230 research outputs found

    Advances in Hyperspectral Image Classification Methods for Vegetation and Agricultural Cropland Studies

    Get PDF
    Hyperspectral data are becoming more widely available via sensors on airborne and unmanned aerial vehicle (UAV) platforms, as well as proximal platforms. While space-based hyperspectral data continue to be limited in availability, multiple spaceborne Earth-observing missions on traditional platforms are scheduled for launch, and companies are experimenting with small satellites for constellations to observe the Earth, as well as for planetary missions. Land cover mapping via classification is one of the most important applications of hyperspectral remote sensing and will increase in significance as time series of imagery are more readily available. However, while the narrow bands of hyperspectral data provide new opportunities for chemistry-based modeling and mapping, challenges remain. Hyperspectral data are high dimensional, and many bands are highly correlated or irrelevant for a given classification problem. For supervised classification methods, the quantity of training data is typically limited relative to the dimension of the input space. The resulting Hughes phenomenon, often referred to as the curse of dimensionality, increases potential for unstable parameter estimates, overfitting, and poor generalization of classifiers. This is particularly problematic for parametric approaches such as Gaussian maximum likelihoodbased classifiers that have been the backbone of pixel-based multispectral classification methods. This issue has motivated investigation of alternatives, including regularization of the class covariance matrices, ensembles of weak classifiers, development of feature selection and extraction methods, adoption of nonparametric classifiers, and exploration of methods to exploit unlabeled samples via semi-supervised and active learning. Data sets are also quite large, motivating computationally efficient algorithms and implementations. This chapter provides an overview of the recent advances in classification methods for mapping vegetation using hyperspectral data. Three data sets that are used in the hyperspectral classification literature (e.g., Botswana Hyperion satellite data and AVIRIS airborne data over both Kennedy Space Center and Indian Pines) are described in Section 3.2 and used to illustrate methods described in the chapter. An additional high-resolution hyperspectral data set acquired by a SpecTIR sensor on an airborne platform over the Indian Pines area is included to exemplify the use of new deep learning approaches, and a multiplatform example of airborne hyperspectral data is provided to demonstrate transfer learning in hyperspectral image classification. Classical approaches for supervised and unsupervised feature selection and extraction are reviewed in Section 3.3. In particular, nonlinearities exhibited in hyperspectral imagery have motivated development of nonlinear feature extraction methods in manifold learning, which are outlined in Section 3.3.1.4. Spatial context is also important in classification of both natural vegetation with complex textural patterns and large agricultural fields with significant local variability within fields. Approaches to exploit spatial features at both the pixel level (e.g., co-occurrencebased texture and extended morphological attribute profiles [EMAPs]) and integration of segmentation approaches (e.g., HSeg) are discussed in this context in Section 3.3.2. Recently, classification methods that leverage nonparametric methods originating in the machine learning community have grown in popularity. An overview of both widely used and newly emerging approaches, including support vector machines (SVMs), Gaussian mixture models, and deep learning based on convolutional neural networks is provided in Section 3.4. Strategies to exploit unlabeled samples, including active learning and metric learning, which combine feature extraction and augmentation of the pool of training samples in an active learning framework, are outlined in Section 3.5. Integration of image segmentation with classification to accommodate spatial coherence typically observed in vegetation is also explored, including as an integrated active learning system. Exploitation of multisensor strategies for augmenting the pool of training samples is investigated via a transfer learning framework in Section 3.5.1.2. Finally, we look to the future, considering opportunities soon to be provided by new paradigms, as hyperspectral sensing is becoming common at multiple scales from ground-based and airborne autonomous vehicles to manned aircraft and space-based platforms

    Feature extraction and classification for hyperspectral remote sensing images

    Get PDF
    Recent advances in sensor technology have led to an increased availability of hyperspectral remote sensing data at very high both spectral and spatial resolutions. Many techniques are developed to explore the spectral information and the spatial information of these data. In particular, feature extraction (FE) aimed at reducing the dimensionality of hyperspectral data while keeping as much spectral information as possible is one of methods to preserve the spectral information, while morphological profile analysis is the most popular methods used to explore the spatial information. Hyperspectral sensors collect information as a set of images represented by hundreds of spectral bands. While offering much richer spectral information than regular RGB and multispectral images, the high dimensional hyperspectal data creates also a challenge for traditional spectral data processing techniques. Conventional classification methods perform poorly on hyperspectral data due to the curse of dimensionality (i.e. the Hughes phenomenon: for a limited number of training samples, the classification accuracy decreases as the dimension increases). Classification techniques in pattern recognition typically assume that there are enough training samples available to obtain reasonably accurate class descriptions in quantitative form. However, the assumption that enough training samples are available to accurately estimate the class description is frequently not satisfied for hyperspectral remote sensing data classification, because the cost of collecting ground-truth of observed data can be considerably difficult and expensive. In contrast, techniques making accurate estimation by using only small training samples can save time and cost considerably. The small sample size problem therefore becomes a very important issue for hyperspectral image classification. Very high-resolution remotely sensed images from urban areas have recently become available. The classification of such images is challenging because urban areas often comprise a large number of different surface materials, and consequently the heterogeneity of urban images is relatively high. Moreover, different information classes can be made up of spectrally similar surface materials. Therefore, it is important to combine spectral and spatial information to improve the classification accuracy. In particular, morphological profile analysis is one of the most popular methods to explore the spatial information of the high resolution remote sensing data. When using morphological profiles (MPs) to explore the spatial information for the classification of hyperspectral data, one should consider three important issues. Firstly, classical morphological openings and closings degrade the object boundaries and deform the object shapes, while the morphological profile by reconstruction leads to some unexpected and undesirable results (e.g. over-reconstruction). Secondly, the generated MPs produce high-dimensional data, which may contain redundant information and create a new challenge for conventional classification methods, especially for the classifiers which are not robust to the Hughes phenomenon. Last but not least, linear features, which are used to construct MPs, lose too much spectral information when extracted from the original hyperspectral data. In order to overcome these problems and improve the classification results, we develop effective feature extraction algorithms and combine morphological features for the classification of hyperspectral remote sensing data. The contributions of this thesis are as follows. As the first contribution of this thesis, a novel semi-supervised local discriminant analysis (SELD) method is proposed for feature extraction in hyperspectral remote sensing imagery, with improved performance in both ill-posed and poor-posed conditions. The proposed method combines unsupervised methods (Local Linear Feature Extraction Methods (LLFE)) and supervised method (Linear Discriminant Analysis (LDA)) in a novel framework without any free parameters. The underlying idea is to design an optimal projection matrix, which preserves the local neighborhood information inferred from unlabeled samples, while simultaneously maximizing the class discrimination of the data inferred from the labeled samples. Our second contribution is the application of morphological profiles with partial reconstruction to explore the spatial information in hyperspectral remote sensing data from the urban areas. Classical morphological openings and closings degrade the object boundaries and deform the object shapes. Morphological openings and closings by reconstruction can avoid this problem, but this process leads to some undesirable effects. Objects expected to disappear at a certain scale remain present when using morphological openings and closings by reconstruction, which means that object size is often incorrectly represented. Morphological profiles with partial reconstruction improve upon both classical MPs and MPs with reconstruction. The shapes of objects are better preserved than classical MPs and the size information is preserved better than in reconstruction MPs. A novel semi-supervised feature extraction framework for dimension reduction of generated morphological profiles is the third contribution of this thesis. The morphological profiles (MPs) with different structuring elements and a range of increasing sizes of morphological operators produce high-dimensional data. These high-dimensional data may contain redundant information and create a new challenge for conventional classification methods, especially for the classifiers which are not robust to the Hughes phenomenon. To the best of our knowledge the use of semi-supervised feature extraction methods for the generated morphological profiles has not been investigated yet. The proposed generalized semi-supervised local discriminant analysis (GSELD) is an extension of SELD with a data-driven parameter. In our fourth contribution, we propose a fast iterative kernel principal component analysis (FIKPCA) to extract features from hyperspectral images. In many applications, linear FE methods, which depend on linear projection, can result in loss of nonlinear properties of the original data after reduction of dimensionality. Traditional nonlinear methods will cause some problems on storage resources and computational load. The proposed method is a kernel version of the Candid Covariance-Free Incremental Principal Component Analysis, which estimates the eigenvectors through iteration. Without performing eigen decomposition on the Gram matrix, our approach can reduce the space complexity and time complexity greatly. Our last contribution constructs MPs with partial reconstruction on nonlinear features. Traditional linear features, on which the morphological profiles usually are built, lose too much spectral information. Nonlinear features are more suitable to describe higher order complex and nonlinear distributions. In particular, kernel principal components are among the nonlinear features we used to built MPs with partial reconstruction, which led to significant improvement in terms of classification accuracies. The experimental analysis performed with the novel techniques developed in this thesis demonstrates an improvement in terms of accuracies in different fields of application when compared to other state of the art methods

    Feature extraction and fusion for classification of remote sensing imagery

    Get PDF

    Bidirectional-Convolutional LSTM Based Spectral-Spatial Feature Learning for Hyperspectral Image Classification

    Full text link
    This paper proposes a novel deep learning framework named bidirectional-convolutional long short term memory (Bi-CLSTM) network to automatically learn the spectral-spatial feature from hyperspectral images (HSIs). In the network, the issue of spectral feature extraction is considered as a sequence learning problem, and a recurrent connection operator across the spectral domain is used to address it. Meanwhile, inspired from the widely used convolutional neural network (CNN), a convolution operator across the spatial domain is incorporated into the network to extract the spatial feature. Besides, to sufficiently capture the spectral information, a bidirectional recurrent connection is proposed. In the classification phase, the learned features are concatenated into a vector and fed to a softmax classifier via a fully-connected operator. To validate the effectiveness of the proposed Bi-CLSTM framework, we compare it with several state-of-the-art methods, including the CNN framework, on three widely used HSIs. The obtained results show that Bi-CLSTM can improve the classification performance as compared to other methods

    Hyperspectral Image Classification With Independent Component Discriminant Analysis

    Full text link

    Investigation of feature extraction algorithms and techniques for hyperspectral images.

    Get PDF
    Doctor of Philosophy (Computer Engineering). University of KwaZulu-Natal. Durban, 2017.Hyperspectral images (HSIs) are remote-sensed images that are characterized by very high spatial and spectral dimensions and nd applications, for example, in land cover classi cation, urban planning and management, security and food processing. Unlike conventional three bands RGB images, their high dimensional data space creates a challenge for traditional image processing techniques which are usually based on the assumption that there exists su cient training samples in order to increase the likelihood of high classi cation accuracy. However, the high cost and di culty of obtaining ground truth of hyperspectral data sets makes this assumption unrealistic and necessitates the introduction of alternative methods for their processing. Several techniques have been developed in the exploration of the rich spectral and spatial information in HSIs. Speci cally, feature extraction (FE) techniques are introduced in the processing of HSIs as a necessary step before classi cation. They are aimed at transforming the high dimensional data of the HSI into one of a lower dimension while retaining as much spatial and/or spectral information as possible. In this research, we develop semi-supervised FE techniques which combine features of supervised and unsupervised techniques into a single framework for the processing of HSIs. Firstly, we developed a feature extraction algorithm known as Semi-Supervised Linear Embedding (SSLE) for the extraction of features in HSI. The algorithm combines supervised Linear Discriminant Analysis (LDA) and unsupervised Local Linear Embedding (LLE) to enhance class discrimination while also preserving the properties of classes of interest. The technique was developed based on the fact that LDA extracts features from HSIs by discriminating between classes of interest and it can only extract C 1 features provided there are C classes in the image by extracting features that are equivalent to the number of classes in the HSI. Experiments show that the SSLE algorithm overcomes the limitation of LDA and extracts features that are equivalent to ii iii the number of classes in HSIs. Secondly, a graphical manifold dimension reduction (DR) algorithm known as Graph Clustered Discriminant Analysis (GCDA) is developed. The algorithm is developed to dynamically select labeled samples from the pool of available unlabeled samples in order to complement the few available label samples in HSIs. The selection is achieved by entwining K-means clustering with a semi-supervised manifold discriminant analysis. Using two HSI data sets, experimental results show that GCDA extracts features that are equivalent to the number of classes with high classi cation accuracy when compared with other state-of-the-art techniques. Furthermore, we develop a window-based partitioning approach to preserve the spatial properties of HSIs when their features are being extracted. In this approach, the HSI is partitioned along its spatial dimension into n windows and the covariance matrices of each window are computed. The covariance matrices of the windows are then merged into a single matrix through using the Kalman ltering approach so that the resulting covariance matrix may be used for dimension reduction. Experiments show that the windowing approach achieves high classi cation accuracy and preserves the spatial properties of HSIs. For the proposed feature extraction techniques, Support Vector Machine (SVM) and Neural Networks (NN) classi cation techniques are employed and their performances are compared for these two classi ers. The performances of all proposed FE techniques have also been shown to outperform other state-of-the-art approaches

    Automated Remote Sensing Image Interpretation with Limited Labeled Training Data

    Get PDF
    Automated remote sensing image interpretation has been investigated for more than a decade. In early years, most work was based on the assumption that there are sufficient labeled samples to be used for training. However, ground-truth collection is a very tedious and time-consuming task and sometimes very expensive, especially in the field of remote sensing that usually relies on field surveys to collect ground truth. In recent years, as the development of advanced machine learning techniques, remote sensing image interpretation with limited ground-truth has caught the attention of researchers in the fields of both remote sensing and computer science. Three approaches that focus on different aspects of the interpretation process, i.e., feature extraction, classification, and segmentation, are proposed to deal with the limited ground truth problem. First, feature extraction techniques, which usually serve as a pre-processing step for remote sensing image classification are explored. Instead of only focusing on feature extraction, a joint feature extraction and classification framework is proposed based on ensemble local manifold learning. Second, classifiers in the case of limited labeled training data are investigated, and an enhanced ensemble learning method that outperforms state-of-the-art classification methods is proposed. Third, image segmentation techniques are investigated, with the aid of unlabeled samples and spatial information. A semi-supervised self-training method is proposed, which is capable of expanding the number of training samples by its own and hence improving classification performance iteratively. Experiments show that the proposed approaches outperform state-of-the-art techniques in terms of classification accuracy on benchmark remote sensing datasets.4 month
    • …
    corecore