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Nederlandse samenvatting
—Summary in Dutch—

De recente technologische ontwikkelingen op het gebied van camera en andere
sensoren hebben er toe geleid dat er steeds meer teledetectie data beschikbaar is
en dit aan een steeds hogere spatiale en spectrale resolutie. Reeds vele technieken
zijn ontwikkeld en getest om zowel de spectrale als de spatiale informatie die in
deze data vervat zit, te verkennen. Zo worden vaak kenmerkextractietechnieken
gebruikt om de hoge dimensionaliteit van hyperspectrale beelden te reduceren ter-
wijl tegelijkertijd getracht wordt zoveel mogelijk van de spectrale informatie te
behouden. Een populaire methode die gebruikt wordt bij het onderzoeken van de
spatiale informatie is dan weer de methode van morfologische profielen.

Automatische classificatie technieken die gebruikt worden bij patroonherken-
ning gaan er gewoonlijk vanuit dat er voldoende trainingsvoorbeelden voorhanden
zijn om een betrouwbaar en voldoende nauwkeurig model op te stellen voor de
verschillende klassen. Deze veronderstelling is voor classificatieproblemen met
hyperspectrale teledetectiebeelden echter maar zelden geldig. Het verzamelen van
grondwaarheid voor dit soort data is namelijk een moeilijk en duur proces. Tech-
nieken die in staat zijn een betrouwbare classificatie uit te voeren op basis van
slechts een beperkt aantal voorbeelden kunnen dus veel tijd en kosten uitsparen.
De beperking van een kleine trainingsset is bijgevolg een heel belangrijk probleem
in het veld van de hyperspectrale beeldclassificatie.

In recente jaren zijn er steeds meer teledetectiebeelden van stedelijke omgevin-
gen beschikbaar aan zeer hoge spatiale resoluties. De classificatie van zulke beelden
is bijzonder uitdagend. In stedelijke omgevingen worden immers veel verschil-
lende materialen gebruikt (baksteen, asfalt, beton, metaal, vegetatie, ...), maar
vaak worden dezelfde materialen of (spectraal) sterk gelijkende materialen ge-
bruikt voor verschillende functies (daken, wegen, parken, pleinen, ...) . Er is dus
geen één op één mapping tussen spectrale karakteristieken en functionele klassen.
Bijgevolg is de spectrale informatie onvoldoende om een duidelijk onderscheid
te maken tussen alle functionele klassen. Het is dus belangrijk ook de spatiale
informatie mee in rekening te brengen om zo de classificatie nauwkeurigheid te
verbeteren. Een van de meest populaire methoden om de spatiale informatie in
hoge resolutie teledetectiebeelden te onderzoeken zijn morfologische profielen.
Bij het gebruik van morfologische profielen in hyperspectrale data, moet men drie
belangrijke punten in rekening brengen. Ten eerste, het gebruik van morfologische
reconstructie bij het genereren van de morfologische profielen zorgt voor een aan-
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tal onverwachte en ongewenste resultaten. Ten tweede, de gegenereerde profielen
leiden tot zeer grote data dimensies. En ten slotte, door het toepassen van lineaire
kenmerkextractie methoden voor het reduceren van de dimensionaliteit van de hy-
perspectrale beelden vo6r het construeren van morfologische profielen, gaat heel
wat van de spectrale informatie verloren.

Om deze problemen op te lossen en de classificatie resultaten te verbeteren,
hebben we effectieve kenmerkextractiealgoritmen ontwikkeld en combineren we
morfologische kenmerken voor de classificatie van hyperspectrale teledetectie-
beelden. De bijdragen van deze thesis zijn de volgende:

Als eerste bijdrage, wordt een nieuwe half-gesuperviseerde lokale discriminan-
tanalyse methode (semi-supervised local discriminant analysis, SELD) voorgesteld
voor het extraheren van kenmerken in teledetectiebeelden, waardoor de perfor-
mantie in moeilijke condities verbetert. De voorgestelde methode combineert een
niet-gesuperviseerde methode (Local Linear Feature Extraction Methods, LLFE)
en een gesuperviseerde methode (Linear Discriminant Analysis, LDA) in een nieuw
kader zonder enige vrije parameters. Het basisidee is om een optimale projec-
tiematrix te construeren, die de lokale omgeving, afgeleid uit de niet gelabelde
voorbeelden, bewaart en tegelijkertijd de discriminatie tussen de klassen, afgeleid
uit de gelabelde voorbeelden, maximaliseert.

Onze tweede bijdrage is de toepassing van morfologische profielen met partiéle
reconstructie om de spatiale informatie in hyperspectrale teledetectiebeelden van
stedelijke gebieden te beschrijven. Klassieke morfologische openingen en sluitin-
gen zorgen ervoor dat er vervormingen plaatsvinden aan de randen van objecten.
Daarom wordt meestal morfologische reconstructie toegepast, die deze randen
herstelt. Dit proces heeft echter een aantal ongewenste neveneffecten. Objecten
waarvan wegens hun vorm en grootte verwacht zou worden dat ze verdwijnen in
een opening of sluiting met een bepaald structuurelement, blijven echter aanwezig
wanneer gebruik gemaakt wordt van morfologische reconstructie. Het al dan niet
verdwijnen van een object staat hierdoor niet meer in relatie met de grootte van het
object. Morfologische profielen met parti€le reconstructie daarentegen verbeteren
zowel klassieke morfologische profielen als morfologische profielen met recon-
structie. De vorm van objecten worden beter bewaard dan in het klassieke geval,
terwijl de informatie over de grootte van de objecten beter gerepresenteerd wordt
dan in morfologische profielen met reconstructie.

Een derde bijdrage is een nieuw half-gesuperviseerde kenmerkextractie kader
voor het reduceren van de dimensie van de gegenereerde morfologische profie-
len. De morfologische profielen met structuurelementen van verschillende grootte
en vorm produceren zeer hoog dimensionale data. Deze data bevat heel wat re-
dundante informatie en vormen bijgevolg een grote uitdaging voor conventionele
classificatie methoden, zeker voor diegenen die niet robuust zijn tegen het Hughes
fenomeen. Voor zover wij weten, is dit de eerste keer dat half-gesuperviseerde
kenmerkextractie wordt gebruikt voor het analyseren van morfologische profielen.
De voorgestelde methode, veralgemeende half-gesuperviseerde lokale discrimi-
nant analyse (generalized semi-supervised local discriminant analysis, GSELD),
is een uitbreiding van de SELD methode met een data gestuurde parameter.
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Als vierde bijdrage, stellen we een snelle iteratieve kernel principale com-
ponenten analyse (fast iterative kernel principal component analysis, FIKPCA)
voor om de dimensionaliteit van de hyperspectrale beelden te reduceren. In veel
toepassingen, zorgen lineaire methoden voor kenmerkextractie, die gebruik maken
van een lineaire projectie, ervoor dat niet-lineaire kenmerken van de data verloren
gaan. Traditionele niet-lineaire methoden kunnen problemen veroorzaken op het
gebied van opslagcapaciteiten en rekenkracht. De methode die we hier voorstellen
is een kernel versie van de Candid Covariance-Free Incremental Principal Com-
ponent Analysis, die de eigenvectoren schat via verschillende iteraties. Door de
eigendecompositie van de Gram matrix te vermijden, kan onze methode de vereiste
geheugencapaciteit en rekenkracht sterk verminderen.

Onze laatste bijdrage tenslotte construeert morfologische profielen met parti€éle
reconstructie op basis van geéxtraheerde kenmerken verkregen met de niet-lineaire
methode. In kenmerken verkregen met lineaire methodes, die traditioneel worden
gebruikt, gaat te veel spectrale informatie verloren. De niet-lineaire kenmerken
zijn beter geschikt om de hogere orde complexe en niet-lineaire distributies te
beschrijven. In het bijzonder, hebben we onder andere de kernel principale com-
ponenten kenmerken gebruikt om de morfologische profielen te construeren, wat
tot een significante verbetering heeft geleid van de classificatienauwkeurigheid.

De experimentele analyse die werd uitgevoerd met de nieuwe technieken die
in deze thesis werden ontwikkeld, tonen een duidelijke verbetering van de clas-
sificatienauwkeurigheid in verschillende toepassingsdomeinen in vergelijking met
andere state-of-the-art methoden.






Summary

Recent advances in sensor technology have led to an increased availability of hy-
perspectral remote sensing data at very high both spectral and spatial resolutions.
Many techniques are developed to explore the spectral information and the spatial
information of these data. In particular, feature extraction (FE) aimed at reducing
the dimensionality of hyperspectral data while keeping as much spectral infor-
mation as possible is one of methods to preserve the spectral information, while
morphological profile analysis is the most popular methods used to explore the
spatial information.

Hyperspectral sensors collect information as a set of images represented by
hundreds of spectral bands. While offering much richer spectral information than
regular RGB and multispectral images, the high dimensional hyperspectal data cre-
ates also a challenge for traditional spectral data processing techniques. Conven-
tional classification methods perform poorly on hyperspectral data due to the curse
of dimensionality (i.e. the Hughes phenomenon: for a limited number of training
samples, the classification accuracy decreases as the dimension increases). Clas-
sification techniques in pattern recognition typically assume that there are enough
training samples available to obtain reasonably accurate class descriptions in quan-
titative form. However, the assumption that enough training samples are available
to accurately estimate the class description is frequently not satisfied for hyper-
spectral remote sensing data classification, because the cost of collecting ground-
truth of observed data can be considerably difficult and expensive. In contrast,
techniques making accurate estimation by using only small training samples can
save time and cost considerably. The small sample size problem therefore becomes
a very important issue for hyperspectral image classification.

Very high-resolution remotely sensed images from urban areas have recently
become available. The classification of such images is challenging because urban
areas often comprise a large number of different surface materials, and conse-
quently the heterogeneity of urban images is relatively high. Moreover, different
information classes can be made up of spectrally similar surface materials. There-
fore, it is important to combine spectral and spatial information to improve the
classification accuracy. In particular, morphological profile analysis is one of the
most popular methods to explore the spatial information of the high resolution re-
mote sensing data. When using morphological profiles (MPs) to explore the spatial
information for the classification of hyperspectral data, one should consider three
important issues. Firstly, classical morphological openings and closings degrade
the object boundaries and deform the object shapes, while the morphological pro-
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file by reconstruction leads to some unexpected and undesirable results (e.g. over-
reconstruction). Secondly, the generated MPs produce high-dimensional data,
which may contain redundant information and create a new challenge for conven-
tional classification methods, especially for the classifiers which are not robust to
the Hughes phenomenon. Last but not least, linear features, which are used to con-
struct MPs, lose too much spectral information when extracted from the original
hyperspectral data.

In order to overcome these problems and improve the classification results, we
develop effective feature extraction algorithms and combine morphological fea-
tures for the classification of hyperspectral remote sensing data. The contributions
of this thesis are as follows.

1. As the first contribution of this thesis, a novel semi-supervised local dis-
criminant analysis (SELD) method is proposed for feature extraction in hy-
perspectral remote sensing imagery, with improved performance in both ill-
posed and poor-posed conditions. The proposed method combines unsu-
pervised methods (Local Linear Feature Extraction Methods (LLFE)) and
supervised method (Linear Discriminant Analysis (LDA)) in a novel frame-
work without any free parameters. The underlying idea is to design an op-
timal projection matrix, which preserves the local neighborhood informa-
tion inferred from unlabeled samples, while simultaneously maximizing the
class discrimination of the data inferred from the labeled samples.

2. Our second contribution is the application of morphological profiles with
partial reconstruction to explore the spatial information in hyperspectral re-
mote sensing data from the urban areas. Classical morphological openings
and closings degrade the object boundaries and deform the object shapes.
Morphological openings and closings by reconstruction can avoid this prob-
lem, but this process leads to some undesirable effects. Objects expected to
disappear at a certain scale remain present when using morphological open-
ings and closings by reconstruction, which means that object size is often
incorrectly represented. Morphological profiles with partial reconstruction
improve upon both classical MPs and MPs with reconstruction. The shapes
of objects are better preserved than classical MPs and the size information
is preserved better than in reconstruction MPs.

3. A novel semi-supervised feature extraction framework for dimension reduc-
tion of generated morphological profiles is the third contribution of this the-
sis. The morphological profiles (MPs) with different structuring elements
and a range of increasing sizes of morphological operators produce high-
dimensional data. These high-dimensional data may contain redundant in-
formation and create a new challenge for conventional classification meth-
ods, especially for the classifiers which are not robust to the Hughes phe-
nomenon. To the best of our knowledge the use of semi-supervised feature
extraction methods for the generated morphological profiles has not been in-
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vestigated yet. The proposed generalized semi-supervised local discriminant
analysis (GSELD) is an extension of SELD with a data-driven parameter.

4. In our fourth contribution, we propose a fast iterative kernel principal com-
ponent analysis (FIKPCA) to extract features from hyperspectral images. In
many applications, linear FE methods, which depend on linear projection,
can result in loss of nonlinear properties of the original data after reduction
of dimensionality. Traditional nonlinear methods will cause some problems
on storage resources and computational load. The proposed method is a
kernel version of the Candid Covariance-Free Incremental Principal Com-
ponent Analysis, which estimates the eigenvectors through iteration. With-
out performing eigen decomposition on the Gram matrix, our approach can
reduce the space complexity and time complexity greatly.

5. Our last contribution constructs MPs with partial reconstruction on nonlin-
ear features. Traditional linear features, on which the morphological profiles
usually are built, lose too much spectral information. Nonlinear features are
more suitable to describe higher order complex and nonlinear distributions.
In particular, kernel principal components are among the nonlinear features
we used to built MPs with partial reconstruction, which led to significant
improvement in terms of classification accuracies.

The experimental analysis performed with the novel techniques developed in
this thesis demonstrates an improvement in terms of accuracies in different fields
of application when compared to other state of the art methods.






Introduction

1.1 Introduction

Hyperspectral [ 1] imaging collects and processes information from across the elec-
tromagnetic spectrum. Much as the human eye sees visible light in three bands
(red, green, and blue), spectral imaging divides the spectrum into many more
bands. This technique of dividing images into bands can be extended beyond the
visible spectrum. With the development of technology, hyperspectral sensors have
been widely applied in agriculture, mineralogy and surveillance. Hyperspectral
sensors look at objects using a vast portion of the electromagnetic spectrum. Cer-
tain objects leave unique ‘fingerprints’ across the electromagnetic spectrum, see
Fig.[I.1] These ‘fingerprints’ are known as spectral signatures and enable identi-
fication of the materials that make up a scanned object. For example, a spectral
signature for oil helps mineralogists to find new oil fields.

Recently, with the advancement of sensors, hyperspectral imaging has emerged
as a new modality in Earth imaging, leading to the definition of hyperspectral re-
mote sensing. Remote sensing is the acquisition of information about an object
or phenomenon, without making physical contact with the object. In modern us-
age, the term generally refers to the use of aerial sensor technologies to detect and
classify objects on Earth (both on the surface, and in the atmosphere and oceans)
by means of propagated signals (e.g. electromagnetic radiation emitted from air-
craft or satellites) [2]. Hyperspectral remote sensing is a relatively new technology
that is currently being investigated by researchers and scientists with regard to the
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Figure 1.1: Each pixel in a hyperspectral image contains a continuous spectrum that is
used to identify the materials present in the pixel.

detection and identification of minerals, terrestial vegetation, and man-made ma-
terials and backgrounds.

Hyperspectral sensors collect information as a set of ‘images’. Each image
represents a range of the electromagnetic spectrum and is also known as a spectral
band. These ‘images’ are then combined into a three-dimensional hyperspectral
data cube for processing and analysis, see Fig.[I.2} Hyperspectral cubes are gen-
erated from airborne sensors like the NASA’s Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS), or from satellites like NASA’s Hyperion [3].

The precision of these sensors is typically measured in spectral resolution,
which is the width of each band of the spectrum that is captured. If the scanner
detects a large number of fairly narrow frequency bands, it is possible to identify
objects even if they are only captured in a handful of pixels. However, spatial res-
olution is a factor in addition to spectral resolution. If the pixels are too large, then
multiple objects are captured in the same pixel and become difficult to identify. If
the pixels are too small, then the energy captured by each sensor cell is low, and
the decreased signal-to-noise ratio reduces the reliability of measured features.

1.1.1 Differences between hyperspectral and multispectral imag-
ing

Hyperspectral imaging belongs to a class of techniques commonly referred to as
spectral imaging or spectral analysis. Hyperspectral imaging is related to multi-
spectral imaging. The distinction between hyper- and multi-spectral imaging is
sometimes based on an arbitrary “number of bands” or on the type of measure-
ment, depending on what is appropriate to the purpose.
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Figure 1.2: Hypercube.

Multispectral imaging deals with several images at discrete and somewhat nar-
row bands. Being “discrete and somewhat narrow” is what distinguishes multi-
spectral imaging in the visible spectrum from color photography. A multispectral
sensor may have many bands covering the spectrum from the visible to the long
wave infrared. Multispectral images do not produce the “spectrum” of an object.
Landsat is an excellent example.

Hyperspectral deals with imaging narrow spectral bands over a continuous
spectral range, and produces the spectra of all pixels in the scene. So, a sensor
with only 20 bands can also be hyperspectral when it covers the range from 500 to
700 nm with 20 bands each 10 nm wide. (While a sensor with 20 discrete bands
covering the VIS, NIR, SWIR, MWIR, and LWIR would be considered multispec-
tral).

‘Ultraspectral imaging’ could be reserved for interferometer type imaging sen-
sors with a very fine spectral resolution. These sensors often have (but not neces-
sarily) a low spatial resolution of several pixels only, a restriction imposed by the
high data rate.

1.1.2 Applications of hyperspectral remote sensing.

Hyperspectral remote sensing is used in a wide range of applications. Although
originally developed for mining and geology (the ability of hyperspectral imag-
ing to identify various minerals makes it ideal for the mining and oil industries,
where it can be used to look for ore and oil) [@E[], it has now spread into fields as
widespread as ecology and surveillance, as well as historical manuscript research,
such as the imaging of the Archimedes Palimpsest. This technology is continu-
ally becoming more available to the public. Organizations such as NASA and the
USGS have catalogues of various minerals and their spectral signatures, and have
posted them online to make them readily available for researchers.
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Hyperspectral remote sensing is increasing by used for monitoring the devel-
opment and health of crops. For example, hyperspectral images are used to detect
grape variety and to develop an early warning system for disease outbreaks [5].
Hyperspectral data can be used to detect the chemical composition of plants [6],
and to detect the nutrient and water status of wheat in irrigated systems [7]. An-
other application in agriculture is the detection of animal proteins in compound
feeds to avoid bovine spongiform encephalopathy (BSE), also known as mad-cow
disease [|8]].

Hyperspectral remote sensing of minerals is well developed. Many miner-
als can be identified from airborne images, and their relation to the presence of
valuable minerals, such as gold and diamonds, is well understood. Currently,
progress is towards understanding the relationship between oil and gas leakages
from pipelines and natural wells, and their effects on the vegetation and the spec-
tral signatures [9}/10].

Hyperspectral imaging is frequently used in military surveillance too. Aerial
surveillance with tethered balloons was used by French soldiers to spy on troop
movements during the French Revolutionary Wars, and since that time, soldiers
have learned not only to hide from the naked eye, but also to mask their heat sig-
natures to blend into the surroundings and avoid infrared scanning. The idea that
drives hyperspectral surveillance is that hyperspectral scanning draws information
from such a large portion of the light spectrum that any given object should have a
unique spectral signature in at least a few out of the many bands that are scanned.

Hyperspectral remote sensing has been used to monitor the environment. The
Telops Hyper-Cam, an infrared hyperspectral imager, now offers the possibility
of obtaining a complete image of emissions resulting from industrial smokestacks
from a remote location, without any need for extractive sampling systems. Emis-
sion quantification measurements have been achieved with the Hyper-Cam which
can now be used to independently, safely and rapidly identify and quantify pollut-
ing emissions from a remote location [[11].

1.2 Challenges in hyperspectral data processing

While offering much richer spectral information than regular RGB and multispec-
tral images, hyperspectral data cubes with large number of spectral bands create
also a challenge for traditional data processing techniques:

The increasing number of spectral bands causes some problems with storage
resources and computational load. Fast computers, sensitive detectors, and large
data storage capacities are needed for analyzing hyperspectral data. Significant
data storage capacity is necessary since hyperspectral cubes are large datasets,
potentially exceeding tens of gigabytes. All of these factors greatly increase the
cost of acquiring and processing hyperspectral data. Also, these high-dimensional
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hyperspectral data may contain redundant information.

The small sample size (SSS) problem [12] is an important issue for high-
dimensional data classification. The SSS problem states that the number of avail-
able training samples is relatively much smaller than the dimensionality of the
sample space. Remotely sensed hyperspectral image data, such as AVIRIS (Air-
borne Visible InfraRed Imaging Spectrometer) data [[13H15[] with hundreds of mea-
sured features (bands) potentially provide more accurate and detailed information
for classification. Some other hyperspectral data from agriculture even have more
than thousand spectral bands [16]. However, the cost of collecting ground-truth
of remotely sensed hyperspectral image often requires a skilled expert agent to
manually classify training examples. The cost associated with the labeling process
thus may render a fully labeled training set infeasible.

Very high-resolution remotely sensed images from urban areas have recently
become available. The classification of such images is challenging because urban
areas often comprise a large number of different surface materials, and conse-
quently the heterogeneity of urban images is relatively high. Moreover, different
information classes can be made up of spectrally similar surface materials.

1.3 Overview

Some advanced classifiers, such as neural networks [17]], SVM [18/]19] and random
forest classifiers [[19], have been shown to deal efficiently with the problems of the
high dimension and small sample size (SSS). The approach of [20] addresses a
“K-nearest neighbor classifier based on adaptive nonparametric separability” with
a distance metric formed by all the NWFE features. In recent years ensemble
learning methods such as bagging [21]], boosting [22/23]], random subspace method
(RSM) [24]] and their variants have showed some appealing results for improving
the classification performance of “weak classifiers” [25527]].

However, common statistical classifiers are often limited to deal with these
cases. The increase in dimensionality of hyperspectral data and the limited number
of labeled training samples may create a new challenge for conventional classifi-
cation methods, especially for the classifiers which are not robust to the Hughes
phenomenon [1]] (for a limited number of training samples, the classification accu-
racy decreases as the dimension increases)). Moreover, with the increasing number
of spectral bands, this hyperspectral data may contain redundant information. For
this reason, feature extraction (FE) or feature selection, aiming at reducing the
dimensionality of data, is a desirable preprocessing tool to reduce the dimension-
ality of hyperspectral data for classification. Relatively few bands can represent
most information of the data, making feature extraction (FE) or feature selection
very useful for classification of remote sensing data [28-32]. The feature selec-
tion method [31,32]] aims to select a suitable subset of the original set of features.
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The most important issue relative to feature selection is to find an efficient search
strategy for obtaining such a subset for classification. Most of the existing feature
selection methods are generally suboptimal [30] because the number of all possible
combinations is prohibitive, particularly for high-dimensional data classification.
Search strategies to avoid exhaustive search are needed, and the selection of the
optimal subset is therefore not guaranteed. Feature extraction uses all the features
to construct a transformation that maps the original data to a low-dimensional sub-
space. The main advantage of feature extraction above feature selection is that
no information of the original features needs to be wasted. Furthermore, feature
extraction is easier than feature selection in some situations [30].

A number of approaches exist for feature extraction of hyperspectral images
[28,33H36]], ranging from unsupervised methods to supervised ones. Unsupervised
FE methods do not require any prior knowledge or training data, even though they
are not directly aimed at optimizing the accuracy in a given classification task [32].
One of the best known unsupervised methods is Principle Component Analysis
(PCA) [37]], which is widely used for hyperspectral images [33,38}[39]. Wang and
Chang [40] proposed three Independent Component Analysis (ICA) based dimen-
sionality reduction methods for hyperspectral data. Wavelet transforms have been
used in hyperspectral data dimensionality reduction [41,42]. Wavelet transforms
can preserve the high and low frequency features during the signal decomposition,
hence preserving the spectral signatures. Plaza et al. [39] described sequences of
extended morphological transformations for dimensionality reduction and classi-
fication of hyperspectral datasets. Harsanyi and Chang [43] investigated hyper-
spectral image classification and dimensionality reduction by using an orthogonal
subspace projection approach. Phillips et al. [44]] and He and Mei [45] used sin-
gular value decomposition and random projection, respectively, to reduce the di-
mensions of hyperspectral image data. Lower rank tensor approximation [46]] and
minimum change rate deviation [47]] are proposed for hyperspectral image data
by taking into account the spatial relation among neighboring image pixels. Re-
cently, some local methods, which preserve the properties of local neighborhoods
were proposed to reduce the dimensionality of hyperspectral images [33},48-50],
such as Locally Linear Embedding [48]], Laplacian Eigenmap [51]] and Local Tan-
gent Space Alignment [52]. Their linear approximations, such as Neighborhood
Preserving Embedding (NPE) [53]], Locality Preserving Projection (LPP) [54] and
Linear Local Tangent Space Alignment (LLTSA) [55] were recently applied to
feature extraction in hyperspectral images [33}/56]. By considering neighborhood
information around the data points, these local methods can preserve local neigh-
borhood information and detect the manifold embedded in the high-dimensional
feature space.

Supervised methods rely on the existence of labeled samples to infer class sep-
arability. Two widely used supervised feature extraction methods for hyperspec-
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tral images are the Fisher’s Linear discriminant analysis (LDA) [57] and nonpara-
metric weighted feature extraction (NWFE) [35]. Many extensions to both LDA
and NWFE have been proposed in recent years, such as modified Fisher’s lin-
ear discriminant analysis [58]], regularized linear discriminant analysis [36]], mod-
ified nonparametric weight feature extraction using spatial and spectral informa-
tion [59], and kernel nonparametric weighted feature extraction [[60].

In real-world applications, labeled data are usually very limited and labeling
large amounts of data may sometimes require considerable human resources or
expertise. On the other hand, unlabeled data are available in large quantities at
very low cost. For this reason, semi-supervised methods [29,/61-H66[, which aim
at improved classification by utilizing both unlabeled and limited labeled data
gained popularity in the machine learning community. Some of the representa-
tive semi-supervised learning methods include Co-Training [62]] and transductive
SVM [63l|64]], and Graph-based semi-supervised learning methods [65,66]. Some
semi-supervised feature extraction methods add a regularization term to preserve
certain potential properties of the data. For example, semi-supervised discrimi-
nant analysis (SDA) [67] adds a regularizer into the objective function of LDA.
The resulting method makes use of a limited number of labeled samples to max-
imize the class discrimination and employs both labeled and unlabeled samples
to preserve the local properties of the data. The approach of [68]] proposed a
general semi-supervised dimensionality reduction framework based on pairwise
constraints, which employs regularization with sparse representation. Other semi-
supervised feature extraction methods combine supervised methods with unsuper-
vised ones using a trade-off parameter, such as semi-supervised local Fisher dis-
criminant analysis (SELF) [[69]. However, it may not be easy to specify the optimal
parameter values in these and similar semi-supervised techniques, as mentioned
in [68l/69].

Very high-resolution remotely sensed images from urban areas have recently
become available. The classification of such images is challenging because urban
areas often comprise a large number of different surface materials, and conse-
quently the heterogeneity of urban images is relatively high. Moreover, different
information classes can be made up of spectrally similar surface materials. In this
case, spatial information is very useful to improve the performances of classifica-
tion. Many techniques are developed to explore the spatial information of the high
resolution remote sensing data. In particular, mathematical morphology [70}71]
is one of the most popular methods. Pesaresi and Benediktsson [72] proposed
the use of morphological transformations to build a morphological profile (MP).
Bellens et al. [73] further explored this approach by using both disk-shaped and
linear structuring elements to improve the classification of very high-resolution
panchromatic urban imagery. The approach of [|17]] extended the method in [70]
for hyperspectral data with high spatial resolution. The resulting method built the
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MPs on the first principal components (PCs) extracted from a hyperspectral image,
leading to the definition of extended MP (EMP). The appoach of [39] performs
spectral-based morphology using the full hyperspectral image without dimension-
ality reduction. In [28], kernel principal components are used to construct the
EMP, with significant improvement in terms of classification accuracies compared
with the conventional EMP built on PCs. In [[74]], the attribute profiles (APs) [[75]]
were applied to the first PCs extracted from a hyperspectral image, generating an
extended AP (EAP). The approach of [76] improved the classification results by
constructing the EAP with the independent component analysis.

However, classical morphological openings and closings degrade the object
boundaries and deform the object shapes, which may result in losing some cru-
cial information and introducing fake objects in the image. To avoid this problem,
one often uses morphological openings and closings by reconstruction [[17,/18},72,
77,(78], which can reduce some shape noise in the image. However, morpho-
logical openings and closings by reconstruction lead to some unexpected results
for remote sensing images, such as over-reconstruction, as was discussed in [[73].
Objects which are expected to disappear at a certain scale remain present when
using morphological openings and closings by reconstruction. The approach of
[73]] proposed a partial reconstruction for the classification of very high-resolution
panchromatic urban imagery. Morphological openings and closings by partial re-
construction can solve the problem of over-reconstruction while preserving the
shape of objects as much as possible.

1.4 Objectives and novel contributions of the thesis

The work presented in this thesis aims at investigating and defining novel tech-
niques based on feature extraction for the classification of hyperspectral remote
sensing images. State of the art techniques have already proven that the use of
feature extraction and morphological features are effective for the classification
of hyperspectral data. Nevertheless, several limitations exist (e.g., a very limited
labeled samples, very high dimensionality of the data, very high-resolution of the
data, high cost on storage and computation, etc.). The work presented in this dis-
sertation attempts to overcoming those limitations.
The novel contributions of this thesis are as follows:

1. Definition of a novel framework for semi-supervised feature extraction [79,
80].

The proposed semi-supervised local discriminant analysis (SELD) method
combines unsupervised methods and supervised method without any free
parameters. It can find the optimal projection matrix, which preserves the
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local neighborhood information, while simultaneously maximizing the class
discrimination of the data.

2. Application of morphological profiles with partial reconstruction [|81)] to
hyperspectral remote sensing images.

In some applications simultaneous preserving of both size and shape infor-
mation in the scene is desirable. Therefore, we have applied morpholog-
ical profiles with partial reconstruction to the classification of very high-
resolution hyperspectral data from the urban area.

3. Pioneering the use of semi-supervised feature extraction to reduce the di-
mension of generated morphological profiles [81)].

To the best of our knowledge, the use of semi-supervised feature extraction
to reduce the dimension of generated morphological profiles was not yet
reported in the remote sensing field before our work of [[81].

4. Application of a nonlinear feature extraction method based on fast iterative
kernel principal component analysis to the classification of hyperspectral
data [82)].

High cost of storage and computational time limit the use of nonlinear meth-
ods in hyperspectral data. We proposed a fast iterative kernel principal com-
ponent analysis to extend the limitations of some nonlinear methods by solv-
ing the eigenvectors through iteration.

5. Investigation of extended morphological profiles with partial reconstruction
built on kernel principal components [|83)].

In many applications, the preservation of both higher order complex and
nonlinear distributions in the extracted features, which will be later used
to constructed the extended morphological profiles, is desirable. Thus, we
have investigated extended morphological profiles with partial reconstruc-
tion built on kernel principal components for the classification of very high-
resolution hyperspectral data from the urban area.

1.5 Outline

This dissertation is organized in six chapters.

Some work related to ours is reviewed in Chapter 2, including some unsu-
pervised feature extraction methods, supervised feature extraction methods and
semi-supervised methods.

In Chapter 3, a novel semi-supervised feature extraction method, called semi-
supervised local discriminant analysis (SELD), is described in detail. Experi-
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mental results on both synthetic data and real hyperspectral data are presented
to demonstrate its performances.

Morphological profiles with partial reconstruction and proposed semi-supervised
feature extraction, are shown in Chapter 4. Experimental results on hyperspectral
data from the urban area demonstrates its performance.

The fast iterative kernel principal component analysis and extended morpho-
logical profiles with partial reconstruction built on kernel principal components is
clearly deduced in Chapter 5. The standard kernel principal component analysis
performs eigen decomposition on Gram matrix. Instead, the proposed fast itera-
tive kernel principal component analysis solves the eigenvectors through iteration,
which can reduce the space complexity and time complexity greatly. Extended
morphological profiles with partial reconstruction built on kernel principal com-
ponents were investigated with the demonstration of experimental results.

Chapter 6 presents a general discussion of the work described in this thesis
reviewing the main contributions of this research. Specific concluding remarks
on the research topics treated in the dissertation are also given. Perspectives on
possible future developments of the work are presented.

1.6 Publications
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1.6.2 Publications in international conferences
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Related work

Hyperspectral sensors collect information as a set of images represented by hun-
dreds of spectral bands. While offering much richer spectral information than
regular RGB and multispectral images, this large number of spectral bands cre-
ates a challenge for traditional spectral data processing techniques. Conventional
classification methods perform poorly on hyperspectral data due to the curse of
dimensionality (i.e. the Hughes phenomenon [1]: for a limited number of training
samples, the classification accuracy decreases as the dimension increases). Feature
extraction aims at reducing the dimensionality of hyperspectral data while keeping
as much intrinsic information as possible. Relatively few bands can represent most
information of the hyperspectral images [33]], making feature extraction very use-
ful for classification, detection and visualization of remote sensing data [29/33/34].

This Chapter presents the background and a brief overview on some related
feature extraction methods for the classification of hyperspectral data.

2.1 Introduction

A number of approaches exist for feature extraction of hyperspectral images [28,
33H36]], ranging from unsupervised methods to supervised ones. Unsupervised FE
methods do not require any prior knowledge or training data, even though they are
not directly aimed at optimizing the accuracy in a given classification task [32].
One of the best known unsupervised methods is Principle Component Analysis
(PCA) [37]], which is widely used for hyperspectral images [|33}38},39].
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The purpose of PCA is to reduce dimensionality according to what percentage
of the overall variance can be captured. The kernel-based PCA (KPCA) is to find
the directions by performing the PCA in the kernel feature space [84]]. Indepen-
dent component analysis (ICA) is a statistical technique for separating the inde-
pendent signals from overlapping signals [[85]]. ICA is related to PCA but is more
powerful and capable of finding the underlying factors or sources even when the
principal-component approach fails. ICA defines a generative model for the ob-
served multivariate data, which is typically given as a large database of samples. In
the model, the data variables are assumed to be linear mixtures of some unknown
latent variables, and the mixing system is also unknown. The latent variables are
assumed non-Gaussian and mutually independent, and they are called the indepen-
dent components of the observed data. These independent components, also called
sources or factors, can be found by [85]]. Further techniques, based on image pro-
cessing approaches, have been proposed in [86] and [87]] by combining PCA/ICA
and morphological transformations in the context of the classification of hyper-
spectral images of urban areas. Recently, Wang and Chang [40] proposed three
Independent Component Analysis (ICA) based dimensionality reduction methods
for hyperspectral data. They have shown better results using their methods than
using PCA and MNFE.

Wavelet transforms have been used in hyperspectral data dimensionality reduc-
tion [41,/42]]. Wavelet transforms can preserve the high and low frequency features
during the signal decomposition, hence preserving the spectral signatures. Plaza
et al. [39] described sequences of extended morphological transformations for di-
mensionality reduction and classification of hyperspectral datasets. Harsanyi and
Chang [43] investigated hyperspectral image classification and dimensionality re-
duction by using an orthogonal subspace projection approach. Phillips et al. [44]
and He and Mei [45] used singular value decomposition and random projection, re-
spectively, to reduce the dimensions of hyperspectral image data. Lower rank ten-
sor approximation [46] and minimum change rate deviation [47] are proposed for
hyperspectral image data by taking into account the spatial relation among neigh-
boring image pixels. Recently, some local methods, which preserve the properties
of local neighborhoods were proposed to reduce the dimensionality of hyperspec-
tral images [33|48-50], such as Locally Linear Embedding [48]], Laplacian Eigen-
map [51]] and Local Tangent Space Alignment [52]. Their linear approximations,
such as Neighborhood Preserving Embedding (NPE) [53]], Locality Preserving
Projection (LPP) [54] and Linear Local Tangent Space Alignment (LLTSA) [55]]
were recently applied to feature extraction in hyperspectral images [33,/56]. By
considering neighborhood information around the data points, these local methods
can preserve local neighborhood information and detect the manifold embedded in
the high-dimensional feature space.

Supervised methods rely on the existence of labeled samples to infer class sep-
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arability. Two widely used supervised feature extraction methods for hyperspectral
images are the Fisher’s Linear discriminant analysis (LDA) [57] and nonparamet-
ric weighted feature extraction (NWFE) [35].

Linear discriminant analysis (LDA) [[88192] is a powerful classical supervised
feature-extraction method for classification, even if it has been proposed for over
70 years. It is also called the parametric feature extraction method in [90], since
LDA uses the mean vector and covariance matrix of each class. Usually, within-
class, between-class, and mixture scatter matrices are used to formulate the cri-
terion of class separability. A kernel-based LDA called generalized discriminant
analysis (GDA) was proposed by [93| using a kernel approach. There are three
drawbacks of LDA.

1. One is that it works well only if the distributions of classes are normal-like
distributions. When the distributions of classes are non normal like or mul-
timodal mixture distributions, the performance of LDA is not satisfactory;

2. The second disadvantage of LDA is that the rank of the between-class scatter
matrix is less than or equal to C' — 1, where C' is the number of the classes in
the image. Hence, assuming sufficient number of observations, the rank of
within-class scatter matrix is r < d , then only r features can be extracted;

3. The third limitation is that, if the within-class covariance is singular, which
often occurs in high-dimensional problems, LDA will have a poor perfor-
mance on classification.

Lee and Landgrebe [94] proposed the Decision-Boundary Feature Extraction
(DBFE) that can extract both discriminately informative features and discrimi-
nately redundant features from the decision boundary. The approach uses the train-
ing samples directly to determine the location of the decision boundary and em-
ploys information about the decision hypersurfaces associated with a given clas-
sifier to define an intrinsic dimensionality for the classification problem. Then,
the corresponding optimal linear mapping can be obtained. NWFE was proposed
in [35] to solve the problems of LDA. It also absorbs the idea of DBFE for deter-
mining the location of the decision boundary by training samples. The basic ideals
of NWFE are asigning different weights on every sample to compute the “weighted
means” and compute the distance between samples and their weighted means
as their “closeness” to boundary, then defining nonparametric between-class and
within-class scatter matrices which put large weights on the samples close to the
boundary and deemphasize those samples far from the boundary. The experimen-
tal results of [17] and [87] show that NWFE outperforms LDA and DBFE. In [86]]
and [95]], the authors suggest replacing DBFE by NWFE to obtain more effective
features. Other papers show that NWFE outperforms LDA, approximated pairwise
accuracy criterion linear dimension reduction, nonparametric discriminant analy-
sis [35]], and DBFE [96] in remote-sensing data sets.
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Many extensions to both LDA and NWFE have been proposed in recent years,
such as modified Fisher’s linear discriminant analysis [58]], regularized linear dis-
criminant analysis [36]], modified nonparametric weight feature extraction using
spatial and spectral information [59]], and kernel nonparametric weighted feature
extraction [60)].

In real-world applications, labeled data are usually very scarce and labeling
large amounts of data may sometimes require considerable human resources or
expertise. On the other hand, unlabeled data are available in large quantities at
very low cost. For this reason, semi-supervised methods [29,/61-66], which aim at
improved classification by utilizing both unlabeled and limited labeled data gained
popularity in the machine learning community.

Some of the representative semi-supervised learning methods include Co Train-
ing [62] and transductive SVM [63}|64]], and Graph-based semi-supervised learn-
ing methods [65}66]. Some semi-supervised feature extraction methods add a
regularization term to preserve certain potential properties of the data. For ex-
ample, semi-supervised discriminant analysis (SDA) [67] adds a regularizer into
the objective function of LDA. The resulting method makes use of a limited num-
ber of labeled samples to maximize the class discrimination and employs both
labeled and unlabeled samples to preserve the local properties of the data. The ap-
proach of [68]] proposed a general semisupervised dimensionality reduction frame-
work based on pairwise constraints, which employs regularization with sparse
representation. Other semi-supervised feature extraction methods combine super-
vised methods with unsupervised ones using a trade-off parameter, such as semi-
supervised local Fisher discriminant analysis (SELF) [69]]. However, it may not be
easy to specify the optimal parameter values in these and similar semi-supervised
techniques, as mentioned in [68}/69].

2.2 Feature extraction for hyperspectral images

An image pixel vector x; is composed of all pixel values x1;, x1;,--- , 1y at one
corresponding pixel location of the hyperspectral image data, see Fig. The
dimension of that image vector is equal to the number of hyperspectral bands.
For a hyperspectral image with Nr rows and N¢ columns there will be N =
Ng x N¢ such vectors, namely ¢ = 1,2,--- | N, see Fig. Let {x;}}¥,,
x; € R denote high dimensional data, {z;}}¥ ,, and z; € R" its low dimensional
representations with < d. In our application, d is the number of spectral bands of
hyperspectral images, and r is the dimensionality of the projected subspace. The
assumption is that there exists a mapping function f : ®* — R", which can map
every original data point x; to z; = f(x;) such that most information of the high
dimensional data is kept in a much lower dimensional projected subspace. This
mapping is usually represented by a d X r projection matrix W:
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Figure 2.1: Hyperspectral image, (a) a pixel vector; (b) transfer the 3D hypercube into 2D
matrix.

T
z; = f(x;)) = W'x; 2.1
T1i
21 wy wip ccc Wiy ccc wig| Y2
224 W21 W22 - W2 ot W2d
zi = =
Trg
Zri Wyl Wr2 - Wyy v Wrd .
[ Tdi ]
where pixel vector z;(i = 1,2, - -+, N) will form the first » bands of the extracted

features.
In many feature extraction methods, the projection matrix W can be obtained

by solving the following optimization problem, where w denotes one of the columns
in the projection matrix W:

wl'Sw

Wopt = ATEMAX S7al

(2.2)

The matrices S and S have specific meaning in different methods as we discuss
later in the text. The solution to (2:2) is equivalent to solving the following gener-
alized eigenvalue problem:

Sw = \Sw (2.3)
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Or equivalently:
S™1Sw = \w (2.4)

The projection matrix W = (wq, Wo, - - - , W,.) is made up by the r eigenvectors
of the matrix S™'S associated with the largest r eigenvalues Ay > Ay > --- > A,

2.3 Unsupervised feature extraction methods

Unsupervised feature extraction methods deal with cases where no labeled sam-
ples are available, aiming to find another representation of the data in lower di-
mensional space by satisfying some given criterion. One of the best known unsu-
pervised methods is Principle Component Analysis (PCA) [37], which is widely
used for hyperspectral images [33,[38/39]. Recently, some local methods, which
preserve the properties of local neighborhoods were proposed to reduce the dimen-
sionality of hyperspectral images [3348H50], such as Locally Linear Embedding
[48]], Laplacian Eigenmap [51]] and Local Tangent Space Alignment [52[]. Their
linear approximations, such as Neighborhood Preserving Embedding (NPE) [53]],
Locality Preserving Projection (LPP) [54] and Linear Local Tangent Space Align-
ment (LLTSA) [55] were recently applied to feature extraction in hyperspectral
images [33/56]. By considering neighborhood information around the data points,
these local methods can preserve local neighborhood information and detect the
manifold embedded in the high-dimensional feature space.

231 PCA

Principal Component Analysis (PCA) [37] performs feature extraction through
analyzing the covariance matrix of the original data. The eigenvalues of the co-
variance matrix are considered to be an indicator of the information content. Large
values suggest more information content and low values indicate the presence of
mostly noise. Due to its low complexity and the absence of parameters, PCA has
been widely used for feature extraction in hyperspectral images [[17]. In mathe-
matical terms, PCA attempts to find a linear mapping w that:

max w’ S;w (2.5)

St. wiw=1

. . N T 1 N
where the covariance matrix is S; = > ;0 (x; —u)(x; —w)', u = 5> .1 X
is the mean of the vector, I and 1 are the identity matrix. The constraint can be
enforced by introducing a Lagrange multiplier A\. Therefore, an unconstrained
maximization is performed as:

max f(w) = wi'S;w + \(1 — wl'w) (2.6)
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Component | Eigenvalue (%) | Cumulative (%)
1 72.48 72.48
2 24.64 97.13
3 1.73 98.86
4 0.37 99.23
5 0.2 99.42

Table 2.1: Eigenvalues and cumulative variance in percentages for AVIRIS Indian Pines
with 220 bands.

w can be got by differentiating the above function to w and setting the result to
0, which results in:

df (w) d p T
_— 1 — =
T Tw (W' Sitw+ A1 —-w'w)) =0
=Siw—Aw=0
= S;w = \w
The projection matrix Wpca = (W1, Wa, -+, W,.) can be optimized as fol-
lows: .
S
Wpoa = arg mﬁx% 2.7)

By setting S = S; and S = I, we obtain the projection matrix Wpc 4 =
(W1, Wa, -+ ,W,) as in . The features extracted by PCA have the highest
contrast or variance in the first band and the lowest contrast or variance in the last
band. Therefore, the first » PCA bands often contain the majority of information
residing in the original hyperspectral images and can be used for more effective
and accurate analyses because the number of image bands and the amount of image
noise involved are reduced, see Fig.[2.2]and Table. 2.1]

23.2 LLFE

The above subsection presented PCA method for feature extraction which attempts
to retain global properties of the data. In contrast, local nonlinear techniques
like Isomap [97]], Local Linear Embedding (LLE) [98}/99], Laplacian Eigenmaps
(LE) [51] and Local Tangent Space Analysis (LTSA) [100], try to find a low-
dimensional data representation by preserving local properties of the manifold.
They applications to hyperspectral data can be found in [49]. However, when using
these nonlinear local methods, one always encounter the following two problems:

1. “Out of sample” problem: this is a phenomenon in such that new samples
cannot be projected onto the manifold constructed by training samples;
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(a) RGB false color composition (b) Band 1

(d) Band 3 (e) Band 4 (f) Band 10

Figure 2.2: Sample PCA bands of the AVIRIS Indian Pines.

2. Huge cost in computation and memory consumption, especially for high
resolution hyperspectral images with large samples and lines.

Recently, Chang and Yeung proposed robust locally linear embedding
for nonlinear dimensionality reduction, and they demonstrated that the method is
better suited for dealing with outliers. In order to speed up this step, the approach
of [48]] only calculated the distance of the current pixel with those pixels that are
within a square neighbourhood window centered at the pixel. However, the “Out of
sample” problem cannot be avoided, especially when encountering high resolution
hyperspectral images with large samples and lines.

More recently, some of their linear approximations, such as Neighborhood Pre-
serving Embedding (NPE) [53]l, Locality Preserving Projection (LPP) [54] and
Linear Local Tangent Space Alignment (LLTSA) [55]] were proposed, and applied
to feature extraction in hyperspectral images [33,/56]. These local linear feature
extraction (LLFE) [52H54] methods can overcome the “out of sample” problem,
as well as inherit the local geometry preserving property.

As a linear approximation to the LLE, Neighborhood Preserving Embedding
(NPE) preserved the local properties of the data manifold by writing the high-
dimensional datapoints as a linear combination of their nearest neighbors. In the
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low-dimensional representation of the data, NPE attempts to retain the reconstruc-
tion weights in the linear combinations as well as possible. NPE consists of the
following three steps:

1. Constructing an adjacency graph: Let G denote a graph with n nodes. The
ith node corresponds to the data point x;. There are two ways to construct
the neighborhood graph:

e K nearest neighbors (KNN): If x; is among the K nearest neighbors
of x;, connect nodes ¢ and j;

e ¢ neighborhood: If ||x; — X;|| < €, connect nodes ¢ and j.

The graph constructed by K NN nearest neighbors is a directed graph, while
the one constructed by the e neighborhood is an undirected graph. In many
real world applications, it is difficult to choose a good e. In this work, we
adopt the NN method to construct the graph.

2. Computing the weights : The weights on the edges were computed in this
step. Let Q denote the weight matrix with );; having the weight of the edge
from node 7 to node j, and 0 if there is no such edge. Then the reconstruction
weights @;; are calculated by minimizing the reconstruction error, which
results from approximating x; by its e nearest neighbors:

i j=1
S.t. ZQU =1

3. Computing the Projections: The extracted features z; in the low-dimensional
projected subspace that best preserve the local neighborhood information are
then obtained as:

mlnz HZZ — ZQZJZJHQ (29)
i j=1

St. zlz; =1
The projection matrix Wy pp = (W1, Wa, - -+ , W,.) can be optimized as fol-
lows:
wiXX"w

WNpPE = arg max (2.10)

w wIXMXTw
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where M = (I — Q)7 (I — Q) and I represents the identity matrix. Then the
extracted feature vector is as follows:

z; = Wh ppX; (2.11)

Locality Preserving Projection (LPP) [54] is a linear approximation of the LP
method. The local properties of LPP method are preserved based on the pairwise
distances between near neighbors. LPP computes a low-dimensional represen-
tation of the data in which the distances between a datapoint and its e nearest
neighbors are minimized. This is done in a weighted manner, i.e., the distance
in the low-dimensional data representation between a datapoint and its first near-
est neighbor contributes more to the cost function than the distance between the
datapoint and its second nearest neighbor. The algorithmic procedure can be sum-
marized below:

1. Constructing an adjacency graph: Let G denote a graph with n nodes. The
ith node corresponds to the data point x;. There are two ways to construct
the neighborhood graph:

e K nearest neighbors (KNN): If x; is among the K nearest neighbors
of x;, connect nodes ¢ and j;

e e neighborhood: If ||x; — X;|| < €, connect nodes 4 and j.

The graph constructed by K NN nearest neighbors is a directed graph, while
the one constructed by the € neighborhood is an undirected graph. In many
real world applications, it is difficult to choose a good €. In this work, we
adopt the NN method to construct the graph.

2. Computing the weights : The weights on the edges were computed in this
step. Let Q denote the weight matrix with );; having the weight of the edge
from node ¢ to node j, and O if there is no such edge. Then the weights Q;;
can be calculated by:

2
I1%; —x;11

e Heatkernel. Q;; =e~~ = ,if nodes ¢ and j are connected.
e Single minded. @;; = 1, if nodes ¢ and j are in the their nearest
neighborhood.

3. Computing the projections: In the computation of the low-dimensional rep-
resentations z;, the cost function is given as:

min Y _ ||z — z;1°Qy; (2.12)
12

St. zIDz; =1
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Where D is a diagonal matrix; its entries are the column (or row, since Q is
symmetric) sum of Q, D;; = > y Q;;. Large weights ();; mean small dis-
tances between the nodes ¢ and j. Hence, the difference between their low-
dimensional representations z; and z; highly contributes to the cost function.
As a consequence, nearby points in the high-dimensional space are projected
closer together in the low-dimensional representation. The projection matrix

Wipp = (W1, W, -, W,) can be optimized as follows:
wXDX"'w
w = argmax—————— 2.13
R @19

where L = D — Q is the Laplacian matrix [[54]]. Then the extracted features
are the following:
z; = WIopx; (2.14)

In local linear tangent space analysis (LLTSA) [55]], the local geometry is de-
scribed by the local tangent space of each data point. let 8; of dimensionality d
be the local tangent coordinates of x;. It relates to the global coordinates z; by an
affine transformation z;H = L,0; + E;, where L, € R%*¢ is the transformation
matrix, H = I — ee” /k is a k x k centering matrix, and E; € R4*" is the recon-
struction error matrix. The error is minimized to retain the local geometry in the
embedded space via the objective function [55]:

min Y |[E7[[7 = D [lz:Ui[% (2.15)
St. zlz; =1
where U; = H(I — 07(0,67)~16;). Minimizing this cost function also becomes

the eigenvalue problem, where the B, referred to the alignment matrix, which is
constructed with B(I;, I;) < B(I;, I;) + U;U] (I; is the indexes of x;). The

projection matrix Wy, ;754 = (W1, Wa, - -+ , W,.) can be optimized as follows:
T T
we XX w
= - 2.1
WLLTSA = argmax o o (2.16)

Then the extracted feature vector is as follows:
T

The reasoning behind LLFE is that neighbouring points in the high-dimensional
space R? are likely to have similar representation in the low-dimensional projected
subspace R" as well, see Fig. Therefore, LLFE methods preserve the local
neighborhood information of the data in the low-dimensional representation.
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Figure 2.3: Basic idea of LLFE.

2.4 Supervised feature extraction methods

Supervised methods rely on the existence of labeled samples to infer class sepa-
rability. Two widely used supervised feature extraction methods in hyperspectral
data are the Fisher Linear discriminant analysis (LDA) [57] and nonparametric
weighted feature extraction (NWFE) [35]]. Many extensions to these two methods
have been proposed in recent years, such as modified Fisher’s linear discriminant
analysis [58]], regularized linear discriminant analysis [36], modified nonparamet-
ric weight feature extraction using spatial and spectral information [59], and kernel
nonparametric weighted feature extraction [60].

24.1 LDA

The best known supervised method is Linear Discriminant Analysis (LDA) [57],
which seeks projection directions on which the ratio of the between-class co-
variance to within-class covariance is maximized. Taking the label information
into account, LDA results in a linear transformation z, = f(x;,y;) = WTXZ-,
where y; is the label of the data point x;. The corresponding projection matrix

Wipa = (W1, Wa, -, W, ) is optimized as follows:
T
S
WrpA = arg maxWT%bW (2.18)
w wiS,w
where
e}
Sy = mp(u® —u)(@® —u)” (2.19)

k=1
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Figure 2.4: Basic idea of LDA.

and
C ni

Suw =3 O (" —u®)x" —u™)T) (2.20)
k=1 i=1
where ny, is the number of samples in the kth class, u is the mean of the entire
training set, u(®) is the mean of the kth class, xgk) is the ith sample in the kth
class. Sy is called the between-class scatter matrix and S,, the within-classs scatter
matrix. (2.19) is equivalent to

T
S
WLDA = aurgmaxWT%bW 2.21)
w wl'S;w
with
N
S: = Z(Xz —u)(x; —u)T (2.22)
i=1

form (2.19), (2.20)) and (2.22)), we have S; = Sy + Su-

By setting S = S, and S = S,, or S = S;, we obtain the projection matrix
Wipa = (W1, Wa, -+ ,W,) asin . LDA seeks projection direction on which
the data points within the same class are close while separating all the data points
from different classes apart, see Fig. @ However, as the rank of the between-
class scatter matrix Sy is C' — 1, LDA can extract at most C' — 1 features, which
may not be sufficient to represent essential information of the original data.

24.2 NWFE

Similar to LDA, nonparametric weighted feature extraction (NWFE) aims to
find the feature space in which between-class scatter matrix Sy is maximized and
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within-classs scatter matrix S,, is minimized simultaneously. The main idea of
NWEE [35]] is placing different weights on every sample to compute the “’ weighted
means” and then applying the distances between samples and their weighted means
as their closeness to boundary. Additionally, NWFE addressed a regularized within-
classs scatter matrix for alleviating the singularity. As a result, NWFE prevents the
disadvantages of LDA and obtains satisfactory results. The between-class scatter

matrix S;' "V and the within-classs scatter matrix SfX W of NWFE are defined as:

L L Nk 1,7 ) . X .
S =3P D 3 - M) - M) 223

i=1  j=lj7ik=1

L Nk %]
SYV = 3R Y  - M - M) 224
i=1 k=1

where the scatter matrix weight ni’j is defined by:

d(x}, Mj(x;) "

6J
! = ok SIS (2.25)
P d((xg, My(xp))
and the weight mean is:
TLj
M;(x}) = > i x] (2.26)
t=1
and
. i J)—1
il = nff(xk’xt,) - 2.27)
Doty d((xg, xi) 7t
The projection matrix of NWFE Wy w g = (W1, Wa, -, W,.) is optimized
as follows:
TQNW
WS, w (2.28)

WNWFE = arg max— ——-—
v wISN Wy

To reduce the effect of the cross products of within-class distances and prevent
the singularity, the within-classs scatter matrix is regularized by:

SNW — 0.58MW 1 0.5diag(SYV) (2.29)

where diag(A) means the diagonal parts of matrix A. The steps of NWFE can be
summarized as:

1. Compute the distances between each pair of training samples and form the
distance matrix;
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[\

. Calculate the 725 using the distance matrix;

W

. Compute the weighted means M;(x) using the %Zt] calculated in step 2;

N

. Compute the scatter matrix weight n,i’j ;
5. Compute the Sév W and regularized S{X w.

6. Extract features using z; = Wk vy o Xi.

The NWEFE overcomes the limitations of LDA, in which the number of ex-
tracted features is depended on the number of classes. However, compared to the
fast LDA method, NWFE consumed more computational time as the number of
training samples increases. This is because NWFE uses all the training samples
to compute 7;,1’j , fy,itj and M (x},), which results in quite time-consuming for large
sample size problem.

When only a small number of labeled samples are available, the performance
of supervised feature extraction methods tend to be degraded. Thus, the supervised
methods overfit feature spaces to the labeled samples.

2.5 Semi-supervised feature extraction methods

In computer science, semi-supervised learning is a class of machine learning tech-
niques that make use of both labeled and unlabeled data for training - typically
a small amount of labeled data and a large amount of unlabeled data. Semi-
supervised learning falls between unsupervised learning (without any labeled train-
ing data) and supervised learning (with completely labeled training data). Many
applications have shown that unlabeled data, when used in conjunction with a
small amount of labeled data, can produce considerable improvement in learning
accuracy [|63,/64,/67,/69]l. The acquisition of labeled data for a learning problem
often requires a skilled human agent to manually classify training examples. The
cost associated with the labeling process thus may render a fully labeled training
set infeasible, whereas acquisition of unlabeled data is much cheaper. In such
situations, semi-supervised learning can be of great practical value.

Recently, semi-supervised feature extraction methods have been proposed and
applied to pattern recognition [67,69]. The idea behind these methods is to infer
the class discrimination from labeled samples, as well as the local neighborhood
information from both labeled and unlabeled samples. Some semi-supervised
feature extraction methods add a regularization term to preserve certain poten-
tial properties of the data. For example, semi-supervised discriminant analysis
(SDA) [[67]] adds a regularizer into the objective function of LDA. The resulting
method makes use of a limited number of labeled samples to maximize the class
discrimination and employs both labeled and unlabeled samples to preserve the
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local properties of the data. The approach of [[68|] proposed a general semisuper-
vised dimensionality reduction framework based on pairwise constraints, which
employs regularization with sparse representation. Other semi-supervised feature
extraction methods combine supervised methods with unsupervised ones using a
trade-off parameter, such as semi-supervised local Fisher discriminant analysis
(SELF) [69].

2.5.1 SDA

LDA seeks the optimal projections purely on the training (labeled) set. When there
are not enough training samples, overfitting may happen. In reality, it is possible
to acquire a large set of unlabeled data. In order to prevent overfitting, Semi-
supervised Discriminant Analysis (SDA) [[67]] imposes a regularizer in LDA, and
extends LDA to incorporate the manifold structure inferred from the unlabeled
data. In particular, the projection matrix is:

wl'Syw

—_——— 2.
wTS:w + aJ (w) (2:30)

WspaA = arg max
w

where J(w) is the regularizer, which is the core part in SDA. The parameter «
controls the influence of local neighborhood information; for @ = 0, SDA reduces
to LDA.

In SDA, the regularizer .J(w) incorporates the manifold structure by construct-
ing a graph in such a way that nearby pixels have similar embeddings (low-dimensional
representations), which is similar to classification, namely nearby pixels are likely
to have the same label. The weight matrix built on the unlabeled samples is defined
as: ;; = 1, if x; is in the k nearest neighbors of x;, otherwise, ();; = 0. Then,
the regularizer J(w) can be defined as:

Jw) = (wh'x; — w'x;)?Q;; 2.31)
ij
This means that two pixels are likely to be in the same class, if they are linked
by an edge. Moreover, their low-dimensional representations are likely to have the
same labels.

J(w) = Z(WTXi - WTXj)QQij
ij
=2 Z waiDMxiTw -2 Z waiSijxfw
1 1]
=2w'X(D - S)X”'w
= 2wTXLX"w (2.32)
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where D is a diagonal matrix; its entries are column sum of Q, D;; = Y j Qij, or
row sum of Q, since Q is symmetric. L = D — Q is the Laplacian matrix [[67].

SDA finds a projection which respects the discriminant structure inferred from
the labeled data points, as well as the intrinsic geometrical structure inferred from
both labeled and unlabeled data points. Specifically, the labeled data points, com-
bined with the unlabeled data points, are used to build a graph incorporating neigh-
borhood information of the data set. The graph provides a discrete approximation
to the local geometry of the data manifold. Using the notion of graph Laplacian, a
smoothness penalty on the graph can be incorporated into the objective function.
In this way, SDA optimally preserves the manifold structure. However, SDA has
the same limitation as LDA in the number of extracted features, because the rank
of the between-class matrix Sy is C' — 1.

2.5.2 SELF

Semi-Supervised Local Fisher Discriminant Analysis (SELF) [69]] combines lin-
early PCA and local Fisher discriminant analysis (LFDA) [102]:

w![(1 = 3)Su + BSi]w
wT[(1 = B3)Siw + Bl]w

where S;;, and S;,, are local between-class scatter matrix and local within-class
scatter matrix [[102], 5(€ [0, 1]) is a trade off parameter, which controls the contri-
bution of the supervised method LFDA and unsupervised method PCA. By setting
[ to a value between zero and one, SELF can separate samples from different
classes while maximizing the variance of the data inferred from both the labeled
and unlabeled samples. SELF overcomes some limitations of LDA and SDA (it
can extract as much features as the number of the dimensions).

(2.33)

WspLF — argmax
w

2.6 Conclusion

In this chaper, we briefly reviewed some related feature extraction methods. We
explained that unsupervised methods do not rely on the labeled information, but
may not discover the class discrimination in the data sets. Supervised methods
rely on the labeled information and can separate different classes, but tend to turn
to overfit when labeled information is insufficient. Some existing semi-supervised
methods can overcome these problems, but usually it is not easy to optimize their
parameters.






SELD

We propose a novel semi-supervised local discriminant analysis (SELD) method
for feature extraction in hyperspectral remote sensing imagery, with improved per-
formance in both ill-posed and poor-posed conditions. The proposed method com-
bines unsupervised methods (Local Linear Feature Extraction Methods (LLFE))
and supervised method (Linear Discriminant Analysis (LDA)) in a novel frame-
work without any free parameters. The underlying idea is to design an optimal pro-
jection matrix, which preserves the local neighborhood information inferred from
unlabeled samples, while simultaneously maximizing the class discrimination of
the data inferred from the labeled samples. Experimental results on synthetic data
and real hyperspectral data demonstrate that the proposed method compares favor-
ably with conventional feature extraction methods in the following aspects:

1. No tradeoff parameters to be optimized. The proposed method combines un-
supervised methods (LLFE) and supervised method(LDA) in a novel frame-
work without any free parameters;

2. Discrimination maximized and local neighborhood information well pre-
served;

3. Statistically significant improvement in overall classification accuracy. The
McNemar’s tests based upon the standardized normal test statistic [[103]]
show the statistical significance of the improvements resulting from the pro-
posed SELD;
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4. Less computational cost. The proposed SELD is more efficient than NWFE,
SDA and SELF, especially when the number of training samples increases.

3.1 Introduction

In the remote sensing literature, many supervised and unsupervised classifiers have
been developed to tackle the multi- and hyperspectral data classification prob-
lem [[104]. Supervised methods, such as artificial neural networks [[1054107] read-
ily revealed inefficient when dealing with a high number of spectral bands, and
thus in the recent years, kernel-based methods in general and support vector ma-
chines (SVMs) [[841|108]] in particular have been successfully used for hyperspec-
tral image classification [[109H112]. Certainly, kernel-based classifiers are able
to handle large input spaces efficiently, and deal with noisy samples in a robust
way [113[]. However, the main difficulty with all supervised methods is that the
learning process heavily depends on the quality of the training data sets, which is
only useful for simultaneous images, or for images with the same classes taken
under the same conditions. Even worse, the training set is frequently not available,
or in a very reduced number, given the very high cost of true sample labeling. On
the other hand, unsupervised methods have demonstrated good results [[114H119]
in multi- and hyperspectral image classification. Unsupervised methods are not
sensitive to the number of labeled samples since they work on the whole image,
but the relationship between clusters and classes is not ensured.

In such situations, semi-supervised learning (SSL) [29,/61H66| gained popu-
larity in the machine learning community. In computer science, semi-supervised
learning is a class of machine learning techniques that make use of both labeled and
unlabeled data for training - typically a small amount of labeled data with a large
amount of unlabeled data in hyperspectral data. Semi-supervised learning falls
between unsupervised learning (without any labeled training data) and supervised
learning (with completely labeled training data). Many applications have shown
that unlabeled data, when used in conjunction with a small amount of labeled data,
can produce considerable improvement in learning accuracy [29/61H67,/69]]. The
acquisition of labeled data for a learning problem often requires a skilled human
agent to manually classify training examples. The cost associated with the labeling
process thus may render a fully labeled training set infeasible, whereas acquisition
of unlabeled data is much cheaper.

The framework of semi-supervised learning is very active in remote sens-
ing and has recently attracted a considerable amount of research [[120-H122]. Es-
sentially, three different classes of SSL algorithms are encountered in the liter-
ature: (1) Generative models, which involve estimating the conditional density
p(z|y), such as expectation maximization (EM) algorithms with finite mixture
models [[123]], which have been extensively applied in the context of remotely
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sensed image classification [[124]]. (2) Low density separation algorithms, which
maximize the margin for labeled and unlabeled samples simultaneously, such as
Transductive SVM [|63]], which have been recently applied to hyperspectral image
classification [[125]]. (3) Graph-based methods [126}|127], in which each sample
communicates its label information to its neighbors until a global stable state is
achieved on the whole dataset.

Most semi-supervised variants of SVM suffer from a high computational bur-
den and consequently a limited number of unlabeled samples can be used for their
training. This gives rise to a poor estimation of the marginal data distribution.
Many heuristic approaches have been proposed to reduce the computational cost
of the TSVM. In [|128]], a mixed integer programming was proposed to find the la-
beling with the lowest objective function. The optimization, however, is intractable
for large data sets. In [[129], a heuristic that iteratively solves a convex SVM objec-
tive function with alternate labeling of unlabeled samples was proposed. Yet, the
algorithm is capable of dealing with a few thousand samples only. The improved
TSVM still has a cubic cost, and requires storing huge kernel matrices [[130]]. Sev-
eral alternative proposals exist for the Laplacian SVM (LapSVM), either by using
a sparse manifold regularizer [[131] or by using an ¢; penalization term and a reg-
ularization path algorithm [[132]. A second and important problem with LapSVM
is related to the use of a functional form of the Laplacian eigenmaps, which yields
a constrained optimization problem that is hard to solve.

On a different note, in most SSL methods, unlabeled data is integrated directly
in the dual problem, often in an ad-hoc manner, e.g., via a regularizer, which may
lack an intuitive interpretation. Convexity is also a concern for TSVM and re-
lated methods. Finally, for most SVM variants the issue of tackling classification
problems for a vast number of categories has not been solved entirely. These meth-
ods use one-versus-all schemes and majority voting, but this approach is neither
natural nor well-motivated. The semi-supervised logistic regression (SLR) algo-
rithm [[133]], which is founded on information-theoretic principles, was proposed
to solve most of the aforementioned problems. SLR allows a natural interpreta-
tion of model weights, and has a convex loss function which is a significant ad-
vantage. In particular, SLR is based on modifications to the penalty functions of
the generalized maximum entropy (MaxEnt) objective in the primal, such that the
expectations of similarity features over local regions are consistent. These modifi-
cations along with the minimization of the Kullback-Leibler divergence yield the
SLR loss. Encoding prior knowledge, e.g., label proportions, is straightforward
and scalability is also ensured via sparse similarity features.

Graph-based methods have been lately attracting a lot of attention because
of their solid mathematical background, their relationship with kernel methods,
sparseness properties, model visualization, and good results in many areas. The
algorithms are provided with some available labeled information in addition to the
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unlabeled information, thus allowing to encode some knowledge about the geom-
etry and the shape of the data set. This idea of exploring the shape of the marginal
distribution in the data set can be applied in kernel target detection in order to
deform the “measure” of distance in the kernel space according to the geometry
of the neighboring pixels. The approach of [[134] extended the semi-supervised
graph-based method presented in [[I35]] to the classification of hyperspectral im-
age. It preserves the contextual information through the use of composite ker-
nels, which have been recently revealed very useful to improve inductive support
vector machines (SVMs) [65}[112L]136]. Semi-supervised kernel Orthogonal Sub-
space Projection (S2KOSP) was proposed for target detection applications [[137],
which introduces an additional regularization term on the geometry of both la-
beled and unlabeled samples by using the graph Laplacian. The information from
unlabeled samples is included in the standard kernel Orthogonal Subspace Projec-
tion by means of the graph Laplacian with a contextual unlabeled sample selection
mechanism.

Compared to the semi-supervised classifiers, semi-supervised feature extrac-
tion methods try to find a projection using very limited number of labeled sam-
ples and a large number of unlabeled samples [29,67-69]. Some semi-supervised
feature extraction methods add a regularization term to preserve certain poten-
tial properties of the data. For example, semi-supervised discriminant analysis
(SDA) [67] adds a regularizer into the objective function of LDA. The regularizer
based on graph Laplacian regularization aims to enforce nearby points to have sim-
ilar representations in the low dimensional feature space. Therefore, the resulting
method makes use of a limited number of labeled samples to maximize the class
discrimination and employs both labeled and unlabeled samples to preserve the
local neighborhood properties of the data.

The approach of [29]] proposed a novel semi-supervised feature selection method
for the classification of hyperspectral images. It aims at selecting a subset of the
original set of features that exhibits at the same time high capability to discrim-
inate among the considered classes and high invariance in the spatial domain of
the investigated scene. The feature selection in this method was accomplished by
defining a multi-objective criterion function made up of the following two terms:
1) A term that measures the class separability; 2) A term that evaluates the spatial
invariance of the selected features. A parameter was used to combine these two
terms, which results in the possibility to evaluate in a more flexible way the trade-
offs between discrimination ability among classes and spatial invariance of each
feature subset and to identify the subsets of features that simultaneously exhibit
both properties.

Some semi-supervised feature extraction methods combine supervised meth-
ods with unsupervised ones using a trade-off parameter, such as semi-supervised
local Fisher discriminant analysis (SELF) [|69]], which bridges LFDA and PCA by



SEMI-SUPERVISED FEATURE EXTRACTION 3-5

a parameter so that it can smoothly control the reliance on the global structure of
unlabeled samples and class information brought by labeled samples.

The approach of [68] proposed a general semi-supervised dimensionality re-
duction framework based on pairwise constraints, which employs regularization
with sparse representation. It was based on new prior information, i.e., pairwise
constraints which specify whether a pair of examples belongs to the same class
or not. The resulting methods used a parameter to tradeoff of the following two
terms: 1) A discrimination term that assesses the separability between classes; 2)
regularization term that characterizes some property of the original data set.

However, it may not be easy to specify the optimal parameter values in these
and similar semi-supervised techniques, as mentioned in [|68L/69].

In this Chapter, we propose a novel semi-supervised local discriminant analy-
sis (SELD) method to reduce the dimensionality of the hyperspectral images. The
proposed SELD method aims to find a projection which can preserve local neigh-
borhood information and maximize the class discrimination of the data. We com-
bine an unsupervised method (from the class of Local Linear Feature Extraction
Methods (LLFE), such as NPE, LPP and LLTSA) and a supervised method LDA
in a novel framework without any tuning parameters. Contrasting to related semi-
supervised methods, such as SELF [69], we do not combine supervised and un-
supervised methods linearly. Instead of using both labeled and unlabeled samples
together, we first divide the samples into two sets: labeled and unlabeled. Then we
employ the labeled samples through the supervised method (LDA) only and the
unlabeled ones through an unsupervised, locality preserving method (LLFE) only.

We propose a natural way to combine unsupervised and supervised methods
without any free parameters, making fully the use of strengths of both approaches
in different scenarios. The supervised component maximizes class discrimination
(for the available number of labeled samples) and the local unsupervised com-
ponent ensures neighborhood information preservation. While we employ the
LLFE [53155]] and LDA [57] methods, this novel framework can be applied in
combination with other supervised and unsupervised methods too. Another ad-
vantage is that our method can extract as many features as the number of spectral
bands. This also increases classification accuracy with respect to methods where
the number of extracted features is limited by the number of classes (LDA and
SDA). The results demonstrate improved classification accuracy when compared
to related semi-supervised methods.
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Figure 3.1: Examples of feature extraction by LDA, NPE and the proposed SELD method.
Three dimensional S-curve data with four different classes are embedded into a two di-
mensional subspace. Each class has 100 samples with 50 labeled (filled), 50 unlabeled
(unfilled).

3.2 Proposed semi-supervised local discriminant anal-
ysis (SELD)

As discussed above, some semi-supervised methods, such as SDA and SELF, can
achieve a good class discrimination and preserve the local properties of the data
with properly optimized parameters. One important issue is how to optimize tun-
ing parameters, which is common to most of the related semi-supervised methods
like [|68L/69]. One solution is to employ cross-validation for this purpose. How-
ever, except for the computational cost of parameter optimization, cross-validation
is not reliable when the number of labeled samples is small [[102] (which is some-
times the real case in hyperspectral images). Focusing on class discrimination,
LDA is in general well suited to preprocessing for the task of classification, since
the transformation improves class separation. However, when only a small number
of labeled samples are available, LDA tends to perform poorly due to overfitting.
LLFE works directly on the data without any ground truth, and incorporates the
local neighborhood information of data points in its feature extraction process.
Motivated by these facts, we propose a novel semi-supervised approach, which
combines LLFE and LDA methods in a way that adapts automatically to the frac-
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Figure 3.2: Examples of feature extraction by LDA, NPE and the proposed SELD method.
Three dimensional Swiss data with four different classes are embedded into a two dimen-
sional subspace. Each class has 100 samples with 50 labeled (filled), 50 unlabeled (un-
filled).

tion of the labeled samples without any parameters. The main idea of our approach
is to first divide the samples into two sets: labeled and unlabeled. The labeled sam-
ples will be used only by LDA (to maximize the class discrimination), and the un-
labeled ones only through LLFE (to preserve the local neighborhood information).
This will yield a natural way to combine the two as we show next.

3.2.1 Reformulation of supervised LDA and unsupervised LLFE

Suppose a training data set X is made up of the labeled set Xiaperea = {(Xi, ¥i) }11,

yi € {1,2,---,C}, where C is the number of classes, and the unlabeled set
Xounlabeled = {xi}ﬁinﬂ with u unlabeled samples, N = n + u, X = {Xjabeleds
Xuntaveled} = {X1,* "+ ,Xn> Xnt1, -+ ,Xn . The kth class has nj samples with

Z,?:l ni = n. Without loss of generality, we center the data points by sub-
tracting the mean vector from all the sample vectors, and assume that the la-

beled samples in Xjupereda = {X1,X2,- - , X, } are ordered according to their la-
bels, with the data matrix of the kth class x® = x(lk),xék), . ,xg?} where

ng) is the ith sample in the kth class. Then the labeled set can be expressed as
Xiabeled = {X(l)7 X® ... 7X(C)}. We can reformulate the berween-class scatter
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matrix as:

an u(k) u(k) Z Zl - Zl l(_k))T
XC: (k) p(k) X(k))

where P*) ig the ng X ni matrix with all the elements equal to % If we define a
n X n matrix P, «,, as:

Py o0 ... 0
0o P® ... 0
Poxn =
0o o0 ... pO

the between-class scatter matrix S;) can be written as:
c
Sy, = ZXWP(M (X*NT = XigpereaPrxn (Xiavetea)” (3.1
k=1

By subtracting the between-class scatter matrix from the total scatter matrix S,,
the within-class scatter matrix S,, is obtained as:

Sw S - Sb
= Xiapeted Xiaveted)” — XiaveteaPrxn Xiavetea)”
- Xlabeled(Ian - ann)(xlabeled)T (32)

In our approach, the LDA component will use the labeled samples only (to
maximize the class discrimination), so we reformulate (2.18) as:
’ WTSbW
Wi pa = argmax ;
v wl'S, w
= arg max WTXlabeledPan(Xlabeled)TW
v W Xlabeled(Ian - ann)(Xlabeled)Tw

(3.3)

As unsupervised method, local linear feature extraction (LLFE) [[52-54] meth-
ods reviewed in [138]] seek a projection direction on which neighborhood data
points in the high-dimensional feature space R? are kept on neighborhood in the
low-dimensional projected subspace R" as well. By considering neighborhood
information around the data points, the goal of these methods is to preserve the
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Figure 3.3: Comparison of feature extraction by each method on S-curve. Three dimen-
sional data with four different class are embedded into a two dimensional subspace. Each
class has 100 samples, filled/unfiled symbols denote labeled/unlabeled samples, the labeled
samples in data sets are 2 for each class, the rest are unlabeled samples. For SDA, the
parameter o is optimized in {0, 0.1, 0.5, 1, 5 and ]0}, and for SELF the parameter (3 is
optimized in {0, 0.25, 0.5, 0.75 and 1}.

local properties of the original data. Although the LLFE methods in [53H55]] have
some characteristic differences [53]55]], they are all linear approximations to local
nonlinear feature extraction methods and share more or less the same technique of
linearization. The optimal solution of all these three methods can be computed by
eigen-decomposition. We can express the optimal projection matrix of all LLFE
methods from [53155] in a unified way, so that it only uses the unlabeled samples:

T C T
4 - w XunlabeledcuXu(Xunlabeled) w
WLLFE = arg max

(3.4
w WTXunlabeledgu XU (Xunlabeled ) Tw

For NPE [53], C = I'and C = M. For LPP [54], C = D and C = L,
where D is a diagonal matrix and L is the Laplacian matrix [54]. For LLTSA
[55], C = I and C = B, where B is the alignment matrix [55]. By setting
S = XuntaveredCXE 1uvereq A S = XuniavercdCX Y 1ubereqs We obtain the pro-
jection matrix Wypp = (W1, Wa, - ,W,) as in . The reasoning behind
LLFE is that neighbouring points in the high-dimensional space R? are likely to
have similar representation in the low-dimensional projected subspace " as well.
Therefore, LLFE methods preserve the local neighborhood information of the data
in the low-dimensional representation.
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Figure 3.4: Comparison of feature extraction by each method on Swiss Roll data sets. Three
dimensional data with four different class are embedded into a two dimensional subspace.
Each class has 100 samples, filled/unfiled symbols denote labeled/unlabeled samples, the
labeled samples in data sets are 2 for each class, the rest are unlabeled samples. For SDA,
the parameter « is optimized in {0, 0.1, 0.5, 1, 5 and 10}, and for SELF the parameter 3 is
optimized in {0, 0.25, 0.5, 0.75 and 1}.

3.2.2 SELD

We define the following matrics:

_ann 0 F _ Ian 0
S T

o 0] ~ [0 o
clocl) ehell

—uXu
Now the reformulated optimization problems of LDA and LLFE in (3.3) and
(3:4) can be written as follows:

/ wIXPX"'w
MDA T I X (T - PXTw o)

: w/XCX"w
M T o o0

Note that full data vector X appears in (3.3)), (3.6) but due to the structure of
the matrices P, I, C and C, the LDA (3.5) makes use of the labeled samples only
and LLFE (3.6) makes use of the unlabeled samples only. In order to make full use
of the strengths of both two methods without parameter optimization, we propose
a natural way to combine them as:
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e
W' SseLpwW

WSsELD = arg max 3.7

T
v W'SgppW

where

< T ~ T
SSELD - XlabeledPan(Xlabeled) + XunlabeledcuXu(Xunlabeled)

Puxn 0
T
= [Xla,beled7 Xunlabeled] |: 0 é [Xla,beled7 Xunlabeled]
uxXu

= X(P +C)X” (3.8)
and

T T
SSELD = Xlabeled(lnxn - ann)(xlabeled) + XunlabeledQuXu(Xunlabeled)

In n Pn n 0
} |: 8 0 x :| [Xlabeled7Xunlabeled]T

= [Xlabeleuh Xuniabeled C
=X(I-P)+CX" (3.9)

=uxXu

The resulting method combines supervised and unsupervised components in a
nonlinear way, making fully the use of their strengths in different scenarios. In the
case when all the samples are labeled, the proposed method reduces to LDA and
in the case when all the samples are unlabeled, it reduces to LLFE.

To obtain the projection matrix, we solve the generalized eigenvalue problem
of the proposed SELD method, which is equivalent to (2.3):

SseLpw = ASsprpW (3.10)

Through its nonlinear combination of supervised and unsupervised components,
the proposed SELD seeks a projection direction on which the local neighborhood
information of the data can be best preserved, while simultaneously the class dis-
crimination is maximal, see Fig.[3.I]and Fig.[3.2]

It is important to note that LDA confronts sometimes with the difficulty that
the matrix S,, is singular. The fact is that sometimes the number of labeled training
samples n is much smaller than the number of dimensions d. In this situation, the
rank of S,, is at most n as it is evident from , while the size of the matrix
X(T - P)X” in is d x d. This implies that the within-class matrix S,, can
become singular. Simultaneously, the between-class matrix Sy in the LDA method
uses the labeled samples only. The rank of S, is C' — 1 (as it can be seen from
(3.1)), implying that LDA can extract at most C' — 1 features, which is not always
sufficient to represent essential information of the original data.

The proposed SELD method overcomes these problems. The matrices SsELD
and Sg ;. p in our approach are both symmetric and positive semi-definite, which
makes sure that SELD can extract as much features as the number of the spec-
tral bands and the corresponding eigenvalues are not negative. Since our method
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can be combined with different LLFE methods, we will use a subscript to iden-
tify the particular LLFE methods employed, e.g. SELDyNpg, SELDppp or
SELDrrr1sA.

3.2.3 Algorithm

The algorithmic procedure of the proposed SELD is formally stated below:

1. Divide the training set X into two subsets: Xgpeied and Xyniabeled, With X =
{Xiabeled, Xuniabeled} = {X1,*** s Xn,Xn+1, "+ ;XN }. Suppose that the n
labeled training samples in Xjqpeied = {X1, - , X } are ordered according
to their labels, with data matrix of the kth class X(*) = {xgk), e ,x%’?}

where ng) is the ith sample in the kth class, then the labeled subset can be

expressed as Xjapered = {X(l),X(Q), . ,X(C)}. u = N — n unlabeled

samples constitute the unlabeled subset X, niaperea = {xl}f\;n 1
2. Construct the labeled weight matrices P and I from the labeled subset Xjupeicd-

3. Construct the “nearest neighbors” weight matrix C and C from the unlabeled
subset Xy niabeled- The particular construction depends on the chosen LLFE
methods. For NPE: C = I and C = M for LPP: C = D and C = L, where
D is a diagonal matrix and L is the Laplacian matrix [[67]; for LLTSA: C = I
and C = B, where B is the alignment matrix [52].

4. Compute the eigenvectors and eigenvalues for the generalized eigenvector
problem in (3.10). The projection matrix Wsprp = (Wi, Wa, -+, W,) is
made up by the r eigenvectors of the matrix §§]13 I D§S ELD associated with
the largest r eigenvalues Ay > Ay > --- > A,

5. SELD embedding: project the original d dimensional data into a lower r
dimensional subspace by

3.3 Experimental results on the synthetic data

In this section, we illustrate low-dimensional representations of the original syn-
thetic data sets, resulting from different approach discussed in this paper. For this
purpose, we generated 2 three dimensional data sets: Swissroll and the S-curve,
which are well-known synthetic data sets. The data sets are compose of four dif-
ferent classes denoted in Fig. and by four different colors. Each class has
100 samples. In Fig. and filled symbols denote labeled samples and un-
filed symbols denote unlabeled samples. The number of labeled samples used to
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Figure 3.5: Comparison of feature extraction by each method on S-curve. Three dimen-
sional data with four different class are embedded into a two dimensional subspace. Each
class has 100 samples, filled/unfiled symbols denote labeled/unlabeled samples, the labeled
samples in data sets are 10 for each class, the rest are unlabeled samples. For SDA, the
parameter o is optimized in {0, 0.1, 0.5, 1, 5 and ]0}, and for SELF the parameter (3 is
optimized in {0, 0.25, 0.5, 0.75 and 1}.

train the projection matrix in one experiment is 2 and in the other experiment is 10.
The parameter « in the SDA method was varied in {0, 0.1, 0.5, 1, 5 and 10}, and
the parameter 8 in SELF was varied in {0, 0.25, 0.5, 0.75 and 1}. The proposed
SELD combining the LDA method and NPE, LPP and LLTSA methods are re-
spectively recorded as SELDnpg, SELDpp and SELDy154. Fig. @ and
[3.6] shows the results for the supervised method (LDA), the unsupervised LLFE
methods (NPE, LPP and LLTSA) and the proposed SELD, and two other semi-
supervised methods SDA [67] and SELF [69] with the best parameters.

Several conclusions can be drawn from these examples. The number of labeled
samples does not influence the performance of the unsupervised LLFE methods.
However, the projection directions found by LLFE do not take the class discrimi-
nation into account, and hence some samples from different classes overlap in the
subspace. The supervised LDA method does not consider the local neighborhood
information of the data. By optimizing the parameters, SDA and SELF discovered
the class discrimination and preserved the local neighborhood information of the
data. However, in case where limited labeled samples are available, some unla-
beled samples from different classes overlap in the subspace found by LDA, SDA
and SELF. This is in particular the case when the number of labeled samples for
each class is smaller than the data dimension. The proposed SELD method allows
us to extract more informative features even with a very limited labeled samples.
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Figure 3.6: Comparison of feature extraction by each method Swiss Roll data sets. Three
dimensional data with four different class are embedded into a two dimensional subspace.
Each class has 100 samples, filled/unfiled symbols denote labeled/unlabeled samples, the
labeled samples in data sets are 10 for each class, the rest are unlabeled samples. For SDA,
the parameter « is optimized in {0, 0.1, 0.5, 1, 5 and 10}, and for SELF the parameter 3 is
optimized in {0, 0.25, 0.5, 0.75 and 1}.

By combining the unsupervised LLFE methods and supervised LDA in a novel
way, our approach not only preserves local neighborhood information, but also
maximizes the class discrimination of the data. Moreover, the proposed SELD
does not need to optimize the parameters.

3.4 Experimental results on the real hyperspectral
data

3.4.1 Hyperspectral data sets

We use four real hyperspectral data sets in our experiments: the Indian Pine (a
mixed forest/agricultural site in Indiana [139]]), Kennedy Space Center (KSC)
[140], the Washington DC Mall [[139] (urban site), and Okavango Delta, Botswana
[[140]. Tablelzfl shows the number of labeled samples in each class for all the data
sets. Note that the color in the cell denotes different classes in the classification
maps (Fig. 3-8} Fig. 3.11).

Indian Pine data set: was captured by Airborne Visible/Infrared Imaging Spec-
trometer (AVIRIS) over northwestern Indiana in June 1992, with 220 spectral
bands in the wavelength range from 0.4 to 2.5um and spatial resolution of 20 me-
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No Indian Pine KSC DC Botswana
Class Name # Samples Class Name # Samples | Class Name | # Samples Class Name # Samples
1 Corn-notill 1434 Scrub 761 Roof 3834 270
2 ~ Corn-min 834 243 Street | 416 Hippo grass. 101
3 Corn 234 256 Path 175 Floodplain grasses1 251
4 [Grass/Pasture| 497 252 [Grass| 1928 215
5 r 747 Slash pine 161 [ Trees| 405 269
6 | Hay-windrowed 489 Oak/broadleaf hammock 229 1224 269
7 _ 968 Hardwood swamp 105 Shadow 97 259
8 Soybeans-min 2468 | Graminoid marsh’ 431 Island interior 203
9 _ 614 Spartina marsh 520 _ 314
10 ‘Wheat 212 Cattail marsh 404 Acacia bland. 248
11 - 1294 Salt marsh 419 Acacia grasslands 305
12 | Bldg-Grass-Trees 380 503 181
13| Stone-steel towers 95 o 927 268
14 Exposed soils 95
Total 10266 5201 8079 3248

Table 3.1: Data sets used in the experiments

ters by pixel. The calibrated data are available online (along with detailed ground-
truth information) from http://cobweb.ecn.purdue.edu/"biehl/. The whole scene,
consisting of the full 145 x 145 pixels, which contains 16 classes, ranging in size
from 20 to 2468 pixels. 13 classes were selected for the experiments, see Fig.[3.8]

KSC data set: was acquired by NASA AVIRIS instrument over the Kennedy
Space Center (KSC), Florida in 1996 and consist of 224 bands of 10 nm width
with center wavelengths from 0.4-2.5um. The data, acquired from an altitude
of approximately 20 km, have a spatial resolution of 18 m. Several spectral
bands were removed from the data due to noise and water absorption phenom-
ena, leaving a total of 176 bands to be used for the analysis. For classifica-
tion purposes, 13 classes representing the various land cover types that occur
in this environment were defined for the site, Fig. [3.9] shows an RGB composi-
tion with the labeled classes highlighted. For more information, see [[140] and
http://www.csr.utexas.edu/hyperspectral/.

DC Mall data set: was collected with an airborne sensor system over the Wash-
ington DC Mall, with 1280 x 307 pixels and 210 spectral bands in the 0.4-2.4um
region. This data set consists of 191 spectral bands after elimination of water ab-
sorption and noisy bands and is available at http://cobweb.ecn.purdue.edu /“biehl/.
7 land cover/use classes are labeled and are highlighted in the Fig. [3.10}

Botswana data set: was acquired over the Okavango Delta, Botswana in May
31, 2001 by the NASA EO-1 satellite, with 30 m pixel resolution over a 7.7
km strip in 242 bands covering the 0.4-2.5um portion of the spectrum in 10
nm windows. Uncalibrated and noisy bands that cover water absorption features
were removed, leaving a total of 145 radiance channels to be used in the exper-
iments. The data consists of observations from 14 identified classes intended to
reflect the impact of flooding on vegetation, Fig. [3.11] shows an RGB composi-
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tion with the labeled classes highlighted. For more information, see [[140] and
http://www.csr.utexas.edu/hyperspectral/.

3.4.2 Experimental setup

The training set X is made up of labeled subset X;4peieq and unlabeled subset
Xuniabeled (such that X = Xjgpered U Xuniabeteds and Xiapered N Xuniabeled = Q))
A number of unlabeled samples © = 1500 was randomly selected from the image
parts with no labels to compose X, niabeieq- The training of the classifiers (estima-
tion of the SVM parameters) was carried out using the labeled subset X;,peieq. In
our experiments, 70% randomly chosen samples from the labeled data set was ini-
tially assigned to the training set and the remaining 30% was used as the test set.
In order to investigate the influence of the training set size on the classifier per-
formance, the initial training set (consisting of 70% of the labeled samples) was
further subsampled randomly to compose the labeled subset Xj,peieq, With sample
size conforming to one of the following two distinct cases:

e Case 1 (ny = 10) in ill-posed condition: n < d and ny < d.
e Case 2 (n} = 40) in poor-posed condition: n > d and ny < d.

We used three common classifiers: 1-nearest neighbor (1NN) like in 5660,
68|, quadratic discriminant classifier (QDC) [[141]], and support vector machines
(SVM) [142]]. The SVM classifier with radial basis function (RBF) kernels in
Matlab SVM Toolbox, LIBSVM [[143]], is applied in our experiments. SVM with
RBF kernels has two parameters: the penalty factor C' and the RBF kernel widths
~. We apply a grid-search on C' and -y using 5-fold cross-validation to find the best
C within the given set {1071,10°,10%,102,103} and the best - within the given
set {1072,1072,10~%,10°, 101 }.

All classifiers were evaluated against the test set. We use overall classifica-
tion accuracy (OCA) to evaluate the feature extraction results. The results were
averaged over ten runs, we compare the resulting classification accuracies us-
ing the proposed SELD method with those resulting from the following meth-
ods: Raw data, where the classification is simply performed on the original data
sets without dimensionality reduction; PCA [37]]; LDA [57]; LLFE [52554] (in-
cluding NPE [53]], LPP [54], LLTSA [55]); NWFE [35]; SDA [67], of which
the parameter « is optimized with 5-fold cross-validation within the given set
{0.1,0.5,2.5,12.5,62.5}; and SELF [69], where the parameter [ is chosen from
{0,0.1,0.2, ...,0.9, 1} by 5-fold cross validation.

3.4.3 Results and discussion

Table[3.2]and Table[3.3]display the classification accuracies of testing data in cases
1, 2, respectively. The best accuracy of each data set (in column) is highlighted in
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bold font.
From these tables, we have the following findings:

1. The results confirm that feature extraction can improve the classification
performance on hyperspectral images. Most information can be preserved
even with a few extracted features. Especially for the raw data set with QDC
classifier, the results can be improved a lot by using feature extraction as
a preprocessing. SVM classifier with RBF kernel function did not perform
well in the raw data set of Indian Pine, this can be improved by using feature
extraction.

2. When the number of labeled samples is very limited such as in Case 1, the
supervised LDA perform much worse than other methods. By considering
the local neighborhood information inferred from both labeled and unla-
beled samples, SDA improves over LDA. However, one limitation of both
LDA and SDA methods is that the number of extracted features depends on
the number of classes.

3. By selecting 8 = 1 optimized with 5-fold cross-validation within the given
set {0,0.1,0.2,...,0.9,1}, SELF performs like PCA in both cases. For the
Botswana data set with QDC classifier in Case 1, SELF and PCA give a
better performance when small number of bands are used, while for the
KSC data set in Case 2 (Fig.[3.7), SELF and PCA perform worse than other
methods when small number of bands are used. It should be noted though
that for a small number of features the OCA’s are usually very small and
useless in practice.

4. The proposed SELD outperforms the other feature extraction methods in
both cases. In the ill-posed classification problems (Case 1, n, = 10 < n <
d), the highest OCA in Indian Pine, KSC, DC Mall and Botswana data sets
are 0.698 (SELD ypg with 1NN classifier), 0.874 (SELD y pg with SVM
classifier), 0.976 (SE LDy, pp with INN classifier) and 0.91 (SELDrr1s4
with SVM classifier), respectively. In Case 2 (n;, = 40 < d < n), the high-
est OCA among for the same four images are 0.792 (SELD y pg with INN
classifier), 0.936 (SELDypgr with SVM classifier), 0.998 (SELDypg
with SVM classifier) and 0.951 (SELD ypg with INN classifier), respec-
tively.

Inill-posed (Case 1) and poor-posed (Case 2) classification problems, the QDC
classifier cannot be developed to the raw data sets since the input dimension is
higher than the number of available training samples. In these situations, INN and
SVM classifier show better performances than QDC. The results in Table [3.2and
Table show that the proposed method yields best OCA on all four data sets.
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Feature Extraction | Classifier Data Set
Indian Pine KSC DC Botswana
QDC 0.14 0.146 0.474 0.084
Raw INN 0.524 0.728 0.965 0.835
SVM 0.475 0.846 0.948 0.876
QDC 0.568(5) 0.703(6) 0.969(3) 0.836(4)
PCA INN 0.52(20) 0.726(19) | 0.965(12) | 0.833(20)
SVM 0.583(6) 0.808(16) | 0.946(2) 0.878(5)
QDC 0.14(4) 0.146(5) 0.474(4) 0.124(4)
LDA INN 0.108(12) 0.30(12) 0.409(4) | 0.151(10)
SVM 0.129(6) 0.393(12) | 0.476(5) | 0.218(13)
QDC 0.521(6) 0.71(5) 0.969(3) 0.833(4)
NPE INN 0.596(15) 0.84(16) 0963(6) 0.873(7)
SVM 0.633(12) | 0.839(18) | 0.966(13) | 0.895(9)
QDC 0.523(6) 0.731(5) 0.97(4) 0.795(4)
LPP INN 0.612(10) | 0.833(12) | 0.966(7) 0.848(5)
SVM 0.643(10) 0.84(20) | 0.957(10) | 0.867(11)
QDC 0.56(5) 0.666(3) 0.969(3) 0.815(5)
LLTSA INN 0.563(20) | 0.816(14) | 0.965(2) 0.864(5)
SVM 0.604(20) 0.82(19) 0.967(2) 0.898(7)
QDC 0.574(5) 0.763(5) 0.967(3) 0.828(4)
NWFE INN 0.661(10) | 0.833(18) | 0.97(17) | 0.881(17)
SVM 0.624(7) 0.858(17) | 0.957(2) 0.891(8)
QDC 0.413(5) 0.68(5) 0.889(5) 0.704(5)
SDA INN 0.539(10) | 0.817(12) | 0.857(6) 0.77(13)
SVM 0.483(7) 0.811(12) | 0.817(6) 0.811(6)
QDC 0.568(5) 0.703(6) 0.969(3) 0.836(4)
SELF INN 0.52(20) 0.726(19) | 0.965(12) | 0.833(20)
SVM 0.583(6) 0.808(16) | 0.946(2) 0.878(5)
QDC 0551(7) | 0.7714) | 0.9653) | 0.826(4)
SELD INN 0.698(18) | 0.863(20) | 0.974(20) | 0.903(20)
NPE SVM 0.648(12) | 0.874(19) | 0.959(18) | 0.905(9)
QDC 0.541(35) | 0.758(3) | 0.969(4) | 0.793(4)
SELD INN 0.656(16) 0.844(20) | 0.976(15) | 0.873(18)
LpP SVM 0.645(11) | 0.857(20) | 0.959(3) 0.876(7)
QDC 0.531(3) | 0.755(4) | 0.953(4) | 0.829(4)
SELD INN 0.667(20) | 0.852(20) | 0.964(8) | 0.899(19)
LLTSA SVM 0.642(18) | 0.833(19) | 0.948(12) | 0.91(9)

Table 3.2: Highest OCA Using Extracted Features (The Number of Extracted Features is

Written in the Back Brackets) Applied to Four Different Data Sets in Case 1

The experimental results in Table [3.2] and Table [3.3] also show that none of
the three classifiers achieves the highest accuracy on every data set. This can
also be seen in Fig. The reason may be that the distributions of data sets
are very different as was mentioned in [60}/144,/145]]. In the following, we take the
Indian Pine and KSC images in Case 2 as examples to explore the performances of
different methods when the number of extracted features increases, the results were
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Feature Extraction | Classifier Data Set
Indian Pine KSC DC Botswana
QDC 0.14 0.146 0.474 0.084
Raw INN 0.65 0.818 0.983 0.902
SVM 0.622 0.924 0.983 0.931
QDC 0.736(10) | 0.853(17) | 0.997(7) 0.937(8)
PCA INN 0.646(20) | 0.816(20) | 0.983(14) | 0.90(17)
SVM 0.717(5) 0.896(19) | 0.99(12) 0.94(7)
QDC 0.601(10) | 0.864(10) | 0.954(6) 0.909(6)
LDA INN 0.621(11) | 0.881(11) | 0.975(6) | 0.932(12)
SVM 0.604(9) 0.895(12) 0.98(6) 0.901(8)
QDC 0.738(11) 0.87(20) | 0.997(17) | 0.941(8)
NPE INN 0.687(13) | 0.889(20) | 0.988(13) | 0.941(8)
SVM 0.757(13) | 0.916(20) | 0.987(15) | 0.945(8)
QDC 0.727(12) | 0.891(13) | 0.996(19) | 0.927(12)
LPP INN 0.71(10) 0.886(13) | 0.985(12) 0.93(7)
SVM 0.751(10) 0.92(20) 0.989(3) | 0.925(12)
QDC 0.749(11) | 0.872(18) | 0.997(15) | 0.935(7)
LLTSA INN 0.644(19) | 0.884(16) | 0.982(7) 0.932(6)
SVM 0.753(20) | 0.908(18) | 0.984(2) 0.932(6)
QDC 0.752(9) 0.871(16) | 0.997(13) | 0.943(10)
NWFE INN 0.767(12) 0.87(20) 0.99(15) | 0.921(19)
SVM 0.775(8) 0.924(18) | 0.988(16) | 0.938(8)
QDC 0.636(9) 0.885(12) | 0.993(6) | 0.915(11)
SDA INN 0.655(12) | 0.897(11) | 0.969(6) | 0.939(12)
SVM 0.637(9) 0.898(12) | 0.978(6) | 0.905(12)
QDC 0.736(10) | 0.853(17) | 0997(7) 0.937(8)
SELF INN 0.646(20) | 0.816(20) | 0.983(14) | 0.90(17)
SVM 0.717(5) 0.896(19) | 0.99(12) 0.94(7)
QDC 0.74(12) 0.906(9) | 0.997(13) | 0.935(8)
SELD INN 0.792(20) | 0.924(20) | 0.992(20) | 0.951(18)
NPE SVM 0.747(13) | 0.936(19) | 0.998(12) | 0.948(9)
QDC 0.742(12) | 0.904(15) | 0.997(13) | 0.931(13)
SELD INN 0.785(12) | 0.918(19) | 0.993(19) | 938(12)
Lpp SVM 0.76(12) | 0.931(18) | 0.99(17) | 0.933(11)
QDC 0.734(9) | 0.9IL(11) | 0.997(12) | 0.945(11)
SELD INN 0.779(19) | 0.913(9) | 0.992(18) | 0.947(20)
LLTSA SVM 0.757(20) | 0.925(19) | 0.98(14) | 0.949(13)

Table 3.3: Highest OCA Using Extracted Features (The Number of Extracted Features is

Written in the Back Brackets) Applied to Four Different Data Sets in Case 2

shown in Fig. The statistical significance of differences was computed using
McNemar’s test, which is based upon the standardized normal test statistic [[103],
Table [3.4} Table [3.9] show the results using the best results of each method in the
same bands over ten runs.

1. On Indian Pine data set, NWFE outperforms the other methods for QDC
and SVM classifiers, the difference is statistically significant, with |Z| >
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Figure 3.7: Performance of each feature extraction method in Case 2 for Indian Pine

and KSC data sets.

Each experiment was repeated 10 times, the average was ac-

quired. By selecting 8 = 1 optimized with 5-fold cross-validation within the given set
{0,0.1,0.2,...,0.9,1}, SELF has the same performance as PCA. The proposed SELD
method is the one which combines LDA and NPE.
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7 Indian Pine using 9 features
e PCA [ LDA T NPE [ NWFE | SDA | SELF | SELD

PCA 0 21.6 | -L.1 177 181 0 24
LDA -21.6 0 -22.6 -27.8 -48 | -21.6 -24

NPE 1.1 22.6 0 -6.1 19.1 1.1 -1.2
NWFE 7.7 27.8 6.1 0 24.8 7.7 5

SDA | -18.1 | 4.8 | -19.1 | -24.8 0 -18.1 | -20.8
SELF 0 21.6 | -1.1 =17 18.1 0 2.4
SELD 24 24 1.2 -5 20.8 24 0

Table 3.4: Statistical significance of differences in classification (Z) with QDC classifier in
Case 2. Each case of the table represents Z. where r is the row and c is the column. The
best results of each method over ten runs are used.

7 Indian Pine using 9 features
re PCA T LDA [ NPE | NWFE [ SDA T SELF [ SELD

PCA 0 0.9 -9.9 -26.7 -5.8 0 -29
LDA -0.9 0 -10.3 | -2255 -9.3 -0.9 -28.3

NPE 9.9 10.3 0 -13.7 3.5 9.9 -20.2
NWEFE | 267 | 22.5 | 137 0 162 | 26.7 -6.7

SDA 5.8 9.3 -3.5 -16.2 0 5.8 -22.1
SELF 0 0.9 -9.9 -26.7 -5.8 0 -29
SELD 29 28.3 0.2 6.7 22.1 29 0

Table 3.5: Statistical significance of differences in classification (Z) with INN classifier in
Case 2. Each case of the table represents Z,. where r is the row and c is the column. The
best results of each method over ten runs are used.

1.96. For INN classifier, the proposed SELD method yields the highest
OCA of 79.2%, which is better than NWFE with SVM classifier 77.5%.
The difference between the best results of SELD with 1NN classifier and
NWFE with SVM classifier is statistically significant (Z = 3.86).

2. On KSC data set, SELD performs better than the other methods with all the
three classifiers. The statistical difference of accuracy |Z| > 1.96 clearly
demonstrates the efficiency of the proposed SELD.

3. Using only C'—1 features may not be enough in some real situation, which is
one limitation of both LDA and SDA. NPE can improve its performance by
using more extracted features, as shown in Fig. When more features
are used, the overall classification accuracy can be improved.

The results in Table [3.4} Table [3.9) and in Fig. [3.7) show that SELD with INN
classifier can have a better performance in Indian Pine image, while in the KSC
image, SELD with SVM classifier will be a better choice.

In order to compare the classified maps visually, we generate classification
maps with the combination of the highest OCA using different methods and classi-
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7 Indian Pine using 9 features
re PCA T LDA T NPE [ NWFE [ SDA [ SELF [ SELD

PCA 0 I35 [ -13.8 [ -172 7.8 0 -122
LDA | -15.5 0 -27.6 | -30.5 | -10.5 | -155 | -26.6

NPE 13.8 | 27.6 0 -39 204 | 138 1.9
NWEE | 17.2 | 30.5 3.9 0 23.6 17.2 54
SDA -7.8 | 105 | -204 | -23.6 0 -7.8 -19.3
SELF 0 155 | -13.8 | -17.2 7.8 0 -12.2
SELD 12.2 | 26.6 -1.9 -5.4 19.3 12.2 0

Table 3.6: Statistical significance of differences in classification (Z) with SVM classifier in
Case 2. Each case of the table represents Z. where r is the row and c is the column. The
best results of each method over ten runs are used.

7 KSC using 12 features
e PCA T LDA T NPE T NWFE [ SDA T SELF | SELD

PCA 0 -1.6 | 4.8 -5.9 4.7 0 -9.2
LDA 1.6 0 -2.5 -2.9 -4.3 1.6 -7
NPE 4.8 2.5 0 -0.5 -0.7 4.8 -5.7
NWFE | 59 29 0.5 0 -0.3 59 -4.6
SDA 4.7 4.3 0.7 0.3 0 4.7 -3.7
SELF 0 -1.6 | 4.8 -5.9 4.7 0 -9.2
SELD | 9.2 7 5.7 4.6 37 9.2 0

Table 3.7: Statistical significance of differences in classification (Z) with QDC classifier in
Case 2. Each case of the table represents Z.. where r is the row and c is the column. The
best results of each method over ten runs are used.

7 KSC using 12 features
re PCA [ LDA T NPE [ NWFE | SDA [ SELF [ SELD

PCA 0 -122 1 -138 | -134 | -13.7 [ -19
LDA 12.2 0 -1.5 2.8 -2.7 12.2 -1.5
NPE 13.8 1.5 0 44 -0.6 13.8 -6
NWEE | 134 | -2.8 -4.4 0 -4.7 134 | -10.7
SDA 13.7 2.7 0.6 4.7 0 13.7 -54
SELF 0 -12.2 | -13.8 | -13.4 | -13.7 0 -19
SELD 19 7.5 6 10.7 54 19 0

Table 3.8: Statistical significance of differences in classification (Z) with INN classifier in
Case 2. Each case of the table represents Z,. where r is the row and c is the column. The
best results of each method over ten runs are used.

fiers in Case 2 (ny, = 40), displayed in Fig. [3.8}Fig.[3.T1] The results demonstrate

that:

1. By incorporating the local neighborhood information of the data, SELD pre-
serves well spatial consistency in the classification maps, for example, the
“Grass” in DC Mall image (Fig.[3.10). SELD also produces smoother homo-
geneous regions in the classification maps, which is particularly significant
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7 KSC using 12 features
re PCA [ LDA [ NPE [ NWFEE [ SDA | SELF [ SELD
PCA 0 0.1 -5.7 -T.1 2.2 0 -11
LDA -0.1 0 -4.8 -1.5 -34 -0.1 -11.9
NPE 5.7 4.8 0 2.2 2.6 5.7 -6.8
NWFE | 7.1 7.5 22 0 5.2 7.1 -6.2
SDA 2.2 3.4 -2.6 -5.2 0 22 -9.8
SELF 0 0.1 -5.7 -7.1 -2.2 0 -11
SELD 11 119 | 6.8 6.2 9.8 11 0

Table 3.9: Statistical significance of differences in classification (Z) with SVM classifier in
Case 2. Each case of the table represents Z. where r is the row and c is the column. The
best results of each method over ten runs are used.

T W Wy Ty Wiy A
] = - 5 i

Figure 3.8: Classification maps for Indian Pine with ni, = 40 (Case 2) (a) Ground truth
of the area with 13 classes, and thematic map using (b) INN classifier without feature
extraction (r = 220), (c¢) PCA and SELF features and QDC Classifier (r = 10), (d) LDA
features and INN Classifier (r = 11), (e) NPE features and SVM Classifier (r = 13), (f)
NWFE features and SVM Classifier (r = 8), (g) SDA features and INN Classifier (r = 12),
and (h) The proposed SELD y pg features and INN Classifier (r = 20).

when classifying the “Stone-steel towers” and “Grass/Trees” in the Indian
Pine image (Fig.[3.9).

2. SELD also yields good class discrimination. For Indian Pine image, it
is easy to find that SELD outperforms other feature extraction methods
in “Grass/Pasture”, “Grass/Trees”, “Soybeans-notill” and “Soybeans-clean”
parts (Fig. [3.9). For DC Mall image, SELD discriminates “Water” better
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Figure 3.9: Classification maps for KSC with n;, = 40 (Case 2) (a) RGB composition with
13 classes labeled and highlighted in the image, and thematic map using (b) SVM classifier
without feature extraction (r = 176), (c) PCA and SELF features and SVM Classifier
(r = 19), (d) LDA features and SVM Classifier (r = 12), (e) LPP features and SVM
Classifier (r = 20), (f) NWFE features and SVYM Classifier (r = 18), (g) SDA features and
SVM Classifier (r = 12), and (h) The proposed SELDn pg features and SVM Classifier
(r =19).

than the other methods (Fig. [3.10).

The plots in Fig. [3.12] and Fig. 3.13] give more insight into class discrimina-
tion by different methods. The training and testing samples of three classes of
KSC image in Case 1 are projected into the feature space formed by the first two
eigenvectors of different feature extraction methods. The results in Fig. [3.12 and
Fig. show that LDA has overfitting problems, because in Case 1 (n < d, and
ni < d), both the within-classs scatter matrix S,, and the between-class scatter
matrix Sy are singular, S,, cannot be inverted, and both S,, and S; are not accurate.
By considering the local neighborhood information inferred from both labeled and
unlabeled samples, SDA improves over LDA, but the test data are projected with
different classes mixed. The distributions of projected data obtained by SELD are
more concentrated and more distinct as compared with those of PCA, LDA, NPE,
NWEE and SDA. This explains also classification improvement in Table [3.2 and
Table 3.3
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Figure 3.10: Classification maps for DC Mall with ni, = 40 (Case 2) (a) RGB composi-
tion with 7 classes labeled and highlighted in the image, and thematic map using (b) SVM
classifier without feature extraction (r = 191), (c) PCA and SELF features and QDC Clas-
sifier (r = 7), (d) LDA features and SVM Classifier (r = 6), (¢) NPE features and QDC
Classifier (r = 17), (f) NWFE features and QDC Classifier (r = 13), (g) SDA features and
ODC Classifier (r = 6), and (h) The proposed SELDy pg features and SVM Classifier
(r=12).

3.5 Algorithm analysis

The computational complexity of the proposed SELD is mainly in finding the
e nearest neighbors for all the selected unlabeled training samples. To find the
e nearest neighbors for u selected unlabeled training samples in the d dimen-
sional Euclidean space, the complexity is O(du?). However, some methods can
be used to reduce the complexity of searching the e nearest neighbors, such as K-
D trees [146]. SELDypg and SELDy s have additional complexities over
SELDp pp in calculating the reconstruction weights, which is O(due?). For stor-
ing the matrix C or C in equation and (3.9), the complexity is O(N?), where
N is the total training samples including labeled and unlabeled ones. For exam-
ple, if we use all the samples in the Botswana data set to train, N = 1476 x 256,
this will exceed the memory capacity of an ordinary PC even though the matrix is
sparse. In order to reduce the computational complexity and memory consump-
tion, some of unlabeled samples were selected in our experiments.
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(a) (] (© (d (e) ® (€3] ()

Figure 3.11: Classification maps for Okavango Delta, Botswana with ny, = 40 (Case 2)
(a) RGB composition with 14 classes labeled and highlighted in the image, and thematic
map using (b) SVM classifier without feature extraction (r = 145), (c) PCA and SELF
features and SVM Classifier (r = 7), (d) LDA features and INN Classifier (r = 12), (e)
NPE features and SVM Classifier (r = 8), (f) NWFE features and QDC Classifier (r = 10),
(g) SDA features and SVM Classifier (r = 6), and (h) The proposed SELD n pg features
and INN Classifier (r = 18).

3.5.1 Computational cost

We compared the computational cost of different approaches. All the methods
were implemented in Matlab. The experiments were carried out on 64-b, 2.67
GHz Intel i7 920 (8 core) CPU computer with 12 GB memory, Fig.[3.14]shows the
computational time of different approaches, and the OCA with 1NN classifier. The
recorded times were only consumed in the process of feature extraction. This in-
cluded the time consumed on the parameter determination of some methods (such
as « in SDA, and 3 in SELF). We can see that PCA and LDA are the fastest, and
the proposed SELD is more efficient than NWFE, SDA and SELF as the number
of training samples increases. The reason is that the parameter determination in
SDA and SELF is time consuming.
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Figure 3.12: Distributions of training samples and testing samples for “Hay-windrowed”,
“Soybeans-Min” and “Woods” of Indian Pine data set using the first two significant fea-
tures obtained from different methods. In each method, the left scatter plot is for training
data and the right one is for testing data (n, = 10, Case 1).

3.5.2 Selection of unlabeled samples

The choice of unlabeled samples is very important step in the semi-supervised
methods. Selection of too many unlabeled samples will increase computational
complexity, while a small number of unlabeled samples is not sufficient to exploit
the local neighborhood information of the data sets. One easy solution is selecting
unlabeled samples randomly from the whole image. Fig.[3.15(a)|shows an example
of the performances with different number of labeled and unlabeled samples. The
number of unlabeled samples was evaluated from 200 to 3000 with a step of 200.
Fig.[3.15(b)] shows the corresponding computation times. The classification accu-
racy of SELD will be improved as more unlabeled samples are used, particularly
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Figure 3.13: Distributions of training samples and testing samples for “Scrub”,
“Graminoid marsh” and “Salt marsh” of KSC data set using the first two significant fea-
tures obtained from different methods. In each method, the left scatter plot is for training
data and the right one is for testing data (ni, = 10, Case 1).

in ill-posed (Case 1) classification problems. Generally, semi-supervised methods
can achieve better classification results by using more unlabeled samples than la-
beled ones [[147,[148]]. However, the usage of a large number of unlabeled samples
will cause problems in computational complexity and memory consumption. This
may be improved by using some spatial selection methods [[137].

3.5.3 Selection of nearest neighbors

In graph-based feature extraction methods, the number of nearest neighbors (e) is
an important parameter. We can employ cross-validation to optimize e. However,
we found in our experiments that our approach produces consistently good results
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Figure 3.15: Surface of (a) the OCA as a function of labeled and unlabeled samples, r = 13
and e = 12; (b) the computation time as a function of labeled and unlabeled samples,
r = 13 and e = 12; (c) the OCA as a function of unlabeled samples and nearest neighbors,
ne = 10 and r = 13.

over a large range of e values, which suggests insensitivity to this parameter in
a broad range. Fig. illustrates the performance with different number of
unlabeled samples and nearest neighbors when e is changed from 2 to 30 with a
step of 2. Note that the maximal dimensionality of SELDy s Was set to e — 2
(e should be greater than r [52]).

3.6 Conclusion

In this Chapter, we presented a new semi-supervised feature extraction method
and we applied it to classification of hyperspectral images. The main idea of the
proposed method is to divide first the samples into the labeled and the unlabeled
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sets. The labeled samples are employed through the supervised LDA only and the
unlabeled ones through the unsupervised method only. We combine the two in a
non-linear way, which makes full use of the advantages of both approaches. Ex-
perimental results on hyperspectral images demonstrate advantages of our method
and improved classification accuracy compared to some related feature extraction
methods. Moreover, we do not need to optimize any tuning parameters, which
makes our method more efficient. Also the new method removes the limitation of
LDA and SDA in terms of the number of extracted features.



GSELD

When using morphological features for the classification of high resolution hyper-
spectral images from urban areas, one should consider two important issues. The
first one is that classical morphological openings and closings degrade the object
boundaries and deform the object shapes. Morphological openings and closings by
reconstruction can avoid this problem, but this process leads to some undesirable
effects. Objects expected to disappear at a certain scale remain present when using
morphological openings and closings by reconstruction. The second one is that the
morphological profiles (MPs) with different structuring elements and a range of in-
creasing sizes of morphological operators produce high-dimensional data. These
high-dimensional data may contain redundant information and create a new chal-
lenge for conventional classification methods, especially for the classifiers which
are not robust to the Hughes phenomenon.

In this Chapter, we first apply morphological profiles with partial reconstruc-
tion and directional MPs for the classification of high resolution hyperspectral im-
ages from urban areas. Secondly, we develop a semi-supervised feature extraction
to reduce the dimensionality of the generated morphological profiles for the clas-
sification, see Fig. To the best of our knowledge the use of semi-supervised
FE methods for the generated morphological profiles has not been investigated yet.
Experimental results on real urban hyperspectral images demonstrate the efficiency
of the considered techniques.
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Figure 4.1: Diagram of proposed semi-supervised FE for MPs.

4.1 Introduction

Recent advances in sensors technology have led to an increased availability of hy-
perspectral data from urban areas at very high both spatial and spectral resolutions.
Many techniques are developed to explore the spatial information of the high reso-
lution remote sensing data, in particular, mathematical morphology is one
of the most popular methods. Pesaresi and Benediktsson proposed the use of
morphological transformations to build a morphological profile (MP). Bellens et
al. further explored this approach by using both disk-shaped and linear struc-
turing elements to improve the classification of very high-resolution panchromatic
urban imagery. The approach of extended the method in for hyperspectral
data with high spatial resolution. The resulting method built the MPs on the first
principal components (PCs) extracted from a hyperspectral image, leading to the
definition of extended MP (EMP). The appoach of [39]] performs spectral-based
morphology using the full hyperspectral image without dimensionality reduction.
In [28]], kernel principal components are used to construct the EMP, with signifi-
cant improvement in terms of classification accuracies compared with the conven-
tional EMP built on PCs. In [74], the attribute profiles (APs) were applied
to the first PCs extracted from a hyperspectral image, generating an extended AP
(EAP). The approach of improved the classification results by constructing
the EAP with the independent component analysis.

When using MPs, one should consider two important issues. The first one is
that classical morphological openings and closings degrade the object boundaries
and deform the object shapes, which may result in losing some crucial information
and introducing fake objects in the image. To avoid this problem, one often uses

morphological openings and closings by reconstruction [[17,[18}[72|[77.[78]l, which
can reduce some shape distortions in the image. However, morphological openings
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and closings by reconstruction lead to some unexpected results in the resulting
images, such as over-reconstruction [73]]. Objects which are expected to disappear
at a certain scale remain present when using morphological openings and closings
by reconstruction. The approach of [73] proposed a partial reconstruction for the
classification of very high-resolution panchromatic urban imagery. Morphological
openings and closings by partial reconstruction can solve the problem of over-
reconstruction while preserving the shape of objects as much as possible. They
limit the extent of the reconstruction. The edges of simple objects are reconstructed
well, but a full retrieval of complex elongated shapes might not be obtained. For
simple objects like rectangles for example, the reconstruction is complete. Since,
in urban remote sensing scenes, most objects are not very complex and are often
simply even rectangular shaped, partial reconstruction is very well suited.

The second problem is that the resulting data sets may contain redundant in-
formation, because the construction of the generated profiles is based on different
structuring elements (SEs) and a range of increasing sizes of morphological op-
erators. Furthermore, the increase in the dimensionality of the generated profiles
may create a new challenge for conventional classification methods, especially for
the classifiers which are not robust to the Hughes phenomenon [1] (for a limited
number of training samples, the classification accuracy decreases as the dimension
increases). Although some advanced classifiers, such as neural networks [17],
SVM [18l|19] and random forest classifiers [[19]], are shown to deal efficiently with
these high dimensional data sets, common statistical classifiers are often limited
in this context. For this reason, feature extraction (FE), aiming at reducing the
dimensionality of data while keeping as much intrinsic information as possible, is
a desirable preprocessing tool to reduce the dimensionality of the generated pro-
files for classification. Relatively few bands can represent most information of
the data, making feature extraction very useful for classification of remote sensing
data [28,[29]]. The effect of different FE methods on reducing the dimensionality
of the generated profiles for classification of hyperspectral data from urban areas
has been discussed in several studies [[17-19,/149].

However, to the best of our knowledge the use of semi-supervised FE methods
for the generated morphological profiles has not been investigated yet. In many
real world applications, it is usually difficult, expensive and time-consuming to
collect sufficient amount of labeled samples. Meanwhile, it is much easier to ob-
tain unlabeled samples. For this reason, semi-supervised methods [62-66} 68],
which aim at improved classification by utilizing both unlabeled and limited la-
beled data gained popularity in the machine learning community.

In this Chapter, we first investigate the effect of the morphological profiles with
partial reconstruction and the effect of directional morphological profiles [[73] on
the classification of hyperspectral images from urban areas. Secondly, we develop
a semi-supervised FE method as a preprocessing to reduce the dimensionality of
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the generated morphological profiles for classification.

4.2 Morphological features

Morphological operators act on the values of the pixels according to transforma-
tions that consider the neighborhood (with a given size and shape) of the pixels.
The basic operators are dilation and erosion [70]]. These operators are applied to
an image with a set of known shapes, called the structuring elements. In the case
of erosion, a pixel takes the minimum value of all the pixels in its neighborhood,
defined by the SE. By contrast, dilation takes the maximum value of all the pixels
in its neighborhood. Dilation and erosion are usually employed in pairs, either
dilation of an image followed by erosion of the dilated result, or erosion of an
image followed by dilation of the eroded result. These combinations are known
as opening and closing. An opening acts on bright objects compared with their
surrounding, while closings act on dark objects. For example, an opening deletes
(this means the pixels in the object take on the value of their surrounding) bright
objects that are smaller than the SE. The term scale of an opening or closing is
referred to the size of SE.

4.2.1 Disk-based and linear-based structure elements

Because of its isotropic character morphological openings and closings with disk-
shaped SEs are the most popular methods used in current literature [[17-19]. Ob-
jects where the SE (disk shape with a radius ) does not fit are deleted from the
image. Fig. shows an image and two openings with disk-shaped SEs of
different sizes. Objects with a width smaller than 2R are deleted from the image.

Aside from the disk-shaped SEs, we can also use linear SEs [[73]]. A line has
a certain orientation 6 and length L, i.e., the Euclidean distance between the two
endpoints of the line (rounded off). Fig. [#.2(b)| shows three closings with linear
SEs of length L using the features extracted from Fig. A pixel is deleted if
there exist no line of length L and orientation 6 that goes through that pixel. This
means that an object that is smaller than L in the orientation 6 is removed. Objects
which are smaller than L in all directions are removed from all these openings
or closings. Therefore, the maximum of all openings with a linear SE of length
L and different orientations (analogously the minimum of all closings) removes
objects with a maximum dimension smaller than L. The number of orientations
used to determine this maximum of openings should be chosen as high as possible,
taking into account the computation time. For more details on linear-based SE, the
readers should consult [[73]], which we applied in our experiments.
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(a) Without reconstruction

(b) Geodesic reconstruction

(c) Partial reconstruction

Figure 4.2: Openings with disk-shaped SEs of increasing size. The scales of SEs vary from
2 to 8, with step 2. The image processed is part of the first PC extracted from University

Area data set in Fig.

4.2.2 Reconstruction and Partial reconstruction

Aside from deleting objects smaller than the SE, morphological openings and clos-
ings also deform the objects which are still present in the image, see Fig.
and Fig. the corners of rectangular objects in Fig. (square object on
the top right) are rounded. To preserve the shapes of objects, morphological open-
ings and closings by reconstruction are generally the tool of choice [18}[77]. This
process reconstructs the whole object if at least one pixel of the object survives
the opening or closing. We can see the results in Fig. f.2(b)] and Fig. @.3(b)} the
shapes of the objects are well preserved, and some small objects disappear as the
scale (here the scale is related to the size of the SE) increases. However, morpho-
logical openings and closings with reconstruction will lead to some undesirable
effects (such as over-reconstruction), a lot of objects that disappeared in the mor-
phological openings and closings without reconstruction remain present in that
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(a) Without reconstruction

(b) Geodesic reconstruction

(c) Partial reconstruction

Figure 4.3: Closings with linear SEs of increasing size. The scales of SEs vary from 20 to
80, with step 20. The image processed is part of the first PC extracted from Pavia Centre

data set in Fig.

with reconstruction. Objects which are expected to disappear in the image at a low
scale, are still present at the highest scales, as shown in Fig. [£.2(b)] (small bright
road on the middle left) and Fig. m (small black road on the middle right).
The approach of proposed a partial reconstruction to solve the problem
of over-reconstruction while preserving the shape of objects as much as possi-
ble, and made a great improvement in the classification of very high-resolution
panchromatic urban imagery. In the partial reconstruction process, a pixel is only
reconstructed if it is connected to a pixel that was not erased, and this second pixel
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lies within a certain geodesic distance dist from the pixel. The geodesic distance
between two pixels is the length of the shortest path between the two pixels that
lie completely within the object. The parameter dist sets the amount of recon-
struction. For disk shaped SE, this amount can be chosen such that rectangular
objects are completely reconstructed. For linear SE, the choice of a good value is
more difficult. However, 10% of the length of the SE seems a good value [73].
Fig. and Fig. show the results of morphological openings and clos-
ings with partial reconstruction in different scales. The shapes of objects are better
preserved with partial reconstruction compared to the morphological openings and
closings without reconstruction. Some of the more complex shapes are not so well
preserved as with geodesic reconstruction. On the other hand, a lot of small ob-
jects which erroneously remain present in the profiles with reconstruction, disap-
pear correctly at the right scale in the partial reconstruction profiles. Basically this
is because in remote sensing (urban) scenes different objects lie closely together
and because of noise and other effects, different objects are often connected by a
sequence of pixels with similar (or more extreme) pixel values. Therefore, recon-
struction considers all those connected objects as a single object and objects will
only disappear when the SE does not fit the broadest (for disk shapes) or longest
(for directional) part of the connected object, even though this part might be far
away from the actual object. Partial reconstruction only reconstructs the immedi-
ate surrounding of the surviving part, and avoid thereby most of these errors.

4.3 Extended morphological profiles with partial re-
construction

A morphological profile (MP) consists of the opening profile (OP) and the clos-
ing profile (CP), see Fig. For disk shaped SE this means objects where the
smallest objects size (i.e. the width) is smaller than the diameter of the disk. Clos-
ings and openings with disk-shaped SEs thus act on the minimum size of objects.
This results in an disk-based MP carrying information about the minimum size
of objects. Fig. shows the result of the opening transform with partial re-
construction for different-sized, disk-shaped SEs. As the size of the SE increases,
more and more bright objects disappear in the dark background. The size of the
SE that makes objects disappear corresponds to the minimum size of the object.
In [73]], directional MP was proposed to obtain an indication of the maximum
size of objects. With a linear structuring element of length L and orientation 6,
an opening (resp. closing) deletes bright (resp. dark) objects (or object parts)
which are smaller than that length in that direction. When performing such open-
ings (or closings) with different orientations, objects which are shorter than L will
be completely removed in all of these images. The maximum (resp. minimum)
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The first PC i Closings

igure 4.4: Morphological profile with 2 openings and 2 closings by partial reconstruction.
Disk SEs are used with radius R = 2 and R = 6. The image processed is the first PC
extracted from University Area dataset in Fig.

over all of these openings (resp. closings) will therefore remove the short objects
(or object parts) and keep the long objects. Creating multiple such maximum or
minimum images for different lengths L gives you the directional MP. Thus the
directional MP carries information about the maximum size of objects. This in-
formation can be used for detecting linear objects (roads), since these objects have
large maximum sizes and small minimum sizes. Fig. shows an example of
the directional MP with partial reconstruction. Note that individual houses disap-
pear at lower scales, while roads and apartment buildings with a more elongated
shape have almost constant intensities. For more details on MP with partial recon-
struction and directional MP, the readers should consult [73]]. By increasing the
size of the SE, more and more objects are removed. We will use the term scale of
an opening or closing to refer to this size. A vector containing the pixel values in
openings and closings by reconstruction of different scales is called the morpho-
logic profile. The MPs carries information about the size and the shape of objects
in the image.

For the panchromatic image, MP is built on the original single band image di-
rectly. The OP with n scales at pixel x forms n-dimensional vector, and so as the
CP. By incorporating the OP and the CP, the morphological profile of pixel x is de-
fined as (2n+1)-dimensional vector. When applying MP to the hyperspectral data,
feature extraction is used as a pre-processing to reduce the dimensionality of the
high-dimensional original data. MP built on different features has been discussed
in several studies [[1728|87]], Fig.[#.4]shows a MP with partial reconstruction built
on the first PC. By applying MP to each extracted feature independently, extended
morphological profile (EMP) is formed as a stacked vector which is constructed
from all the morphological profiles. Fig. 5] shows an EMP with partial recon-
struction built on the first two PCs.

The morphologic profiles with a certain SE produce a vector of values, each
value corresponding with the feature output for a specific scale. While morpho-



Figure 4.5: Extended morphological profile built on the first two PCs with 2 openings and
2 closings by partial reconstruction. Disk SEs are used with radius R = 2 and R = 6.

logic profiles with different SEs will then be a high-dimensional stacked vector.
The resulting high-dimensional data may contain redundant information. Further-
more, if we use these high-dimensional data as an input feature for classification,
this may create a challenge for conventional classification methods. Therefore, we
will use feature extraction as a preprocessing to reduce the dimensionality of the
generated morphological profiles before classification.

4.4 Generalized SELD for feature extraction of MPs

A number of approaches exist for feature extraction of the generated morphologi-
cal profiles [[I7H191[149]}, ranging from unsupervised methods to supervised ones.
One of the best known unsupervised methods is Principle Component Analysis
(PCA) [37)], which is widely used [17,[18,[78]]. Green et al. introduced
the minimum noise fraction (MNF) transformation. Recently, some local meth-
ods, which preserve the properties of local neighborhoods were used to reduce
the dimensionality of hyperspectral images [48]49,/56], such as Locally Linear
Embedding [48]l, Neighborhood Preserving Embedding (NPE) [53]]. By consider-
ing neighborhood information around the data, these local methods can preserve
local neighborhood information and detect the manifold embedded in the high-
dimensional feature space.

We addressed supervised FE methods in section 2.4 with special attention to
LDA and NWFE. Many extensions to these two methods have been proposed in
recent years, such as modified Fisher’s linear discriminant analysis [58]], regu-
larized linear discriminant analysis [36]], modified nonparametric weight feature
extraction using spatial and spectral information [59], and kernel nonparametric
weighted feature extraction [60].

However, in real-world applications, labeled samples are usually very lim-
ited, while unlabeled ones are available in large quantities at very low cost. Re-
cently, some semi-supervised feature extraction methods were proposed to reduce
the dimension of hyperspectral data sets. The approach of proposed a gen-
eral semi-supervised dimensionality reduction framework based on pairwise con-
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straints, which employs regularization with sparse representation. In an earlier
work [79], we proposed a semi-supervised local discriminant analysis (SELD)
method, which combines LDA and NPE, to extract features from the original hy-
perspectral data. In this paper, we propose a generalized SELD (GSELD) to extract
features from the generated morphological profiles.

Let {x;}¥,, x; € R? denote high-dimensional data, {z;} ,, and z; € R"
the low-dimensional representations of the high-dimensional data » < d. In our
application, d is the dimensionality of the generated profiles, and r is the dimen-
sionality of the extracted features. The goal of linear feature extraction is to find
a d x r projection matrix W, which can map every high-dimensional data x; to
z; = WTx; such that most information of the high-dimensional data is kept in a
much lower dimensional feature space.

Focusing on class discrimination, LDA is in general well suited to preprocess-
ing for the task of classification, since the transformation improves class separa-
tion. However, when only a small number of labeled samples are available, LDA
tends to perform poorly due to overfitting (see Fig. 3.3}Fig. Moreover, as the
rank of the between-class scatter matrix Sp is C' — 1, the LDA can extract at most
C — 1 features, which is not always sufficient to represent essential information
of the original data. NPE works directly on the data without any ground truth,
and incorporates the local neighborhood information of data points in its feature
extraction process. In Chapter 3, we combined LDA and NPE in a new frame-
work, and proposed a semi-supervised local discriminant analysis (SELD) method
to extract features from the original hyperspectral data. SELD magnified the ad-
vantages of LDA and NPE, and compensated for disadvantages of the two at the
same time. In this Chapter, we propose a new semi-supervised method to extract
features from the generated morphological profiles. The proposed method extends
our SELD method from Chapter 3 with a tunable parameter and we abbreviate this
generalized SELD method as GSELD.

Suppose a training data set is made up of the labeled set Xjgpereq = {(Xi, i) }iqs
y; € {1,2,---,C}, C is the number of classes, and unlabeled set Xy niabeicd =
{x;}}¥, . 1. The kth class has n;, samples with Zle ng = n. Without loss of gen-
erality, we center the data points by subtracting the mean vector from all the sam-
ple vectors, and assume that the labeled samples in Xjapered = {X1,X2, - ,Xn}
are ordered according to their labels, with data matrix of the kth class x®) =
[xgk), xék)7 e ,xg,i)] where xgk) is the ith sample in the kth class. Then the la-
beled set can be expressed as Xjgpeied = [X(l), X(2), . 7X(”)], all training set
X = [Xiabeled, Xunlabeled)- The optimization problem of the proposed GSELD is:

w wiX(aP + DX 'w
= arg max =
GSELD = MUY (a(T— P) + M)XTw

4.1)

where the matrices P and (I — P) are from the reformulation of LDA part, and
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the matrices I and M are from the reformulation of NPE part, for more details,
the readers should consult [79]. « is the tunable parameter. When « is set to
zero, equation . T|reduces to When the parameter « is set to 1, the proposed
method reduces to SELD [79]. Let Sgserp = X(aP + DX’ and ScseLp =
X(a(I—P)+M)X”, we can solve the generalized eigenvalue problem of GSELD
as (2.2)), and get the projection matrix W.

The algorithmic procedure of the proposed method which uses GSELD to ex-
tract features from the generated MPs is formally stated below:

1. Use PCA to extract the most p significant principal components (usually
with cumulative variance near to 99%) from the original hyperspectral data
sets.

2. Build the MPs on the p extracted PCs. The MPs are defined in the same way
asin [17,/73]]. An MP consists of the original image (one of the PC features)
and M openings with SE of increasing size (all applied on the original im-
age) and M closings with the same SE. Then, an Extended Morphological
Profile (EMP) is obtained with d = p x (2M + 1) dimension.

3. Divide the training samples into two subsets. Suppose that the labeled sam-
ples in Xjapered = [X1, -+ ,Xy] are ordered according to their labels, with
data matrix of the kth class X*) = [xgk), . ,xgi)] where ng) is the ith
sample in the kth class, then the labeled set can be expressed as Xjgpered =
[X(l), X® X(C)]. The unlabeled set is denoted as X, n1abeled :{xi}f\’:nﬂ.

4. Construct the matrices P and I from the labeled samples, and construct the
matrix I and M from the unlabeled samples in the same way as Chapter 3.

5. Compute the eigenvectors and eigenvalues for the generalized eigenvector
problem in . The projection matrix Wesprp = (W1, Wa, -+, W,.) is
made up by the r eigenvectors of the matrix ngé’ EL DEGS ELD associated
with the largest r eigenvalues Ay > Ao > --- > A,

6. Project the high dimensional generated morphological profiles (x; € R%)
into a lower dimensional subspace (z; € R") by

X —>zZ= WgSELDx

7. Use these extracted features Z in the lower dimensional subspace as an input
to do classification.
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(a) False color image (b) Training set (c) Test set

Figure 4.6: University Area data set.

4.5 Experimental results

4.5.1 Hyperspectral data sets

Experiments were run on two data sets, namely the ‘Pavia Center’ and ‘University
Area’. The data sets are from urban areas in the city of Pavia, Italy. The data were
collected by the ROSIS (Reflective Optics System Imaging Spectrometer) sensor,
with 115 spectral bands in the wavelength range from 0.43 to 0.86um and very
fine spatial resolution of 1.3 meters by pixel.

Pavia Center: The data with 1096 x 492 pixels was collected over Pavia city
center, Italy. It contains 102 spectral channels after removal of noisy bands (see
Fig. for a color composite). Nine groundtruth classes were considered in
experiments, see Table[4.1] Note that the color in the cell denotes different classes
in the classification maps (Fig. [4.6]- Fig.[4.9).

University Area: The data with 610 x 340 pixels was collected over the Univer-
sity of Pavia, Italy. It contains 103 spectral channels after removal of noisy bands
(see Fig. for a color composite). The data also includes 9 land cover/use
classes, see Table[4.1]

4.5.2 Experimental setup

To apply the morphological profiles with partial reconstruction and directional
morphological profiles of [[73] from panchromatic imagery to hyperspectral im-
ages, principal component analysis (PCA) was first applied to the original hyper-
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(a) False color image (b) Training set (c) Test set

Figure 4.7: Pavia Center data set.

Pavia Center University Area
Class Name | # Training set | # Test set Class Name # Training set | # Test set
Il Ve | 745 65278 Asphalt 548 6641
 Trees 785 6508 Meadows 540 18649
Meadows 797 2905 Gravel 392 2099
 Bricks 485 2140 524 3064
- 820 6549 265 1345
Asphalt 678 7585 - 532 5029
Bitumen 808 7287 ‘Bitumen 375 1330
| Tiles 223 3122  Bricks 514 3682
Shadows 195 2165 Shadows 231 947

Table 4.1: Training and test samples for data sets used in the experiments

spectral data set, and the first 3 principal components (PCs) were selected (repre-
senting 99% of the cumulative variance) to construct the MPs. For disk-shaped
structuring elements, morphological profiles with 15 openings and closings (rang-
ing from 1 to 15 with step size increment of 1) were then computed for each
PC. For linear structuring elements, morphological profiles with only 15 closings
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(ranging from 10 to 150 with step size increment of 10) were constructed for each
PC, since objects like roads in the extracted PCs proved to be mostly dark com-
pared to the background, we only made use of closing transforms. As a result,
each disk-based profile was made up of 31 bands and the final disk-based MPs,
constructed using three principal components, consisted of 93 bands. The final
MPs based on both disk and linear SEs were 138 bands.

We used three common classifiers: 1-nearest neighbor (1NN), linear discrimi-
nant classifier (LDC) [141]], and support vector machines (SVM) [142]. The SVM
classifier with radial basis function (RBF) kernels in Matlab SVM Toolbox, LIB-
SVM [143], is applied in our experiments. SVM with RBF kernels has two param-
eters: the penalty factor C' and the RBF kernel width v. We apply a grid-search
on C and ~y using 5-fold cross-validation to find the best C' within the given set
{1071,10°,10%, 102,103} and the best y within the given set {1073, 102,101,
10°,101}.

In order to investigate the influences of the training samples size in more detail,
the training data sets were then randomly subsampled to create samples whose
sizes corresponded to five distinct cases: 10, 20, 40, 80 and 160 samples per class,
respectively. All classifiers were evaluated against the testing sets, the results were
averaged over five runs. The word ‘Reconstruction’ in the tables is shortened as
‘Re..

4.5.3 Results using morphological profiles with partial recon-
struction and directional MPs

We compared the MPs with reconstruction, without reconstruction, and with par-

tial reconstruction in both two data sets. We also compared the results with the

directional MPs. Since Gaussian Classifier LDC is not efficient to deal with high-

dimensional data, we use 1NN and SVM classifiers in this experiment. The result-

ing accuracies are shown in Table[d.2} Table[d.3] The best overall accuracy (OA) of

each data set in each training sample size is highlighted (in column) in bold font.
From these tables, we have the following findings:

1. The results confirm that the MPs (without reconstruction, with reconstruc-
tion, and with partial reconstruction) can improve the classification perfor-
mance on hyperspectral images. By building the extended morphological
profiles on the first 3 principal components, the results can be improved a
lot. Compared to the situation with only spectral bands in each training
sample size, the OA of Pavia Center and University Area data sets with
MPs have 0.2%-2.6% and 12.4%-20% improvements for the 1NN classi-
fier, respectively. For SVM classifier, these improvements are 2%-3.3% and
1.5%-25.5%, respectively.
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Dataset Methods Classifier 0 23 ramm%OS et Slz%() T60

INN [ 0.94T | 0.948 [ 0.952 | 0.956 | 0.961

Spectral Only | qyM | 0935 | 0942 | 0946 | 0.947 | 0.948

Pavia C NoRe TNN 10943 0956 | 0.96 | 0.964 | 0.965

avia Center : SVM | 0961 | 0968 | 0.974 | 0.977 | 0.979
- INN T 096 | 097 | 0.976 | 0.98T | 0.983 |

: SVM | 0.966 | 0.968 | 0974 | 0979 | 0.981

Parial Re INN [ 0.949 [ 0963 [ 0.967 [ 0.97T [ 0.973

e L e T

Spectral Only | gypm | 0653 | 0.729 | 0725 | 0.734 | 0.787

University A NoRe TNN T O8I8 [ 0826 [ 0.833 | 0.84T [ 0837

niversity Area : SVM | 0.825 | 0.884 | 0.886 | 0.896 | 0.894

e TNN T 0.75 1 0.782 [ 0.786 | 0.823 | 0.825

: SVM | 0.709 | 0766 | 0.799 | 0.797 | 0.802

ortial Re TNN [ 0.806 | 0.806 | 0.809 | 0.829 [ 0821

: SVM | 0.835 | 0.894 | 0.909 | 0.916 | 0.917

Table 4.2: Overall Accuracy in a Classification with Spectral Only Compared to Classifica-
tions with Disk-based MPs without Reconstruction, with Reconstruction, and with Partial

Reconstruction
: Training Set Size

Dataset Methods Classifier 0 5 30 30 T60
No Re INN 0.953 [ 0.962 | 0.968 | 0.971 | 0.973

) : SVM 0.966 | 0.972 | 0.976 | 0.981 | 0.981
Pavia Center R INN 0.961 [ 0.97T | 0.976 | 0.981 | 0.983
c. SVM 0.967 | 0972 | 0.975 | 0.979 | 0.981
Partial Re TNN 0.957 10968 [ 0.974 [ 0.976 | 0.978
: SVM 0.968 | 0.975 | 0.979 | 0.982 | 0.982

No Re INN 0.826 | 0.834 |1 0.841 | 0.85 0.85
. . : SVM 0.854 | 0.907 | 0912 | 0918 | 0.916
University Area R INN 0.757 1 0.776 1 0.779 | 0.814 | 0.816
c. SVM 0.733 | 0.763 | 0.815 | 0.799 | 0.81
Partial Re TNN 0.83 [ 0.829 [ 0.839 | 0.857 | 0.848

: SVM 0.884 | 0.924 | 0941 | 0.947 | 0.95

Table 4.3: Overall Accuracy Comparison in a Classification among Disk- & Linear-based
MPs without Reconstruction, with Reconstruction, and with Partial Reconstruction
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Disk-based MP Disk- and Linear-based MP

Spectral Only No Re. Re. Partial Re. | No Re. Re. Partial Re.
OA 95.9 97.9 98.2 98 98.3 98.1 98.3

AA 91 94.2 96.8 96.2 96.2 96.6 97

K 934 96.4 96.9 96.6 97.1 96.8 97.1
std 0.92 0.43 0.55 0.36 0.41 0.44 0.27
Water 98.9 100 99.3 99.7 99.9 99.3 99.5
Trees 87.2 93 93.1 93.8 92.7 93.2 93.2
Meadows 94.6 85.5 85 91 90 85.6 93.5
Bricks 62.6 84.1 99.8 98.1 96.4 99.6 99.3
Soil 94.8 95.8 96 97 96.7 95.7 97.8
Asphalt 94.5 96.2 98.8 97.7 98.2 97.8 98.4
Bitumen 86.6 95 97.3 90.2 93.7 97.9 92.7
Tiles 99.6 100 99.9 100 100 99.9 100
Shadows 100 98.7 99.9 98.7 98 100 98.9

Table 4.4: Pavia Center: Best Classification Accuracy (%) over ten runs for Classification
Maps in Fig. 20 training samples per class were used.

2. As the number of training samples increases, the OA will increase. Espe-

cially for SVM classifier, in the Pavia Center data set, the OA of spectral
only has 2% improvements from 10 training samples per class to 160 train-
ing samples, this also happens on MPs with nearly 2% improvements; in the
University Area data set, the OA of spectral only increases from 65.3% to
78.7% when the number of training samples per class changes from 10 to
160, while MPs with almost 7% improvements.

. The results can be improved by adding the directional MPs. There is a sub-
stantial improvement of the overall accuracy over the classification with only
disk-based MPs. However, when using MPs with reconstruction, the classi-
fication accuracies by adding the directional MPs improves very little and is
comparatively much less than those without reconstruction and with partial
reconstruction. This is because the disk-based MPs and linear-based MPs
with reconstruction contain much the same information.

. It is better not to use MPs with reconstruction in some cases. This is in
particular the case in University Area data set, where the MPs with recon-
struction perform even worse than MPs without reconstruction. The MPs
with partial reconstruction and SVM classifier almost gets the best results
all the time, this is obvious in University Area data set.

In order to compare the classification results visually, we randomly select 20
training samples per class for training, and use all the samples for testing. The
SVM classifier was used. The best results over ten runs are shown in Fig.
Fig. and Table 4.4} Table B.3] The Z tests [103] were reported Table

Table &7
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() (b) (© (C))

(e) ® (2 ()

Figure 4.8: Classification maps for Pavia Center with best classification accuracy over ten
runs, 20 training samples per class with SVM classifier were used. (a) False color im-
age, and thematic map using (b) Spectral Only, (c) Disk-based MP without reconstruction,
(d) Disk-based MP with reconstruction, (e) Disk-based MP with partial reconstruction, (f)
Disk- and linear-based MP without reconstruction, (g) Disk- and linear-based MP with
reconstruction, and (h) Disk- and linear-based MP with partial reconstruction.
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(a) (b) (© (C)

(e) ® (€3] ()

Figure 4.9: Classification maps for University Area with best classification accuracy over
ten runs, 20 training samples per class with SVM classifier were used. (a) False color image,
and thematic maps using (b) Spectral Only, (c) Disk-based MP without reconstruction,
(d) Disk-based MP with reconstruction, (e) Disk-based MP with partial reconstruction, (f)
Disk- and linear-based MP without reconstruction, (g) Disk- and linear-based MP with
reconstruction, and (h) Disk- and linear-based MP with partial reconstruction.
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Disk-based MP Disk- and Linear-based MP

Spectral Only No Re. Re. Partial Re. | No Re. Re. Partial Re.
OA 78.1 89.1 80.3 90.5 92.6 81.7 93.8
AA 78.7 85.6 86.7 89.2 90.2 88 93.7
K 71 85.3 74.5 87.2 90.1 76.3 91.9
std 4.23 0.77 2.42 0.73 1.21 4.15 1.14
Asphalt 59.3 88.6 80.7 86.5 82.9 87.9 89.6
Meadows 89.6 98.1 77.8 98.4 99.5 77.5 94.6

Gravel 532 43.9 74.2 70.7 66.4 77.1 69

Trees 91.2 95.7 92.8 86.7 93.6 97.7 97.8
Metal Sheets 98.9 99.9 99.6 99.6 99.6 99.2 99.5
Soil 48.8 60.9 56.9 65.6 84.5 58.6 97.5
Bitumen 86.2 90.4 99.6 97.4 98 99.1 99.9
Bricks 81 96.2 98.6 98.2 95.7 95.1 98.4
Shadows 100 97.2 99.9 99.8 91.9 99.9 97.6

Table 4.5: University Area: Best Classification Accuracy (%) over ten runs for Classifica-
tion Maps in Fig. 20 training samples per class were used.

1. The MPs (without reconstruction, with reconstruction, and with partial re-

construction) can preserve well spatial information on hyperspectral images.
The classification maps with MPs produce much smoother homogeneous re-
gions than that of spectral only, which is particularly significant when using
MPs with no reconstruction and with partial reconstruction, see Table @
Table 4.7 The statistical difference of accuracy |Z| > 1.96 clearly demon-
strates the benefit of using the MPs with no reconstruction and with partial
reconstruction rather than the spectral only.

. The classification maps using the MPs with reconstruction look much nois-
ier because of the over reconstruction problems. The MPs with no recon-
struction deform the objects, see Fig. and Fig. the borders of
some objects are deformed. While small objects might be fused together
(e.g., the buildings and shadows in the bottom part of the Pavia center im-
age) when using the MPs with partial reconstruction and no reconstruction,
in this case, the MPs with full reconstruction perform better.

. When using both disk-based and directional MPs with partial reconstruc-
tion, we get the best OA, AA and Kappa for both data sets, and relative
lower standard deviation (std). For University Area data set, the difference
is statistically significant. For Pavia Center data set, the difference is not
statistically significant with | Z| < 1.96.

4.5.4 Results using semi-supervised feature extraction to reduce

the dimensionality of the generated MPs

We compare the resulting classification accuracies using the proposed GSELD
method to extract features from the generated morphological profiles with those
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Table 4.6: University Area: Statistical Significance of Differences in Classification (Z) over ten runs. Each case of the table represents Z,. where r is

the row and c is the column, 20 training samples per class with SVM classifier were used.

Spectral Only

Disk-based MP

Disk- and Linear-based MP

Zre No Re. Re. Partial Re. | No Re. Re. Partial Re.

Spectral Only 0 -4.0065 | -1.1304 -4.5819 -4.7267 | -0.8276 -5.3427

] No Re. 4.0065 0 4.1963 -1.8734 -2.1650 | 2.6714 -3.7365

Disk-based MP Re. 1.1304 -4.1963 0 -5.0917 -5.1235 [ 0.1011 -6.0577

Partial Re. 45819 1.8734 5.0917 0 -0.8098 | 3.2139 23441

Disk- and No Re. 4.7267 2.1650 5.1235 0.8098 0 3.4092 -1.2275

Linear-based MP Re. 0.82776 -2.6714 | -0.10TT -3.2139 -3.4092 0 -3.9860
Partial Re. 5.3427 3.7365 6.0577 2.3441 1.2275 3.9860 0
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(¢) SVM classifier

Figure 4.10: Highest OA of University Area in different samples size with partial recon-
struction based on only disk-based MPs, the number of extracted features changed from 1
to 20, each experiment was repeated 5 times, the average was acquired.
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Figure 4.11: Highest OA of University Area in different samples size with partial recon-
struction based on both disk-based and linear-based MPs, the number of extracted features
changed from 1 to 20, each experiment was repeated 5 times, the average was acquired.

resulting from the following methods: PCA [37]; LDA [57]; NPE [53[]; NWFE
[35]. The data sets of University Area is used. In our experiments, u = 1500
unlabeled samples are randomly selected for training the proposed GSELD, the
parameter « in is setas o = 1 (n is the number of labeled training samples),
which can change automatically according to the ratio of the number of unlabeled
and labeled samples while increasing the class separability. 20 features (except
only for the C' — 1 features in LDA ) are extracted, then, the testing accuracies
of each employed number of features are calculated respectively. The highest OA
with three classifiers in different samples size are shown in Fig. .10} Fig. [4.T1] the
number of extracted features changed from 1 to 20, each experiment was repeated
5 times, the average was acquired.

1. The results confirm that feature extraction can improve the classification per-
formance. Especially for conventional classifiers (such as LDC classifier),
FE makes the classification possible. For INN classifier, the results of Uni-
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versity Area data set can be improved a lot by using FE as a preprocessing.

2. SVM classifier is more efficient to deal with the high dimensional data, this
is obvious in University Area data set, see Fig. and Fig. In
some cases, it can achieve even better performances than those using FE as a
preprocessing, see Fig. When using only the disk-based MPs, SVM
classifier with no FE outperforms those with FE as a preprocessing.

3. For the LDC and the SVM classifiers, as the number of training samples
per class increases, the OA of each method will increase. This is particular
for the supervised LDA method, when the number of training samples per
class is 10, the OA is much lower than 60%. When the number of training
samples per class is more than 80, the OA of LDA increases above 80%.

4. For low resolution Indian Pine data set, when the training sample size in-
creases, the proposed GSELD with LDC classifier outperforms the other
methods with LDC classifier. While NWFE with KNN classifier performs a
little bit better than GSELD with KNN classifier. When using SVM classi-
fier, the OA of GSELD is similar with that of NWFE.

5. For high resolution urban data set (University Area), when using both the
disk-based and linear-based morphological features, the proposed GSELD
gets the highest OA in different samples size. The highest OA for training
samples size with 10, 20, 40, 80 and 160 are 92.5% (GSELD with SVM
classifier), 93.4% (GSELD with LDC classifier), 95.1% (GSELD with LDC
classifier), 96% (GSELD with SVM classifier) and 96.2% (GSELD with
SVM classifier), respectively.

The experiments were carried out on 64-b, 2.67 GHz Intel i7 920 (8 core) CPU
computer with 12 GB memory, the time was only consumed in the process of
feature extraction for MPs based on both disk and linear SEs with Partial Recon-
struction. When the training sample size of University Area data set changes from
80 to 160, the consumed time of NWEFE increases from 14.8 seconds to 113.9
seconds, while for the proposed GSELD, the consumed time increases from 2.4
seconds to 5.3 seconds. Fig.[.12)and Fig. [#.13] show the performances with dif-
ferent number of extracted features when 20 training samples per class are used as
training set. The Z tests using MPs based on both disk and linear SEs with Partial
Reconstruction were reported in Table 4.8} Table The results confirm some
findings in Fig. and Fig. moreover we find the following:

1. Most information of the generated MPs can be preserved even with a few ex-
tracted features. For 1NN classifier, when the number of extracted features
is more than 7, the results of NWFE and GSELD are better than that with-
out FE. When using both disk-based and linear-based MPs, the difference is
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Figure 4.12: Performance of each feature extraction method using 20 training samples
per class for University Area data set, the MPs are based on only disk SE with Partial

Reconstruction. Each experiment was repeated 5 times, the average was acquired.
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Figure 4.13: Performance of each feature extraction method using 20 training samples per
class for University Area data set, the MPs are based on both disk and linear SEs with
Partial Reconstruction. Each experiment was repeated 5 times, the average was acquired.

statistically significant with |Z| > 1.96. For the SVM classifier using both
disk-based and linear-based MPs, the proposed GSELD gets better result
even with 9 extracted features.

. Using only C' — 1 features may not be enough in some situation, which is

one limitation of LDA. PCA and NPE can improve their performances by
using more extracted features, as shown in Fig. and Fig. When
more features are used, the overall classification accuracy can be improved
with statistical significance (|Z| > 1.96).

The proposed GSELD outperforms the other feature extraction methods
with all these three classifiers, with Z > 0. When using both the disk-
based and linear-based morphological features, the proposed GSELD gets
the highest OA for all these three classifiers. The highest OA for LDC
classifier, INN classifier and SVM classifier are 93.4% (GSELD with 14
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Lre PCA LDA NPE NWFE [ GSELD
PCA 0 2.6330 | -1.2986 | -1.4557 | -2.7927
LDA -2.6330 0 -3.8497 | -3.9939 | -5.4819
NPE 1.2986 | 3.8497 0 -0.1588 | -1.2281

NWFE | 1.4557 | 3.9939 | 0.1588 0 -1.0275
GSELD | 2.7927 | 5.4819 | 1.2281 1.0275 0

Table 4.8: LDC classifier: Statistical Significance of Differences in Classification (Z) over
five runs. Each case of the table represents Z,. where r is the row and c is the column, 20
training samples per class were used. The MPs are based on both disk and linear SEs with
Partial Reconstruction.

Lre NO FE PCA LDA NPE NWFE [ GSELD
NO FE 0 0.0368 | 1.3690 | -0.3187 | -1.0036 | -2.7382
PCA -0.0368 0 1.3503 | -0.3581 | -1.0452 | -2.8113
LDA -1.3690 | -1.3503 0 -1.5848 | -2.0409 | -3.2841
NPE 0.3187 | 0.3581 | 1.5848 0 -0.7027 | -2.3453
NWFE | 1.0036 | 1.0452 | 2.0409 | 0.7027 0 -1.3659
GSELD | 2.7382 | 2.8113 | 3.2841 | 2.3453 | 1.3659 0

Table 4.9: INN classifier: Statistical Significance of Differences in Classification (Z) over
five runs. Each case of the table represents Z,. where r is the row and c is the column, 20
training samples per class were used. The MPs are based on both disk and linear SEs with
Partial Reconstruction.

Zre NO FE PCA LDA NPE NWFE [ GSELD
NOFE 0 0.6960 | 3.57I5 | 0.3081 [ 0.6967 | -0.1704
PCA -0.6960 0 3.3101 | -0.3829 | 0.1476 | -1.1095
LDA -3.5715 | -3.3101 0 -3.4251 | -2.8042 | -4.1037
NPE -0.3081 | 0.3829 | 3.
i

4251 0 0.4424 | -0.5633
NWEFE | -0.6967 | -0.1476 .8042 | -0.4424 0 -0.9627
GSELD | 0.1704 | 1.1095 0

.1037 | 0.5633 | 0.9627

Table 4.10: SVM classifier: Statistical Significance of Differences in Classification (Z) over
five runs. Each case of the table represents Z,. where r is the row and c is the column, 20
training samples per class were used. The MPs are based on both disk and linear SEs with
Partial Reconstruction.

extracted features), 90% (GSELD with 14 extracted features) and 93.2%
(GSELD with 10 extracted features), respectively.

4.6 Conclusion
In this Chapter, we first investigated the morphological profiles with partial recon-

struction and directional morphological profiles for the classification of high reso-
lution hyperspectral images from urban areas. We showed on two real urban hy-
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perspectral data sets that the MPs with partial reconstruction are more competitive
than those with no reconstruction and with reconstruction, and some classes like
road are classified better with the directional morphological features. Secondly, we
developed a semi-supervised feature extraction as a preprocessing tool to reduce
the dimensionality of the generated morphological profiles for classification. The
results show that feature extraction can improve significantly the performance for
some classifiers, and the proposed semi-supervised method compares favorably
with conventional feature extraction methods as preprocessing approaches for the
morphological profiles generated on high resolution hyperspectral data from the
urban area.



Kernel features

A fast iterative Kernel Principal Component Analysis (KPCA) is proposed to ex-
tract features from hyperspectral images. The proposed method is a kernel version
of the Candid Covariance-Free Incremental Principal Component Analysis, which
solves the eigenvectors through iteration. Without performing eigen decompo-
sition on Gram matrix, our method can reduce the space complexity and time
complexity greatly. Experimental results were validated in comparison with the
standard KPCA and linear version methods.

We investigated the influence of morphological features with different recon-
struction (including with no reconstruction, with reconstruction and with partial
reconstruction) for the classification of high resolution hyperspectral images from
urban areas. To apply morphological profiles on hyperspectral data, we first re-
duced the dimensionality of hyperspectral data by feature extraction, then built the
extended morphological profiles on the extracted features. We showed on two real
hyperspectral data sets that KPCA is more efficient to extract features for con-
structing EMP. In many cases, the most widely used EMP with reconstruction can
not get a satisfied result, because of over-reconstruction problems. EMP with par-
tial reconstruction built on KPCs is more competitive than those of EMP with no
reconstruction and with reconstruction built on other different features.
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5.1 Introduction

As it was already explained in Chapter 1, it is possible nowadays to collect hyper-
spectral images with hundreds of bands [28]], while hyperspectral images contain
much more information than regular RGB images, most of their information con-
tent can be explained by a small amount of the well extracted chosen features.
The complexity of hyperspectral image processing techniques usually depends on
the number of spectral bands in the acquired data. Therefore, it is necessary to
find methods which can transform these high-dimensional HyperCube data into
a lower dimensional space with reduced dimensionality, while at the same time,
preserving as much information content as possible. In the previous Chapters we
treated linear feature extraction methods, and in this Chapter we turn to nonlinear
feature extraction (FE) methods

Conventional dimensionality-reduction techniques include unsupervised ap-
proaches such as Principal Component Analysis (PCA) [151], Minimum Noise
Fraction [[152] and independent component analysis [40], as well as supervised ap-
proaches, such as Fisher’s linear discriminant analysis (LDA) [90]]. Due to its low
complexity and the absence of parameters, these linear methods have been widely
used for feature extraction in hyperspectral images [[17,140,|153,/154]]. However,
they all depend on linear projection and can result in a loss of nonlinear proper-
ties of the original data after reduction of dimensionality. They are expected to
be suboptimal (and even entirely fail) for nonlinear classification tasks (i.e., when
the data distributions are such that the resulting decision boundaries are highly
nonlinear).

Nonlinear FE methods attempt to address these problems. In the last decade,
a large number of nonlinear techniques for dimensionality reduction have been
proposed. See for an overview, e.g., [155H159]]. In contrast to the traditional lin-
ear techniques, the nonlinear techniques have the ability to deal with complex
nonlinear data. In particular for real world data, the nonlinear dimensionality re-
duction techniques may offer an advantage, because real world data is likely to
form a highly nonlinear manifold. Previous studies have shown that nonlinear
techniques outperform their linear counterparts on complex artificial tasks. For
instance, the Swiss roll dataset comprises a set of points that lie on a spiral-like
two-dimensional manifold that is embedded within a three-dimensional space. A
vast number of nonlinear techniques are perfectly able to find this embedding,
whereas linear techniques fail to do so.

5.1.1 Manifold learning and nonlinear dimensionality reduc-
tion

Two of the leading non-linear algorithms, in the field of dimensionality reduc-
tion are Isomap and Local Linear Embedding. Isomap [97] is a global non linear
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technique that operates on geodesic distances between data sets. Isomap first con-
structs the nearest neighbor graph of each point and then calculates the shortest
paths. Each data point is connected with its nearest points with an edge that has
as weight their Euclidean distance. However, global pairwise distances are cal-
culated based on the shortest paths between all points (geodesic distance). The
low dimensional mapping of the dataset is derived by the application of classic
metric multidimensional scaling [160] on the geodesic distance matrix. The origi-
nal Isomap approach exhibits a number of deficiencies when encountering curved
manifolds or projecting large datasets. Towards solving these problems, de Silva
and Tenenbaum introduced a improvement of their original algorithm, namely C-
Isomap [[161]. C-Isomap employs a different edge weighting scheme by taking
also into account the mean distance of each point to its local neighbors.

Contrary to Isomap, LLE [98,/99] is a local non linear method that produces
a number of local mappings based on each point’s nearest neighbors. Addition-
ally, LLE does not require all data to exist in a single coordinate system, only the
existence of a relation between a point and its neighbors. The mode of operation
is similar to that of Isomap. At first the nearest neighbors of each point are iden-
tified and based on them the linear reconstruction of the point is calculated. The
embedding is derived by an eigen decomposition of the various reconstructions.
More recently, Chang and Yeung [101]] proposed robust locally linear embedding
for nonlinear dimensionality reduction, and they demonstrated that the method is
better suited for outlier problem. Chen and Qian [48] improved the existing LLE
by introducing a spatial neighborhood window for hyperspectral dimensionality
reduction. Isomap and LLE have been also employed for semi-supervised classi-
fication in the context [[162].

Same as LLE, Laplacian Eigenmaps [51]] operate on a geodesic distance ma-
trix defined by the nearest neighbors of each point. However, unlike LLE, the
embedding is derived by the eigenvectors of the graphs’s Laplacian matrix. Local
Tangent Space Alignment (LTSA) [52] is another unsupervised method for non-
linear dimension reduction. It describes local properties of the high-dimensional
data using the local tangent space of each datapoint, and performs eigen decom-
position on a matrix defined by the orthogonal basis of local data neighborhoods.
Contrary to LTSA, its supervised version, S-LTSA [100] makes use of a-priori
knowledge (i.e. data class membership) and is suitable for a continuous a changing
environment. The approach of [49] proposed a supervised local manifold learn-
ing weighted K'NN classifier for the classification of hyperspectral images, which
combine local manifold learning (LLE, LTSA and LE) and the k-nearest-neighbor
(kNN) classifier.

Another early and prominent method that has been extensively used in the area
of supervised learning is the self organization technique of T. Kohonen [[157]]. Self
Organizing Map (SOM) is a type of artificial neural network that is trained using
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unsupervised learning to produce a low-dimensional (typically two-dimensional),
discretized representation of the input space. Curvilinear Component Analysis
[163] (CCA) is an enhancement of SOM and operates on the points pairwise dis-
tance matrix. An adaptation of CCA, Curvilinear Distance Analysis [163]] (CDA)
follows the principles of [[164] and operates on the geodesic distance matrix of the
points.

5.1.2 Kernel-based methods

Another approach to nonlinear FE is to kernelize classical linear methods. KPCA
Kernel Principal Component Analysis (KPCA) [[84] is a nonlinear version of PCA,
which is more suitable to describe higher-order complex and nonlinear distribu-
tions. In [28], KPCA is used to extract features from hyperspectral images and
performs well in terms of accuracy, comparing to the PCA. The results in [93}/165]]
demonstrate a superior classification performance of GDA over LDA if the data in
the input space possesses nonlinear class separation. GDA has been successfully
employed for hyperspectral-data classification in [[112]. In [[166], Prasad and Bruce
incorporated GDA within a multi-classifier and decision-fusion framework for HSI
target recognition. The kernel-based LDFA [102]] was applied to dimensionality
reduction for hyperspectral image classification. Lai and Fyfe [[167]] described ker-
nel canonical correlation analysis (CCA), and Bach and Jordan [168|] described
kernel independent component analysis (ICA) based upon kernel CCA. Excellent
general references for kernel methods are [84,/113]]. Kernel methods among many
other subjects are described in [[169}/170]. In [[171]], kernel PCA is used for change
detection in univariate image data. In [[172f], the kernel-based maximum autocor-
relation factor and kernel MNF transformations were applied to change detection
in hyperspectral data. In [60], the kernel method is applied to extend NWFE to
kernel-based NWFE, with improved classification accuracies.

The central idea behind kernel-based methods is to map the input data onto
an intermediate feature induced space (potentially possessing a much higher di-
mensionality), such that complex nonlinear decision boundaries in the input space
become simpler linear decision boundaries in the kernel-induced space. Ham et
al. [[173]] proposed a kernel interpretation of KPCA, Isomap, LLE, and Laplacian
Eigenmap and demonstrated that they share a common KPCA formulation with
different kernel definitions. However, the computational complexity of nonlin-
ear methods are very intensive in computation and memory consumption. Taking
KPCA as an example, in order to capture these nonlinear kernel principal com-
ponents, a large number of training samples are required, particularly for the data
embedded in a high dimensional space. This leads to problems for KPCA, since
it has to store and manipulate the Gram matrix by calculating the kernel matrix.
For example, if there are /N samples in the training dataset, then the size of the
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Gram matrix is N2. Hence, the space complexity of storing the Gram matrix is
O(N?), while the time complexity (performing eigen decompositionona N x N
Gram matrix) is O(N3) [174]. Using KPCA to extract features from hyperspectral
images will cause some problems on storage resources and computational load. It
was reported in [33,|175]] that most nonlinear methods were incapable to handle
hyperspectral images with sizes larger than 70 x 70. Some solutions were to di-
vide hyperspectral images into small blocks, and to perform the KPCA feature
extraction on each of these small blocks separately. In [28[], some samples se-
lected randomly from the original data are used to compute the Gram matrix, but
the problems still exist.

In [176], an iterative kernel principal component analysis was proposed by re-
formulating the generalized Hebbian algorithm (GHA) [[177]] in a kernel space to
obtain a memory efficient approximation of KPCA. However, the convergence
speed of GHA is relatively slow which limits its application. In this Chapter,
we first develop a fast iterative KPCA (FIKPCA) by using a different approach.
We kernelize the Candid Covariance-Free Incremental PCA (CCIPCA) of [[178]],
which was proved to converge fast [179]. Reformulate the CCIPCA in a ker-
nel space to perform efficient and fast feature extraction from hyperspectral im-
ages. Instead of performing eigen decomposition on Gram matrix, the proposed
FIKPCA solves eigenvectors through iteration, which can reduce the space and
time complexities greatly, and it can process the hyperspectral images larger than
70 x 70 efficiently.

When applying morphological features for the classification of high resolution
hyperspectral images from urban areas, one should consider another important is-
sue except the two we considered in Chapter 4. The high dimensionality of these
hyperspectral data as well as the redundancy within the bands, make the genera-
tion of an MP based on each spectral band seem not feasible. To overcome this
problem, feature extraction is firstly used to reduce the dimensionality of these hy-
perspectral data, and then morphological processing is applied on each extracted
feature band independently. Principal component analysis (PCA) [37] is the most
popular method used to extract features for building MPs [[17]/18l39]]. [[17] extended
the method in [[78] for hyperspectral data with high spatial resolution by using
PCA to reduce the high dimensionality of the data. The resulting method built the
MPs on the first principal components (PCs) extracted from a hyperspectral im-
age, leading to the definition of extended MPs (EMP). In [74], the morphological
attribute profiles [[75] were applied to the first PCs extracted from a hyperspectral
image, generating an extended morphological attribute profiles (EAP). However, it
was found that too much spectral information were lost during the linear principal
component analysis (PCA) transformation [28L[87]], as PCA relies on second-order
statistics only. By taking high order statistics into account, independent compo-
nent analysis (ICA) [85] has been studied to reduce the dimensionality of hyper-
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spectral data [40L/180]. [[87] built MPs on the first features extracted from original
hyperspectral data by ICA, with an improvement in the classification results. [76]
improved the classification results by building the EAPs on the first independent
components (ICs) comparing to the results of those built on PCs [74]. Kernel
PCA [181]], which is more suitable to describe higher order complex and nonlin-
ear distributions, has been recently investigated in reducing the dimensionality of
hyperspectral remote sensing [[19/182]. In [28], kernel principal components are
used to construct the EMP, with significantly improvement in terms of classifica-
tion accuracies compared with the conventional EMP built on PCs.

5.2 Kernel feature extraction methods for hyperspec-
tral data

5.2.1 Kernel principal component analysis

The standard KPCA solves the eigenvectors by performing eigen decomposition
on Gram matrix. Suppose X = (X1,X2,- - ,Xy) is the matrix of original data,
where x,, € RP, n = 1,2,--- N, N is the total number of samples. There exists
a function ¢ which can map the original data into a higher or infinite dimensional
Hilbert space:

RP > H
7 X o o(xy)
A new data set can be obtained in the feature space ® = (¢(x1), p(X2), -+ , ©(Xy)).

@ is an implicit function, which cannot be calculated directly, but some kernel
functions can be used by performing inner product between the two samples x,,
and x,, in the original space, K = K(Xm,Xn) = @7 (X )@(X,, ). The covariance
matrix is defined in the feature space as follows:

N
1 T
C=+ ; (%) 0" (%) (5.1)
It satisfies the secular equation:
Cv=)\v 5.2)

where v and )\ are the eigenvectors and eigenvalues of the covariance matrix C,
and v can be described in the span of the data set ® = (¢(x1), (X2, -, (Xn)):

N
V= Z an(Xn) (5.3)
n=1
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From equations (3.1),(5-2).(5-3).

1
NKQ = \x (5.4)

where a = (v, g, -+ ,an), Kis N x N Gram matrix, K = &7 (X)®(X), with
elements K,;, = k(Xu,X,). Then for each testing sample x, its kernel principal
component can be calculated as follows:

N
(v, 0(x) = D anlio(xa) - (%))

n=1

N
= Z K (X, X) (5.5)

n=1

It is assumed that the Gram matrix K is zero-mean, otherwise, it can be cen-
tered as [181]):
K=K-IyK—-KIy + IyKIy (5.6)

where Iy = %INxN, and Iy« v is the identity matrix of size N x N.

5.2.2 The proposed FIKPCA

The complexities of the KPCA were pointed out in [[174}[176]. In order to reduce
the space and time complexities, we propose a fast iterative KPCA (FIKPCA)
which is different and much faster than the one in [[176]. While iterative KPCA of
[176] kernelizes the generalized Hebbian algorithm [[177]], our method kernelizes
the CCIPCA [178] resulting in a much faster convergence. The CCIPCA first
centers the original data, u(n) = x,, — m,,, where m,, is the mean of x,,, and

initializes the first K dominant eigenvectors vi(n), va(n), - - - , v (n), directly from
the u(n),n = 1,2,--- , N. Then it solves the first k& dominant eigenvectors as
follows:

For n = 1to IV, do the followings steps
1. ui(n) =u(n).
2. Fori=1tomin{k,n} do

(a) If i = n initialize the ith eigenvector as v;(n) = u;(n).
(b) Otherwise

vi(n) = n_Tl_lvi(n 1)+ 1T+lui(n)uiT (n)HZjEZ:B| (5.7)

o ) i)
" ) @ e G8)
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where [ is the amnesic parameter [[178].

Generally speaking, the mapping function ¢ is implicit, therefore, the sample
in feature space ¢(x,,) is not suitable to use in equations and (5.8) for iter-
ation. Hence, kernelizing the CCIPCA is not simply using ¢(xX,,) to replace X,,.
we use a Gram-power matrix G which has the same eigenvectors as Gram matrix
K [174], to reformulate the CCIPCA in a kernel version.

G=Kx+K"
T
K11 R1N K11 R1N
KN1 ... KNN KN1 ... KNN
N
= Z K(x,)KT (x,) (5.9)
n=1
where K(x,,) = (K1n, K2n,*+ fivn) -

A row of Gram matrix K can be used as a sample for each iteration instead
of using the vector ¢(x). At the end of iteration, the approximate eigenvectors
of the Gram-power G is obtained, so as the eigenvectors of the Gram matrix K.
Suppose W = (w1, Wa, -+ - , Wy ) is the egienvector of the Gram-power matrix G,
the proposed FIKPCA algorithm is as follows:

First, center the K(x,,), K(x,) = K(x,)— Z;\le K(Xj,X,),n=1,2,--- | N,
compute the first k¥ dominant eigenvectors wy(n), wa(n), - - - , w(n) directly from
the K(x,,), where w;(n) is the nth step estimate of eigenvector w;, i = 1,--- | k,
then do as the Algorithm 1.
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Algorithm 1 the FIKPCA algorithm

1. Foriteration = 1 to @ (the number of iteration)

2. Forn = 1to N (the number of samples)

3. For each input data x,,, calculate the corresponding
column K(x,,), K; (x,,) = K(z,).

4. Fori = 1 to k (the number of extracted discriminant
vectors)

5. Using equation[5.10]and equation S.TT]to updata the
eigen vectors and kernel principal components

11 1+1
w;(n) = nTwi(n -1+ %KZ(Xn)
Wz(n - 1)
K (%) s (5.10)
+1(n) = Kixn) = K () s
(5.

6. Gotostep 4
7. Goto step 2
8. Gotostep 1
9. Normalize each eigenvector w; = H:Vvizn

At each iteration, we need to calculate only a row of Gram matrix, which we
need to store the N x 1 vector K(x,,). The space complexity is O(N), which
compares favorably with the O(N?) complexity of KPCA. In the process of our
method, we need time complexity of O(QNk) to obtain the first k dominant eigen-
vectors, while the time complexity of KPCA is O(N?). This makes the proposed
FIKPCA much faster than KPCA, especially for large sample sizes in hyperspec-
tral images. In practice, the proposed method converges after several iterations.

5.2.3 Data sets and experimental setup

We used the AVIRIS Indian Pines image with 220 bands of size 145 lines by 145
samples, originally from Multispec®. From this image, 179 bands are selected
by removing the noisy channels. The resulting false color composition and the
groundtruth are shown in Fig.[5.1] Two subset images were selected to compare
the extracted features, the consuming time and the overall classification accuracy
(OCA) among PCA, CCIPCA, KPCA and the proposed method. The first sub-
set image consists of pixels [38-87]x [41-90] for a size of 50 x 50, which con-
tains three labeled classes with number of labeled samples “Corn-notill” (543),
“Soybeans-notill” (327), and “Soybeans-min” (1037), the groundtruth is shown
in Fig. The second subset image consists of pixels [27-86]x [31-90] for
a size of 60 x 60, which contains four labeled classes with number of labeled
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Figure 5.1: (a) False color composition of the AVIRIS Indian Pines Scene; (b) Ground truth
containing 16 classes.

samples “Corn-notill” (904), “Grass/Trees” (275), “Soybeans-notill” (425), and
“Soybeans-min” (1140), the groundtruth is shown in Fig.[5.3]

In our experiments, the standard KPCA with its matlab codes are available
at: http://www.feld.cvut.cz. We don’t compare the iterative KPCA of [176]], be-
cause of its slow convergence. For the classifier, we used support vector machines
(SVMs)optimized by LIBSVM with codes are available in [[143]], and using 10%
of the samples for training SVMs with a linear kernel, the rest of 90% labeled
samples are used to test.

5.2.4 Experimental results

Entropy values were used to measure the information content contained in each
individual extracted feature band [48]|. Extracted feature bands with higher entropy
values are selected. Image entropy is defined as:

— " P(A)loga P(A) (5.12)

AeG

where G is the set which contains the number of all gray levels in image A (all
images are linearly stretched between 0 and 255), and P(A) is the probability
distribution.

However, extracted feature bands with higher entropy values may be not con-
sistent with the requirement of image classification [183]. It can be easily seen
from the Eq. that E(A) is calculated only with respect to the single extracted
feature band. Therefore, the amount of information content measured by the en-
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tropy lacks a point of groundtruth, which cannot guarantee that the extracted fea-
ture bands with higher entropy values are useful for classification objective. The
Mutual information (M I) is used to measure the similar information that the two
images share, and intuitively measures the dependency between the two images,
higher M I indicates more dependency between them. The mutual information is
defined as:

P(A,B
MI(A,B)=- Y P(A,B)ZOQQP(A() .’P()B) (5.13)
A€G,BEG
Or equivalent to:
MI(A,B) = E(A) + E(B) — E(A, B) (5.14)

where P(A, B) is the joint probability distribution of the image A and B, and
E(A, B) is their joint entropy.

As the groundtruth implicitly defines the required classification result, we can
take the extracted features and the corresponding groundtruth as random images.
The M can be used to estimate the dependency between them, and measures the
relative utility of each extracted feature to the classification objective.

From the in Fig.[5.2]and in Fig. we can see that nonlinear methods perform
better than linear methods in terms of M I as the number of the extracted feature
bands increases. This means nonlinear methods can extract more image content
than linear methods. For linear methods as PCA and CCIPCA, the sixth extracted
feature bands contain much noisy in in Fig. while the tenth extracted feature
bands mainly contain noisy in in Fig. For nonlinear methods as KPCA and
FIKPCA, the tenth extracted feature bands still contain some information which
is important for classification. The first feature band extracted by PCA method is
better than the rest of the methods in terms of M I, this is because the first feature
bands extracted by PCA contains most energy of the original image. As the first 6
extracted feature bands in the first subset image and the first 10 extracted feature
bands in the second subset image are used as input to do classification, we can see
that nonlinear methods perform better than linear methods in term of OCA, and
our approach gets the best results.

The results in Fig.[5.3|and in Fig.[5.5]show that the classification accuracies of
the kernel methods are much better than those of the linear methods when more
than 4 extracted features are used as input to classify. The linear methods are much
faster than the kernel ones. Among the kernel methods, the proposed FIKPCA is
much faster than the standard KPCA, for 50 x 50 subset image, KPCA method
needs more than 90 seconds to process, while the proposed FIKPCA just uses less
than 6 seconds to extract 6 feature bands. For 60 x 60 subset image, it requires more
than 250 seconds for KPCA method, but just 14 seconds for FIKPCA method. As
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Figure 5.2: The extracted feature bands and classification maps produced by each method
for the 50 x 50 subset image, of which the groundtruth is shown in Fig. @ The first, second
and sixth extracted feature bands are used to compare. The SVM classifiers were trained
with 10% of labeled samples per class randomly selected from the groundtruth, the trained
classifier is then applied to the remaining 90% of the known ground pixels in the scene.

the size of the images is larger than 70 x 70, KPCA method will be out of memory,
while the proposed method is still efficient, see Fig.[5.6

When the first extracted feature band is used for classification, PCA gives the
best results. This is because the first feature band extracted by PCA contains most
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Figure 5.3: (a) Groundtruth of the 50 x 50 subset image; (b) comparison of the consuming
time and; (c) overall classification accuracy with different number of extracted features
bands. Each experiment was repeated 5 times, the average was calculated.

information content of the image, the first 5 extracted feature bands contain more
than 99% information content of the image, so adding more extracted features does
not change the result much. While using more than 10 features extracted by PCA,
the classification rate decreases slightly, as more noisy is added. The classification
results of KPCA will be a little better when more extracted feature bands are used.
However, in many cases, as more extracted feature bands are used in the following
steps, for example, in [28]] when performing morphological profiles on extracted
feature bands, it will increase the dimensionality for the classification. Moreover,
the proposed method is much faster in getting its best result than KPCA, as it is
shown in Fig.[5.3]and in Fig.[5.5

In fact, during the iterations, calculating the corresponding vector K(x;) of
the Gram matrix as the input consumes most of the processing time, especially
for a large number of samples, see Fig.[5.6] We use a normalized linear kernel
function of which the computational cost of kernel is nearly the same as that of
a linear kernel and much lower than that of radial basis function and polynomial
kernels [|184].

As for the whole original hyperspectral image, the KPCA is incapable to han-
dle hyperspectral image with sizes 145145, the proposed FIKPCA is still efficient,
and its classification accuracy is a little better than PCA and CCIPCA, as shown

in Fig.
5.3 Extended morphological profiles generated on KPCs

with partial reconstruction

When applying morphological features for the classification of high resolution hy-
perspectral images from urban areas, one should consider another important issue
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Figure 5.4: The extracted feature bands and classification maps produced by each method
for the 60 x 60 subset image, of which the groundtruth is shown in Fig. @ The first, second
and sixth extracted feature bands are used to compare. The SVM classifiers were trained
with 10% of labeled samples per class randomly selected from the groundtruth, the trained
classifier is then applied to the remaining 90% of the known ground pixels in the scene.

except the two we considered in Chapter 4. The high dimensionality of these hy-
perspectral data as well as the redundancy within the bands, make the generation of
an MP based on each spectral band seem not feasible. To overcome this problem,
feature extraction is firstly used to reduce the dimensionality of these hyperspec-
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Figure 5.5: (a) Groundtruth of the 60 x 60 subset image; (b) comparison of the consuming
time and; (c) overall classification accuracy with different number of extracted features
bands. Each experiment was repeated 5 times, the average was calculated.

300 1

—fe— FCA
250 —%k—FCA 095
A CCIPCA A—COPGA
—O—KPCA
—Q@—KPCA
200 ——Fipca 0 ——Fipea

085
Ja%
W
08

0.7a

Consuming Time (Second)
Classification Accuracy

50

0 ', TAY . . L . L . L . L
0 20 30 40 &0 EBOD 70 8O 90 100 110 0 20 30 40 &0 ®BO 70 8O 90 1000 110
Image Size Image Size

(@) (b)
Figure 5.6: (a)Consuming time and; (b)overall classification accuracy by each method used
to obtain the first 10 dominant eigenvectors, with image sizes increasing. Horizontal axis 20
means square image with size 20 X 20. For the classification, the first 10 extracted feature
bands were used as input, and the SVM classifiers were trained with 10% of labeled samples
per class randomly selected from the groundtruth, the trained classifier is then applied to
the remaining 90% of the known ground pixels in the scene.

tral data, and then morphological processing is applied on each extracted feature
band independently. Principal component analysis (PCA) [37] is the most popu-
lar methods used to extract features for building MPs [17}18,39]]. [17] extended
the method in [78] for hyperspectral data with high spatial resolution by using
PCA to reduce the high dimensionality of the data. The resulting method built the
MPs on the first principal components (PCs) extracted from a hyperspectral im-
age, leading to the definition of extended MPs (EMP). In [74], the morphological
attribute profiles [75] were applied to the first PCs extracted from a hyperspectral
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(a) No FE (72.1%) (b) PCA (74.0%)  (c) CCIPCA (73.3%) (d) FIKPCA (77.4%)

Figure 5.7: Classification accuracy of the whole image using 6 features extracted by PCA,
CCIPCA and the proposed method. 5% of the samples of its groundtruth are used to train
SVMs with linear kernel, the rest are used to test.
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Figure 5.8: Eigenvalues and cumulative variance in percentages for PCA and KPCA.

image, generating an extended morphological attribute profiles (EAP). However, it
was found that too much spectral information were lost during the linear principal
component analysis (PCA) transformation [28|[87]], as PCA relies on second-order
statistics only. By taking high order statistics into account, independent compo-
nent analysis (ICA) has been studied to reduce the dimensionality of hyper-
spectral data [40L[180]. built MPs on the first features extracted from original
hyperspectral data by ICA, with an improvement in the classification results.
improved the classification results by building the EAPs on the first independent
components (ICs) comparing to the results of those built on PCs [74]. Kernel
PCA [181]], which is more suitable to describe higher order complex and nonlin-
ear distributions, has been recently investigated in reducing the dimensionality of
hyperspectral remote sensing [19,[182]. In [28]], kernel principal components are
used to construct the EMP, with significantly improvement in terms of classifica-
tion accuracies compared with the conventional EMP built on PCs.

In this section, we apply morphological profiles with partial reconstruction of
to the classification of high resolution hyperspectral images from urban areas.
We first extract features from the original hyperspectral data sets by PCA, ICA
and KPCA, then build extended morphological profiles on the extracted features
with morphological openings and closings by partial reconstruction. Finally, we
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(a) 15t PC (b) 2nd PC (c) 3rd PC (d) 10th PC

(e) 1st KPC (f) 2nd KPC (g) 3rd KPC (h) 10th KPC

Figure 5.9: Principal components and kernel principal components for Pavia Center data
set.

use the extended morphological profiles as the inputs of SVM classifiers to do
classification.
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5.3.1 Data sets and experimental setup

Hyperspectral Image Data Sets: Experiments were run on two data sets, namely
the ‘Pavia Center’ and ‘University Area’ from urban areas in the city of Pavia,
Italy. The data were collected by the ROSIS (Reflective Optics System Imaging
Spectrometer) sensor, with 115 spectral bands in the wavelength range from 0.43
to 0.86pm and very fine spatial resolution of 1.3 meters by pixel. Chapter 4 shows
the training sets and test sets used in our experiments, which are selected from
the data by an expert, corresponding to a predefined species/classes. Note that
the color in the cell denotes different classes in the classification maps (Fig.
Fig. 7).

Experimental setup: To apply the morphological profiles with partial recon-
struction of [73] from panchromatic imagery to hyperspectral imaging, feature
extraction was first applied to to reduce the dimensionality of the original hyper-
spectral data. For PCA and ICA, the first 3 principal components (PCs) were se-
lected (representing almost 99% of the cumulative variance) to construct the MPs
for both data sets. For KPCA, the number of extracted kernel principal compo-
nents which represent 99% of the cumulative variance depends on the the number
of total training samples and the parameters in the selected kernel function, as
was also discussed in [[19]28]]. In our experiments, 5000 samples were randomly
selected to train and construct the training kernel matrix, Gaussian kernel func-

tion with § = 2 /> | 7" | w7, where n is the total number of the training

samples, x;; = K(X;,X;) is the element of the kernel matrix. To achieve more
than 99% of the cumulative variance, 10 KPCs and 12 KPCs are needed in Uni-
versity Area and Pavia Center data sets, respectively, see Fig.[5.8] Morphological
profiles with 4 openings and closings (ranging from 2 to 8 with step size incre-
ment of 2) were then computed for each extracted features. We represent extended
morphological profile with no reconstruction, with reconstruction and with partial
reconstruction as EMPN, EMPR and EMPP, respectively. EMPP built on features
extracted by PCA, ICA and KPCA are denoted as EM PPpc 4, EM PPjc 4 and
EM PPxk pc 4, respectively.

We used one of the most popular classifiers: support vector machines (SVM)
[181], as it performs well even with a limited number of training samples, which
can overcome the Huges phenomenon. The SVM classifier with radial basis func-
tion (RBF) kernels and linear kernels in Matlab SVM Toolbox, LIBSVM [143],
is applied in our experiments. SVM with RBF kernels has two parameters: the
penalty factor C' and the RBF kernel widths . While SVM with linear ker-
nels has only one parameter (the penalty factor C'). We apply a grid-search on
C and + using 5-fold cross-validation to find the best C' within the given set
{1071,10°,10%,10%, 103} and the best y within the given set {1073,1072,1071,
10°,10'}. The training data sets were randomly subsampled to create samples
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. Training Set Size
FE Methods  Classifier 10 50 100 150 Al

Linear 664 741 768 772 782

Raw (03 RpF 635 755 788 799 802

Spectral only A L%rggr ng 23? 76362 géz Zgg
ICA (3) Linear 61.8 693 73 715 73.6

RBF 635 66 661 657 669

KPCA2)  TuR s ma2 70 719 803

PCAGD TR 851 ssa sas 85 838

EMPN  ICAGD R 503 a3 547 855 852
KPCA 08 R G5 o1 ois 18 ois
PCAGD  TuR 41 w04 815 304 803

ewpR - reaen REE 29 W s s
kecA 09 R T s 93 a6 o4

PCA (27) L&e;r 2;2 82?1 23:5 8;54 2;3

BMPP 1CAGD i G5 soa wes sor s9a
KPCA (108) Linear 86 939 945 947 944

RBF 86.2 93 94 942 943

Table 5.1: University Area. Overall accuracy (%) in a classification with spectral features
compared to classifications with EMPN, EMPR and EMPP built on different features (#
bands)
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Training Set Size
10 50 100 150 Al
Linear 94 951 955 958 96

FE Methods Classifier

Raw(l02) " RBF 04 946 956 956 965
oy T A
ICA(3)  Linear 942 047 046 948 052

RBF  94.1 947 948 949 953

KPCA MO B 953 san 963 967 o7

PCAGD G ok o6 o1 o5 oed

EMPN ICA (27) Lli{%elir 99558 321 99664 ggi gg;
KeeA 0 R 974 oss ona osa ons

PCAGH  GE 057 73 975 oes 9%

BMPR - I1CACT i och 0 oes oo ono
KPCAGD Gt gex 977 o3 ome ons

PCAGD  RER 061 973 o74 914 ors

BMPP ICAGD e’ 06 oni ogo ona o7
KPCA (90) Linear 97.8 989 99 99.1 99.1

RBF 975 985 99 991 99

Table 5.2: Pavia Center. Overall accuracy (%) in a classification with spectral features
compared to classifications with EMPNs, EMPRs and EMPPs built on different features (#
bands)

whose sizes corresponded to five distinct cases: 10, 50, 100, 150 samples per
class, respectively. The classifiers were evaluated against the testing sets, the re-
sults were averaged over five runs.

5.3.2 Experimental results

Table [5.1] and Table[5.2] display the classification accuracies of testing data in dif-
ferent sample size. The best accuracy in each sample size (in column) is high-
lighted in bold font. From these tables, we have the following findings:
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Morphological features can improve the classification results. The results
using morphological features are much better than those using the original
hyperspectral data and the spectral features only. By building the extended
morphological profiles on the first few extracted features, the results can be
improved a lot. Compared to the situation with the original hyperspectral
data and the spectral features only in each training sample size, the OA of
University Area with morphological profiles built on features extracted by
PCA, ICA and KPCA have 0.5%-20%, 2.9%-20% and 2.9%-20% improve-
ments, respectively. For Pavia Center, these improvements are 0%-3.6%,
0%-3.1% and 1.3%-4.3%, respectively.

The classification results with the features (representing almost 99% of the
cumulative variance) extracted by KPCA are better than those with features
extracted by PCA and ICA. For University Area dataset, the OA with KPCs
has 1.4%-14.4% and 0%-14.7% improvements, compared to the results with
features extracted by PCA and ICA in each training sample size. For Pavia
Center, the improvements are 1%-2% and 1.1%-1.9%, respectively.

It is better not to use MPs with reconstruction in some cases. This is in par-
ticular for the University Area data set, where the MPs with reconstruction
perform even worse than MPs with no construction. By using EMPP built
on PCA and ICA, the results can be improved a lot. Compared to the results
using EMPR, the OA of EMPP built on features extracted by PCA and ICA
have 5%-8.7%, 0.3%-7.7% improvements, respectively. For EM PPk pc 4,
these improvements are obvious in small sample size, with 14.3% improve-
ments when using 10 training samples per class.

EMP built on nonlinear features (KPCs) perform better than those built on
linear features (PCs and ICs), the improvements are 2%-5% and 3%-7% for
the data sets of University Area and Pavia Center. The performances of EMP
built on PCs are similar to those built on ICs for Pavia Center data set. While
for the University Area data set, the performance of EMPN and EMPP are
similar for PCA and ICA. In the case of using EMPR for the classification
of the University Area data, ICA performed slightly better than PCA, the
enhancement is between 1.4 and 6.5 points when the training sample sizes
are more than 50.

As the number of training samples increases, the OA will increase, this is
obvious when the training samples size increases from 10 to 50. When the
training samples size is larger than 50, the performances using EMPN and
EMPP keep stable for both of two hyperspectral data sets. For example in
University Area data set with 50 training samples per class, we get 93.9%
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OA by using EM PPk pca. To achieve similar OA, the EM PRk pc 4 in
this case requires more than three times training samples.

(6) When using EM P Pk pc 4, we get almost the highest OA for both data sets
in different training sample size. For University Area data set, the high-
est OA with the training samples size of 10, 50, 100, 150 and all are 86.2%
(EM PPy pc 4 and SVM classifier with RBF kernel), 93.9% (EM P Py pc a
and SVM classifier with linear kernel), 94.5% (EM PPgpca and SVM
classifier with linear kernel), 94.7% (E M P Py pc 4 and SVM classifier with
linear kernel) and 95.7% (EM PRk pca and SVM classifier with linear
kernel), respectively. For Pavia Center data set, the highest OA in different
training samples size are 97.8% (E M P Px pc 4 and SVM classifier with lin-
ear kernel), 98.9% (EM PPk pca and SVM classifier with linear kernel),
99% (EM PPy pc 4 and SVM classifier with both RBF and linear kernels),
99.1% (EM PPk pca and SVM classifier with both RBF and linear ker-
nels) and 99.1% (EM PPgpca and SVM classifier with linear kernels),
respectively.

For the classification purpose, we cannot always get the best classification re-
sults with the number of extracted features which represent almost 99% of the
cumulative variance, as were also suggested in [18,|19]. Cross-validation may be
a good solution to determine the optimum number of features extracted by PCA,
ICA and KPCA. Compared to the linear feature extraction such as PCA and ICA,
KPCA [181] which takes higher order statistics and nonlinear distributions of the
data into account, is more suitable to model and extract features from the original
hyperspectral data sets. As KPCA maps the input data into a high-dimensional
feature space and performs eigen decomposition on Gram matrix, the number of
its extracted features depends on the number of the total training samples. When
the number of training samples is larger than the dimensionality of the original
hyperspectral data sets, we can even extract more features than the total bands of
original data. However, there are some important issues to be considered when
using KPCA, such as the choice of kernel function, the optimization of parameters
in kernel functions and the computational load both in terms of CPU and memory.

In high-resolution hyperspectral remote sensing imagery from urban areas,
spectral characteristics of some surface materials are so similar that they cannot
be separated using only spectral information. Morphological profiles which carry
information about the size and the shape of objects in the images can explore the
spatial information and improve the classification accuracies. In order to compare
the classified maps visually, we generate classification maps using the best combi-
nations of SVM classifiers when 10 training samples per class are used, displayed
in Fig. [5.10}Fig. Their corresponding classification accuracies are shown in
Table[5.3]and Table averaged over five runs.
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Table 5.4: Classification Accuracy (%) for Pavia Center using the best combinations of SVM classifiers when 10 training samples per class are used.

Spectral Only EMPN EMPR EMPP
Raw PCA ICA KPCA PCA ICA KPCA PCA ICA KPCA PCA ICA KPCA
OA 94 942 942 955 95.8 96 977 95.7 964 96.8 96.1 96.1 97.8
AA 89.7 89.2 88.8 90.7 91.6 914 954 92.6 939 937 923 92.8 957
1 981 984 984 99.2 99.3 99.3 99.8 98.9 984 99.7 99.3 99 998
2 83.1 84.1 84.1 86.6 88.1 96.1 934 84.2 884 91.2 86.6 89.2 93.1
3 939 903 89.6 91.3 873 76 93.6 90.9 882 91.7 89.3 88.6 91.1
4 76.1 75.1 682 763 84 86.7 943 91.2 96.8 899 854 892 973
5 86.1 845 849 893 94 927 944 89 895 91 93.9 89.6 93.7
6 974 956 95 96.7 92.6 97.1 94.7 97 96.8 944 98 97.7 96.8
7 748 759 79.6 79.6 798 76 894 822 872 854 78.8 83  90.7
8 992 994 995 97 99.9 992 100 99.9 99.9 9938 99.9 999 100
9 999 99.8 99.8 99.9 99.1 99.3 99 99.8 99.9 100 99.6 99 99.1
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(a) False color im- (b) Test set (c) Raw data (d) PCA (e) EMPNpca
age

(f)y EMPRpca (8) EMPPpca (h) ICA @ EMPNica () EMPRica

(k) EMPPrca (1) KPCA (m) (n) (0)
EMPNgpca FEMPRgpca EMPPgpca

Figure 5.10: Classification maps for University Area data set using the best combinations
of SVM classifiers when 10 training samples per class are used.

From these figures and tables, we can find that the EMP (without reconstruc-
tion, with reconstruction, and with partial reconstruction) can preserve well spatial
information on hyperspectral images. The classification maps with EMP produce
much smoother homogeneous regions than those with the raw data and only spec-
tral features, which is particularly significant when using EMPN and EMPP. The
classification maps using the EMPR looks much noisy because of the over re-
construction problems, for University Area data set, see Fig.[5.10(g)] Fig.[5.10(k)|
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and Fig. for Pavia Center data set, see Fig. [5.11(g)} Fig. 5.11(k)| and
Fig. The EMPN deform the objects, see Fig. [5.10(f), Fig. [5.10()] and
Fig. the borders of some objects are deformed. The shapes of objects are
better preserved with EMPP. Simultaneously, the spatial information are better pre-
served with EMPP, which can be seen in Fig.[5.10(h)] Fig.[5.10(l)]and Fig.

For some objects with large homogeneous regions, EMP (including EMPN,
EMPR and EMPP) perform better than only spectral features, while EMPN and
EMPP are more efficient than EMPR, this is obvious in case of University Area
data set. The class 2 “Meadows” in University Area data set are better preserved
with EMP. There are 2.8%-31.8% improvements compared with only spectral fea-
tures, see Table [5.3] While EMPN and EMPP have 8.6%-20.7% improvements
than EMPR. For class 1 “water” and class 5 “Bitumen” in Pavia Center data set,
the results with EMP built on different features are better than those with their
corresponding spectral features, see Table[5.4] The EMPN and EMPP get the best
result for both of these classes.

For some objects with rectangular shape, EMPN produces worse results than
EMPR and EMPP, see class 3 “Gravel” in University Area data set in Table @
Because morphological openings and closings degrade the object boundaries and
deform the object shapes, which also can be seen in Fig.[5.10(T)} Fig.[5.10() and
Fig.

EMPPgpca get the best results, with 86.2% OA and 84.8% AA for Uni-
versity Area data set, and with 97.8% OA and 95.7% AA for Pavia Center data
set.

5.4 Conclusion

Instead of solving eignvectors by eigen decomposition on Gram matrix, the pro-
posed FIKPCA obtains the eigenvectors through iteration, which reduces the space
and time complexity greatly. The experimental results show that the proposed
FIKPCA is much faster than KPCA, and it can handle hyperspectral images larger
than 70 x 70 efficiently, which is of particular interest in remote sensing. The clas-
sification results using the features extracted by the proposed FIKPCA are better
than PCA and CCIPCA.

We investigated the influence of morphological features with different recon-
struction (including with no reconstruction, with reconstruction and with partial
reconstruction) for the classification of high resolution hyperspectral images from
urban areas. To apply morphological profiles on hyperspectral data, we first re-
duced the dimensionality of hyperspectral data by feature extraction, then built the
extended morphological profiles on the extracted features. We showed on two real
hyperspectral data sets that KPCA is more efficient to extract features for con-
structing EMP. In many cases, the most widely used EMP with reconstruction can
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(a) False color im- (b) Test set (c) Raw data (d) PCA () EMPNpca
age

(k) EMPPrca (1) KPCA (m) (n) (0)
EMPNkgpca EMPRgpca EMPPgpca

Joive

Figure 5.11: Classification maps for Pavia Center data set using the best combinations of
SVM classifiers when 10 training samples per class are used.

not get a satisfied result, because of over-reconstruction problems. EMP with par-
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tial reconstruction built on KPCs is more competitive than those of EMP with no
reconstruction and with reconstruction built on other different features.



Conclusions and future work

Recent advances in sensors technology have led to an increased availability of hy-
perspectral remote sensing data at very high both spectral and spatial resolutions.
Many techniques are developed to explore the spectral information and the spatial
information of these data. In particular, feature extraction is one of methods to
preserve the spectral information, while morphological profile is the most popu-
lar methods used to to explore the spatial information. In this dissertation, two
semi-supervised feature extraction methods and a kernel method were proposed,
morphological profiles with partial reconstruction were applied to the hyperspec-
tral data.

1. The proposed semi-supervised local discriminant analysis (SELD) is effec-
tive and powerful to deal with both the cases of ill-posed and poorly posed in
statistics. SELD provides a new framework to combine supervised and un-
supervised methods for semi-supervised feature extraction. The advantages
of the proposed SELD are as follows:

e No tradeoff parameters optimization. The main idea of SELD is to
divide first the samples into the labeled and the unlabeled sets. The la-
beled samples are employed through the supervised LDA only and the
unlabeled ones through the unsupervised method only. We combine
the two in a non-linear way without any tuning parameters;

e Discrimination maximized and local neighborhood information well

preserved. Experimental results on the synthetic data demonstrate the
results of SELD;
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e Statistically significance in overall classification accuracy. The Mc-
Nemar’s tests based upon the standardized normal test statistic [[103]]
were computed, and the experimental results on real hyperspectral data
show the statistical significance of the proposed SELD, compared to
some related methods;

e Less computational cost. Experimental results on real hyperspectral
data show the efficiency of the proposed SELD compared with NWFE,
SDA and SELF as the number of training samples increases.

2. Morphological profiles with partial reconstruction and directional morpho-

logical profiles are applied to explore the spatial information of very high
resolution hyperspectral data from the urban area. We first use PCA to re-
duce the dimensionality of the hyperspectral data. Then, we construct MPs
with partial reconstruction on the first few PCs. With partial reconstruc-
tion, the MPs can preserve size and shape information better. On the other
hand, a lot of small objects which remain present in that with reconstruction,
now disappear in the case with partial reconstruction. Compared to MPs by
reconstruction, experimental results on real hyperspectral data demonstrate
that the overall classification accuracy and kappa with partial reconstruc-
tion have more than 10% improvements in some cases. Simultaneously, The
McNemar’s tests show the statistical significance of the MPs with partial
reconstruction.

. The generated morphological profiles (MPs) with different structuring ele-

ments and a range of increasing sizes of morphological operators produce
high-dimensional data. The proposed generalized semi-supervised local dis-
criminant analysis (GSELD) compares favorably with conventional feature
extraction methods as preprocessing approaches for the morphological pro-
files generated on high resolution hyperspectral data from the urban area.
Experimental results on real hyperspectral data with three different classi-
fiers (LDC, kNN and SVM) show the proposed GSELD outperforms the
other feature extraction methods, with McNemar’s tests larger than zeros.
For high resolution urban data set (University Area), when using both the
disk-based and linear-based morphological features, the proposed GSELD
gets the highest OA in different samples size. The highest OA for training
samples size with 10, 20, 40, 80 and 160 are 92.5% (GSELD with SVM
classifier), 93.4% (GSELD with LDC classifier), 95.1% (GSELD with LDC
classifier), 96% (GSELD with SVM classifier) and 96.2% (GSELD with
SVM classifier), respectively.

A fast iterative kernel principal component analysis (FIKPCA) was pro-
posed to extract features from hyperspectral images. Instead of solving
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eignvectors by eigen decomposition on Gram matrix, the proposed FIKPCA
obtains the eigenvectors through iteration, which reduces the space and time
complexity greatly. The experimental results show that the proposed FIKPCA
is much faster than KPCA, and it is more effective than linear methods.
Moreover, it can handle hyperspectral images larger than 70 x 70 efficiently,
which is of particular interest in remote sensing.

5. Extended MPs with partial reconstruction built on kernel principal compo-
nents is investigated. Traditional linear features, on which the morphologi-
cal profiles usually are built, lose too much spectral information. Nonlinear
features are more suitable to describe higher order complex and nonlinear
distributions. In particular, kernel principal components is one of the non-
linear features we used to built MPs with partial reconstruction, with sig-
nificantly improvement in terms of classification accuracies. Experimental
results show that EMP built on nonlinear features (KPCs) perform better
than those built on linear features (PCs and ICs), the improvements are 2%-
5% and 3%-7% for the data sets of University Area and Pavia Center.

On the basis of the study, the analysis and the experiments carried out in the
framework of this thesis, we identified some interesting directions of research as
future developments of this work.

1. A kernel version of SELD aimed at exploiting nonlinear properties of the
data can be developed. Moreover, our fast iterative kernel principal com-
ponent analysis [82], which solves the eigenvectors through iteration, can
reduce the space complexity and time complexity greatly.

2. Further investigations on using morphological profiles for classification of
hyperspectral data should be carried out. The performances of classification
are better by using the morphological profiles with partial built on kernel
principal components than those built on linear features. However, to get the
same percentages of cumulative variance of eigenvalues, KPCA needs more
features, which will produce high-dimensional data when constructing MPs.
We believe semi-supervised FE or kernel semi-supervised FE will perform
better to reduce the dimensionality of generated MPs.

3. A technique based on denoising the extracted features in low-dimensional
subspace can be developed. Nowadays, some hyperspectral data from the
agriculture have more than a thousand spectral bands, denoising on the orig-
inal hyperspectral data may result in high cost on storage resources and com-
putational time. In our opinion, we can first use feature extraction (e.g. PCA
and kernel methods) to reduce the dimensionality of the original data, and
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then denoising on the extracted features in the much lower dimensional sub-
space. This can combine spectral and spatial information of the hyperspec-
tral data better to get a higher classification accuracy.
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