43,591 research outputs found

    Regularization and Bayesian Learning in Dynamical Systems: Past, Present and Future

    Full text link
    Regularization and Bayesian methods for system identification have been repopularized in the recent years, and proved to be competitive w.r.t. classical parametric approaches. In this paper we shall make an attempt to illustrate how the use of regularization in system identification has evolved over the years, starting from the early contributions both in the Automatic Control as well as Econometrics and Statistics literature. In particular we shall discuss some fundamental issues such as compound estimation problems and exchangeability which play and important role in regularization and Bayesian approaches, as also illustrated in early publications in Statistics. The historical and foundational issues will be given more emphasis (and space), at the expense of the more recent developments which are only briefly discussed. The main reason for such a choice is that, while the recent literature is readily available, and surveys have already been published on the subject, in the author's opinion a clear link with past work had not been completely clarified.Comment: Plenary Presentation at the IFAC SYSID 2015. Submitted to Annual Reviews in Contro

    Bayesian topology identification of linear dynamic networks

    Full text link
    In networks of dynamic systems, one challenge is to identify the interconnection structure on the basis of measured signals. Inspired by a Bayesian approach in [1], in this paper, we explore a Bayesian model selection method for identifying the connectivity of networks of transfer functions, without the need to estimate the dynamics. The algorithm employs a Bayesian measure and a forward-backward search algorithm. To obtain the Bayesian measure, the impulse responses of network modules are modeled as Gaussian processes and the hyperparameters are estimated by marginal likelihood maximization using the expectation-maximization algorithm. Numerical results demonstrate the effectiveness of this method

    An empirical Bayes approach to identification of modules in dynamic networks

    Full text link
    We present a new method of identifying a specific module in a dynamic network, possibly with feedback loops. Assuming known topology, we express the dynamics by an acyclic network composed of two blocks where the first block accounts for the relation between the known reference signals and the input to the target module, while the second block contains the target module. Using an empirical Bayes approach, we model the first block as a Gaussian vector with covariance matrix (kernel) given by the recently introduced stable spline kernel. The parameters of the target module are estimated by solving a marginal likelihood problem with a novel iterative scheme based on the Expectation-Maximization algorithm. Additionally, we extend the method to include additional measurements downstream of the target module. Using Markov Chain Monte Carlo techniques, it is shown that the same iterative scheme can solve also this formulation. Numerical experiments illustrate the effectiveness of the proposed methods

    Bayesian kernel-based system identification with quantized output data

    Full text link
    In this paper we introduce a novel method for linear system identification with quantized output data. We model the impulse response as a zero-mean Gaussian process whose covariance (kernel) is given by the recently proposed stable spline kernel, which encodes information on regularity and exponential stability. This serves as a starting point to cast our system identification problem into a Bayesian framework. We employ Markov Chain Monte Carlo (MCMC) methods to provide an estimate of the system. In particular, we show how to design a Gibbs sampler which quickly converges to the target distribution. Numerical simulations show a substantial improvement in the accuracy of the estimates over state-of-the-art kernel-based methods when employed in identification of systems with quantized data.Comment: Submitted to IFAC SysId 201

    Support Vector Machine in Prediction of Building Energy Demand Using Pseudo Dynamic Approach

    Get PDF
    Building's energy consumption prediction is a major concern in the recent years and many efforts have been achieved in order to improve the energy management of buildings. In particular, the prediction of energy consumption in building is essential for the energy operator to build an optimal operating strategy, which could be integrated to building's energy management system (BEMS). This paper proposes a prediction model for building energy consumption using support vector machine (SVM). Data-driven model, for instance, SVM is very sensitive to the selection of training data. Thus the relevant days data selection method based on Dynamic Time Warping is used to train SVM model. In addition, to encompass thermal inertia of building, pseudo dynamic model is applied since it takes into account information of transition of energy consumption effects and occupancy profile. Relevant days data selection and whole training data model is applied to the case studies of Ecole des Mines de Nantes, France Office building. The results showed that support vector machine based on relevant data selection method is able to predict the energy consumption of building with a high accuracy in compare to whole data training. In addition, relevant data selection method is computationally cheaper (around 8 minute training time) in contrast to whole data training (around 31 hour for weekend and 116 hour for working days) and reveals realistic control implementation for online system as well.Comment: Proceedings of ECOS 2015-The 28th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems , Jun 2015, Pau, Franc

    Regularized linear system identification using atomic, nuclear and kernel-based norms: the role of the stability constraint

    Full text link
    Inspired by ideas taken from the machine learning literature, new regularization techniques have been recently introduced in linear system identification. In particular, all the adopted estimators solve a regularized least squares problem, differing in the nature of the penalty term assigned to the impulse response. Popular choices include atomic and nuclear norms (applied to Hankel matrices) as well as norms induced by the so called stable spline kernels. In this paper, a comparative study of estimators based on these different types of regularizers is reported. Our findings reveal that stable spline kernels outperform approaches based on atomic and nuclear norms since they suitably embed information on impulse response stability and smoothness. This point is illustrated using the Bayesian interpretation of regularization. We also design a new class of regularizers defined by "integral" versions of stable spline/TC kernels. Under quite realistic experimental conditions, the new estimators outperform classical prediction error methods also when the latter are equipped with an oracle for model order selection

    Outlier robust system identification: a Bayesian kernel-based approach

    Full text link
    In this paper, we propose an outlier-robust regularized kernel-based method for linear system identification. The unknown impulse response is modeled as a zero-mean Gaussian process whose covariance (kernel) is given by the recently proposed stable spline kernel, which encodes information on regularity and exponential stability. To build robustness to outliers, we model the measurement noise as realizations of independent Laplacian random variables. The identification problem is cast in a Bayesian framework, and solved by a new Markov Chain Monte Carlo (MCMC) scheme. In particular, exploiting the representation of the Laplacian random variables as scale mixtures of Gaussians, we design a Gibbs sampler which quickly converges to the target distribution. Numerical simulations show a substantial improvement in the accuracy of the estimates over state-of-the-art kernel-based methods.Comment: 5 figure
    • …
    corecore