, 2005, pp. 882–891.

98 References

80. Partha Pratim Talukdar and Koby Crammer, New regularized algorithms for
transductive learning, In proceedings of Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, Springer, 2009, pp. 442–457.

81. J. Tang, L. Shao, X. Li, and K. Lu, A local structural descriptor for image
matching via normalized graph laplacian embedding, IEEE Transactions on Cy-
bernetics 46 (2016), no. 2, 410–420.

82. Joshua B Tenenbaum, Vin De Silva, and John C Langford, A global geo-
metric framework for nonlinear dimensionality reduction, Science 290 (2000),
no. 5500, 2319–2323.

83. Isaac Triguero, Salvador Garćıa, and Francisco Herrera, Seg-ssc: A framework
based on synthetic examples generation for self-labeled semi-supervised classi-
fication, IEEE Transactions on Cybernetics 45 (2015), no. 4, 622–634.

84. Laurens Van Der Maaten, Eric Postma, and Jaap Van den Herik, Dimension-
ality reduction: a comparative review, J Mach Learn Res 10 (2009), 66–71.

85. Vladimir Naumovich Vapnik and Vlamimir Vapnik, Statistical learning theory,
vol. 1, Wiley, 1998.

86. Changhu Wang, Shuicheng Yan, Lei Zhang, and Hong-Jiang Zhang, Multi-label
sparse coding for automatic image annotation, In proceedings of IEEE Confer-
ence on Computer Vision and Pattern Recognition, IEEE, 2009, pp. 1643–1650.

87. J. Wang, C. Lu, M. Wang, P. Li, S. Yan, and X. Hu, Robust face recognition via
adaptive sparse representation, IEEE Transactions on Cybernetics 44 (2014),
no. 12, 2368–2378.

88. Jingdong Wang, Fei Wang, Changshui Zhang, Helen C Shen, and Long Quan,
Linear neighborhood propagation and its applications, IEEE Transactions on
Pattern Analysis and Machine Intelligence 31 (2009), no. 9, 1600–1615.

89. Jinjun Wang, Jianchao Yang, Kai Yu, Fengjun Lv, Thomas Huang, and Yihong
Gong, Locality-constrained linear coding for image classification, In proceedings
of IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 2010,
pp. 3360–3367.

90. Jadoon Waqas, Zhang Yi, and Lei Zhang, Collaborative neighbor representa-
tion based classification using l2-minimization approach, Pattern Recognition
Letters 34 (2013), no. 2, 201–208.

91. Jia Wei and Hong Peng, Neighbourhood preserving based semi-supervised di-
mensionality reduction, Electronics Letters 44 (2008), no. 20, 1190–1192.

92. Kilian Q Weinberger and Lawrence K Saul, Unsupervised learning of image
manifolds by semidefinite programming, International Journal of Computer Vi-
sion 70 (2006), no. 1, 77–90.

93. Svante Wold, Kim Esbensen, and Paul Geladi, Principal component analysis,
Chemometrics and Intelligent Laboratory Systems 2 (1987), no. 1-3, 37–52.

94. John Wright, Allen Y Yang, Arvind Ganesh, Shankar S Sastry, and Yi Ma, Ro-
bust face recognition via sparse representation, IEEE Transactions on Pattern
Analysis and Machine Intelligence 31 (2009), no. 2, 210–227.

95. Zenglin Xu, Irwin King, Michael Rung Tsong Lyu, and Rong Jin, Discrimina-
tive semi-supervised feature selection via manifold regularization, IEEE Trans-
actions on Neural Networks 21 (2010), no. 7, 1033–1047.

96. J. Xuan, J. Lu, G. Zhang, and X. Luo, Topic model for graph mining, IEEE
Transactions on Cybernetics 45 (2015), no. 12, 2792–2803.

97. Shuicheng Yan and Huan Wang, Semi-supervised learning by sparse representa-
tion, In proceedings of International Conference on Data Mining, SIAM, 2009,
pp. 792–801.

References 99

98. Bo Yang and Songcan Chen, A comparative study on local binary pattern (lbp)
based face recognition: Lbp histogram versus lbp image, Neurocomputing 120
(2013), no. 23, 365–379, Image Feature Detection and Description.

99. Shuyuan Yang, Xiuxiu Wang, Min Wang, Yue Han, and Licheng Jiao, Semi-
supervised low-rank representation graph for pattern recognition, IET Image
Processing 7 (2013), no. 2, 131–136.

100. Wuyi Yang, Shuwu Zhang, and Wei Liang, A graph based subspace semi-
supervised learning framework for dimensionality reduction, In proceedings of
European Conference on Computer Vision, Springer, 2008, pp. 664–677.

101. Guoxian Yu, Guoji Zhang, Carlotta Domeniconi, Zhiwen Yu, and Jane You,
Semi-supervised classification based on random subspace dimensionality reduc-
tion, Pattern Recognition 45 (2012), no. 3, 1119–1135.

102. Daoqiang Zhang, Songcan Chen, Zhi Hua Zhou, and Qiang Yang, Constraint
projections for ensemble learning., In proceedings of Association for the Ad-
vancement of Artificial Intelligence, 2008, pp. 758–763.

103. Daoqiang Zhang, Zhi Hua Zhou, and Songcan Chen, Semi-supervised dimen-
sionality reduction, In proceedings of International Conference on Data Mining,
SIAM, 2007, pp. 629–634.

104. L. Zhang, Y. Gao, C. Hong, Y. Feng, J. Zhu, and D. Cai, Feature correlation
hypergraph: Exploiting high-order potentials for multimodal recognition, IEEE
Transactions on Cybernetics 44 (2014), no. 8, 1408–1419.

105. Lei Zhang, Meng Yang, and Xiangchu Feng, Sparse representation or collab-
orative representation: Which helps face recognition?, In proceedings of IEEE
International Conference on Computer vision, IEEE, 2011, pp. 471–478.

106. Tong Zhang, Alexandrin Popescul, and Byron Dom, Linear prediction models
with graph regularization for web-page categorization, In proceedings of Con-
ference on Knowledge Discovery and Data Mining, ACM, 2006, pp. 821–826.

107. Tongtao Zhang, Rongrong Ji, Wei Liu, Dacheng Tao, and Gang Hua, Semi-
supervised learning with manifold fitted graphs, In proceedings of International
Joint Conference on Artificial Intelligence, AAAI Press, 2013, pp. 1896–1902.

108. Yan-Ming Zhang, Kaizhu Huang, Xinwen Hou, and Cheng-Lin Liu, Learn-
ing locality preserving graph from data, IEEE Transactions on Cybernetics 44
(2014), no. 11, 2088–2098.

109. Yu Zhang and Dit Yan Yeung, Semi-supervised discriminant analysis using
robust path-based similarity, In proceedings of IEEE Conference on Computer
Vision and Pattern Recognition, IEEE, 2008, pp. 1–8.

110. Zhen Yue Zhang and Hong Yuan Zha, Principal manifolds and nonlinear di-
mensionality reduction via tangent space alignment, Journal of Shanghai Uni-
versity (English Edition) 8 (2004), no. 4, 406–424.

111. Dengyong Zhou, Olivier Bousquet, Thomas Navin Lal, Jason Weston, and
Bernhard Schölkopf, Learning with local and global consistency, Advances in
Neural Information Processing Systems 16 (2004), no. 16, 321–328.

112. Dengyong Zhou, Jiayuan Huang, and Bernhard Schölkopf, Learning from la-
beled and unlabeled data on a directed graph, In proceedings of International
Conference on Machine Learning, ACM, 2005, pp. 1036–1043.

113. Xiaojin Zhu, Semi-supervised learning, Encyclopedia of Machine Learning,
Springer, 2010, pp. 892–897.

114. Xiaojin Zhu, Zoubin Ghahramani, John Lafferty, et al., Semi-supervised learn-
ing using gaussian fields and harmonic functions, In proceedings of Interna-
tional Conference on Machine Learning, vol. 3, 2003, pp. 912–919.

100 References

