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Samenvatting

Recente verbeteringen in remotesensingtechnologie maken het mogelijk om ver-
schillende aspecten van objecten op aarde te meten, gaande van spectrale karak-
teristieken in multispectrale en hyperspectrale beelden, hoogteinformatie in
Light Detection And Ranging (LiDAR) data, tot amplitude en fase in Syn-
thetic Aperture Radar (SAR) systemen. Ondanks de rijkdom aan beschikbare
informatie blijft de automatische interpretatie van remotesensingdata uitda-
gend.

Enorme hoeveelheden data, alsook de toenemende afmetingen bemoeilijken
de mogelijkheid om de data te verwerken, wat problemen veroorzaakt in zowel
de rekencomplexiteit als de opslagmiddelen. Bovendien veronderstellen clas-
sificatietechnieken in patroonherkenning vaak dat er genoeg trainingssamples
beschikbaar zijn om nauwkeurige quantitatieve klassedescriptoren te leveren.
Echter, in vele reële praktische toepassingen, is het verzamelen van grond-
waarheidsdata vaak duur en tijdrovend. De beperkte trainingssamples kunnen
dan Hughesverschijnselen veroorzaken, in het bijzonder voor de classificatie
van remotesensingdata met een groot aantal dimensies. Ten slotte, verschil-
lende gegevensbronnen hebben verscheidene voordelen en nadelen. Bijvoor-
beeld, hyperspectrale beeldvorming biedt een overvloed aan waardevolle spec-
trale gegevens van verschillende objecten, maar kan geen onderscheid maken
tussen verschillende objecten van hetzelfde materiaal. Daarnaast wordt hy-
perspectrale beeldvorming gemakkelijk beïnvloed door verschillende weersom-
standigheden (variaties in helderheid). LiDAR-gegevens kunnen nuttige in-
formatie bevatten over de grootte, structuur en hoogte van verschillende ob-
jecten, terwijl het moeilijk is om voorwerpen te discrimineren die qua hoogte
gelijkaardig zijn, maar heel verschillend van aard zijn. Het onderzoek om aan-
vullende informatie uit meerdere databronnen te halen om de nauwkeurigheid
erkenning van objecten te verbeteren is dan ook zeer uitdagend.

Om de bovenstaande uitdagende problemen aan te pakken, levert dit proef-
schrift een aantal bijdragen op vlak van kenmerkenextractie en datafusietech-
nieken om de classificatienauwkeurigheid van remote sensing beelden te ver-
beteren. In het algemeen kunnen onze voorgestelde methoden op een meer
effectieve wijze kenmerken extraheren die leiden tot een hogere classificatien-
auwkeurigheid en een hogere efficiëntie in het verminderen van de rekencom-
plexiteit. Dit leidt tot mogelijke verbeteringen voor de verwerking van grote
datasets. Een meer specifiek overzicht van onze bijdragen is als volgt:

• De eerste bijdrage van dit proefschrift bestaat uit een verkenning van
gesuperviseerde kenmerkenextractiealgoritmen voor de classificatie van



hyperspectrale remotesensingbeelden door lokale geometrische structuren
en labelinformatie te combineren. Meer specifiek stellen we de dis-
criminerende gesuperviseerde buurbehoudende inbedding (DSNPE) en
de gesuperviseerde plaatsbehoude projectie (PSLPP) voor. DSNPE in-
corporeert labelinformatie in een lineaire omgeving-behoudende extrac-
tiemethode, trekt naburige punten binnen dezelfde klasse dichter naar
elkaar toe, terwijl naburige punten met verschillende labels verder van
elkaar worden weggeduwd, tijdens de projectie van een hoogdimensionele
kenmerkenruimte naar een lage kenmerkenruimte. PSLPP gebruikt eerst
PCA om ruis en redundantie te verwijderen, en combineert dan vervol-
gens labelinformatie en de lokaliteit behoudende projectie om gelijkenis-
sen tussen samples te construeren.

• Normaalgezien is het aantal gelabelde trainingssamples niet voldoende
voor gesuperviseerde leertechnieken; als tweede bijdrage stellen we
daarom nieuwe semi-gesuperviseerde kenmerkenextractiemethoden voor
door beperkt gelabelde samples te combineren met een groot aantal
ongelabelde samples. In de eerste instantie, verbeteren we de semi-
gesuperviseerde lokale discriminantenanalysemethode (SELD) (die de
gelabelde-gelabelde en de ongelabelde-ongelabelde relaties tussen samples
modelleert) door toevoeging van de correlatie van gelabelde-ongelabelde
samples, waarbij de connecties tussen een deel van de samples naar
alle samples worden uitgebreid. Ten tweede, stellen we een semi-
gesuperviseerde graph learning methode (SEGL) voor, die toelaat om een
semi-gesuperviseerde graaf op te bouwen die de gelijkenissen tussen sam-
ples kan beschrijven. In onze semi-gesuperviseerde graaf, connecteren we
gelabelde samples volgens hun labelinformatie en niet-gelabelde samples
volgens hun dichtstebuurinformatie, en connecteren we de niet-gelabelde
sample met gelabelde samples horende bij de dichtste buurtklasse. Boven-
dien, om beter de werkelijke verschillen en gelijkenissen tussen samples te
modelleren, leggen we een gewogen grens vast tussen de geconnecteerde
samples. Tot slot breiden we de semi-gesuperviseerde graafleermethode
(SEGL) uit van het spectrale domain naar het spatiale domein, en bouwen
we een semi-gesuperviseerde fusiegraaf door spectrale en spatiale infor-
matie te combineren, met als doel om beter de correlaties tussen samples
te modelleren eerder dan enkelvoudige informatie te gebruiken.

• Om complementaire informatie met multisensordata te combineren om zo
de classificatieprestaties verder te verbeteren, stellen we ook een nieuw
raamwerk voor om hyperspectrale en LiDAR beelden te fuseren, voor de
classificatie van wolkoverdekte remotesensingscènes. In het voorgestelde
raamwerk worden de wolkoverdekte en niet wolkoverdekte gebieden afzon-
derlijk behandeld. Eerst extraheren we een workschaduwmasker om de re-
motesensingscène te verdelen in twee gebieden (namelijk, wolkoverdekt en
wolkvrij). Vervolgens classificeren we de niet-geschaduwde gebieden door
verschillende kenmerken te integreren (bijvoorbeeld, spectraal uit rauwe



hyperspectrale data, spatiaal gegenereerd uit hyperspectrale beelden, en
hoogtegegevens uit LiDAR data) met behulp van de beschikbare train-
ingssamples. Om wolkoverdekte gebieden te classificeren, genereren we
nieuwe trainingsets van wolkoverdekte gebieden door de dichtste buren
van de klasgemiddelden (verkregen van de LiDAR data) gebaseerd op
zowel spectrale als spatiale kenmerken. De pixels van wolkoverdekte
gebieden worden geclassificeerd met een gelijkaardige strategie als de
schaduwvrije gebieden, terwijl de classifier getraind wordt op basis van
nieuw gegenereerde trainingsamples. De uiteindelijke classificatiemap
wordt verkregen door de classificatieresultaten van de schaduwvrije en
wolkoverdekte gebieden samen te voegen. Het voorgestelde raamwerk
maakt zo volledig gebruik van de voordelen van de verschillende gegevens-
bronnen.

• Onze laatste bijdrage bestaat uit het versnellen van niet-lineaire ken-
merkenextractiemethodes door de voordelen van een grafische verwerk-
ingseenheid (GPU) te benutten. Niet-lineaire kenmerkenextractiemeth-
odes, zoals kernel principiële componentenanalyse (KPCA) zijn meer
geschikt om niet-lineaire en hogere-orde distributies van de data te
beschrijven, maar gaan gepaard met een relatief hogere rekencomplex-
iteit en een langere uitvoeringstijd. In deze dissertatie ontwikkelen we
een efficiënte parallelle implementatie van het KPCA kenmerkenextrac-
tiealgoritme op GPU met behulp van de Jacket MATLAB Toolbox. Door
de voorgestelde kenmerkenextractiemethodes in parallel toe te passen,
verkrijgen we een significante versnelling (meer dan 100 keer) voor niet-
lineaire kenmerkenextractiemethods (zoals KPCA), zonder in te boeten
in classificatienauwkeurigheid.

Voor experimenten op echte datasets, vertonen de nieuwe technieken die
ontwikkeld zijn in dit proefschrift een nauwkeurigheidsverbetering ten opzichte
van een aantal state-of-the-art methoden. Bovendien hebben we aangetoond
dat onze technieken efficiënt zijn.





Summary

Recent advances in remote sensing technology allow us to measure different
aspects of objects on the Earth, from spectral characteristics in multispectral
and hyperspectral images, to height information in the Light Detection And
Ranging (LiDAR) data, to amplitude and phase in Synthetic Aperture Radar
(SAR) systems. Despite the richness of information available, automatic inter-
pretation of remote sensing data remains challenging.

Hugh amounts of data, as well as the increasing dimensions hamper the
ability to process the big data, causing problems in both computational com-
plexity and storage resources. What’s more, classification techniques in pattern
recognition typically assume that there are enough training samples available
to obtain accurate class descriptions in quantitative form. However, in many
real applications, collecting ground-truth is often expensive and time consum-
ing in practical applications. The limited training samples may leads to the
Hughes phenomenons when doing classification for high dimensionality of re-
mote sensing data (e.g. hyperspectral imagery). Last but not least, different
data sources have different advantages and shortages, such as hyperspectral
imagery can provide plentiful and valuable spectral information of different ob-
jects of interest, but cannot distinguish different objects made of the same ma-
terial, and is easily influenced by different weather conditions (cloudy); LiDAR
data can provide useful information about the size, structure and elevation of
different objects, while it is difficult to discriminate different objects which are
similar in altitude but quite different in nature. How to extract complementary
information from multi-source data to improve recognition accuracy of objects
is still very difficult.

In order to address the challenging problems mentioned above, this disser-
tation focus on developing new feature extraction and data fusion techniques to
improve the classification accuracy of remote sensing imagery. In general, our
proposed methods can extract more effective features for higher classification
accuracy and more efficiency in reducing the computational complexity, lead-
ing to potential improvements in processing of huge datasets. A more specific
summary of our contributions can be highlighted in the following:

• The first contribution of this thesis is the exploration of supervised feature
extraction algorithms for classification of hyperspectral remote sensing
imagery by combining local geometrical structure and label information.
In detail, discriminative supervised neighborhood preserving embedding
(DSNPE) and principle component analysis (PCA)-based supervised lo-
cality preserving projection (PSLPP) are presented. DSNPE incorporates



the label information into a linear neighborhood preserving extraction
method, pulls the neighboring points with the same class label closer,
while simultaneously pushes the neighboring points with different labels
far away from each other when projecting them from high dimensional
feature space into low feature space. PSLPP first uses PCA to remove
noisy and redundancy, and then combines label information and locality
preserving projection to construct similarities between samples.

• Normally, the number of labelled training samples is not enough for su-
pervised feature learning, our second contribution is the proposition of
novel semi-supervised feature extraction methods by combining limited
labeled samples and a large number of unlabelled samples. First, we
improve the existing semi-supervised method by taking into account the
correlations between labelled and unlabelled samples. Secondly, a semi-
supervised graph learning (SEGL) method is proposed. The main con-
tribution of SEGL is constructing a semi-supervised graph to model the
similarities between samples, as labelled samples are connected accord-
ing to their label information, unlabelled samples are connected by their
nearest neighborhood information, and the connections between labelled
and unlabelled samples are based on the distance between class center
and unlabelled samples. All connected samples have been set a weighted
edge to better model the actual differences and similarities between them.
Lastly, we extend semi-supervised graph learning (SEGL) to both spec-
tral and spatial domains, and build a semi-supervised fusion graph to
simulate the correlations of samples.

• In order to combine the complementary information from multi-sensor
data to improve classification performance, we propose a novel frame-
work to fuse hyperspectral and LiDAR images for classification of the
cloud-shadow mixed remote sensing scenes. In proposed framework, the
cloud-shadow and non-shadow regions are processed separately. Firstly,
we extract a cloud-shadow mask to divide the remote sensed scene into
two parts (cloud-shadow and shadow-free). Then we classify shadow-free
region by integrating multiple features (e.g. spectral from raw HS im-
age, spatial generated from HS image, and elevation from LiDAR data),
with available training samples. For classification of cloud-shadow re-
gion, we generate reliable training sample sets from cloud-shadow region
by searching the nearest neighbors of each class center (obtained from
LiDAR data) based on both spectral and spatial features. The pixels
of cloud-shadow areas are classified with similar strategy to shadow-free
region, while the classifier is trained by the new generated reliable train-
ing samples. The final classification map is produced by decision fusion
of the classification results from both the shadow-free and cloud-shadow
regions. The proposed framework makes full use of the advantages of
different data sources.

• Our last contribution to speed up non-linear feature extraction meth-



ods by exploiting the advantages of GPU. Non-linear feature extraction
methods, like kernel principle component analysis (KPCA) are more suit-
able to describe non-linear and higher-order distributions of the data, but
with relatively large computational complexity and need long execution
time. An efficient implementation of KPCA feature extraction algorithm
on graphics processing unit (GPU) based on Jacket MATLAB Toolbox
in parallel strategy is developed in this thesis. By using the proposed
methods based on parallel strategy, we can speed up non-linear feature
extraction methods (e.g. KPCA) significantly (more than 100 times),
without losing classification accuracy.

Compared with some state of the art methods by the experiments on some
real data sets, the novel techniques developed in this thesis demonstrates an
improvement in terms of accuracies and have been proven to be efficient.
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1
Introduction

Remote sensing is crucial for various aspects of our life (from monitoring
weather conditions, following possibly threatening storms or air pollution to
safety and security). The general aim of this thesis is to develop new methods
to extract discriminant efficient features from remote sensing data, and fuse the
extracted features for land-cover/land-use classification. This Chapter presents
a general framework of this thesis. First, the overview on the remote sensing
field is introduced and the necessary background is reviewed. Then, the prob-
lems or challenges about remote sensing imagery processing are analysed. Last
but not the least, the objectives and main contributions are summarized.

1.1 Remote Sensing
Remote sensing represents a set of techniques and algorithms, which are
able to collect and interpret information regarding an object or phenomenon
without making physical contact with the item under investigation [Camp-
bell 02, Schott 07, Schowengerdt 07]. More particularly, remote sensing refers
to the instrument-based technology and application for the detection, clas-
sification, and recognition of objects in the Earth [NAS , Richards 06], the
Moon [Montopoli 07], the Mars [Roush 97] and other planets. Remote sensing
techniques emerged with photography, and became popular with the invention
of air-planes and then of satellites. From the 1950s, when the first artificial
satellite was launched, remote sensing began to be used not only for military
but also for civil operations. Advances in technology during recent decades have
turned remote sensing into an essential technology. With research and devel-
opment in the fields of electronics, informatics and signal processing, more and
more remote sensing sensors/devices have been created and are able to ac-
quire different types of information for a great number of applications. From a
broader consideration, remote sensing devices include embedding structures for
spacecraft, engineering life and atmospheric or geometric calibration, such as
Radio Detection and Ranging (RADAR) [kre 15] sensors, Light Detection and
Ranging (LiDAR) [LiD 13] sensors, x-ray units, Magnetic Resonance Imaging
(MRI).



2 Introduction

Figure 1.1: Remote sensing.

Remote sensing sensors often produce large amounts of data. From a physics
point of view, these remote sensing data are electromagnetic radiation reflected
from or emitted from the objects. Since most pixels (or pure objects) possess
unique material characteristics, they can be distinguished by their different re-
flected radiation, allowing accurate classification or recognition. The details dif-
fer between sensors, such as multispectral/hyperspectral sensor [Dalponte 10]),
LiDAR sensor and RADAR sensor. Most remote sensing sensors are carried by
particular vehicles known as platforms, normally air-crafts or satellites in orbit
for visual exploration (see Figure 1.1).

Thanks to the availability of a large number of sensors (with different func-
tions and peculiarities), remote sensing data are used in many different applica-
tions, including urban distribution, agriculture monitoring, damage assessment,
ice monitoring and forest inventories etc. Different applications use different
sensors depending on what works best in the application. Hyperspectral and
LiDAR data are two main remote sensing data sources we will exploit in the
thesis. Nevertheless, the developed techniques in this thesis (e.g. method pro-
posed in Chapter 4) could be also applied to other data sources or applications
domains.
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1.1.1 Hyperspectral Image
The idea of multispectral or hyperspectral imaging for remote sensing emerged
at NASA’s Jet Propulsion Laboratory in 1983, where the Airborne Visible In-
fraRed Imaging Spectrometer (AVIRIS) [Green 98] was developed for deliver-
ing high-dimensional data cubes with hundreds of contiguous spectral channels
(bands) covering the wavelength region from 400 to 2500 nanometers. Mul-
tispectral remote sensors (or imaging spectroscopy) generate images of bands
with relatively broad spectral widths, typically about 100 nanometers between
400 and 1100 nanometers (visible and near-infrared region), which limits their
functionality for Earth observation purposes. While advanced hyperspectral
sensor systems can acquire the detailed spectrum of reflected light through-
out the visible, near-infrared, and mid-infrared portions of the electromag-
netic spectrum, and produce huge data cube with large amount of spectral
bands [Chang 03]. Figure 1.2 shows a hyperspectral image, in this hyperspec-
tral image every pixel represents as a high-dimensional vector containing values
corresponding to reflectance spectrum, so that the dimension of the vector (one
pixel) is equal to the number of spectral bands.

From another perspective, the reflectance spectrum in one wavelength in-
terval (spectral channel) can be considered as one gray scale image. The hy-
perspectral image can be seen as a stack of images (corresponding to different
spectral channels) from the same area on the surface of the Earth. In other
words, it forms a three dimensional data cube. Figure 1.3 shows an example
of such a hyperspectral data cube. In the following, we assume a three dimen-
sional hyperspectral data cube with n1 × n2 pixels in the spatial domain, and
d spectral bands. Such a cube can be treated in various ways:

1. Spectral perspective: In this case, a hyperspectral data cube includes
large amount of pixels which represent specific regions of the Earth sur-
face. Each pixel can be seen as a vector with multiple components, which
correspond to the reflected radiation in specific spectral bands. This
spectral information can be used to precisely distinguish different mate-
rials. The image in Figure 1.2 shows histograms of the values of specifics
spectral components.

2. Spatial perspective: In this case, each spectral band is treated as a sep-
arate gray scale image. see Figure 1.3. In the spatial dimension, most
neighboring pixels belong to the same object, particular for Very High
Resolution (VHR) data.

Typically, hundreds or even thousands of spectral bands are available in
a hyperspectral cube. This amount of spectral information available for each
pixel of a scene increases the possibility of accurately distinguishing different
physical materials. This is possible because different materials exhibit different
spectral signatures. Figure 1.2 shows the spectral signatures of four differ-
ent pixels from four materials, which show completely different behaviours in
spectral domain. Unlike conventional Red, Green, and Blue (RGB) images,
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Figure 1.2: Spetral reflectance of different materials.

the rich spectral attributes of hyperspectral data allow practical applications
such as: food quality inspection [Sun 10, Kelman 13, Qiao 15], medical sci-
ences [Liu 07,Lu 14], mineralogy [Werff 06,Meer 12], military applications [Eis-
mann 96,Heesung 05].

1.1.2 LiDAR Data

LiDAR data represent the distance between objects and the sensor, which is
very different from hyperspectral data. LiDAR [LiD 13], which stands for
Light Detection and Ranging, originated in the early 1960s, shortly after the
invention of the laser. Combined with other data recorded by an airborne
system, LiDAR can generate precise, three-dimensional information about the
shape of the Earth and its surface characteristics, so it is a popular technology
to make high-resolution maps.

The process of LiDAR can be simply summarized as: an airborne laser is
pointed at a targeted area on the ground, then the beam of light (infrared,
visible light, or ultraviolet light) is reflected by the surface it encounters, at
this time, a LiDAR sensor (receiver detectors) and electronics will record this
reflected light to measure a range (variable distances to Earth). When laser
ranges are combined with scan angles, calibration data, position and orientation
data generated from integrated GPS, a dense, detail-rich group of elevation
points, called a “point cloud,” will be produced. In the point cloud, each point
has three-dimensional spatial coordinates (latitude, longitude, and height), and
corresponds to a particular point on the Earth’s surface where laser pulse was
reflected from. As the elevation information collected by LiDAR sensors is



1.2 Problem Statement 5

Figure 1.3: Hyperspectral cube (from NASA).

based on light pulses, it is not influenced by weather conditions, such as clouds
and shadows, thus makes its potential combination with hyperspectral image
on the applications of Earth observation.

1.2 Problem Statement

Detecting small targets can be very difficult, particularly in an unknown envi-
ronment. In order to provide a better understanding of the processing (classifi-
cation) of remote sensing data, we introduce a description of the full processing
chain, as shown in Figure 1.5. This processing chain is widely adopted by most
researchers and consists of three consecutive stages: data acquisition, feature
extraction/fusion and classification. Data acquisition also involves preprocess-
ing. As the original inputting data sets come from different sensors and have
different nature, such as the high dimensionality of hyperspectral image and
one dimensionality of LiDAR data, it is not good way to do classification di-
rectly. Therefore, feature extraction and fusion is a very necessary and impor-
tant step. The details of feature extraction, fusion and classification of remote
sensing imagery are introduced in following subsections.
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Figure 1.4: LiDAR image.

1.2.1 Feature Extraction and Fusion

Based on the idea of mining the useful information [Jia 13], feature extraction
can be explained as finding a transformation to transform the high-dimensional
data set to a low-dimensional feature space and reducing dimensionality. In pro-
cessing of remote sensing imagery, feature extraction is the process of producing
a small number of informative features by transforming the input data linearly
or non-linearly to another new feature space [Fong 07,Zhou 15]. This is equiv-
alent to (possibly non-linear) projection of the high-dimensional original data
onto a low-dimensional subspace. The general concept of feature extraction
will be employed in following.

Suppose xi is original high-dimensional data point. Then the extracted
features zi in a low-dimensional projected subspace, are given by zi = WTxi,
in the linear case. The main problem then is to find a suitable transform matrix
W See Figure 1.6.

In fact, in order to reduce the dimensionality and get a few useful features,
there is also another approach: selecting a suitable subset from the original
features, which is called feature selection. The essential point relative to feature
selection is to pursue an efficient search strategy to obtain an optimal subset
to improve classification. While feature extraction does not use the original
features directly, it transforms the original features to a new feature space and
produces new features. The essential difference between the feature extraction
and selection in visually can be seen in Figure 1.7. For example, in original
data set, there are p measurements (features) in total. If l features are needed
for classification, feature selection will select l features out of these p features,
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Figure 1.5: Remote sensing data processing chain and an example.

feature extraction will map these p features to l new features (in new feature
space) which have correlations with all original p features. Compared with
feature selection, the advantages of feature extraction are that no information
from the original data is wasted.

The existing feature extraction methods can be grouped into unsupervised,
supervised and semi-supervised cases. Unsupervised feature extraction meth-
ods do not require any prior knowledge on the training data [Serpico 07]. Su-
pervised and semi-supervised methods require prior knowledge of the labelled
class assigned to the different pixels. Supervised methods lead to better rep-
resentation as they are computed taking into account the class information
from pixels. By exploiting the useful label information of training samples,
supervised methods can infer class separability. However, in many real-world
applications, labelling large amounts of data may require considerable human
resources and is time consuming. Therefore, the number of labelled data is
usually very limited, while unlabelled data is available in large quantities at
very low cost. As a result, semi-supervised methods, which aim at improved
classification by utilizing both a large number of unlabelled and limited la-
belled samples in the training phase gained popularity in the machine learning
community [Olivier 06,Zhang 07,Cai 07,Zhu 08,Liao 13].

Feature fusion in our thesis means integration of multiple features (fused
in feature level) generated either from single data or multisensor data. The
advantage of feature fusion is obvious. Different features extracted from sin-
gle data or multi sensor data reflect different characteristic of patterns. By
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Figure 1.6: Feature extraction, xi is original sample with D bands, zi presents
extracted features with d bands, d << D.

optimizing and combining these different features, feature fusion method pre-
serves discriminant information from all features, while eliminates redundant
information to certain degree. This is especially important in classification and
recognition. In the feature fusion step, several feature vectors, such as spectral
and spatial features from hyperspectral image, elevation features from LiDAR
data, are stacked into one union-vector, and then a few useful features are
extracted from the higher-dimension union-vector. Please see Figure 1.8 for
visually and better understanding.

1.2.2 Classification

Given a set of observations (i.e., pixel vectors in a remote sensing image),
the goal of classification is to assign a class label to every pixel in the im-
age [Richards 06]. For visualization, the label represented by a color. Within
this context, the input of a classification problem is remote sensing images
and the objective is to create a thematic map. There are different cate-
gories of classification techniques depending on the availability of labelled train-
ing samples, including unsupervised methods, supervised methods, and semi-
supervised methods. For the purpose of remote sensing imagery analysis, we
focus on supervised classifiers: k-Nearest Neighbors (kNN) [Coomans 82], Sup-
port Vector Machine (SVM) [Chang 01] and Random Forests (RF) [Ho 95].
These types of methods are trained using a set of representative samples for
each class, referred to as training samples. Before classification, a set of train-
ing samples for each class are used to partition the feature space into decision
regions. To assess performance, the trained classifier is applied to a set of test
pixels with known ground truth, the results in an estimate of the classifica-
tion accuracy are used for performance assessment. As the experiments are
carried out under the same conditions and classifiers, the difference in classi-
fication accuracy is attributed to the employed features, i.e., the efficiency of
the extracted features from the corresponding approaches.
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Figure 1.7: Different between feature extraction and feature selection, feature se-
lection selects l features out of p features, while feature extraction maps p features
to l new features (in new feature space) which have correlations with all original p
features.

1.2.3 Challenges

In the last decade, many approaches for remote sensing image feature extraction
and classification have been proposed and investigated. Although hyperspectral
remote sensing data contain hundreds or even thousands of spectral bands and
have many practical applications, the large number of spectral bands result in
large data sets, and increase the processing complexity. Moreover, the primary
challenge in remote sensing is how to extract and fuse the most appropriate
features for specific applications. Several key issues are:

1. The large number of spectral bands leads to problems with storage re-
sources and computational load. In order to process and analyze these
huge data sets, super-computers and large data storage capacities are re-
quired. What’s more, the original spectral bands in hyperspectral image
contain high redundancy, especially for the adjacent bands, there are high
correlations between them.

2. In practical applications, collecting ground-truth is often expensive and
time consuming, as it requires a skilled expert agent to manually clas-
sify training examples. Thus, the small sample size (SSS) problem
[Raudys 91], which states the number of available training samples is
relatively much smaller than the dimensionality of the original data, is
an important issue for high-dimensional hyperspectral image classifica-
tion. This problem creates a challenge for conventional classification
methods, especially for classifiers which are not robust to the Hughes phe-
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Figure 1.8: An example of feature fusion (fused in feature level). Suppose there are
three types of features for a same region, feature fusion (in feature level) methods
stack them together first, then map the high-dimensional stacking data set to a low-
dimensional feature space and generate new features.

nomenon [Hughes 68]; these suffer from rapidly decreasing classification
accuracy which increasing dimension or decreasing number of training
samples, see Figure 1.9. In the real world, remote sensing hyperspec-
tral images have more than hundred spectral bands, while the number of
training samples is quite small. Therefore, addressing the SSS problem
is essential for classification.

3. Most existing methods focus on performing the feature extraction in the
spectral domain of the hyperpspectral data. Nevertheless, spatial domain
processing is equally important and can be combined with spectral do-
main processing, to improve classification performance. However, some
spectral-spatial feature extraction methods can not efficiently fuse spec-
tral and spatial information [Khodadadzadeh 15,Zhou 15,Huang 13].

4. Different data sources have different advantages and disadvantages. For
instance, hyperspectral images cannot distinguish different objects made
of the same material, and are easily influenced by cloud and weather
conditions. LiDAR data can provide useful information about the size,
structure and elevation of different objects, but cannot discriminate well
between objects with similar altitude but different materials. Optimal
fusion of multi-source data for improving the accuracy of pattern recog-
nition therefore is a big challenge.

In order to address the above challenging problems, the thesis focuses on
feature extraction and fusion of remote sensing data, where the main objectives
are to investigate and propose solutions to find efficient and discriminative
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Figure 1.9: Hughes phenomenon, the recognition accuracy (Y-axis) will decrease
from one point with increasing number of dimensionality (X-axis) or decreasing num-
ber of training samples (m).

features. The proposed methods are evaluated and compared to state-of-the-art
methods from the literature, normally including the use of the original spectral
features as an initial reference for bench marking. In order to evaluate the
behaviour and performance of feature extraction methods on a consistent and
comparable basis, different methods for feature extraction and data reduction
are compared in the experiments under the same conditions, keeping the same
data acquisition and classifiers, only changing different methods in the step of
feature extraction/fusion.

1.3 Contributions and Publications

The work presented in this thesis aims at investigating and developing novel
feature extraction and fusion techniques for classification of remote sensing
imagery. In general, the developed techniques provide more effective features
to enable an improved classification performances and more efficiency to reduce
the computational complexity, leading to potential improvements in processing
huge datasets. State-of-the-art techniques have already proven that the use of
extracted features are effective for the classification of real data sets.

The main contributions of this thesis are:

• Exploration of new supervised feature extraction algorithms for classifica-
tion of hyperspectral remote sensing imagery.

Two novel supervised feature extraction algorithms, relying on labelled
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samples to infer class separability. The first one is called discriminative
supervised neighborhood preserving embedding (DSNPE), which incor-
porate the label information into a linear feature extraction named neigh-
borhood preserving embedding (NPE). Similar to NPE, DSNPE preserves
the local manifold and neighborhood structure, while projecting similar
samples closer and dissimilar samples further apart on a lower dimensional
feature space. Another proposed supervised feature extraction method
is PCA-based supervised locality preserving projection (PSLPP), which
combines principle component analysis (PCA), label information and lo-
cality preserving projections (LPP) together. In the proposed PSLPP
method, principle component analysis is used to remove noise and redun-
dancy, and label information and locality preserving projection are used
to construct similarities between samples.

• Proposition of new semi-supervised feature extraction methods, which
combines a small number of labelled training samples with a large number
of unlabelled training samples for feature extraction.

We propose a feature extraction method based on semi-supervised graph
learning (SEGL), which aims to build a semi-supervised graph to describe
the similarities between samples, especially the similarities between la-
belled and unlabelled ones. We also extend SEGL to both spectral and
spatial domains and get better results. What’s more, we improve semi-
supervised local discriminant analysis (SELD) method for feature extrac-
tion of remote sensing scenes.

• Definition of a novel framework to fuse hyperspectral and LiDAR images
for classification of cloud-shadow mixed remote sensing scenes.

We propose a new framework to fuse cloud-shadowed hyperspectral and
LiDAR data to increase classification performance, especially for cloud-
shadow region. In our proposed methods, we process the cloud-shadow
and shadow-free regions separately. Our main contribution is the develop-
ment of a novel method to generate reliable training samples in the cloud-
shadow regions. Classification is performed separately in the shadow-free
(classifier is trained by the available training samples) and cloud-shadow
regions (classifier is trained by our generated training samples) by inte-
grating spectral (i.e. original HS image), spatial (morphological features
computed on HS image) and elevation (morphological features computed
on LiDAR) features. The final classification map is obtained by fusing
the results of the shadow-free and cloud-shadow regions.

• Exploiting the use of GPU to speed up non-linear feature extraction meth-
ods.

As a non-linear version of principle component analysis (PCA), kernel
principle component analysis (KPCA) is more suitable to describe non-
linear, higher-order and complex distributions. However, One disadvan-
tage of KPCA is that its sequential implementations have long run time
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due to their relatively large computational complexity. In order to speed
up the computing process of KPCA, we implemented the KPCA algo-
rithm to GPU to extract features from hyperspectral images, the exper-
imental results reveal the GPU based parallel KPCA approach has the
potential to improve computation speed.

In total, the research during this PhD resulted in several publi-
cations:

1. Luo Renbo, Liao Wenzhi, Zhang Hongyan, Zhang Liangpei, Pi Youguo,
Scheunders Paul, Philips Wilfried, “Fusion of hyperspectral and LiDAR
data for classification of cloud-shadow mixed remote sensing scene”. IEEE
Journal of Selected Topics in Applied Earth Observations and Remote
Sensing. DOI:10.1109/JSTARS. 2017.2684085.(A1)

2. Luo Renbo, Liao Wenzhi, Huang Xin, Pi Youguo, Philips Wilfried, “Fea-
ture Extraction of Hyperspectral Images with Semi-Supervised Graph
Learning”. IEEE Journal of Selected Topics in Applied Earth Observa-
tions and Remote Sensing. 2016; 9(9): 4389-4399.(A1)

3. Luo Renbo, Liao Wenzhi, Zhang Hongyan, Pi Youguo, Philips Wil-
fried, “Spectral-Spatial Classification of Hyperspectral Images with Semi-
Supervised Graph Learning”. SPIE Remote Sensing. Sep.2016.(P1)

4. Luo Renbo, Liao Wenzhi, Zhang Hongyan, Pi Youguo, Philips Wilfried,
“Classification of cloudy hyperspectral image and LIDAR data based on
feature fusion and decision fusion”. IEEE Geoscience and Remote Sensing
International Symposium (IGARSS 2016). Jul. 2016. (P1)

5. Luo Renbo, Liao Wenzhi, Pi Youguo, Philips Wilfried, “An improved
semi-supervised local discriminant analysis for feature extraction of hy-
perspectal image”. Joint Urban Remote Sensing Event, Proceedings
(JURSE 2015). Mar. 2015. p. 1-4. (P1)

6. Luo Renbo, Pi Youguo, “Supervised neighborhood preserving embed-
ding feature extraction of hyperspectral imagery. Acta Geodaetica et
Cartographica Sinica”. 2014; 43(5): 508-513.(A2)

7. Luo Renbo, Pi Youguo, “GPU-based parallel kernel PCA feature ex-
traction for hyperspectral images”. International Conference on Remote
Sensing and Wireless Communications (RSWC 2014). 2014. (P1)

8. Luo Renbo, Liao Wenzhi, Pi Youguo, “Discriminative supervised neigh-
borhood preserving embedding feature extraction for hyperspectral-image
classification”. Telkomnika. 2012; 10(5): 1051-1056. (A2)

9. Luo Renbo, Liao Wenzhi, Pi Youguo, “Research on supervised LPP
feature extraction for hyperspectral image”. Remote Sensing Technology
and Application. 2012; 27(6): 46-52. (A2)
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10. Zhang Hongyan, He Wei, Liao Wenzhi, Luo Renbo, Zhang Liangpei,
Pizurica Aleksandra, “Exploiting the low-rank property of hyperpsectral
imagery: a technical overview”. Workshop on Hyperspectral Image and
Signal Processing, Evolution in Remote sensing (WHISPERS 2016). Aug.
2016. (C1)

11. Liao Wenzhi, Pizurica Aleksandra, Luo Renbo, Philips Wilfried. “A
comparison on multiple level features for fusion hyperspectral and LiDAR
data”. Joint Urban Remote Sensing Event, Proceedings (JURSE 2017),
Mar. 2017. (C1)

12. Liao Wenzhi, Zhang Hongyan, Li Jie, Huang Shaoguang, Wang Rui, Luo
Renbo, Pizurica Aleksandra, “Fusion of Spectral And Spatial Informa-
tion for Land Cover Classification”. IEICE Information and Communi-
cation Technology Forum (ICTF2016), 2016. (C1)

1.4 Structure of the Thesis
This rest of this dissertation is organized as follows.

Chapter 2 deals with supervised feature extraction algorithms. In particu-
lar, two proposed methods, discriminative supervised neighborhood preserving
embedding (DSNPE) and PCA-based supervised locality preserving projection
(PSLPP), will be presented.

Chapter 3 focuses on semi-supervised feature extraction methods. Three
semi-supervised feature extraction methods for classification of hyperspectral
remote sensing imagery are presented, including improved semi-supervised local
discriminant analysis (ISELD), semi-supervised graph learning (SEGL) method
and its implementation on fusing the spectral and spatial information.

In Chapter 4, we propose a new framework to fuse hyperspectral and LiDAR
images for the classification of the cloud-shadow mixed remote sensing scenes.
Experimental results on real remote sensing data are presented to demonstrate
its efficiency.

Chapter 5 explains the GPU implementation of a non-linear feature extrac-
tion method. Experimental analysis and results demonstrate that the GPU
based non-linear feature extraction method can speed up more than 100 times
compared conventional CPU based methods.

Chapter 6 presents a general discussion of the work described in this thesis
reviewing the main contributions of this research and presents perspectives on
possible future developments of the work.



2
Supervised Feature

Extraction of Remote
Sensing Data

This chapter focus on developing supervised techniques to extract interesting
and useful features for reliable classification.

In processing of remote sensing imagery, feature extraction is a necessary
pre-processing step to produce a small number of informative features for clas-
sification. Two typical unsupervised feature extraction methods, neighborhood
preserving embedding (NPE) and locality preserving projections (LPP), are
wildly used in hyperspectral image processing recently. However, as they are
essentially unsupervised, the label information have not been well used. In this
Chapter, we will propose two new supervised feature extraction algorithms (in-
tegrating label information into unsupervised NPE and LPP) for classification
of hyperspectral remote sensing imagery. By taking the label information into
account, supervised feature extraction methods generally can generate better
features for class discrimination than unsupervised methods.

The first proposed supervised feature extraction method is called discrimi-
native supervised neighborhood preserving embedding (DSNPE), which incor-
porates the label information into a linear feature extraction approach named
neighborhood preserving embedding (NPE). DSNPE aims at pulling the neigh-
boring points with the same class label towards each other as near as possible,
while simultaneously pushing the neighboring points with different labels away
from each other as far as possible. What’s more, similar to NPE, DSNPE can
preserve the local manifold structure and the neighborhood structure.

The other proposed method is a PCA-based supervised locality preserving
projection (PSLPP), which combines principle component analysis (PCA) and
label information with LPP. In the proposed PSLPP method, two similarity
matrices are first calculated, the similarity matrix represents the correlations
between samples, the element corresponding to two samples in similarity ma-
trix will be set to a weight between 0 and 1 based on their similarity in spectral
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features or other information. The first similarity matrix is calculated based
on the neighbors information in low-dimensional spectral space which is trans-
formed by PCA to remove the noisy and redundancy. The second one is ob-
tained based on training samples labels information. By exploiting above two
similarity matrices, we can better quantify how likely it is that neighboring
data points belong to the same or a different class, and find an optimal trans-
formation matrix to project high-dimensional hyperspecral image to a lower
dimensional subspace.

2.1 Introduction

To mitigate the small sample size (SSS) problem, which states the number
of available training samples is relatively much smaller than the dimensional-
ity of the sample space and leads Hughes phenomenon (for a limited number
of training samples, the classification accuracy decreases as the dimension in-
creases) [Hughes 68], feature extraction is usually an important preprocessing
step for most hyperspectral image analysis. Feature extraction methods are
developed to reduce the dimensionality of hyperspectral remote sensing image
while keeping as much intrinsic information as possible: relatively few bands
can represent most information of the hyperspectral data [Fong 07]. Even
though the extracted features are then no longer directly related to physical
material properties, they provide a compressed version of the original complete
set of spectral bands, which still contains all required information to classify
the data. Each band of the original hyperspectral data often contributes to the
extracted low dimensional features. How much exactly is determined by the
transformation matrix associated with a given feature extraction method.

Determination of how to transform original high-dimensional bands to a low-
dimensional feature space (feature extraction) is the key issue in this Chapter.
The techniques for feature extraction presented below can be categorized as
unsupervised (global data oriented) and supervised (class data oriented) meth-
ods.

2.1.1 Unsupervised Feature Extraction Methods

Unsupervised feature extraction methods do not require any prior knowledge
on ground truth (e.g., human annotations) for training data, whereas super-
vised feature extraction methods rely on labelled training data [Jia 13]. Two
typical unsupervised feature extraction methods are principle component anal-
ysis (PCA) [Hotelling 33] and independent component analysis (ICA) [Hyvari-
nen 00]. As one of the best known unsupervised methods and widely used
for hyperspectral images [Fong 07,Plaza 05], PCA tries to extract the features
which are linear combinations of the input data. The number of extracted
features (eigenvectors) and the coefficients (eigenvalues) in the linear combina-
tions are computed based on analyzing the covariance matrix of the original
training data [Jlliffe 86, Zubko 07]. The eigenvalues of the covariance matrix



2.1 Introduction 17

are considered to be an indicator of the information content. Large values cor-
respond to features with a large variance, which suggests a large information
content; low values are considered to be mostly noise and therefore not very
informative. Due to its low complexity and the absence of parameters, PCA
has also been widely used other areas, as face recognition, data mining, and so
on.

ICA is a statistical technique for separating independent signals from sig-
nal mixtures [Hyvarinen 00]. Compared with PCA, ICA is more powerful at
finding the underlying factors or sources in cases where PCA fails. ICA de-
fines a generative model for the observed multivariate data. In the model, the
data variables are still assumed to be linear mixtures of some unknown latent
variables, with the mixing system also being unknown. However, the latent
variables are assumed to be non-Gaussian and mutually statistically indepen-
dent [Hyvarinen 00]. Recently, Wang and Chang [Wang 06] proposed three
ICA-based dimensionality reduction methods for hyperspectral data. Their
experimental results have shown that their methods perform better than PCA,
as there is no prioritization among components generated by the ICA due to
the use of random initial projection vectors. Marchesi and Bruzzone applied
ICA and kernel ICA for change detection in multitemporal remote sensing
images [Marchesi 09]. In [Palmason 05], PCA/ICA and morphological trans-
formations had been combined for the classification of hyperspectral images of
urban areas.

2.1.2 Supervised Feature Extraction Methods
Supervised methods mainly rely on labelled samples to learn about class sep-
arability; using these labels, they can learn more discriminative features than
unsupervised methods. Two widely used supervised feature extraction methods
for hyperspectral images are Fisher’s linear discriminant analysis (LDA) [Fuku-
naga 90] and nonparametric weighted feature extraction (NWFE) [Kuo 04].
LDA is a traditional parametric feature extraction technique that is based on
the mean vector and covariance matrix of each (labelled) class. The ratio of
within-class to between-class scatter matrices is used to formulate an effec-
tive criterion for class separability [Fukunaga 90]. The inherent limitations
of LDA include its dependence on the distributions of classes being approxi-
mately Gaussian and its inability to handle cases where class data does not
form a single cluster. When the distributions of classes are non normal like
or multi-modal mixture distributions, the performance of LDA is not satisfac-
tory. Furthermore, the maximum rank of the between-class scatter matrix is
the number of classes (C) minus one, thus only a maximum of C-1 features can
be extracted by LDA. Actually, using only C-1 features may not be sufficient
for classification of hyperspectral data [Kuo 04], as the data distributions are
often complicated (C-1 dimensional space is not enough to present) and not
normal-like. Last but not least, LDA performs poorly when the within-class
covariance is singular. This frequently occurs in high-dimensional but small
sample size (SSS) classification problems [Raudys 91,Yang 10]. What’s more,
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when the number of training samples is small compared to the feature dimen-
sionality, the estimates of second-order statistics may not be reliable at the
class level, and thus the extracted features may not perform well [Kuo 04] for
post applications.

In order to address the limitation of LDA (maximum C-1 features), Fuku-
naga et al. [Fukunaga 83] proposed nonparametric discriminant analysis(NDA),
NDA defines a nonparametric between-class scatter matrix based on a critical
finding that data points closer to the boundary between two classes in feature
space are more important to learn proper classifiers than those far from the
boundary. As a result, each sample should be given a distinct weight when
extracting informative features. Nonparametric weighted feature extraction
(NWFE) was proposed by Kuo [Kuo 04] in 2004. The main ideas of NWFE are
putting different weights on every sample to compute the weighted center (fea-
ture vector) of each class first, and then compute the distance between samples
and their weighted centers as a measure related to “closeness” to the boundary,
see Figure 2.1. After that, the authors define nonparametric between-class and
within-class scatter matrices, which put large weights on the samples close to
the boundary and emphasize those samples far from the boundary, to obtain
more than C-1 features. NWFE is developed in light of nonparametric dis-
criminant analysis(NDA) [Fukunaga 83], introducing regularization techniques
to achieve better performance for hyperspectral image classification than LDA
and NDA [Kuo 07].

Some extensions to both LDA and NWFE have been proposed in recent
years, such as modified Fisher’s linear discriminant analysis [Kuo 07], regular-
ized linear discriminant analysis [Bandos 09], modified nonparametric weight
feature extraction using spatial and spectral information [Kuo 04]. With de-
velopments of kernel-based methods (which are based on mapping data from
the original input feature space to a kernel feature space of higher dimen-
sionality, and then solving a linear problem in that space [Camps-Valls 05]),
some typical linear feature extraction methods are extended to nonlinear fea-
ture extraction. These kernel-based methods use a suitable kernel function to
transform data, and increase the class separability in the kernel space (which
is nonlinearly related to the input space). For instance, generalized discrimi-
nant analysis (GDA) [Baudat 00] and kernel local Fisher discriminant analysis
(KLFDA) [Bandos 09] are nonlinear extensions of LDA. Kernel nonparamet-
ric weighted feature extraction (KNWFE) [Kuo 09] is the nonlinear version
of NWFE. Similar as NWFE, cosine-based nonparametric feature extraction
(CNFE), which employs cosine distance (which measures the cosine of the angle
between two non zero vectors of an inner product space) to measure similarity
instead of the Euclidean distance used by NDA and NWFE, was proposed by
Yang et al. in 2010 [Yang 10]. Additionally, Huang and Kuo [Huang 10] pro-
posed a double nearest proportion (DNP) feature extraction by constructing
new scatter matrices based on a double nearest proportion structure. Double
nearest proportion (DNP) method can better reduce the effect of overlap and
emphasize the separability of class boundaries even when overlap occurs. De-
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Figure 2.1: The idea of nonparametric weighted feature extraction (NWFE), x(i)
l

is lth sample from class i, mj(x
(i)
l ) demotes the mean of k nearest neighbors of x(i)

l

in class j, dist(·) is Euclidean distance. If dist(x(i)
l ,mj(x

(i)
l )) is small, then x

(i)
l is

considered to be more close to the class boundary and gains large weight w i,j
l (w i,j

l

is useful for calculating scatter matrix).

cision boundary feature extraction (DBFE) [Landgrebe 03], an early method
proposed by Lee and Landgrebe specifically for feature extraction of hyper-
spectral images, seeks to find new features which are normal to class decision
boundaries. It can extract both discriminate informative features and discrim-
inate redundant features from the decision boundary. The approach uses the
training samples directly to determine the location of the decision boundary
and employs information about the decision hypersurfaces associated with a
given classifier to define an intrinsic dimensionality for the classification prob-
lem. Then, the corresponding optimal linear mapping can be obtained. The
goal of these supervised feature extraction methods (LDA, NWFE and their
extensions GDA, DNP and DBFE) is to find a linear transformation that max-
imizes the between class scatter and minimizes the within class scatter [Jia 13].
The only difference between them is the different definition of within- and
between-class scatter matrices, their general form can be represented as:

W = argmax
w

tr(WTSwW)−1(WTSbW) (2.1)

Sw and Sb represent within- and between-class scatter matrices, the columns
of W are the optimal features by optimizing above Fisher criterion. The pro-
jection zi of an unknown sample xi can then be evaluated by
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z = WTx. (2.2)

In order make the definition of these supervised methods be more clear, an
example (Figure 2.2) has been drawn to show the different projections between
PCA and these supervised methods (here take LDA as an example).

Figure 2.2: Different projections between PCA and LDA. In this example, PCA and
LDA project all points with two dimensions into one dimension (line), PCA will find
a project direction with largest scatter, while LDA will project samples with same
labels close and samples with different labels faraway.

2.1.3 Proposed Supervised Local Feature Extraction
Methods

Besides the supervised methods, several unsupervised local methods, which
preserve the properties of local neighborhoods also have been proposed recently
to reduce the dimensionality of hyperspectral images [Fong 07,Fang 14], such
as Laplacian eigenmaps(LE) [Belkin 02] and locally linear embedding (LLE)
[Roweis 00], their linearisation of locality preserving projections (LPP) [He 04]
and neighborhood preserving embedding (NPE) [He 05]. By considering local
geometrical structure information (as nearest neighbors), these local methods
can preserve local neighborhood information and detect the manifold structure
of data in the high-dimensional feature space, see Figure 2.3.

LPP aims to seek optimal projections where nearby points in the origi-
nal high-dimensional space are likely to have similar projections in the low-
dimensional feature space. Therefore, LPP preserves important local informa-
tion of the original data in the low-dimensional representation. NPE focus
on the preservation of the local manifold structure. Specifically, for each data
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Figure 2.3: The main property of local methods, xi is a point in high-dimensional
feature space, zi is the projection of xi in low-dimensional feature space, local geo-
metrical structure information will be kept after projection.

point, it is represented as a linear combination of the neighboring data points
and the combination coefficients are specified in the weight matrix. We then
find an optimal embedding such that the neighborhood structure can be pre-
served in the dimensionality reduced space.

LPP and NPE can be summarized as graph-based unsupervised feature
extraction methods. Graph-based methods start by composing a graph where
the nodes are points in high-dimensional space, and (weighted) edges reflect the
similarity of nodes. The assumption is that nodes connected by a large-weight
edge tend to belong to same class. The mathematical representation of graph
is similarity matrix, thus can be seen from Figure 2.4. Both LPP and NPE
try to build a graph to presents the corrections between samples, while with
different criterion, more details will be discussed in following section.

However, as unsupervised feature extraction methods, both LPP and NPE
do not make use of label information of samples. As a result they ignore the
differences among neighbors which belong either same or different classes. To
complement the shortages of LPP and NPE, we propose two supervised feature
extraction methods by combining label information with them in this Chapter.

To enhance the classification performance of NPE, we propose a new al-
gorithm termed discriminative supervised neighborhood preserving embedding
(DSNPE) in section 2.2. NPE assumes that each data point could be repre-
sented as a linear combination of the neighboring data points, and the linear
combination coefficients can be seen as the correlations between this data point
with its nearest neighbors. When high-dimensional points are embedded into
low-dimensional feature space, the correlations between points will be kept.
Different from NPE, DSNPE first divide the nearest neighbors into two group:
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Figure 2.4: The graph and its mathematical representation similarity matrix, here
we take eight points as an example, every point has two connected nearest neighbors,
bolder line means more similar.

neighbors with same labels as center point and with different labels. Then
each data point is represented as a linear combination of the neighboring data
points from same class instead. At the same time, DSNPE attempts to sepa-
rate neighbors from different classes as much as possible in the low-dimensional
feature space. DSNPE offers three main benefits: 1) the algorithm takes into
account both intraclass and interclass geometries so that it can achieve better
performances in classification; 2) discriminability is effectively preserved in the
algorithm because it takes into account label information of neighboring sam-
ples; and 3) in the subspace, our proposed method can project the neighboring
samples from the same class nearer, while project neighboring samples with
different labels further.

In the section 2.3, a PCA-based supervised locality preserving projection
(PSLPP) feature extraction method will be proposed. In the proposed PSLPP
method, PCA is first performed on the original high-dimensional data points to
remove the noisy and redundancy. In order to better model the relationships of
data points, we proposed a similarity matrix which contains the label and local
neighborhood information. By exploiting the proposed similarity matrix, we
get a transformation matrix to project high-dimensional HS image to a lower
dimensional subspace.

2.2 Discriminative Supervised Neighborhood
Preserving Embedding (DSNPE)

2.2.1 Neighborhood Preserving Embedding (NPE)
In this section, we will introduce a linear dimensionality reduction algorithm
NPE. The generic problem of linear dimensionality reduction is the following:
given a set of points {x1,x2, · · · ,xn} ∈ RD, find a transformation matrix W
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that maps these n points to a set of points {z1, z2, · · · , zn} ∈ Rd,d << D by
z = WTx.

NPE preserves local manifold structure when data points are projected from
a high-dimensional feature space to a low-dimensional feature space. Provided
there is sufficient data (such that the manifold is well-sampled), NPE expects
each data point and its neighbors to lie on or close to a locally linear patch
of the manifold. We characterize the local geometry of these patches by linear
coefficients that reconstruct each data point from its neighbors. Reconstruction
errors are measured by the cost function as follows:

min

n∑
i

||xi −
e∑
j

aijxj ||2 (2.3)

e∑
j

aij = 1.

which adds up the squared distances between all the data points and their
reconstructions. The weights aij summarize the contribution of the jth data
point to the ith reconstruction. Let G denote a graph with n nodes, the data
point xi corresponds to ith node. We add a directed edge from node xi to xj

in the graph if xj is one of the e nearest neighbors of xi, see Figure 2.4. Let
A denote the weight matrix composed by aij . To compute the weights aij ,
we minimize the cost function subject to two constraints: first, that each data
point xi is reconstructed only from its neighbors, enforcing aij = 0 if xj does
not belong to the set of neighbors of xi; second, that the rows of the weight
matrix sum to one. Please see [Roweis 00] for the details about how to solve
the above minimization problem.

If the original data points are mapped to a line, then, each data point on
the line can be represented as a linear combination of its neighbors with the
coefficients aij = 0. Let Z = (z1, z2, · · · , zn)T be such a map, n denotes the
total number of training samples. A reasonable criterion for choosing a map is
to minimize the following cost function:

min

n∑
i

||zi −
e∑
j

aijzj ||2 (2.4)

This cost function, like the previous one, is based on locally linear reconstruc-
tion errors, but here we fix the weights aij [He 05] while optimizing the coor-
dinates zi. In other words, the cost function seek an optimal transformation
z = WTx to minimize the combination error.

Following some algebraic formulations, the cost function can be expressed
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as:
n∑
i

||zi −
e∑
j

aijzj ||2

=zT (I−A)T (I−A)z

=wTX(I−A)T (I−A)XTw

=wTXMXTw,

(2.5)

where
X = {x1,x2, · · · ,xn}

M = (I−A)T (I−A)

I = diag(1, 1, · · · , 1)

As A 6= I (every point is linear combination of its k nearest neighbors, not
include itself), it is easy to check thatM is symmetric and semipositive definite.

In order to remove an arbitrary scaling factor in the projection, zi is imposed
an unit vector as:

zT z = I→ wTXXTw = I (2.6)

By combining equation (2.3) and (2.6), the transform matrix W can be
obtained by solving the following cost function:

wNPE = arg min
w

wTXMXTw

wTXXTw
(2.7)

In order to solve equation (2.7), it can be transferred as generalized eigen-
vector problem:

XMXTw = λXXTw (2.8)

The vectors w1,w2, · · · ,wd which solve equation (2.8) are the columns of
WNPE , as WNPE = [w1,w2, · · · ,wd]. The columns are ordered according to
their eigenvalues λ1 < λ2 < · · · < λd. Thus, the embedding is as follows:

xi → zi = WT
NPExi

2.2.2 Proposed DSNPE
As NPE is an unsupervised feature extraction methods, neglecting label infor-
mation of training samples. For a data points xi, its nearest neighbors may
contain points from other class, if we use those data points to linearly recon-
struct xi, the reconstruction error will be very large, which will have a big
influence for the cost function (as equation (2.3)) and its solution. Therefore,
we proposed a supervised methods called DSNPE, which linearly reconstructs
every data points with nearest neighbors from same class and pushes nearest
neighbors from other classes away. By doing this, DSNPE can find a better
transform matrix and extract more discriminative features than NPE. The idea
of DSNPE is shown in Figure 2.5
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Figure 2.5: The idea of DSNPE: projecting the neighboring samples from the same
class nearer, while projecting neighboring samples with different labels further.

Suppose {xi1,xi2, · · · ,xili ,xi(li+1),xi(li+2), · · · ,xi(li+ci)} are the e labelled
nearest neighbors of xi. Some of these will have the same label as xi.
We assume that the indexing is such that the neighbors with the same
label are {xi1,xi2, · · · ,xili} whereas the neighbors from other class are
{xi(li+1),xi(li+2), · · · ,xi(li+ci)}, here e = li + ci.

In contrast to NPE, DSNPE assumes that each sample can be reconstructed
from samples having the same label only. That is, xi can be linearly recon-
structed from {xi1,xi2, · · · ,xili} as:

xi = ai1xi1 + ai2xi2 + · · ·+ ailixili + εi (2.9)

where εi is the reconstruction error. Minimizing the error yields

arg min
ai

∑
i

||εi||2 = min
∑
i

||xi −
li∑

j=1

aijxij ||2 (2.10)

Same as the introduction of NPE, if the original data points are projected
to a line so that each data point on the line can be represented as a linear
combination of its neighbors with the coefficients aij . Let Z = {z1, z2, · · · , zn}
be such a transformed points of X = {x1,x2, · · · ,xn}, and assumes that ai re-
constructs both xi from (xi1,xi2, · · · ,xili) in the high-dimensional space and
zi from (zi1, zi2, · · · , zili) in the low-dimensional space (preserving local geo-
metrical structure information). Then the equation (2.10) is transferred as:

min
∑
i

||xi −
li∑
j

aijxj ||2 → min
∑
i

||zi −
li∑
j

aijzj ||2 (2.11)

where ai = {ai1,ai2, · · · ,aili}, and
∑l

j=1 aij = 1. In order to optimize the
coordinates zi, we fix the weights aij in a closed form as:

aij =
d(xi,xij)

−1∑li
t=1 d(xi,xit)−1

.
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where d(xi,xit) denotes the Euclidean distance between xi and xit. If the
distance between xi and xit is small, this means xit is very similar as xi, then
its reconstruction coefficient will be close to 1; otherwise, it will be close to 0.
For the other points, which do not belong to li nearest neighbors of xi, their
weights are set to 0.

At the same time, we would like that neighboring samples with different
labels (xi(li+1),xi(li+2), · · · ,xi(li+ci)) are far from the given sample xi. To
make this happen, we can maximize the sum of the distances between zi and
{zi(li+1), zi(li+2), · · · , zi(li+ci)} in the low-dimensional feature space, as a result
we have a maximum cost function as following:

max
∑
i

ci∑
t=1

||zi − zit||2 (2.12)

Combining the embedding framework equation (2.11) and (2.12), the opti-
mization problem can be resolved by converting them into the following ratio
problem:

min

∑
i ||zi −

∑li
j aijzj ||2∑

i

∑ci
t=1 ||zi − zit||2

(2.13)

We then look for a linear transform z = wTX, which optimizes this criterion,
where the ith column vector of X is xi, and assumes that

2

∑
i ||zi −

∑li
j aijzj ||2∑

i

∑ci
t=1 ||zi − zit||2

=

∑
i ||zi −

∑li
j aijzj ||2

1
2

∑
i

∑ci
t=1 ||zi − zit||2

=
zT (I−A)T (I−A)z

zT (D−B)z

=
wTX(I−A)T (I−A)XTw

wTX(D−B)XTw

=
wTXMXTw

wTXLXTw

(2.14)

Bij =

{
1 , xj ∈ knn(xi) & yi 6= yj

0 , othervise

X = {x1,x2, · · · ,xn}

M = (I−A)T (I−A)

I = diag(1, 1, · · · , 1),

where D is a diagonal matrix; its entries are column(or row) sum of B, Dii =∑
j Bij , yi denotes the label of xi, knn(xi) is a set including e nearest neighbors
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(a) Indian Pine (b) KSC (c) DC mall

Figure 2.6: False colour image (three bands were selected from original data sets
and act as R,G,B) of experimental data sets.

(a) Indian Pine (b) KSC (c) DC mall

Figure 2.7: Groundtruth of experimental data sets.

of point xi. We can now reformulate the cost function 2.13 as follows:

wDSNPE = arg min
w

wTXMXTw

wTXLXTw
(2.15)

The transformation vector w that minimizes the objective function is obtained
by solving a generalized eigenvalue problem:

XMXTw = λXLXTw (2.16)

Let the column vectors w1,w2, · · · ,wd be the solutions of equation (2.16) ac-
cording to eigenvalues λ1 < λ2 < · · · < λd. The optimal projection matrix
WDSNPE is given by WDSNPE = [w1,w2, · · · ,wd].
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Table 2.2: Overall classification accuracy (OA%) and its corresponding number of
extracted features (in brackets) of different feature extraction methods with different
training sample size.

Data set ni PCA NWFE LPP NPE DSNPE

India Pine

20
OA 64.6(11) 68.1(13) 53.1(19) 63.1(17) 66.1(17)

κ 0.598 0.644 0.481 0.584 0.615

40
OA 69.1(13) 73.8(11) 64.1(14) 70.5(15) 75.0(11)

κ 0.655 0.704 0.602 0.670 0.718

100
OA 76.2(16) 82.9(11) 76.0(18) 77.8(17) 84.3(11)

κ 0.734 0.810 0.731 0.751 0.824

KSC

20
OA 69.6(17) 67.7(9) 55.1(17) 54.8(15) 68.9(15)

κ 0.677 0.658 0.515 0.527 0.673

40
OA 80.5(17) 82.6(12) 68.0(16) 79.3(17) 83.9(15)

κ 0.723 0.805 0.657 0.771 0.819

100
OA 82.4(18) 87.4(12) 80.2(19) 84.3(16) 89.4(15)

κ 0.805 0.860 0.785 0.831 0.881

DC mall

20
OA 77.5(9) 81.9(4) 64.4(11) 81.3(7) 82.2(5)

κ 0.661 0.718 0.512 0.695 0.720

40
OA 86.4(9) 87.5(6) 81.7(10) 87.2(6) 88.9(5)

κ 0.792 0.799 0.698 0.798 0.807

100
OA 89.8(10) 94.0(6) 86.5(11) 92.1(7) 95.7(7)

κ 0.815 0.886 0.791 0.856 0.904

2.2.3 Experiments

2.2.3.1 Experimental Data sets and settings

Experimental Data sets: three hyperspectral images, namely Indian Pine, KSC
and Washington DC Mall, are adopted in the experiments for evaluating the
performance of the proposed method. Table 2.1 shows the number of labelled
samples in each class for all the data sets. Note that the different colors in the
cell denotes different classes in the classification maps.

Indian Pine: the Indian Pine hyperspectral data set was acquired by us-
ing the National Aeronautics and Space Administration’s Airborne Visible
Infrared Imaging Spectrometer (AVIRIS), mounted on an aircraft flown at
65000 ft altitude. It contains 145×145 pixels. Each pixel has 220 spectral
bands, and the corresponding spatial resolution is approximately 20m. The
false color image which composed by three bands composition of original hy-
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Figure 2.8: Average overall classification accuracy (OA%) with the number of ex-
tracted features increasing for different methods for Indian Pine. 100 labelled training
samples are chosen randomly from each class.

Figure 2.9: Average overall classification accuracy (OA%) with the number of ex-
tracted features increasing for different methods for KSC. 100 labelled training sam-
ples are chosen randomly from each class.

perspectral data is shown in Figure 2.6a. There are 16 different identified
land-cover types in this region. The ground truth of the area associated
to the employed 16 classes is shown in Figure 2.7a. 13 classes, which have
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Figure 2.10: Average overall classification accuracy (OA%) with the number of
extracted features increasing for different methods for DC mall. 100 labelled training
samples are chosen randomly from each class.

more than 60 labelled samples, were selected for the experiments. The infor-
mation about the land-cover types and corresponding available ground-truth
pixels are listed in Table 2.1. For more details, the readers are referred to
ftp://ftp.ecn.purdue.edu/biehl/MultiSpec/.

KSC: the NASA AVIRIS instrument acquired data over the Kennedy Space
Center (KSC), Florida, on March 23, 1996. AVIRIS acquires data in 224 bands
of 10-nm width with center wavelengths from 400 to 2500 nm. The KSC data,
acquired from an altitude of approximately 20 km, has a spatial resolution
of 18 m. After removing water absorption and low-SNR bands, 176 bands
were used for the analysis. Discrimination of land cover type is difficult due
to the similarity of spectral signatures of some different vegetation types. For
classification purposes, 13 classes representing the various land-cover types that
occur in this environment were defined. The data set with 512×614 pixels is
located on a different portion of the flight line and exhibits somewhat different
characteristics. Figure 2.6b shows a false color image is composed of three
bands of original hyperspectral data. Details of the thirteen land cover classes
considered in the KSC area are shown in Table 2.1. For more information, visit
http://www.csr.utexas.edu.

DC Mall: the Washington DC Mall data set is a Hyperspectral Digital
Imagery Collection Experiment airborne hyperspectral image. This data set
contains 1280 scan lines, and each line has 307 pixels. Every pixel contains
210 bands in the 0.4-2.4 µm region of the visible and IR spectrum. Since
some water absorption channels (with less sprectral information but a lot of
noise) are removed in the data-preprocessing procedure, only 191 channels are



32 Supervised Feature Extraction of Remote Sensing Data

preserved in this paper. A false color image composed of three bands of original
hyperspectral data is shown in Figure 2.6c. The portion of this scene used in
our experiments has dimensions of 550×307 pixels, as most testing samples are
located in these region and less computing resources required. The name of
the classes and the corresponding available samples (for training and testing)
are listed in Table 2.1.

We compare our proposed DSNPE with the other three widely used
unsupervised feature extraction methods namely PCA [Hotelling 33], LPP
[He 04] and NPE [He 05], and supervised method NWFE [Kuo 04]. The
classification accuracies are evaluated by two statistics, overall classifica-
tion accuracy (OA) and Kappa coefficient(κ) (please see details in: https :
//en.wikipedia.org/wiki/Cohen′s_kappa). For the classifier, we used k-
Nearest Neighbors (k-NN) classifier.

In order to explore the influences of the training sample size on the classifi-
cation performance for each feature extraction method, the number of training
sample for each class (ni) is set to be 20, 40 and 100. If the number of known
ground-truth pixels for one class is smaller than the number of training sample
for each class (ni), then half number of ground-truth pixels in that class would
be selected as training samples, the remaining labelled samples act as testing
samples.

In our experiments, we use overall classification accuracy (OA) to evalu-
ate the feature extraction results. The results were averaged over 10 runs on
different number of extracted features for each method.

2.2.3.2 Experimental Results

The experimental results are summarized in Figure 2.8 - Figure 2.10 and Table
2.2-Table2.5. Figure 2.8 - Figure 2.10 indicate averaged overall classification
accuracy (OA) with increasing extracted number of features of different meth-
ods for India Pine, KSC, DC mall respectively. Table 2.3 - Table 2.5 show
the OA of different methods for each class of the three data sets. The highest
overall classification accuracy and the corresponding number of employed fea-
tures (placed in parentheses), Kappa coefficient(κ) are listed in Table 2.2. The
classification maps associated with DSNPE and other methods are shown in
Figure 2.11 - Figure 2.13. From the experimental results mentioned above, we
have the following findings:

1. The results confirm that supervised feature extraction methods, as
NWFE and proposed DSNPE, can achieve better results in the classi-
fication of hyperspectral images, compared to the unsupervised feature
extraction methods. The DSNPE-related classification results have the
highest accuracies, because DSNPE takes into account both label infor-
mation and local neighborhood information. This means that our pro-
posed method DSNPE is able to extract more discriminative features
than the both methods.
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Table 2.3: OA% of different methods with 12 extracted features for each class of
India Pine, with 100 labelled training samples from each class.

Class PCA NWFE LPP NPE DSNPE

C1 73.3 81.0 71.1 62.2 69.0

C2 62.7 70.1 58.3 69.3 73.3

C3 54.2 70.8 56.7 57.5 71.4

C4 54.6 57.4 43.5 39.1 63.1

C5 88.5 91.6 85.1 85.8 93.3

C6 94.0 95.2 92.4 94.8 97.0

C7 80.0 89.5 85.0 80.0 94.7

C8 98.6 95.2 93.6 99.3 98.1

C9 92.9 92.3 78.6 100.0 92.3

C10 63.4 77.1 67.2 59.8 78.3

C11 70.8 78.8 76.7 71.6 81.8

C12 60.9 75.3 52.2 68.5 77.6

C13 99.5 99.4 98.4 99.6 98.3

C14 95.3 93.3 92.2 91.0 94.0

C15 56.7 56.3 34.8 68.4 47.4

C16 91.4 90.8 81.5 79.0 89.5

OA 75.8 82.7 75.6 77.4 84.0

2. From Table 2.2, it can be noted that the classification accuracies for all
methods increases with the number of labelled training samples. If 100
labelled training samples are selected from each class, the OA of our
proposed DSNPE can reach to 84.3%, 89.4% and 95.7% for India Pine,
KSC, DC mall respectively. With higher classification accuracy, DSNPE
has more potential in practical applications.

3. Figure 2.8 - Figure 2.10 shows that the OAs of NWFE and DSNPE in-
creases first with the number of extracted features and then falls, whereas
the proposed method DSNPE remains stable after that.

4. DSNPE is superior to NPE in all situations since the DSNPE considers
not only the intraclass geometry but also the discriminative information
derived from the interclass samples.

5. Table 2.3-2.5 show the OA of each class for three hyperspectral data sets.
For most classes, DSNPE performs better than others, especially for class
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Table 2.4: Overall classification accuracy (OA%) of different methods with 12 ex-
tracted features for each class of KSC, with 100 labelled training samples from each
class.

Class PCA NWFE LPP NPE DSNPE

C1 75.7 85.3 73.1 84.3 85.9

C2 75.4 89.6 82.3 81.6 84.7

C3 60.6 69.4 85.2 67.0 69.9

C4 42.9 47.4 50.5 39.0 50.0

C5 52.1 59.4 48.8 65.4 66.3

C6 64.0 56.8 46.6 57.0 69.8

C7 72.3 80.0 92.3 92.0 88.9

C8 76.7 82.2 77.5 59.5 87.9

C9 88.5 88.3 84.0 80.0 90.2

C10 95.1 98.3 87.9 92.9 98.5

C11 93.9 98.1 89.2 94.1 97.2

C12 79.3 89.4 79.0 79.7 90.5

C13 100.0 99.0 97.7 99.3 100.0

OA 81.8 87.4 79.6 84.2 89.1

Table 2.5: Overall classification accuracy (OA%) of different methods with 6 ex-
tracted features for each class of DC Mall, with 100 labelled training samples from
each class.

Class PCA NWFE LPP NPE DSNPE

C1 84.6 92.4 81.4 89.5 93.2

C2 94.9 77.1 80.6 95.3 99.3

C3 98.2 97.4 96.7 100.0 100.0

C4 99.8 99.0 92.5 99.8 100.0

C5 99.3 99.0 89.4 97.0 98.9

C6 99.5 95.8 92.5 99.8 99.5

C7 99.0 99.5 77.8 93.4 94.1

OA 89.6 93.8 86.2 92.1 95.7

C2, C4, C7 in India Pine, class C6 and C8 in KSC, class C2 in DC mall.
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(a) False color image (b) PCA

(c) NWFE (d) LPP

(e) NPE (f) Proposed DSNPE

Figure 2.11: Classification maps of different feature extraction methods for Indian
Pine with k-NN classifier (ni = 100).
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(a) False color image (b) PCA

(c) NWFE (d) LPP

(e) NPE (f) Proposed DSNPE

Figure 2.12: Classification maps of different feature extraction methods for KSC
with k-NN classifier (ni = 100).

6. In order to compare the classification results visually, we randomly se-
lect 100 labelled training samples per class from each data set. The
best classification maps of each methods are shown in Figure 2.11 and
Figure 2.13 respectively. It can be seen that the classification maps of
proposed DSNPE looks smooth and with less noisy, and this is specially
clear for “Water” region near to the coastline in the classification maps of
KSC.
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(a) False color image (b) PCA (c) NWFE

(d) LPP (e) NPE (f) Proposed DSNPE

Figure 2.13: Classification maps of different feature extraction methods for DC Mall
with k-NN classifier (ni = 100).

2.3 PCA-based Supervised Locality Preserving
Projection (PSLPP)

2.3.1 Locality Preserving Projection (LPP)

PCA aims to preserve the global geometrical structure (such as the data scatter
in one direction) of feature space, and the LDA method aims to preserve the
discriminating information in global (such as within- and between-class scatter
of data ). However, in many real world applications, both global and local geo-
metrical/manifold structure information is important, but without using local
manifold structures (similarity of data point with its nearest neighbors) may
not be good. Locality preserving projection (LPP), which is a linear approxi-
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mation of the LE [Belkin 02] method, can preserve the local manifold structure
of samples. In LPP, the local manifold property is preserved based on the
pairwise distances between nearby data points. As an unsupervised manifold
dimension reduction algorithm, LPP seeks a low-dimensional representation of
the data in which the distances between a data point and its e nearest neighbors
are minimized.

Suppose xi is a high-dimensional data point, and zi is the low-dimensional
representation of xi. Then the cost function of LPP is as follows:

min
∑
ij

||zi − zj ||2Aij (2.17)

where A is a data points spectral similarity matrix, see as Figure 2.4. This is
done in a weighted manner (different pairwise distances corresponding different
Aij), as in the low-dimensional data representation, the distance between two
nearest data points contributes more to the cost function than the distance
between the second nearest neighbors. Two data points xi and xj , if they are
connected or within e nearest neighbors of each other, they have an associated
weight Aij . If neighboring points xi and xj are mapped far apart, the objective
function with the big weight of Aij will result in a heavy penalty. Therefore,
minimizing it is an attempt to ensure that if xi and xj are close then zi and
zj are close too.

Both LPP and NPE try to extract features by preserving local manifold
structure information. However, NPE expects each projected data point can
be represented as a linear combination of its neighbors with the coefficients,
see cost function 2.3; LPP finds a transformation based on pairwise distances
between data points and its nearest neighbors, see cost function in equation
(2.3).

Normally similarity matrix Aij is defined as follows:

Aij =

 exp(
−||xi − xj ||2

t
) , xi ∈ knn(xj) or xj ∈ knn(xi)

0 , xi 6∈ knn(xj) and xj 6∈ knn(xi)

(2.18)

or

Aij =

 exp(
−||xi − xj ||2

t
) , ||xi − xj ||2 ≤ ε

0 , ||xi − xj ||2 > ε

(2.19)

knn(xi) denotes the nearest neighbors set of xi, ε is the radius to define the
nearest neighbors of xi.

The cost function above can be reduced by the following algebra formula-
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tion:

1

2

∑
ij

(zi − zj)
2Aij =

1

2

∑
ij

(wTxi −wTxj)
2Aij

=
∑
i

wTxiDiix
T
i w −

∑
ij

wTxiAijx
T
j w

= wTX(D−A)XTw

= wTXLXTw

(2.20)

where X = [x1,x2, · · · ,xn], D is a diagonal matrix with Dii =
∑

j Aij , L =
D−A is the Laplacian matrix [Belkin 02].

The transformation vector w that minimizes the cost function is obtained
by minimizing the generalized eigenvalue problem:

XLXTw = λXDXTw (2.21)

Supposing that w1,w2, · · · ,wd are the solutions of equation (2.21), sort them
in ascending order according to their eigenvalues, namely λ1 < λ2 < · · · < λd.
Thus mapping the high-dimensional sample xi ∈ RD to low-dimensional sample
zi ∈ Rd as follows:

zi = WTxi (2.22)

where wi is a d-dimensional vector, and W = [w1,w2, · · · ,wd] is an n × d
matrix.

2.3.2 Proposed PSLPP
In locality preserving projection (LPP), spectral similarity matrix A is only
related to the neighborhood or the nearest neighbors, only nearest neighbors
are connected and have non-zero elements Aij in similarity matrix A. How-
ever, there are two cases in reality: case1, some unlabelled points belong to
same class but without connection as they are not within e nearest neighbors
of each other; case2, some points are within e nearest neighbors of each other
and connected but belong to different class. Due to the locality preserving
property of LPP, the points corresponding to case1 would be faraway to each
other in the reduced feature space, while the points corresponding to case2
would be faraway to each other. This will result in an unfavourable situation
in pattern analysis especially in classification problem. With prior class label
information, we propose a supervised approach PSLPP for hyperspectral image
feature extraction. As the original high-dimensionality hyperspectral image is
noisy and contains redundant information, the distances between samples are
not reliable. As a result, it is better to remove noise and redundancy by PCA
before the construction of similarity matrix. By omitting the smallest principal
components (noisy), more than 99.9% information in the sense of reconstruc-
tion is kept. In our experiments, first 15 principal components (features) as
extracted and used to construct similarity matrix.
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Suppose that x∗i is a representation of xi transformed by PCA, yi is the
label of xi. Let zi denote xi’s representation in the final low-dimensional space,
with zi = WTxi, W is transformation matrix. Then the cost function of the
proposed PSLPP is:

min
∑
ij

||zi − zj ||2(
Pij + Sij

2
) (2.23)

where P is a similarity matrix based on nearest neighbor information, S is
a similarity matrix based on label information. and they are defined as:

Pij =

 exp(
−
∥∥x∗i − x∗j

∥∥2
t

) , x∗i ∈ knn(x∗j ) or x∗j ∈ knn(x∗i )

0 , x∗i 6∈ knn(x∗j ) and x∗j 6∈ knn(x∗i )

(2.24)

knn(xi) means the nearest neighbors set of xi.

Sij =

{
1 , yi = yj

0 , yi 6= yj
(2.25)

Similar to LPP, the cost function of proposed PSLPP can be reduced by
the following algebra formulation:∑

ij

(zi − zj)
2(
Pij + Sij

2
) =

1

2

∑
ij

(wTxi −wTxj)
2(Pij + Sij)

= wTX(D−P− S)XTw

= wTXLXTw

(2.26)

D is a diagonal matrix with Dii =
∑

j(Pij + Sij), L = D − P − S is the
Laplacian matrix. Besides, a constraint is imposed as follows:

zTDz = 1→ wTXLXTw = 1 (2.27)

The transformation vector w that minimizes the object function is obtained by
solving the minimizing optical problem:

wPSLPP = arg min
w

wTXDXTw

wTXLXTw
(2.28)

the solutions of equation (2.28) WPSLPP = [w1,w2, · · · ,wd] is the optical
transformation n× d matrix.

2.3.3 Experiments
2.3.3.1 Experimental Datasets and Settings

Experiments were run on two data sets, namely the Indian Pine and DC mall,
which were reported in the previous Chapter.
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Algorithm 1 Proposed PSLPP
1: Remove noisy and redundancy by PCA: projecting the original high-

dimensional training samples xi into lower dimensional space x∗i (as 15
bands).

2: Construct the similarity matrix P based on LPP by using low-dimensional
points x∗i , as equation (2.24).

3: Construct the similarity matrix S based on label information, as equation
(2.25).

4: Calculate the transformation matrix W by equation (2.26) and (2.28).
5: Extract features through zi = WTxi.
6: Classify the testing samples with extracted features.

Experimental setup: in order to explore the influences of the training sample
size on classification performance of different feature extraction methods, 5%,
10% and 15% (ni) samples are randomly selected from each class as training
sample set for Indian Pine data set, and 2%, 5% and 10% for DC mall data set.
The testing data set is composed of the remaining samples with known ground
truth pixels in the scene. In our experiments, we extract 1 to 30 features from
Indian Pine data set, and 1 to 15 features from DC mall data set (except LDA,
as it can extract maximum C-1 features, C is the number of class). Then,
the testing accuracies for different values of the employed number of features
are calculated. In this section, other three feature extraction methods, namely
PCA, LDA and LPP, are included to compare with the performance of the
proposed PSLPP. The overall classification accuracy (OA) is utilized to evaluate
the classification performances. For the classifier, we choose two traditional
classifiers: k-Nearest Neighbors (k-NN) and Support Vector Machine (SVM).

2.3.3.2 Experimental Results

The experimental results are summarized in Figure 2.14 - Figure 2.16 and Ta-
ble 2.6 - Table 2.8. Figure 2.14 indicates the performance of each method for
India Pine and DC mall respectively, as the number of features increases when
training sample is 10% from each class. Table 2.7 - Table 2.8 show the OA%
of different methods for each class of the two data sets. The highest overall
accuracies (OA) and the corresponding number of employed features (placed
in parentheses) are listed in Table 2.6. In order to compare the classification
results visually, the classification maps for these two data sets of each meth-
ods are shown in Figure 2.15 and Figure 2.16. From the experimental results
mentioned above, we conclude the following:

1. Except for only one case (Ni = 5% in the Indian Pine data set), PCA has
the highest accuracy, and the PSLPP-related classification results have
the highest accuracies in all the considered situations.

2. PSLPP performs better than LPP as the it takes into account not only the
local manifold structure, but also label information, the label information



42 Supervised Feature Extraction of Remote Sensing Data

(a) Indian Pine with SVM classifier

(b) Indian Pine with k-NN classifier

(c) DC mall with SVM classifier

(d) DC mall with k-NN classifier

Figure 2.14: Averaged OA (%) with the number of extracted features increasing
for different methods. 10% labelled training samples are chosen randomly from each
class.
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Table 2.6: OA% (optimal number of features) of different feature extraction methods
with different training sample size.

Data set Classifier ni PCA LPP LDA Proposed PSLPP

India Pine

k-NN

5% 64.5(18) 61.4(16) 60.3(15) 64.3(14)

10% 76.2(16) 76.7(18) 75.9(14) 82.2(18)

15% 82.1(20) 79.8(20) 78.4(14) 84.4(16)

SVM

5% 67.8(16) 63.5(14) 61.4(14) 65.6(16)

10% 78.9(18) 79.2(18) 76.8(15) 83.7(20)

15% 85.0(14) 84.4(18) 82.8(15) 85.5(16)

DC mall

k-NN

2% 82.2(10) 78.4(7) 72.9(6) 85.1(9)

5% 87.0(9) 80.6(13) 75.2(6) 90.2(13)

10% 88.8(10) 85.6(11) 80.7(5) 92.4(12)

SVM

2% 84.1(10) 79.9(12) 73.3(5) 87.8(9)

5% 86.9(9) 81.7(14) 74.0(6) 92.6(11)

10% 89.5(8) 87.9(13) 81.1(6) 93.9(13)

can make the similar samples which belong to the same class more close
to each other in the low-dimensional feature space.

3. As shown in Figure 2.14, PSLPP performs better than LDA (higher classi-
fication accuracy). Due to the restriction of the rank of the between-class
scatter matrix, no more than C − 1 (C is the number of the class) fea-
tures can be extracted and used for LDA, while PSLPP does not have
this limitation.

4. From all experimental results, SVM performs better than KNN, with at
least 1% improvement in all the considered situations for Indian Pine and
Dc Mall.

5. As can be seen from the classification accuracy curves, by increasing the
number of features in the projection subspace (obtained by the proposed
methods) the recognition accuracy of the proposed methods will not nec-
essarily increase. Thus, in practice, the proposed methods will provide
good performance without using a lot of features.

6. From Table 2.7-2.8, which show the OA of each class, we can see that
PSLPP performs best than others, as class C5, C7, C12 in India Pine,
class C1 and C3 in DC mall.

7. Based on the visual inspection of classification maps, generally, PSLPP
has better performance than others.



44 Supervised Feature Extraction of Remote Sensing Data

Table 2.7: OA% of different methods with 12 extracted features for each class of
India Pine, with 10% labelled training samples from each class and SVM classifier.

Class PCA LPP LDA Proposed PSLPP

C1 52.1 77.0 73.3 77.5

C2 58.3 63.7 62.7 71.3

C3 61.2 59.1 54.2 59.0

C4 49.6 53.7 54.6 62.5

C5 84.3 86.6 88.5 92.1

C6 94.6 90.9 94.3 94.1

C7 81.0 94.0 80.0 100.0

C8 99.4 89.7 98.6 98.2

C9 86.7 97.0 92.9 100.0

C10 72.8 71.6 63.4 65.8

C11 77.4 74.8 70.8 72.9

C12 49.0 65.7 60.9 77.5

C13 97.8 96.5 99.5 98.8

C14 95.3 89.9 93.3 93.4

C15 52.6 46.9 56.7 69.1

C16 86.2 86.9 91.4 85.9

OA 78.6 78.4 76.4 83.5

Table 2.8: OA% of different methods with 6 extracted features for each class of DC
mall, with 10% labelled training samples from each class and SVM classifier.

Class PCA LPP LDA Proposed PSLPP

C1 83.6 76.9 79.6 87.6

C2 93.9 98.5 73.1 90.6

C3 97.2 93.1 96.6 100.0

C4 98.8 97.5 70.5 99.8

C5 98.3 98.3 70.0 99.5

C6 98.4 98.8 97.3 100.0

C7 98.8 94.2 62.3 97.6

OA 88.8 87.6 81.0 93.4
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(a) PCA (b) LPP

(c) LDA (d) Proposed PSLPP

Figure 2.15: Classification maps of different methods for Indian Ipine with SVM
classifier

2.4 Conclusions

As unsupervised methods do not aim at extracting discriminant features, we
presented two new supervised feature extraction approaches by introducing
prior class label information during neighbourhood selection in the training
stage in this Chapter. The first is a supervised version of neighborhood pre-
serving embedding (NPE) for the classification of land-cover types in hyper-
spectral images. By using label information, our proposed supervised NPE
performs better than NPE in classification. The results of experiments on the
real images have demonstrated the effectiveness of the proposed algorithm.
Compared with some representative dimensionality reduction algorithms, the
proposed DSNPE has a very competitive performance with higher classification
accuracy.

The second proposed method is named PCA-based supervised locality pre-
serving projections (PSLPP), which is a supervised extension of locality pre-
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(a) PCA (b) LPP

(c) LDA (d) Proposed PSLPP

Figure 2.16: Classification maps of different methods for DC mall with SVM clas-
sifier
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serving projections (LPP). LPP seeks to preserve the local manifold structure
(the similarity of point with its neighbors) which is usually more significant
than the global manifold structure preserved by PCA, but does not take into
account label information. PSLPP uses both local information and class infor-
mation to model the similarity of the data and enhance the discriminant power
of the data when mapping them into a low-dimensional space. Since both local
manifold structure and representative label information are important for clas-
sification, PSLPP outperforms the traditional LPP, together with PCA, LDA,
which tend to preserve the global manifold structure.

The research in this chapter lead to three journal publications as follows:

1. Luo Renbo, Pi Youguo, “Supervised neighborhood preserving embed-
ding feature extraction of hyperspectral imagery”. Acta Geodaetica et
Cartographica Sinica. 2014; 43(5): 508-513.

2. Luo Renbo, Liao Wenzhi, Pi Youguo, “Discriminative supervised neigh-
borhood preserving embedding feature extraction for hyperspectral-image
classification”. Telkomnika. 2012; 10(5): 1051-1056.

3. Luo Renbo, Liao Wenzhi, Pi Youguo, “Research on supervised LPP
feature extraction for hyperspectral image”. Remote Sensing Technology
and Application. 2012; 27(6): 46-52.
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3
Semi-supervised Feature

Extraction of Remote
Sensing Data

This chapter focus on developing semi-supervised techniques to extract inter-
esting and useful features for reliable classification.

In many real applications, only few labelled samples are available for train-
ing, because manually labelling data is time consuming and fairly expensive.
On the other hand, unlabelled samples are usually available in large quantities
at very low cost. Semi-supervised feature extraction methods, which combine
a limited set of labelled samples and general a larger set of unlabelled samples
in training, can outperform both supervised and unsupervised methods in this
case. For this reason, semi-supervised feature extraction methods have aroused
a great deal of interest in the machine learning community, and have been suc-
cessfully applied in hyperspectral (hyperspectral) image classification. This
chapter explores semi-supervised feature extraction methods for hyperspectral
image classification.

Firstly, we improve the previous method semi-supervised local discrimi-
nant analysis (SELD) [Liao 12] for feature extraction of hyperspectral images.
The proposed improved semi-supervised local discriminant analysis (ISELD)
method aims to find a projection which can preserve local neighborhood in-
formation and maximize the class discrimination of the data. Compared to
the previous SELD, the proposed ISELD method better models the correla-
tion between labelled and unlabelled samples. Experimental results on a real
data demonstrate our approach outperforms others with increasing the training
sample size changes.

We also propose a Semi-supervised Graph Learning (SEGL) method for fea-
ture extraction of hyperspectral remote sensing imagery. The proposed SEGL
method aims to build a semi-supervised graph which can better model the
spectral similarities of samples by weighting the edges, especially of labelled
and unlabelled samples. In our semi-supervised graph, all training samples



50 Semi-supervised Feature Extraction of Remote Sensing Data

are divided into two groups: labelled and unlabelled, then labelled samples
are connected to each other by their labels (samples from same class will be
connected), unlabelled samples are connected to each other by their nearest
neighborhood information (the nearest neighbors will be connected). By sort-
ing the mean distance between an unlabelled sample and the center of each class
(get from labelled samples), we connect the unlabelled sample with all labelled
samples belonging to its nearest neighborhood class. Moreover, the proposed
SEGL better model the actual differences and similarities between samples, by
assigning different weights to the different edges of connected samples. Ex-
perimental results on real hyperspectral images demonstrate advantages of our
method compared to some related feature extraction methods.

The proposed SEGL model similarities of samples by only spectral informa-
tion, without using their spatial location information (such as two samples may
belong to same class if they close to each other in spatial location). Therefore,
we also propose an improved version of SEGL by fusing spectral and spatial
information for hyperspectral image classification. In this method, spectral,
spatial and label information are taken into account to construct the semi-
supervised fusion graph to better model the correlations between samples. The
nodes of the fusion graph are connected according to not only their label infor-
mation, but also their spectral-spatial nearest neighborhood information. As
different feature sources have different statistical distributions, we project the
high-dimensional spectral and spatial features into a much lower dimensional
subspace separately and both based on the proposed semi-supervised graph.
Thus, neighborhood information is preserved and discriminative features is en-
hanced. Experimental results on a real hyperspectral data demonstrate the ef-
ficiency of our proposed semi-supervised fusion method, with 2%-10% improve-
ments compared with unsupervised and supervised feature extraction method.

This chapter is organized as follows. In Section 3.1, we introduce the re-
lated work. Section 3.2 details our proposed improved semi-supervised local
discriminant analysis. We discuss the proposed feature extraction with semi-
supervised graph learning (SEGL) in Section 3.3. Section 3.4 elaborates an
improved version of semi-supervised graph learning (ISEGL) to fuse spectral
and spatial information. Finally, Section 3.5 concludes this chapter.

3.1 Introduction

Techniques for machine learning can be categorized as supervised, unsupervised
and semi-supervised learning methods according to how they combined labelled
and unlabelled training data. Supervised learning methods rely on the existence
of labelled samples to infer class separability, but they heavily depend on the
quality of labelled training data sets; normally it is only useful to classify images
with the same classes and taken under the same conditions as the labelled
training data sets. Moreover, sample labelling is time consuming and with
very high cost, resulting in low availability of labelled training samples. On
the other hand, unsupervised methods deal with the cases where no labelled
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samples are available. The exact relationship between clusters and classes is
then unknown. Even the number of classes present in the data may then not
be known.

3.1.1 Semi-supervised learning
Semi-supervised learning is a class of machine learning techniques that make
use of both labelled and unlabelled data. In reality, although the acquisition of
labelled data for a learning problem often requires a skilled human agent or a
physical experiment, the labelling process is expensive, whereas the acquisition
of unlabelled data is relatively much cheaper. Semi-supervised learning (SSL)
[Olivier 06,Zhu 08,Bennet 99], which incorporates a small amount of labelled
data with large number of unlabelled samples, can be of great practical value
and gained popularity in the machine learning community, as SSL can produce
significant improvement in classification accuracy [Camps-Valls 07, Chen 11,
Liao 13]. A broader definition of semi-supervised learning includes regression
and clustering as well, but we will not pursue that direction here.

In the case of two classes, semi-supervised learning assumes that each class
has a Gaussian distribution (an easy example). The complete data set is as-
sumed to be distributed according to a Gaussian mixture model. Given a large
amount of unlabelled data, the mixture components can be identified with the
expectation-maximization (EM) algorithm [Dempster 77]. Therefore, only a
small number of labelled example is needed for each class, i.e., for each com-
ponent in the mixture model. This model has been successfully applied to
text categorization [Nigam 06]. A typical variant of semi-supervised learning
is self-training: A classifier is first trained with labelled data. It is then used
to classify the unlabelled data. The most confident unlabelled samples, to-
gether with their predicted labels, are added to the training set. The classifier
is re-trained and the procedure is repeated. Note the classifier uses its own
predictions to teach itself.

With the rising popularity of support vector machines (SVM), some semi-
supervised variants of SVM, such as transductive SVM (TSVM) [Vapnik 98],
emerged as an extension to standard SVM. TSVM exploits specific iterative
algorithms which gradually search reliable separating hyperplanes in the kernel
feature space (for a non-linear classification problem, instead of trying to fit a
non-linear model, one can map the problem from the input space (non-linear)
to a new (higher-dimensional) space (linear, called the kernel feature space)
by doing a non-linear transformation using suitably chosen basis functions (as
Radial basis function), and then use a linear model in the kernel feature space.
The linear model in the kernel feature space corresponds to a non-linear model
in the input space.). This is done within an active learning process that in-
corporates both labelled and unlabelled samples in the training phase [Bruz-
zone 06]. Intuitively, unlabelled data guides the decision boundary away from
dense regions. However, most semi-supervised variants of SVM suffer from
a high computational burden and consequently a limited number of labelled
samples can be used for their training. This leads to a poor estimation of
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the distribution of marginal data. Many heuristic approaches have been pro-
posed to reduce the computational cost of TSVM. Bennet et al. proposed a
mixed integer programming to find the labelling with the lowest objective func-
tion [Bennet 99]. However, the optimization is intractable for large data sets.
A heuristic that iteratively solves a convex SVM objective function with alter-
nate labelling of unlabelled samples was proposed in [Joachims 99]. However,
this algorithm is only capable of dealing with a few thousand samples. What’s
more, the improved TSVM still has a cubic cost, and requires to store huge
kernel matrices [Chapelle 05].

Recently, graph-based semi-supervised learning methods have attracted
great attention. Graph-based methods start by composing a graph where the
nodes are the labelled and unlabelled data points, and edges with different
weights reflect the similarity of nodes. The assumption is that nodes connected
by a large-weight edge tend to have the same label, and labels can propaga-
tion throughout the graph. Graph-based semi-supervised enjoy nice properties
from spectral graph theory. They are provided with some available labelled
information in addition to the unlabelled information, thus allowing to encode
some knowledge about the geometry and the distribution of the data set.

In 2004, Zhou et al. proposed a semi-supervised learning method by design-
ing a classifying function based on the assumption that nearby points are likely
to have the same label and points on the same structure (typically referred to
as a cluster or a manifold) are likely to have the same label. The approach
in [Bandos 06] extended the semi-supervised graph-based method presented
in [Zhou 04] to the classification of hyperspectral images. [Bandos 06] pre-
served the contextual information through the use of composite kernels, which
have been recently revealed very useful to improve inductive support vector
machines (SVMs) [Camps-Valls 06, Camps-Valls 07]. Semi-supervised kernel
orthogonal subspace projection (KOSP) was proposed for target detection ap-
plications [Capobianco 09], which introduces an additional regularization term
on the geometry of both labelled and unlabelled samples by using the graph
Laplacian. The information from unlabelled samples was included in the stan-
dard KOSP by means of the graph Laplacian with a contextual unlabelled
sample selection mechanism.

3.1.2 Semi-supervised Feature extraction
For the task of feature extraction, semi-supervised feature extraction methods
try to find a projection by using very limited number of labelled samples and a
large number of unlabelled samples [Bruzzone 09,Sugiyama 10,Zhu 08,Chen 11].
Some semi-supervised feature extraction methods make use of link information
(must-link for same class samples and cannot-link for different class samples),
such as Zhang et al. [Zhang 07] proposed a semi-supervised dimensionality
reduction (SSDR) technique by utilizing the must-link and cannot-link con-
straints. Some semi-supervised feature extraction methods add a regulariza-
tion term to preserve certain potential properties of the data, for example semi-
supervised discriminant analysis (SDA) [Cai 07] added a regularizer into the
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objective function of LDA; it makes use of a limited number of labelled samples
to maximize class discrimination and employs both labelled and unlabelled sam-
ples to preserve the local properties of the data. Some semi-supervised feature
extraction methods combine supervised methods with unsupervised ones using
a trade-off parameter, such as semi-supervised local fisher discriminant analy-
sis (SELF) [Sugiyama 10]. However, it may not be easy to specify the optimal
parameter values in these semi-supervised methods, as mentioned in [Chen 11].

Recently Liao et al. [Liao 13] proposed semi-supervised local discriminant
analysis (SELD) for feature extraction of hyperspectral image without param-
eters. Their method divided the data set into two sets: a labelled set and an
unlabelled set. They employed the labelled samples in a supervised method
(linear discriminant analysis, LDA) (connections were constructed between la-
belled samples) only to maximize the class discrimination. The unlabelled
samples are used in unsupervised local linear feature extraction methods (con-
nections were constructed between unlabelled samples), such as LPP, NPE,
only to preserve the local neighborhood information. However, the connections
between labelled and unlabelled samples are not well exploited in SELD for
both class discrimination and local neighborhood information preservation.

3.1.3 Proposed Semi-supervised Feature Extraction
This chapter first proposed an improved semi-supervised local discriminant
feature extraction (ISELD) [Luo 15] to reduce the dimensionality of the hy-
perspectral images. Compared with SELD, the proposed ISELD adds matri-
ces to model the connection of labelled and unlabelled samples. We set an
edge between labelled and unlabelled samples when an unlabelled sample is
the closest to the cluster of labelled class. This way we model connections
among all samples and preserve local neighborhood information when project
high-dimensional data to a low-dimensional feature space by combining both
labelled and unlabelled samples.

Our second proposed semi-supervised method aims to build a semi-
supervised graph which can maximize the class discrimination and preserve
the local neighborhood information by combining labelled and unlabelled sam-
ples (unsupervised graph means the graph is built by using unlabelled samples,
semi-supervised graph means the graph is built by using both labelled and
unlabelled samples). In our semi-supervised graph, we connect samples ac-
cording to either label information (labelled samples) or their k -nearest neigh-
bors (unlabelled samples). We connect an unlabelled sample with labelled
samples in a class by minimizing the mean distance of the unlabelled samples
to the selected labelled samples of each class. The proposed SEGL does fea-
ture extraction based on graph learning, this is different from SELD [Liao 13]
and ISELD [Luo 15] which do feature extraction by maximizing between-class
scatter and minimizing within-class scatter. Moreover, the proposed SEGL
method does not set the same weights to the edges of the same class or samples
within their k -nearest neighbors, as [Liao 13,Luo 15,Zhang 10] do, but employs
weighted edges (with weights corresponding to the distance between samples).
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This way we proposed a more general framework to build a semi-supervised
graph, where the actual differences and similarities between samples are better
modelled.

Actually, in high resolution hyperspectral images, not only detailed infor-
mation on spectral reflectance characteristics of different materials can be used
for classification, but also the spatial portrayal (e.g. structure of objects) with
fine spatial resolution enables us to extract the spatial information (as pixels
belong to the same object in spatial space), which increases the possibility of
more precisely discriminating objects on the Earth’s surface. Therefore, fusion
of spectral and spatial features for land cover classification is an important
research topic in hyperspectral remote sensing community.

the references [Zhou 15,Huang 13] explore the importance of joint spectral
and spatial information for hyperspectral image analysis, and their results have
demonstrated that combining spectral and spatial features can improve the ac-
curacy of land cover classification. Zhou et al. [Zhou 15] integrated a spectral-
domain regularized local preserving scatter matrix and a spatial-domain local
pixel neighborhood preserving scatter matrix. Refs. [Huang 13], [Ghamisi 14b]
and [Zhang 12] concatenate spectral and spatial features (morphological pro-
files) in a simple stacked architecture. Their methods treat spectral-spatial
features equally and ignore complementary information provided by heteroge-
neous features, leading to even worse performances than using a single fea-
ture [Zhang 12,Huang 13].

In 2016, Liao et al. [Liao 16] proposed morphological attribute profiles with
partial reconstruction (APPRs) which can separate the connected objects, these
APPR can better model the spatial information of objects and are more robust
on selecting values for different attributes. APPR also provides complementary
information (in spatial) for spectral information for classification. However, in
our proposed method SEGL, only spectral and label information are used. Spa-
tial information (as in APPR) has not been considered. Therefore, based on
the findings above, we improve the SEGL method by taking into account spec-
tral, spatial (APPR) and label information. In this improved SEGL (ISEGL),
labelled samples are connected still according to either label information, while
unlabelled samples are connected according to their k -nearest neighbors not
only in spectral feature space but also in spatial feature space. Furthermore,
we link an unlabelled sample with all labelled samples in the class which is
closest to this unlabelled sample in both spectral and spatial feature space.
Thus, our proposed method better models the correlations between samples
and preserves local geometrical structure information in both spectral and spa-
tial feature spaces. What’s more, as spectral features in raw hyperspectral
image and APPR generated from hyperspectral image have different meanings
and properties, and the information contained in them is not equally repre-
sented, if they are stacked first and then transformed to a low-dimensional
space together, some important features would be lost or mixed. Therefore
we extract the low dimensional spectral features from hyperspectral image and
spatial features from APPR separately based on the proposed semi-supervised
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graph, and finally fused the extracted spectral and spatial features for classifi-
cation.

Table 3.1: Some notations used in this Chapter.

Notations Description

hyperspectral image raw data cube: M ×N ×D, M ×N is the size of
image, D is number of bands

n number of labeled training samples

m number of labeled training samples

C number of classes

nc number of training samples in class c

xL
i ith labelled training sample in hyperspectral im-

age, xL
i ∈ RD

xU
j jth unlabelled training sample in hyperspectral

image, xU
i ∈ RD

yi label of sample xL
i

cj the class closest to unlabelled sample xU
j

X(cj) the labelled training samples set in class cj

mc(x
U
j ) mean distance between xU

j and class c

A (n+m)× (n+m) adjacency matrix between sam-
ples

ALU
i,j the edge between xL

i and xU
j

3.2 Improved Semi-supervised Local Discrimi-
nant Analysis (ISELD)

Semi-supervised local discriminant analysis (SELD) [Liao 13] combines un-
supervised linear local feature extraction and supervised linear discriminant
analysis (LDA) methods in a way that adapts automatically to the fraction
of the samples without any parameters. This approach employs the labelled
samples through only the supervised linear discriminant analysis (LDA) and
the unlabelled ones through only unsupervised method, then combined them
both in a non-linear way, which makes full use of the advantages of both ap-
proaches. However, SELD has not exploited the relationships between labelled
and unlabelled samples. Therefore, we proposed an improved SELD by adding
the relationships between labelled and unlabelled samples, and better model
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the similarities between samples. Before detailing the proposed method, we
will first introduce SELD briefly.

3.2.1 Semi-supervised Local Discriminant Analysis
(SELD)

Suppose a training data set X = {Xlabelled,Xunlabelled} =
{xL

1 ,x
L
2 , · · · ,xL

n,x
U
n+1,x

U
n+2, · · · ,xU

n+m}, with labelled set Xlabelled = {xL
i }ni=1,

yi is the label of xL
i and yi ∈ {1, 2, · · · , C}, C is the number of classes,

and unlabelled set Xunlabelled = {xU
n+i}mi=1, n is the number of labelled

samples, m is the number of unlabelled samples, the class c has nc samples
with

∑C
k=1 nc = n. One sample xL

i or xU
i corresponding one pixel in

hyperspectral image which with D bands, then it can be seen as a vector
with D elements, that is xL

i ∈ RD,xU
i ∈ RD. Assume that the labelled

samples in Xlabelled = {xL
1 ,x

L
2 , · · · ,xL

n} are ordered according to their labels,
with the data matrix of the cth class X(c) = {x(c)

1 ,x
(c)
2 , · · · ,x(c)

nc }, where
x
(c)
i is ith sample in cth class. Then the labelled set can be expressed as

Xlabelled = {X(1),X(2), · · · ,X(C)}.
In order to find a projection which can preserve local neighborhood infor-

mation and maximize the class discrimination of the data. Liao et al. [Liao 13]
proposed SELD by combining an unsupervised method (from the class of local
linear feature extraction methods, such as neighborhood preserving embedding
(NPE)) and a supervised method LDA without any tuning parameters. The
main idea of this approach is first to divide the samples into two sets: labelled
and unlabelled. Then, the labelled samples are used to discover the global
class discriminant of the data by LDA, while the unlabelled samples are used
to preserve the local neighborhood spatial structure by NPE.

In the supervised part, the objective function of LDA can be written as:

wLDA = arg max
w

wTXlabelledCLL(Xlabelled)Tw

wTXlabelledCLL(Xlabelled)Tw
(3.1)

where CLL = Pn×n, CLL = In×n −Pn×n, and matrix Pn×n is defined as:

Pn×n =


P(1) 0 · · · 0

0 P(2) · · · 0
...

...
. . .

...

0 0 · · · P(C)


P(c) is a nc × nc matrix with all the elements equal to 1

nc
.

Equivalently, in the unsupervised part, the NPE component which only uses
the unlabelled samples is formulated:

wNPE = arg max
w

wTXunlabelledCUU(Xunlabelled)Tw

wTXunlabelledCUU(Xunlabelled)Tw
(3.2)
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where CUU = Im×m, CUU = (Im×m −Mm×m)T (Im×m −Mm×m), and M
denotes the weight matrix with Mij being the edge from unlabelled sample xi

to unlabelled sample xj .
In order to make full use of the strengths of both two methods without

parameter optimization, SELD used a natural way to combine them. First by
fixing the matrix SSELD and SSELD as follows:

SSELD = XlabelledCLLXT
labelled + XunlabelledCUUXT

unlabelled

= [Xlabelled Xunlabelled]

CLL 0

0 CUU

 [Xlabelled Xunlabelled]T

SSELD = XlabelledC
LLXT

labelled + XunlabelledC
UUXT

unlabelled

= [Xlabelled Xunlabelled]

CLL 0

0 CUU

 [Xlabelled Xunlabelled]T

and then

wSELD = arg max
w

wTXCSELDX
Tw

wTXCSELDX
Tw

(3.3)

where, X = {Xlabelled,Xunlabelled}, and the relationship matrix CSELD and
CSELD are given as:

CSELD =

CLL 0

0 CUU

 , CSELD =

CLL 0

0 CUU

 (3.4)

3.2.2 Proposed ISELD
As we can see from equation (3.3), SELD [Liao 13] infers class by only using
labelled samples with matrices CLL and CLL. To preserve local neighborhood
information preservation, SELD utilizes only unlabelled samples through the
matrices CUU and CUU. The correlation matrices of labelled and unlabelled
samples are set to 0 in SELD. This means the relationship between labelled
and unlabelled samples is not well modelled by SELD. When very limited la-
belled samples are available (cannot effectively express class discrimination) or
a small number of unlabelled samples (cannot effectively express local geometri-
cal structure) are selected, neither class discrimination nor local neighborhood
information can be well exploited. Therefore, we propose an Improved SELD
(ISELD) method, in which the correlation matrices CISELD (for between-class
scatter matrix) and CISELD (for within-class scatter matrix) are defined as:

CISELD =

 CLL CLU

(CLU)T CUU

 , CISELD =

 CLL CLU

(CLU)T CUU





58 Semi-supervised Feature Extraction of Remote Sensing Data

here CLL and CLL are defined as the same to SELD, CLU and CLU are n ×
m matrices to model the correlation of labelled and unlabelled samples for
between- and within-class scatter matrix, respectively.

In order to well define CLU and CLU, we first try to find the nearest class
of each unlabelled sample xU

j . Suppose class cj represents the class that xU
j is

closest to, andX(cj) is a set including all labelled samples in class cj , cj ∈ [1, C].
X(cj) is obtained as follows:

cj = arg min
c

mc(x
U
j ), c = 1, 2, · · · ,C (3.5)

where mc(x
U
j ) denotes mean distance between unlabelled sample xU

j and all
labelled samples in class c.

mc(x
U
j ) =

1

nc

nc∑
t=1

d(xU
j ,x

(c)
t ) (3.6)

d(xi,xj) is Euclidean distance between xi and xj , if mk(xU
j ) is smaller, it

means xU
j is closer to class c, and more similar to the samples in class c.

In SELD [Liao 13], the similarity of labelled samples xL
j and xL

j are modelled
by CLiLj (for between-class scatter) and CLiLj

(for within-class scatter), and
they are set to (1/nc) and (−1/nc) respectively if xL

i and xL
j belong to the same

class, otherwise they will be set to 0. If the unlabelled sample xU
j is closest to

class cj , it could be semi-defined that xU
j belong to class cj , then CLU

i,j and CLU
i,j

could be set to (1/nc) and (−1/nc) if xL
i belongs to class cj , same as SELD

do. As a result, CLU
i,j and CLU

i,j can be written in mathematics as:

CLU
i,j =

{
1/nc , xL

i ∈ X(cj)

0 , xL
i /∈ X(cj)

(3.7)

CLU
i,j =

{
−1/nc , xL

i ∈ X(cj)

0 , xL
i /∈ X(cj)

(3.8)

CLU
i,j and CLU

i,j denote the similarity of labelled sample xL
i and unlabelled

sample xU
j for between- and within-class scatter matrix respectively, X(cj) is

the group of class cj which is closest to xU
j .

Given all of these notations, the ISELD transformation matrix WISELD

can be obtained by solving the following cost function:

wISELD = arg max
w

wTSISELDw

wTSISELDw
(3.9)

where
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SISELD = [Xlabelled,Xunlabelled]

 CLL CLU

(CLU)T CUU


[Xlabelled,Xunlabelled]T = XCISELDXT

SISELD = [Xlabelled,Xunlabelled]

 CLL CLU

(CLU)T CUU


[Xlabelled,Xunlabelled]T = XCISELDXT

To obtain the projection matrix, we solve the generalized eigenvalue problem
of the proposed ISELD method as:

SISELDw = λSISELDw (3.10)

The vectors {w1,w2, · · · ,wd} which solve equation (3.10) are the columns
of WISELD. The columns are ordered according to their eigenvalues λ1 > λ2 >
· · · > λd. Thus, the embedding is as follows:

xi → zi = WT
ISELDxi

Through this projection, the local neighborhood information of the data can
be best preserved, while simultaneously the class discrimination is maximal.

3.2.3 Experiments and Results
The hyperspectral image dataset we used in the experiments is the University
of Pavia. It is an urban image that was captured by the ROSIS optical sensor
around the Engineering School at the University of Pavia. This hyperspectral
image contains 103 bands, 9 classes, and 610 × 340 pixels with a spatial reso-
lution of 1.3 meter. For the classifier, we adapt the k -Nearest Neighbor (here
k equals to 1) as classifier. In order to investigate the impact of the labelled
samples on the classification accuracy, we randomly select the labelled samples
from the training set with the sample size corresponding to different cases: 10,
20, 40, 80 per class. 1500 samples are randomly selected from the original
hyperspectral image, similarly as [Liao 13]. Each experiment was repeated 5
times. In our experiments, we change the number of extracted features from 2
to 20, and record the best result of each method.

The experimental results for different methods are summarized in Fig-
ure 3.1-Figure 3.2 and Table 3.2-Table 3.3. Table 3.2 shows that ISELD per-
forms best when classifying the class ‘trees’, “metal sheets”, “soil” and “bitumen”.
It also can be seen from Table 3.3 that the classification accuracies of PCA and
NPE remains stable as the number of labelled samples increases, this is due
to their unsupervised nature. The supervised method NWFE outperforms the
unsupervised methods, when the number of labelled samples is small, the high-
est overall classification accuracy (OA) is 71.8%, which is much higher than
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Figure 3.1: Comparison of overall classification accuracy OA, as the number of the
extracted features increases using 40 labelled samples. Each experiment was repeated
5 times, the average is acquired.

Table 3.2: Overall classification accuracy (OA%) for each class by using different
feature extraction methods with 40 labelled training samples per class.

Class Train/Test PCA NPE NWFE SELD ISELD

Asphalt 40/6631 67.8 68.1 70.4 68.2 69.2

Meadows 40/18649 62.6 62.5 65.9 80.7 79.7

Gravel 40/2099 62.7 63.0 74.3 67.9 77.5

Trees 40/3064 94.2 94.2 94.3 94.3 95.7

Metal sheets 40/1345 99.7 99.7 99.9 100.0 100.0

Soil 40/5029 67.2 67.5 72.1 85.6 86.6

Bitumen 40/1330 86.6 87.3 88.7 85.2 88.9

Bricks 40/3682 76.7 76.6 78.5 74.4 76.6

Shadow 40/947 98.9 97.9 98.8 97.8 99.3

OA(%) - 69.6 68.7 73.8 78.9 81.4

AA(%) - 79.6 79.7 82.5 84.5 85.4
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Table 3.3: Overall classification accuracy (OA%) and optimal number of features
(in bracket) for different feature extraction methods with different training sample
size.

Methods nk = 10 nk = 20 nk = 40 nk = 80

PCA 68.4(8) 69.2(10) 69.6(12) 69.9(12)

NPE 66.7(14) 68.0(12) 68.7(16) 69.8(10)

NWFE 71.8(10) 72.5(14) 73.8(12) 74.9(12)

SELD 74.6(8) 77.8(8) 78.9(12) 81.2(16)

ISELD 77.6(10) 80.2(8) 81.4(10) 83.1(10)

PCA and NPE. Even when the number of extracted features is as low as 2, the
results look encouraging (above 60%). However, NWFE performs worse than
semi-supervised methods. The semi-supervised method SELD performs well
and its classification results keep stable when the number of features reaches 6.
When the number of labelled training samples per class gets to 80, its highest
OA could be over 81%.

By modelling the correlation of labelled and unlabelled samples, the pro-
posed method ISELD performs much better than SELD even when very limited
labelled samples. We can see from Table 3.3 that the highest OA for our method
are above 80% even with 20 labelled samples per class, which is much better
than the other methods.

3.3 Semi-supervised Graph Learning (SEGL)

3.3.1 Proposed SEGL

In many applications, labelled samples are typically used to enhance class dis-
crimination, but are always very limited. Unlabelled samples, on the other
hand, are much easier accessible. The idea behind semi-supervised feature ex-
traction methods [Liao 13] and [Luo 15] is to infer class discrimination from
labelled samples, as well as the local neighborhood information from unla-
belled samples. This section details our proposed semi-supervised graph learn-
ing method (SEGL) for feature extraction in hyperspectral images.

We exploit the label information and local neighborhood information
through our proposed semi-supervised graph, and our proposed semi-
supervised graph is defined as G = (X,A), X = {Xlabelled,Xunlabelled} =
{xL

1 ,x
L
2 , · · · ,xL

n,x
U
n+1,x

U
n+2, · · · ,xU

n+m} is a set of nodes which connected by a
set of edges Ai,j , Ai,j is the edge (with a weight between 0 and 1) between nodes
xi and xj . The basic goal of our proposed method is to find a transformation
matrix W ∈ RD×d, which can transform the data xi from a high-dimensional
feature space into a low-dimensional data zi = WTxi. The transformation
matrix W can be calculated from cost function as following:
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(a) Groundtruth (b) PCA (c) NPE

(d) NWFE (e) SELD (f) ISELD

Figure 3.2: Classification maps of the different methods. 40 labelled samples per
class were randomly selected from the training set.

arg min
w

(

n+m∑
i,j=1

||WTxi −WTxj ||2Aij) (3.11)

Motivated by [Liao 13] and [Luo 15], which divide training samples into two
groups, and then define between- and within-class scatter matrices by combing
information from these two groups, we proposed a new semi-supervised feature
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extraction method in the view of graph learning. In our proposed method, a
semi-supervised graph is built to model different correlations between samples
as:

A =

ALL ALU

AUL AUU

 (3.12)

A is an adjacency matrix, the top left part ALL is an n × n matrix that
models the correlations between labelled samples, the bottom right part AUU

is an m ×m matrix that models the correlations between unlabelled samples.
Two labelled samples are connected if they belong to same class, two unlabelled
samples are connected if they are within the k -nearest neighbors of others.
Therefore, ALL and AUU can be defined as:

ALL
i,j =

{
1 , yi = yj

0 , yi 6= yj
(3.13)

AUU
i,j =

{
1 , xU

j ∈ knn(xU
i ) or xU

i ∈ knn(xU
j )

0 , xU
j 6∈ knn(xU

i ) and xU
i ∈ knn(xU

j )
(3.14)

where knn(xU
i ) denotes a set of unlabelled samples that are within the k nearest

neighbors of xU
i .

The adjacency matrices ALU and AUL contain the connection between la-
belled and unlabelled samples, AUL = (ALU)T , as A is a symmetric matrix.
Suppose the labelled sample xL

i belongs to class cj , the n×m adjacency matrix
ALU is defined as:

ALU
i,j =

{
1 , xL

i ∈ X(cj)

0 , xL
i 6∈ X(cj)

(3.15)

cj = arg min
c

mc(x
U
j ), c = 1, 2, · · · ,C (3.16)

mc(x
U
j ) =

1

nc

nc∑
t=1

d, (xU
j ,x

(c)
t ) (3.17)

where cj represents the class that xU
j is closest to, andX(cj) is a set including

all labelled samples in class cj , cj ∈ {1, . . . , C}. mc(x
U
j ) denotes the mean

distance of an unlabelled sample xU
j to all labelled samples in class c. d(xi,xj)

is the Euclidean distance between xi and xj . A smaller mc(x
U
j ) means that

xU
j is more similar to labelled samples from class c and more likely to belong

to class c, we set edges between an unlabelled sample xU
j and all labelled

samples xL
j in class c. Here we assume that the distribution of each class is

unimodal [Sugiyama 07].
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In the above definition of the adjacency matrix A, if two nodes are con-
nected, their edges Ai,j are set to 1. If we set the same edges for pairwise
samples, the connected pairwise samples would make same contribution the
definition of the cost function (equation (3.11)). The actual differences and
similarities between samples are not well modelled. Therefore we set a weighted
edge between connected nodes by combing the affinity matrix F with adjacency
matrix A, to make the most similar connected samples be the closest, and less
similar connected samples be more separated when projecting them onto the
low-dimensional feature space. The final similarity matrix A in our proposed
semi-supervised graph G = (X,A) is defined as follows:

A = F�A (3.18)

where “�” denoting element-wise multiplication, Fi,j is the affinity between
xi and xj . In this paper we use the local scaling heuristic [Zelnik 05] as the
definition of affinity matrix F, i.e.,

Fi,j = exp(
−‖xi − xj‖2

δiδj
). (3.19)

‖xi − xj‖ means Euclidean distance between xi and xj , the parameter δi
controls the local “scaling” around xi defined by δi =

∥∥xi − xk
i

∥∥, and δj =∥∥xj − xk
j

∥∥, xk
i is the k-th nearest neighbour of xi. A heuristic choice of k = 7

was shown to be useful through experiments [Zelnik 05]. Fi,j is large if xi and
xj are “close”, and Fi,j is small if xi and xj are “far apart”.

Figure 3.3 shows the graph constructed by our proposed semi-supervised
method. The graph was constructed by selecting 5 labelled samples per class
and 100 unlabelled samples randomly from the University of Pavia data set.
Without F , the edges of all connected samples are equally set to 1, as shown
Figure 3.3(a). However, in real applications, samples even from the same class,
have spectral differences, as shown Figure 3.3(b). If we set all the weights of the
samples from the same labelled class to the same value as SELD [Liao 13] does,
the differences and similarities cannot be well modelled. With our proposed
semi-supervised graph, the differences and similarities are much better mod-
elled. This means two labelled samples xi and xj , that are closer to each other
have a larger connection weight Aij . On the contrary, if they are far away from
each other or mislinked, their connection weight Aij would be smaller, which re-
duces the negative influence of mislinking, as Figure 3.3 (b). Therefore, adding
weights for connected pairwise samples as equation (3.18) can better model
correlations of samples.

After the adjacency matrix A is conformed, by simple algebra formulation,
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Figure 3.3: Semi-Supervised graph.

the cost function (equation (3.11)) can be reduced to:

1

2

∑
ij

(zi − zj)
2Aij =

1

2

∑
ij

(wTxi −wTxj)
2A

=
∑
i

wTxiDiix
T
i w −

∑
ij

wTxiAijx
T
j w

= wTX(D−A)XTw

= wTXLXTw

(3.20)
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where D is a diagonal matrix with Di,i =
∑m+n

j=1 Ai,j , L = D − A is the
Laplacian matrix [Belkin 02]. Matrix D provides a natural measure on the data
points, the bigger the value Di,i (corresponding to zi) is, the more “important”
is zi. Therefore, in order to avoid degeneracy, we impose a constraint as follows:

WTXDXTW = I, (3.21)

I is the identity matrix.
The transformation matrix a that minimizes the cost function is given by

the minimum eigenvalue solution to the generalized eigenvalue problem:

XLXTw = λXDXTw (3.22)

Supposing that w1,w2, · · · are the solutions of above equation, the optimal
transformation matrix W = {w1,w2, · · · ,wd} is made up by d eigenvectors
associated with the least d eigenvalues λ1 < λ2 < · · · < λd of above general-
ized eigenvalue problem. Thus, the high-dimensional sample xi ∈ RD can be
mapped to low-dimensional sample zi ∈ Rd as zi = WTxi.

3.3.2 Experiments and Results

3.3.2.1 Hyperspectral Image Data Sets

Four real hyperspectral data sets are used in our experiments: ‘University of
Pavia’, ‘Pavia Center’, ‘Botswana’ and ‘Kennedy Space Center’. Table 3.4
shows the number of labelled samples in each class for all the data sets. Note
that the color in the cell denotes different classes in the classification maps
(Figure 3.5 and Figure 3.6). The data sets University of Pavia and Pavia
Center, are from urban areas in the city of Pavia, Italy. The data were collected
by the ROSIS (Reflective Optics System Imaging Spectrometer) sensor, with
115 spectral bands in the wavelength range from 0.43 to 0.86 µm, and very
fine spatial resolution of 1.3 meters by pixel. For more details of University of
Pavia, please see section 3.2.3 and Table 3.4.

Pavia Center (PCenter): The data with 1096×715 pixels was collected over
Pavia city center, Italy. It contains 102 spectral channels after removal of 13
noisy bands. Nine groundtruth classes were considered in experiments, see
Table 3.4.

Kennedy Space Center (KSC ): the data set was acquired by NASA AVIRIS
instrument over the KSC, Florida in 1996 and consists of 224 bands of 10-
nm width with center wavelengths from 0.4-2.5 µm. The data, acquired from
an altitude of approximately 20 km, have a spatial resolution of 18 m/pixel.
Several spectral bands were removed from the data due to noise and water
absorption phenomena, leaving a total of 176 bands to be used for the analysis.
For classification purposes, 13 classes representing the various land cover types
that occur in this environment were defined for the site, see Table 3.4. For
more information, see website http://www.csr. utexas.edu/hyperspectral/.
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Botswana (Botswana): The data set was acquired over the Okavango Delta,
Botswana in May 31, 2001 by the NASA EO-1 satellite, with 30 m/pixel reso-
lution over a 7.7-km strip in 242 bands covering the 0.4-2.5 µm portion of the
spectrum in 10-nm windows. Uncalibrated and noisy bands that cover water
absorption features were removed, leaving a total of 145 radiance channels to
be used in the experiments. The data consist of observations from 14 identified
classes intended to reflect the impact of flooding on vegetation, see Table 3.4.
For more information, see http://www.csr.utexas.edu/hyperspectral/.

3.3.2.2 Experimental Setup

The training set X is composed of labelled subset Xlabelled and unlabelled
subset Xunlabelled (such that X = Xlabelled ∪ Xunlabelled, and Xlabelled ∪
Xunlabelled = φ). In order to analyze the influence of the size of labelled sam-
ples on classification accuracy, a number of unlabelled samples m = 2000 was
randomly selected from the image parts with no labels to compose Xunlabelled,
and labelled subset Xlabelled was made of labelled training samples which was
randomly selected from labelled data with the samples size corresponding dif-
ferent case: 20 , 40 , 80 samples per class, respectively. The training of the
classifiers was carried out using the labelled subset Xlabelled. The remain-
ing labelled samples were used as the test set. We compare the classification
accuracies using the proposed SEGL method with results from the following
methods: PCA [Schott 07]; LPP [He 04]; NWFE [Kuo 04]; SDA [Cai 07], where
the parameter α is optimized with fivefold cross-validation within the given set
{0.1, 0.5, 2.5, 12.5, 62.5}; SELF [Sugiyama 10], of which the parameter β is cho-
sen from {0, 0.1, 0.2, ..., 0.9, 1} by fivefold cross-validation; SLPPCE [Zhang 10];
SELD [Liao 13] and ISELD [Luo 15].

We used three common classifiers: 1-Nearest Neighbor (1NN), Support Vec-
tor Machines (SVM) and Random Forest (RF). The SVM classifier with RBF
kernels has two parameters: the penalty factor C and the RBF kernel widths
γ, we optimized C within the given set {10−1, 100, 101, 102, 103} and γ within
the given set {10−3, 10−2, 10−1, 100, 101} by five-fold cross validation, the RF
classifier with 200 trees. All classifiers were evaluated against the test set.
Meanwhile, we use overall classification accuracy (OA) to evaluate the feature
extraction results. The results were averaged over ten runs on different number
of extracted features from 1 to 20, and the average OA was recorded for each
method. The number of nearest neighbors was set to 8.

3.3.2.3 Results on Different Number of Labelled Training Samples

Table 3.5, Table 3.6 and Table 3.7 display the classification accuracies of test-
ing data with different distinct labelled samples size: 20, 40 and 80 per class,
respectively. The best average accuracy of each data set (in column) is high-
lighted in bold. From these tables, we conclude:

1. The results confirm that most semi-supervised feature extraction meth-
ods achieve better results in the classification of hyperspectral images,
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Table 3.5: Overall classification accuracy (OA%) and optimal number of features
(in bracket) by using different feature extraction approaches with labelled training
sample size 20 per class.

Feature
Extraction Classifier

Data Set

UPavia KSC Botswana PCentre

PCA

1NN 67.38(11) 77.90(14) 86.18(14) 94.77(11)

SVM 70.21(8) 85.66(18) 92.72(8) 96.08(12)

RF 73.46(11) 86.40(12) 92.16(7) 95.63(11)

LPP

1NN 66.97(18) 77.93(19) 85.82(13) 94.78(13)

SVM 71.80(9) 86.12(17) 92.15(12) 96.14(11)

RF 72.46(18) 85.46(19) 92.13(9) 95.97(11)

NWFE

1NN 71.34(9) 85.63(17) 90.07(13) 95.92(11)

SVM 72.29(8) 89.64(13) 92.15(10) 96.47(14)

RF 75.84(9) 89.20(15) 92.41(12) 96.09(7)

SDA

1NN 52.67(7) 73.16(8) 72.89(11) 79.86(14)

SVM 51.62(8) 73.87(10) 72.98(11) 79.55(12)

RF 55.72(9) 70.56(8) 71.97(12) 79.33(8)

SELF

1NN 61.42(18) 78.79(18) 83.84(18) 93.64(13)

SVM 63.93(19) 85.98(17) 79.20(14) 93.38(10)

RF 67.98(18) 85.33(15) 82.64(12) 94.34(6)

SLPPCE

1NN 68.96(8) 87.18(13) 89.26(16) 93.81(8)

SVM 67.40(8) 86.14(19) 84.04(12) 92.43(10)

RF 66.83(9) 83.63(12) 86.33(11) 92.28(6)

SELD

1NN 77.27(17) 88.82(19) 93.91(16) 95.44(12)

SVM 75.71(11) 89.44(16) 91.20(10) 95.42(12)

RF 75.53(8) 88.78(13) 91.85(6) 95.59(8)

ISELD

1NN 78.66(11) 90.74(18) 93.94(18) 96.60(9)

SVM 76.20(9) 91.09(15) 93.71(12) 96.52(7)

RF 75.66(8) 89.54(15) 93.41(12) 96.04(7)

SEGL

1NN 79.40(9) 90.81(15) 94.58(12) 96.54(7)

SVM 77.57(8) 92.25(12) 94.14(13) 96.70(8)

RF 76.67(8) 89.52(13) 93.74(13) 96.29(6)
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Table 3.6: Overall classification accuracy (OA%) and optimal number of features
(in bracket) by using different feature extraction approaches with labelled training
sample size 40 per class.

Feature
Extraction Classifier

Data Set

UPavia KSC Botswana PCentre

PCA

1NN 69.46(12) 81.39(19) 87.98(9) 95.33(12)

SVM 74.77(8) 88.53(9) 93.30(8) 96.78(11)

RF 73.88(11) 88.87(18) 93.79(11) 96.13(11)

LPP

1NN 69.43(18) 81.20(18) 87.59(9) 95.33(13)

SVM 77.14(12) 89.13(14) 92.42(11) 96.92(10)

RF 74.20(19) 88.91(9) 93.26(8) 96.23(12)

NWFE

1NN 73.34(9) 87.76(14) 90.44(8) 96.32(14)

SVM 76.62(8) 91.83(12) 93.72(8) 96.87(9)

RF 77.03(11) 91.15(13) 93.98(12) 96.64(8)

SDA

1NN 62.64(8) 84.98(9) 85.12(12) 91.43(13)

SVM 63.64(9) 86.75(10) 85.45(13) 89.99(14)

RF 66.97(9) 84.98(8) 84.87(12) 90.68(12)

SELF

1NN 68.75(18) 81.86(17) 88.58(9) 95.54(11)

SVM 75.85(19) 89.76(15) 90.54(12) 96.75(6)

RF 75.97(12) 89.87(11) 92.79(10) 96.86(9)

SLPPCE

1NN 73.34(8) 89.77(13) 91.93(13) 95.31(9)

SVM 68.16(10) 89.55(18) 88.70(10) 94.73(7)

RF 67.56(11) 89.98(10) 91.34(12) 94.73(8)

SELD

1NN 79.03(10) 91.12(18) 94.69(12) 96.10(9)

SVM 76.20(10) 92.03(15) 93.26(11) 96.68(8)

RF 77.50(9) 91.94(12) 93.69(12) 96.45(7)

ISELD

1NN 79.79(10) 92.65(17) 94.52(18) 97.07(9)

SVM 76.26(9) 92.78(15) 94.31(12) 96.90(6)

RF 76.79(8) 91.91(9) 94.89(12) 96.49(7)

SEGL

1NN 81.22(9) 93.02(12) 95.47(13) 97.19(7)

SVM 78.16(8) 93.19(13) 95.39(12) 97.29(7)

RF 79.14(8) 92.35(12) 95.33(12) 96.59(6)
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Table 3.7: Overall classification accuracy (OA%) and optimal number of features
(in bracket) by using different feature extraction approaches with labelled training
sample size 80 per class.

Feature
Extraction Classifier

Data Set

UPavia KSC Botswana PCentre

PCA

1NN 70.23(11) 83.31(19) 89.71(9) 95.97(12)

SVM 76.81(9) 90.50(18) 94.45(17) 96.61(11)

RF 76.13(11) 91.13(14) 95.32(13) 96.60(8)

LPP

1NN 70.17(12) 84.77(13) 89.4(12) 95.94(13)

SVM 77.95(18) 89.82(8) 94.02(15) 95.52(9)

RF 75.82(19) 90.90(12) 95.33(11) 96.56(8)

NWFE

1NN 74.42(12) 90.03(17) 90.91(12) 96.37(7)

SVM 77.18(9) 93.42(9) 94.90(11) 96.39(8)

RF 78.74(8) 92.57(19) 95.53(11) 96.00(6)

SDA

1NN 70.76(8) 91.74(12) 91.98(10) 95.45(13)

SVM 70.96(10) 91.57(10) 91.87(19) 96.89(9)

RF 71.34(9) 91.38(8) 92.57(13) 95.43(12)

SELF

1NN 69.56(16) 90.50(12) 90.13(11) 95.89(9)

SVM 82.74(18) 92.88(11) 94.12(14) 96.45(12)

RF 80.56(12) 92.89(13) 95.86(12) 96.59(10)

SLPPCE

1NN 74.36(10) 92.87(18) 94.41(9) 96.40(9)

SVM 72.91(10) 92.58(14) 93.22(13) 96.23(9)

RF 78.53(11) 92.26(15) 95.60(13) 96.22(11)

SELD

1NN 81.95(11) 93.43(18) 95.14(12) 97.25(8)

SVM 82.03(11) 93.71(13) 94.97(15) 97.20(8)

RF 82.26(9) 93.80(12) 95.60(11) 96.92(9)

ISELD

1NN 82.47(9) 94.05(12) 94.99(14) 97.16(11)

SVM 79.40(10) 94.22(15) 95.75(12) 97.20(8)

RF 79.75(9) 94.09(10) 95.66(12) 96.86(7)

SEGL

1NN 83.57(10) 94.69(13) 96.44(15) 97.18(8)

SVM 82.26(8) 95.37(12) 96.02(12) 97.64(7)

RF 83.51(9) 93.65(12) 97.13(13) 96.95(7)
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(a) University of Pavia

(b) KSC

Figure 3.4: Averaged OA (%) with the number of extracted features increasing for
different semi-supervised feature extraction method with SVM classifier. 40 labelled
training samples are chosen randomly from each class.
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comparing the unsupervised or supervised feature extraction methods.
The classification accuracy is higher when the number of labelled train-
ing samples increases. Especially for the proposed SELG method, on the
University of Pavia data set, when the labelled training size is small (20
labelled training samples per class), the best average OA is 79.40%, and
if we choose 80 labelled training samples from each class, the best average
OA reaches to 83.57%, which has more than 4% improvements.

2. The semi-supervised feature extraction methods SELD [Liao 13], ISELD
[Luo 15] and the proposed method SEGL, which divide the samples
into two sets (labelled and unlabelled) first, infer class discrimination
from labelled samples and keep local neighborhood information from
unlabelled samples, perform better than other semi-supervised methods
(SELF [Sugiyama 10], SLPPCE [Zhang 10]). This suggests that dividing
the samples into two group (labelled group and unlabelled group) first,
and then achieving different goals on different group (labelled samples
used for inferring class discriminant and unlabeled samples used for pre-
serving local manifold structure) is an effective way in semi-supervised
learning.

3. By connecting unlabelled and labelled samples in the semi-supervised
graph and employing weighted edges between samples, SEGL outper-
forms other semi-supervised methods. Compared with semi-supervised
graph learning method SLPPCE, our proposed SEGL method is 10%
better on the University of Pavia data set, and more than 3% on the
KSC data set.

4. The SVM classifier is more efficient (with higher classification results) on
the data sets KSC and Pavia Centre, however 1NN classifier obtains the
highest average accuracy in most cases for the other two data sets. When
the features were extracted by the unsupervised methods PCA and LPP,
or by the supervised methods NWFE, the RF and SVM classifiers per-
form much better than the 1NN classifier. On the other hand, the SVM
classifier needs more time for classification than RF and 1NN classifier
from the experiments.

5. The proposed SEGL method contains the best average OA on the four
data sets among all results of all experiments. In Table 3.5, the best aver-
age OA results in the University of Pavia and KSC data sets are 79.40%
(SEGL with 1NN classifier) and 92.25% (SEGL with SVM classifier), re-
spectively. This is at least 1% better than others. In Table 3.6, only the
results of proposed methods SEGL with 1NN classifier exceed 81% in the
University of Pavia. For the other three data sets, SEGL still produces
the best results: 93.19%, 95.47% and 97.29% respectively. In Table 3.7,
SEGL with SVM classifier has best results in KSC and Pavia Center data
sets, 95.37% and 97.64% respectively. SEGL with RF classifier gets the
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highest OA 97.13% in Botswana data set, and SEGL with 1NN classifier
gets the highest OA 83.57% in University of Pavia data set.

Figure 3.4 shows the average OA of several semi-supervised learning meth-
ods in function of the number of extracted features. It can be seen that the
proposed SEGL with SVM classifier has better performance than other meth-
ods on the University of Pavia and KSC data sets. With increasing num-
ber of extracted features, the OA of SEGL first improves an then remains
constant or slightly decreases. The optimal number of features extracted by
our proposed method is 8 for University of Pavia and 12 for KSC with SVM
classifier for University of Pavia and KSC, respectively. However, automatic
selection of the optimal number of features is still very challenging for most
methods [Fauvel 08]. The optimal value depends on the distribution of the
data sets, the training samples and the classifiers, see Table 3.5, 3.6, 3.7.
Many approaches select the optimal number of features according to the cu-
mulative variance [Fauvel 08]. However, these approaches do not always work
well, as discussed in [Fauvel 08] [Liao 16].

In order to compare the classification results visually, we randomly select 40
labelled training samples per class from University of Pavia and KSC data sets.
For the SVM classifier, the best classification maps of each methods are shown
in Figure 3.5 and Figure 3.6 respectively. It can be seen that the classification
maps of proposed SEGL looks smooth on the University of Pavia data set, and
this is specially clear for the class “Meadows” and “Soil ”. In the classification
maps of KSC, the proposed method SEGL also yields good classification result,
and outperforms other feature extraction methods in the “Water ” region near
to the coastline, also in the “Salt marsh” parts located in the center of “Water ”
region.

3.3.2.4 Results on Different Number of Unlabelled Training Sam-
ples

This experiment investigates the influence of the unlabelled sample size on the
classification performances. The choice of the number of unlabelled samples is
also a very important step in the semi-supervised methods. A large number of
unlabelled training samples increases computational complexity, while a small
number of unlabelled samples is not sufficient to present the local geometrical
structure or distributions of data sets. We choose 20 labelled training sam-
ples from each class to compose the labelled subset Xlabelled, the number of
unlabelled subset Xunlabelled was evaluated from 500 to 5000 with a step 500.
Figure 3.7 shows the average classification accuracies (OA%) tends with SVM
classifier when increasing the number of unlabelled training samples for various
feature extraction methods. As can be seen, the classification accuracy first im-
proves with the number of training samples and then remains constant as more
and more unlabelled samples are used. The average OA of the proposed SEGL
method improves about 2% when the number of unlabelled training samples is
increased from 500 to 5000 on these two data sets. As on the KSC data set, the
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(a) Groundtruth (b) PCA (c) LPP (d) NWFE

(e) SDA (f) SELF (g) SLPPCE (h) SELD

(i) ISELD (j) SEGL

Figure 3.5: Classification maps of the different methods with SVM classifier for
University of Pavia. 40 labelled samples per class were randomly selected from the
training set.
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(a) Groundtruth (b) PCA

(c) LPP (d) NWFE

(e) SLPPCE (f) SELD

(g) ISELD (h) Proposed SEGL

Figure 3.6: Classification maps of the different methods with SVM classifier for
KSC. 40 labelled samples per class were randomly selected from the training set.
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(a) University of Pavia

(b) KSC

Figure 3.7: Average classification accuracies (OA%) with an SVM classifier for vari-
ous semi-supervised feature extraction techniques, with various number of unlabelled
training samples.
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average OA of ISELD method reaches t 89% when only 500 unlabelled training
samples were chosen, while the OA reaches 92.86% when using 4500 unlabelled
samples.

3.3.2.5 Results on Different Number of Nearest Neighbors

The number of nearest neighbors (k) is an important parameter in our proposed
semi-supervised graph. On the one hand, when k is too small, the local manifold
structure information may not be properly modelled. On the other hand, a
too large k (keep unlabelled samples constant) leads to misclassification. To
investigate the effect of the number of nearest neighbors and unlabelled samples
on the classification accuracy, we take University of Pavia and KSC data sets
as examples in our experiments. 40 labelled training samples were selected
from each class with five-fold cross validation to compose the labelled subset
Xlabelled, the number of unlabelled subset Xunlabelled was evaluated from 500
to 7000 with a step 500, the number of nearest neighbors was changed from 4
to 30 with a step 2.

Figure 3.8 shows the correlations between classification results and two pa-
rameters: number of nearest neighbors (k) and number of unlabelled samples
(m), with SVM classifier. As can be seen, when m is set to 500, the average
OA increases at first and then decreases when the k is changed from 4 to 30.
This indicates that the increase of k, with fixed number of m, will misclassify
many unlabelled samples, leading to poor classification performance. When we
keep k constant, the OA will first increase then fall down as the number of
unlabelled samples increases. This means if k (or m) is set to a larger value,
the possibilities of wrong linked would be increased, i.e. some unlabelled sam-
ples which belong to different classes in reality would be linked, as a result
the performances of the proposed method would be degraded. We can also see
that when the number of unlabelled samples is less than 2000, the classification
results changes a lot with different number of nearest neighbors (k). This is
because the distribution of nearest neighborhood unlabelled samples is sparse
(less density), the change of k has a big effect on the average distance between
a sample and its kth nearest neighbors. Consequently, if k is fixed, the effect of
k on classification decreases as the number of unlabelled data increases. There-
fore in our proposed method, the number of nearest neighbors (k) should be
changed in accordance with the number of unlabelled samples (m). Further-
more, the results show that selecting training samples with cross validation can
improve the classification performances of our proposed method.

Figure 3.9 shows the correlations between classification results and two pa-
rameters: number of nearest neighbors (k) and number of features, with SVM
classifier. The number of nearest neighbors was changed from 4 to 30 with a
step 2, the number of extracted feature was evaluated from 2 to 20 with a step
1. It can be seen that a larger k (with fixed number of the extracted features)
increases the possibility of misclassification, leading to poor classification per-
formances. What’s more, the optimal numbers of features will increase as the
raise of nearest neighbors.
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Figure 3.8: The OA (%) as a function of the number of nearest neighbors and
unlabelled samples, with 40 labelled samples per class and 8 extracted features.
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Figure 3.9: The OA (%) as a function of the number of nearest neighbors and
number of features, with 40 labelled samples per class and 2000 unlabelled samples.

3.4 Improved Semi-supervised Graph Learning
(ISEGL)

In our previous work [Luo 16c], we proposed a semi-supervised graph learning
method for feature extraction, but it only uses spectral and label information,
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without considering spatial or neighbor information. In this section, we present
a novel semi-supervised graph leaning method which takes into account spec-
tral, spatial and label information for classification of hyperspectral imagery.
In our semi-supervised fusion graph, samples are connected according to ei-
ther label information (labelled samples) or their k -nearest neighbors in both
spectral and spatial nearest neighbors (unlabelled samples). Furthermore, we
link a unlabelled sample with all labelled samples in a class which is closest to
this unlabelled sample in both spectral and spatial feature space. Thus, our
proposed method better models the similarities between samples and preserves
local manifold structure both in spectral and spatial feature space. What’s
more, for one sample, if its spectral features (the spectrum of hyperspectral
image) and spatial features (morphological attribute profiles with partial re-
construction (APPR)) are stacked into one vector and transformed to a low-
dimensional feature space, some important features or information would be
lost or mixed, as different types of features have different distributions (fea-
ture spaces) and meanings, the joint feature space is highly non-linear, and
cannot be modelled well as a single linear subspace. Therefore we extract the
low dimensional spectral features from hyperspectral images and spatial fea-
tures from morphological attribute profiles with partial reconstruction (APPR)
separately based on the proposed semi-supervised fusion graph, and fuse the
extracted spectral and spatial features for classification only afterwards. In the
following section, we will briefly introduce the morphological attribute profiles
with partial reconstruction (APPR) first, and then detail our proposed method.

3.4.1 Morphological Attribute Profiles With Partial Re-
construction

The attribute profiles (APs) are obtained by applying a sequence of attribute
filters (AFs) to a gray-level image [Mura 10a]. AFs are operators defined in
the mathematical morphology framework which operate by merging connected
components at different levels in the image according to some measure com-
puted on the components (i.e., attributes). However, being connected filters,
AFs [Ouzounis 07, Salembier 09] together with operators based on geodesic
reconstruction [Soille 03], suffer from the problem that regions of different ob-
jects (e.g., buildings and roads and roads and parking lots are connected) are
sometimes connected by spurious links and will then be considered a single
object. This is called “over-reconstruction” in [Bellens 08]. This phenomenon
might lead to some unexpected results for remote sensed images. To overcome
the limitation of over-reconstruction in geodesic reconstruction [Soille 03], the
approach in [Bellens 08] proposed a partial reconstruction for morphological
opening and closing and better modeled the shape and size of objects in an
image.

In 2016, Liao el at. [Liao 16] proposed a novel framework for morphological
APs with partial reconstruction (APPR) and extended it to the classification of
high-resolution hyperspectral images. The approach first applies morphologi-
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Figure 3.10: Framework for morphological APPR
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Figure 3.11: Proposed framework

cal filters with partial reconstruction [Bellens 08] to separate connected objects
(e.g., roads and parking lots) of a binary image (i.e., at one gray level) into
two disjoint parts, and each part of the separated objects are included in the
two resulting binary images. Then, they apply AFs to these two binary im-
ages. Finally, they integrate all the residuals of the filtered images and get
the final output image by repeating this for all gray levels. Figure 3.10 shows
their proposed framework for morphological APs with partial reconstruction
(APPR).
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Table 3.8: Additional notations used in this section.

Notations Description

APPR attribute profiles (B profiles) generated from hy-
perspectral image: M ×N ×B

xL
i = {xL(spe)

i ;x
L(spa)
i } ith labelled training sample, xL(spe)

i ∈ RD is from
hyperspectral image, xL(spa)

i ∈ RB is from APPR,
xL
i ∈ RD+B

xU
j = {xU(spe)

j ;x
U(spa)
j } jth unlabelled training sample, xU(spe)

j ∈ R(D) is
from hyperspectral image, xU(spa)

j ∈ RB is from
APPR, xU

i ∈ RD+B

cspej the class nearest to sample xU
j in spectral feature

space

cspaj the class nearest to sample xU
j in spatial feature

space

d the number of extracted features

Fspe spectral features extracted from hyperspectral im-
age: M ×N × d

Fspa spatial features extracted from APPR:M×N×d

3.4.2 Proposed ISEGL

In this section, we detail our proposed method, Figure 3.11 shows the proposed
framework, the hyperspectral images are transformed by principal component
analysis (PCA), and the first few important principal components (PCs) are
used as base images to calculated the morphological attribute profiles with
partial reconstruction (APPR) [Liao 16]. Then semi-supervised fusion graph
is obtained based on spectral (as spectrum of hyperspectral image), spatial
(as APPR) and label information. After that, we extract low dimensional
spectral features (Fspe) from the hyperspectral image with the proposed semi-
supervised graph, and extract low dimensional spatial features (Fspa) from
APPR based on semi-supervised fusion graph. Finally the efficient Fspe and
Fspa are fused for classification. In the following, the semi-supervised con-
struction of the proposed spectral-spatial graph will be discussed in details.

Let us define xi = {xspe
i ;xspa

i }, x
spe
i and xspa

i denote the spectral (spec-
trum of hyperspectral image) and spatial (APPR) information of ith samples,
Furthermore, let Xlabelled = {(xL

i , yi)}ni=1, y = {yi}ni=1, yi ∈ {1, 2, · · · , C}, xL
i

means the ith sample in the labelled samples set, yi is the label of xL
i , C is

the number of classes. Finally let Xunlabelled = {xU
n+1,x

U
n+2, · · · ,xU

n+m}, xU
j

denotes jth sample in the unlabelled samples set, n and m denote the number
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of labelled and unlabelled training samples.
We exploit the label information and spectral-spatial local neigh-

borhood information through our proposed semi-supervised graph,
which is defined as G = (X,A), X = {Xlabelled,Xunlabelled} =
{xL

1 ,x
L
2 , · · · ,xL

n,x
U
n+1,x

U
n+2, · · · ,xU

n+m} is a set of nodes which connected
by a set of edges Ai,j , Ai,j is the edge (with a weight between 0 and 1)
between nodes xi and xj . The basic goal of our proposed method is to find
two transformation matrices Wspe and Wspa, which can transform the data
xi = {xspe

i ;xspa
i } in high-dimensional feature space into low-dimensional

sample zi = {zspei ; zspai }, zspei and zspai are obtained by zspei = WT
spex

spe
i

and zspai = WT
spax

spa
i . The transformation matrices Wspe and Wspa can be

optimized as follows:

Wspe = arg min
W

(

n+m∑
i,j=1

||WTxspe
i −WTxspe

j ||
2Aij) (3.23)

Wspa = arg min
W

(

n+m∑
i,j=1

||WTxspa
i −WTxspa

j ||
2Aij). (3.24)

In many applications, labelled samples are used to enhance class discrim-
ination, but the number of them is always very limited (labelling samples is
time consuming and expensive). Unlabelled samples, on the other hand, are
much easier accessible. The idea behind semi-supervised feature extraction
methods [Liao 13] is to infer class discrimination from labelled samples (labels
samples help to provide semantic meaning to clusters and the discriminant of
different classes), and to preserve local manifold structure from unlabelled sam-
ples. As in [Luo 15], we define our proposed semi-supervised graph to model
different correlations between samples as:

A =

ALL ALU

AUL AUU

 , (3.25)

where A is the adjacency matrix for all training samples; two nodes are adja-
cent if they are connected, i.e. if Aij 6= 0. The adjacency matrix ALL is an
n × n matrix that models the correlations between labelled samples. If two
samples belong to the same class, we create an edge between them. The adja-
cency matrix AUU, which is a m×m matrix, models the correlations between
unlabelled samples. We connect two unlabelled samples if they are within the
k-nearest neighbors of each other both in spectral and spatial feature space.
ALL and AUU are defined respectively as:

ALL
i,j =

{
1 , yi = yj

0 , yi 6= yj
(3.26)
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AUU
i,j =

{
1 , x

U(spe)
j ∈ knn(x

U(spe)
i ) and x

U(spa)
j ∈ knn(x

U(spa)
i )

0 , x
U(spe)
j 6∈ knn(x

U(spe)
i ) or xU(spa)

j 6∈ knn(x
U(spa)
i )

(3.27)

where knn(x
U(spe)
i ) denotes the set of samples that are within the k near-

est neighbors of xU(spe)
i . The adjacency matrices ALU and AUL contain the

connection between labelled and unlabelled samples, AUL = (ALU)T , as A is
a symmetric matrix. Suppose the labelled sample xL

i belong to class cj , the
n×m adjacency matrix ALU is defined as:

ALU
i,j =

{
1 , xL

i ∈ X(cj), cj = cspej and cj = cspaj

0 , othervise
(3.28)

where X(cj) is a set including all labelled samples in class cj , cj represents the
class closest to xU

j in both spectral and spatial feature space, cspej and cspaj

denote the class closest to xU
j in spectral and spatial space, respectively. The

details to find the closest class are explained in [Luo 15]. With this approach,
the connected labelled and unlabelled samples have similar spectral and spatial
features, and belong to the same class with high probability.

Table 3.9: Overall classification accuracies (OA)(%) of different schemes with dif-
ferent training size nc/per class.

Methods nk = 10 nk = 20 nk = 40 nk = 80

Raw 69.6 73.1 76.3 79.6

APPR 81.5 84.9 88.9 91.0

PCA 75.0 85.6 91.9 93.1

NWFE 87.4 91.2 93.7 95.8

Proposed 88.1 93.8 96.6 97.6

3.4.3 Experiments and Results

The hyperspectral image dataset we used in the experiments was the Univer-
sity of Pavia; see section 3.2.3 and Table 3.4. The SVM classifier with radial
basis function (RBF) kernels is utilized in our experiments. The parameters of
SVM classifier are set the same as in our previous work [Luo 15]. In order to
investigate the impact of the labelled samples on the classification accuracy, we
randomly select the labelled samples from the training set with the sample size
corresponding to different cases: 10, 20, 40, 80 per class. 1500 samples were
randomly selected from the original hyperspectral image, similarly as [Liao 13].
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Table 3.10: Overall Classification accuracies(OA)(%) for different classes with 40
labelled training samples per class.

Train/Test Raw APPR PCA NWFE Proposed

No. of features - 103 180 15+15 15+15 15+15

Asphalt 40/6631 69.6 88.3 94.9 94.4 94.7

Meadows 40/18649 78.5 83.8 89.1 94.2 99.3

Gravel 40/2099 60.5 96.2 98.0 95.4 95.5

Trees 40/3064 75.6 96.4 93.6 79.6 97.3

Metal sheets 40/1345 98.4 99.6 99.7 98.8 99.4

Soil 40/5029 65.0 86.8 85.8 93.0 85.8

Bitumen 40/1330 85.5 98.8 98.2 96.2 99.0

Bricks 40/3682 84.5 98.7 98.4 98.1 99.2

Shadow 40/947 100 100 94.4 100 100

OA(%) - 76.3 88.9 91.9 93.7 96.6

AA(%) - 79.7 94.3 94.7 94.4 96.7

Each experiment was repeated 5 times. In our experiments, the proposed
method has been compared with PCA and NWFE [Kuo 04], and 15 spectral
features are extracted from hyperspectral image and 15 spatial features are
extracted from APPR by each method. Raw means the original hyperspectral
image, APPR is all morphological attribute profiles, PCA and NWFE use
both 15 spectral features and 15 spatial features.

The experimental results for different methods are summarized in Table 3.9-
Table 3.10 and Figure 3.12. In the table, the optimal results are highlighted in
bold. The results show that using only spectral or only spatial features is not
sufficient for a reliable classification: fusion improves the classification perfor-
mance, with the highest OA 97.6% for the proposed method. By comparing
the results reported in Table 3.9, it is easy to infer that the proposed semi-
supervised method outperforms unsupervised PCA and supervised NWFE, as
it combines the advantages of labelled and unlabelled samples. When the num-
ber of labelled training samples is only 20 per class, the classification accuracy
still reaches to 93.8%. Table 3.10 shows that the proposed method performs
well, especially on classifying Meadows, bitumen and bricks, the classification
accuracies are all above 99%. In particular, the improvements of proposed
method in OA are 2.9%-20.3% compared to the schemes of others.

In order to compare the classification results visually, we randomly select
40 labelled training samples per class from University of Pavia data set, and
classification maps of each schemes are shown in Figure 3.12. It can be seen that
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(a) Groundtruth (b) Raw (c) APPR

(d) PCA (e) NWFE (f) Proposed method

Figure 3.12: Classification maps of the different schemes for KSC, with 40 labelled
training samples per class.

the classification maps of proposed method has higher quality looks smooth,
and this is specially clear for class “Meadows” and “Soil ”.

3.5 Conclusions

In this chapter, we discussed semi-supervised approaches for feature extraction
of hyperspectral remote sensing imagery. First, we proposed an improved lo-
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cal discriminant semi-supervised feature extraction (ISELD) for hyperspectral
image. The proposed ISELD builds correlation matrices of labelled and unla-
belled samples, and offers better class discrimination and better preservation
of local neighborhood information. When a small number of labelled samples
is available, the performance of our approach is outstanding compared to the
other methods.

Secondly, we presented a new feature extraction method with semi-
supervised graph learning, and applied it to classification of hyperspectral
images. The proposed method connects labelled samples according to their
label information, connects unlabelled samples by their k-nearest neighbors
information. For connections of labelled and unlabelled samples, we find the
nearest class for each unlabelled sample first, then connect the unlabelled sam-
ple with labelled samples belonging to its nearest class. Last but not least,
the proposed SEGL method set weighted edges to connected samples by uti-
lizing distance information between samples. This way our proposed SEGL
method can better models the connections between samples through a general
semi-supervised graph than state-of-the-arts. Compared to some related fea-
ture extraction methods on four hyperspectral data sets, our proposed SEGL
has better performance (with higher classification accuracies).

The last contribution of this chapter is to propose an improved version of
SEGL to fuse spectral and spatial information in a semi-supervised way for
feature extraction of hyperspectral image. The spatial information (carried
in morphological features with partial reconstruction), spectral and label in-
formation are first combined to build an optimal semi-supervised graph. By
exploiting the fused semi-supervised graph, we then get transformation matri-
ces to project high-dimensional hyperspectral image and morphological features
to their lower dimensional subspaces separately, the final classification map is
obtained by concentrating the lower-dimensional spatial and spectral features
together as an input of SVM classifier. Experimental results on the classifica-
tion of the real hyperspectral data show the efficiency of the proposed method.

The research in this chapter lead to one journal publication and three pro-
ceedings as follows:

1. Luo Renbo, Liao Wenzhi, Huang Xin, Pi Youguo, Philips Wilfried, “Fea-
ture Extraction of Hyperspectral Images with Semi-Supervised Graph
Learning”. IEEE Journal of Selected Topics in Applied Earth Observa-
tions and Remote Sensing. 2016; 9(9): 4389-4399.

2. Luo Renbo, Liao Wenzhi, Zhang Hongyan, Pi Youguo, Philips Wil-
fried, “Spectral-Spatial Classification of Hyperspectral Images with Semi-
Supervised Graph Learning”. SPIE Remote Sensing. Sep.2016.

3. Luo Renbo, Liao Wenzhi, Pi Youguo, Philips Wilfried, “An improved
semi-supervised local discriminant analysis for feature extraction of hy-
perspectal image”. Joint Urban Remote Sensing Event, Proceedings
(JURSE 2015). Mar. 2015. p. 1-4.
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Classification based on

Joint Cloud-shadow HS and
LiDAR Data

In the previous Chapters, we proposed supervised and semi-supervised feature
extraction methods for classification, but all these methods only use hyperspec-
tral data. In most piratical applications, hyperspectral data are not enough for
pattern recognition and classification. For instance, hyperspectral data can-
not distinguish different objects made from similar materials. If hyperspectral
data are shadowed by clouds, the objects in shadow region will be difficult to
recognize (shadow region becomes dark as its low radiance). Recent advances
in Light Detection And Ranging (LiDAR) sensors allow gathering more useful
and complementary information for Earth observation. Specifically, LiDAR
can provide elevation information, and is not influenced by clouds and shad-
ows (as LiDAR detect objects on Earth surface based on pulsed laser). For an
increased classification performance, fusion of hyperspectral and LiDAR data
recently attracted interest but the topic is quite challenging. Most existing
classification methods which fuse hyperspectral and LiDAR data suffer from a
poor performance in cloud-shadow regions because of lack of sufficient training
data and inadequate combination of the advantages of different source data.

In this Chapter, we propose a new framework to fuse hyperspectral and Li-
DAR data for classification of remote sensing scenes mixed with shadows due
to partial cloud cover. We process the cloud-shadow and shadow-free regions
separately. Our main contribution is the development of a novel method to
generate reliable training samples in the cloud-shadow regions. Classification
is performed separately in the shadow-free (classifier is trained with the avail-
able training samples) and cloud-shadow regions (classifier is trained by our
generated training samples). Our method integrates spectral (i.e. original hy-
perspectral image), spatial (morphological features computed on hyperspectral
image) and elevation (morphological features computed on LiDAR) features.
The final classification map is obtained by fusing the results of the shadow-free
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and cloud-shadow regions. Experimental results on a real hyperspectral and
LiDAR dataset demonstrate the effectiveness of the proposed method, as the
proposed framework improves the overall classification accuracy with 4% for
whole scene and 10% for shadow-free regions over the other methods.

4.1 Introduction

Recent advances in sensor technology allow us to measure different aspects of
the objects on the Earth’s surface, e.g. the spectral reflectance using hyper-
spectral images, and height information using Light Detection And Ranging
(LiDAR) data [Bruce 13]. Nowadays, hyperspectral images of both high spa-
tial and spectral resolutions are available and can provide valuable spectral
information for land use/cover applications [Bioucas-Dias 13]. However, their
use is still limited in very complex scenes in which many objects are made of
similar materials (e.g. roofs, parking lots and roads). Moreover, optical in
nature, hyperspectral sensors suffer from cloudy weather conditions. On the
other hand, LiDAR data provides complementary information related to the
size, structure and elevation of different objects [Jung 14], but fails to discrim-
inate between different objects that are similar in altitude while quite different
in nature (e.g. grass field and swimming pool). Therefore, using a single data
source (either hyperspectral or LiDAR data) alone might not be sufficient to
obtain reliable classification results.

Due to an increased availability of hyperspectral and LiDAR data from over-
lapping areas, the fusion of hyperspectral and LiDAR data has recently been
explored intensively. In [Gu 15], Gu et al. proposed a multiple-kernel learning
(MKL) model to integrate heterogeneous features from hyperspectral images
and LiDAR data for urban area classification. Elakshe et al. [Elakshe 08] ex-
plored the fusion of hyperspectral and LiDAR data for coastal mapping by using
hyperspectral imagery to discriminate between road and water pixels, and Li-
DAR data to detect and create a vector layer of building polygons. Dalponte
et al. [Dalponte 08] investigated the joint use of hyperspectral and LiDAR
data for the classification of complex forest areas. Yokoya et al. [Yokoya 14]
fused hyperspectral images and LiDAR data for landscape visual quality as-
sessment and enabled the prediction of landscape quality from any viewpoint
using large-scale remote sensing observations. In [Naidooa 12], classification
of eight common savanna tree species was performed by fusing hyperspectral
and LiDAR data with an automated Random Forest modelling approach. Shi-
moni et al. proposed a score-level fusion approach to detect stationary vehicles
under shadows in [Shimoni 11], where detection scores from both hyperspec-
tral and LiDAR data are derived separately and combined with a simple sum
rule. From these literatures [Gu 15]- [Liao 14], it can be concluded that the
combination of hyperspectral and LiDAR data can contribute to a more com-
prehensive interpretation of ground objects, as hyperspectral and LiDAR data
contain different and complementary information for same objects.

As the footprint of one object often contains more than one pixel and thus
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(a) False RGB image of hyperspectral data

(b) LiDAR image

(c) Available training samples

(d) Test samples

Figure 4.1: Experimental data set

a high spatial correlation is expected between neighboring pixels, and many
approaches [Chen 14]- [Liao 12] exploit this correlation to improve the fusion
of hyperspectral and LiDAR data and to address the “salt-and-pepper” noise
in classification. In [Pedergnana 12], Pedergnana et al. applied morphologi-
cal attribute profiles (MAPs) [Mura 10b] to model hyperspectral and LiDAR
data, and fused multiple feature sources in a stacked architecture. Recently,
Khodadadzadeh et al. [Khodadadzadeh 15] developed a new strategy to fuse
hyperspectral and LiDAR data by stacking multiple types of features (spatial
and spectral features from hyperspectral, elevation features from LiDAR). The
above mentioned methods have demonstrated that combining spectral, spatial
and elevation features further boosts the accuracy of land cover classification
maps. However, stacking the high dimensional spectral and morphological fea-
tures directly (storing data in a vector) may lead to the curse of dimensionality
problem [Hughes 68] and excessive computation time. What’s more, the joint
higher dimensional feature space is highly non-linear, the stacked vector may
not be easy to process as a single linear subspace.

In 2013, the Data Fusion Technical Committee of the IEEE Geoscience and
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Remote Sensing Society (GRSS) organized a contest involving two types of data
sources: a cloud-shadow hyperspectral image and a LiDAR derived digital sur-
face model (DSM) [Hyp 13], see Fig 4.1. The competition was established to
stimulate the development of advanced methods to fuse hyperspectral and Li-
DAR data for classification [Debes 14]. More than 900 researchers from univer-
sities, national labs, space agencies and corporations across the globe registered
to the contest. The contest data sets contain many regions with shadows due
to cloud cover (as hyperspectral image). As cloud shadows weaken most of the
spectral reflectance (shadowed region has much lower radiance compared with
shadow-free region), most objects in cloud-shadow regions become dark, thus
prevent accurate land cover mapping [Zhu 14]. Moreover, as the clouds emerge
and move irregularly and unpredictably, it is very difficult to label training
samples and acquire remote sensing images at the same time, and to prepare
two distinct sets of training samples for shadow-free and cloud-shadow regions
in a remote sensing scene. Typically, most of the pixels in the cloud-shadow
regions will be misclassified when only using training samples selected from
shadow-free regions, as the spectral reflectance information of samples located
within and out of the cloud-shadow are totally different, see Figure 4.2.

In order to improve classification performance by fusing hyperspectral im-
age and LiDAR data, a graph-based fusion method [Liao 15] was proposed, in
this method, the problem of multi-sensor data fusion is solved by projecting all
features (spectral, spatial, and elevation) into a low-dimensional subspace, on
which neighborhood relationships among data points (i.e., with similar spec-
tral, spatial, and elevation characteristics) in the original space are maintained.
Debes et al. [Debes 14] proposed a two-stream classification framework which
combined the hyperspectral and LiDAR data by a parallel process that involves
both unsupervised and supervised classification. Ghamisi et al. [Ghamisi 16]
fused hyperspectral and LiDAR data by using extinction profiles and deep con-
volutional neural networks and achieved improved classification results. How-
ever, even though all the available training samples located in shadow-free
regions were used to train the classifiers, the classification performances of the
cloud-shadow regions were not satisfactory [Khodadadzadeh 15]- [Zhong 16].

In this Chapter, we propose a novel framework to fuse hyperspectral and Li-
DAR data for classification of remote sensing scenes mixed with cloud-shadow.
The proposed method performs classification separately on the cloud-shadow
and shadow-free regions. We solve the problem of missing training samples in
the cloud-shadow regions by developing a method to generate reliable training
samples. This method is based on the truth that in the cloud-shadow regions
different feature sources can be seen as features from different aspects for same
objects, and that elevation features from LiDAR data are more reliable than
spectral features from hyperspectral image as LiDAR sensor is not influenced
by shadows. We then classify the shadow-free (using the available training
samples) and cloud-shadow regions (using the generated training samples) sep-
arately by integrating spectral, spatial and elevation features, obtained by ex-
ploiting attribute profiles [Mura 10a]. The final classification map is produced
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Figure 4.2: Radiance of different materials.
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by decision fusion of the obtained cloud-shadow and shadow-free maps.
We can also interpret our proposed framework from the viewpoint of domain

adaptation [Tuia 16]. The shadow-free region can be seen as the source domain,
whereas the cloud-shadow region can be seen as a target domain. The labeled
training set is only available for the source domain. According to the condition
that the source and target domains share the same set of classes and elevation
features (LiDAR), we make use of the information from the source domain to
generate training samples for the classification of the target domain.

The remainder of this Chapter is organized as follows: section 4.2 describes
the proposed framework, with a detailed description of every part of the pro-
posed method. The experimental results on real urban cloud-shadow hyper-
spectral images and LiDAR data are presented and discussed in Section 4.3.
Finally, the conclusions of the Chapter are drawn in Section 4.4.

Figure 4.3: Flowchart of the proposed framework, here hyperspectral Inocloud and
hyperspectral Icloud denote the shadow-free and cloud-shadow regions of hyperspectral
image, EMAPshsi and MAPslid mean morphological profiles extracted from hyper-
specral and LiDAR data. ‘Co-training samples’ are generated training samples by
our methods for cloud-shadow regions.

4.2 Proposed Framework
Clouds heavily distort the sun’s reflectance, information analysis based on such
distorted optical images is not always reliable. Meanwhile, collection of train-
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ing data is preferably done on the ground, and since the clouds emerge and
move irregularly and unpredictably, it is very difficult to obtain remote sensing
images and label training samples from both cloud-shadow and shadow-free
regions at the same time. If remote sensing images collection and samples
labelling happen not at the same time, we can’t sure the labelled samples
locate in cloud-shadow or shadow-free region as clouds move unpredictably.
Moreover, users prefer to select training samples from shadow-free regions for
better visualization and interpretation. For example in Figure 4.1c, all training
samples were collected from shadow-free regions. When classifying a remote
sensing scene with a classifier, trained on a shadow-free training set only, the
results on the cloud-shadow regions will be very poor, the main reason being
that objects made of the same material have different spectral reflectance in
cloud-shadow and shadow-free regions (Figure 4.4). However, it is important to
notice that within the cloud-shadow regions, objects made of different materi-
als have different spectral signatures (Figure 4.4), indicating that these regions
still contain sufficient distinctive information. Some notations used throughout
this Chapter are summarized in Table 4.1.

Therefore, we propose a novel framework for the classification of remote
sensing scenes containing cloud shadows. In the proposed framework, as shown
in Figure 4.3, we first divide the hyperspectral image into two different parts:
cloud-shadow (hyperspectral Icloud) and shadow-free (hyperspectral Inocloud)
regions. EMAPshsi and MAPslid denote the additional spatial and elevation
information extracted from hyperspectral and LiDAR data by attribute pro-
files [Mura 10a], respectively. For the classification of shadow-free regions hy-
perspectral Inocloud, we fuse multiple features using a similar framework as
in [Fauvel 08]. To reduce the redundancy of both the original spectral data
and the spatial information (e.g. two continuous bands in hyperspectral im-
age have high correlation and contain redundancy, two morphological profiles
with high correlation in EMAPshsi and MAPslid also contain redundancy),
we first use feature extraction (FE) techniques to extract relevant information
from each single feature source. Then we concatenate all extracted features to-
gether, and use these as input for a classifier to obtain the classification map of
shadow-free region. In order to generate a classification map of cloud-shadow
regions map Mcloud, we propose a novel method to generate some samples from
cloud-shadow regions as training samples for classification of this region, which
will be detailed in the following subsection. Using these generated training
samples, the pixels in the cloud-shadow region can be classified by integrating
spectral and morphological features computed on the hyperspectral image and
elevation or morphological features computed on the LiDAR data, just as in
the case of shadow free regions. Last but not least, the final classification map
of a cloud mixed remote sensing scene is obtained by fusing map Mnocloud and
map Mcloud.
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(a)

(b)

Figure 4.4: (a) Reflectance of different materials in cloud-shadow region; (b) Re-
flectance of similar materials in cloud-shadow and shadow-free region.

4.2.1 Morphological Attribute Profiles

For the classification of very high-resolution remote sensing data, spatial in-
formation (e.g. the size and shape of objects) has been widely exploited [Pe-
saresi 01]- [Benediktsson 05]. To model the spatial information from hyper-
spectral images and LiDAR data, Pesaresi et al. [Pesaresi 01] build so-called
morphological profiles (MP). As an extension of the concept of MP, attribute
profiles (APs) [Mura 10a] provide a multilevel characterization of an image by
the sequential application of morphological attribute filters, which model dif-
ferent specifications of the structural information contained in the scene, such
as length, area and shape of objects. In [Mura 11], [Ghamisi 14b], extended
multi-attribute profiles (EMAPs) were developed to extract abundant spatial
information in hyperspectral images. All above literatures prove that attribute
profiles (APs) and extended multi-attribute profiles (EMAPs) can model dif-
ferent attributes (as size, shape and standard deviation) of objects flexibility,
and these profiles make an obvious contribution to the classification.



4.2 Proposed Framework 97

Table 4.1: Some notations used in this Chapter.

Notations Description

HS image raw data cube: M ×N ×D, D is number of bands

EMAPshsi attribute profiles (134 profiles) from HS image: M ×N × 134

MAPslid attribute profiles (67 profiles) from LiDAR image: M ×N × 67

n number of labeled training samples

C number of classes

yi label of ith training sample

y
′
i label of ith sample in map Mlid

xspe
i ith sample (column vector) in HS image, xspe

i ∈ RD

xspa
i ith sample (column vector) in EMAPshsi, x

spa
i ∈ R134

xlid
i ith sample (column vector) in MAPslid, x

lid
i ∈ R67

xSta
i xSta

i = {xspe
i ;xspa

i } ∈ RD+134

d the number of extracted features from each data source

Fspe spectral features extracted from HS image: M ×N × d

Fspa spatial features extracted from EMAPshsi: M ×N × d

F lid elevation features extracted from MAPslid: M ×N × d

G = {gij} cloud-shadow mask

X
′

c(k) co-training samples for class c in kth iteration

nc(k) number of samples in X
′

c(k)

mspe
c(k) center of X

′

c(k−1) in spectral feature space, mspe
c(k) ∈ RD

mspa
c(k) center of X

′
c(k−1) in spatial feature space, mspa

c(k) ∈ R134×1

Attribute profiles (AP) generate a multi-level decomposition of the input
image based on morphological attribute filters, which can properly extract and
model the spatial information of the adjacent pixels with progressively higher
threshold values. Suppose λ = {λ1, λ2, · · · , λn} (λi < λj with i < j) is a
sequence of predefined criteria for morphological attribute filters (an attribute
profile is an image filtered according to λi) used in a gray scale image g, then
an AP of g can be defined as:

AP(g) = {φn(g), · · · , φ1(g), g, ϕ1(g), · · · , ϕn(g)}, (4.1)

where φi and ϕi denote the attribute thinning and thickening operations with
reference values λi.
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Figure 4.5: General architecture of EMAPs, λai denotes the predefined conditions
of attribute ai.

The above AP only works on a gray scale image. In order to extend the
concept of the AP to hyperspectral images, one possible way is to perform a fea-
ture reduction approach (such as PCA) on the input data and then apply APs
to the first principle components [Ghamisi 14a]. Let PCi i = {1, ..., c} denotes
the first principle components of hyperspectral image, then the extended-AP
(EAP) is given by:

EAP = {AP(PC1),AP(PC2), · · · ,AP(PCc)} (4.2)

The presented EAPs model the size and structure of different objects based
on one attribute. If more attributes (e.g. area, diagonal of bounding box,
length and standard deviation) are considered, extended multi-attribute profiles
(EMAPs) can be denoted as:

EMAPshsi = {EAPa1 ,EAPa2 , · · · ,EAPam} (4.3)

where ai is a generic attribute (e.g. length, area and shape) and EAP =
EAP \ (PC1, PC2, · · · , PCc). Removing PCs from EAPai

, i > 1 is necessary
for avoiding redundancy since the original components PCi are present in each
EAP. Figure 4.5 shows the general architecture of EMAPshsi . EMAPshsi can
be seen as a data cube by stacking attribute profiles (grey images) obtained
above, and every pixel in EMAPshsi is a vector.

Attribute filters can also be applied in LiDAR image to produce attribute
profiles and model elevation features. An attribute thinning acts on bright
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objects (for LiDAR image, the bright regions are actually areas with high el-
evation, such as the top of a roof), while thickening acts on dark (low height)
objects. For example, an attribute thinning deletes bright objects that are
smaller than the threshold λi. By computing a series of attributes, a complete
attribute profile is built, carrying information about the elevation information
of objects in the image. Let L denotes the LiDAR image, which is treated as a
gray scale image where the value of a pixel denotes the altitude at that point.
Then the AP of L can be defined as:

AP(L) = {φn(L), · · · , φ1(L), L, ϕ1(L), · · · , ϕn(L)} (4.4)

As the LiDAR image has only one single band (elevation of objects), we use the
term multi-APs (MAPs) instead of extended multi-attribute profiles (EMAPs)
to model the spatial information in LiDAR image, with exploiting different
attribute filters. Then the MAPs generated from LiDAR image (MAPslid)
can be expressed as:

MAPslid = {APa1
(L),APa2

(L), · · · ,APam
(L)}, (4.5)

where ai, i = {1, · · · ,m} are the attributes including the area, diagonal of
bounding box, length and standard deviation, etc.

Figure 4.6 shows some of the obtained APs on the hyperspectral and LiDAR
images. The objects of the hyperspectral image under cloud shadow appear to
be darker. Moreover, many objects (even in different categories) exhibit similar
intensities (Figure 4.6a). APs of LiDAR data are clearly less influenced by
the cloud (Figure 4.6b), small objects disappear as the scale increases. With
EMAP, additional spatial and elevation can be extracted.

4.2.2 Multiple Feature Classification
From hyperspectral and LiDAR data, three types of feature sources can be ob-
tained: spectral values from the original spectrum of the hyperspectral image,
EMAPshsi from the hyperspectral image and MAPslid from the LiDAR data,
all of them having high dimensionality. If these features are stacked together
directly, the dimensionality of this stacked vector will be very large, thus lead-
ing to the problem of the curse of dimensionality. Moreover, the stacked vector
will contain redundant information and noise. Therefore, we propose to use
feature extraction (FE) methods before stacking, to reduce the dimensionality
of the spectral features. Concretely, we compute the low dimensional features
EMAPshsi and MAPslid before fusing the extracted low-dimensional features
together for classification. Here the non-parametric weighted feature extraction
(NWFE) methid [Kuo 04] is chosen, as it is proven to be efficient to extract
discriminative features for classification of hyperspectral image [Ghamisi 14a].

Figure 4.7a shows the proposed multiple feature classification strategy.
First, the original hyperspectral data is transformed by NWFE to obtain a
reduced set of effective spectral features (Fspe) that contains the spectral in-
formation of the hyperspectral data. In parallel, the hyperspectral image is
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(a) APs of hyperspectral image with first PC

(b) APs of LiDAR data

Figure 4.6: Attribute thinning with “area” attribute. From up to down, the area
size was set to 200, 500, and 1000 respectively. (a) APs of hyperspectral image with
first PC; (b) APs of LiDAR data.
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(a) Proposed multiple feature classifica-
tion

(b) Multiple feature classification pro-
posed in [Khodadadzadeh 15]

Figure 4.7: Multiple feature classification
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transformed by PCA, and the first few important PCs that correspond to 99%
of the cumulative variance are used to construct the EMAPshsi . If there are
c PCs, each AP is composed of n thickening and n thinning transformations
of the corresponding PC for each attribute and the number of attributes is m,
then there are in total c × (m × (2n) + 1) features in the EMAPs. In order
to reduce redundancy and noise, avoid the curse of dimensionality and save
processing time, NWFE is applied to extract an effective feature set (Fspa)
from EMAPshsi before classification. On the LiDAR data, exactly the same
is done to extract an effective elevation feature set (Flid) from the MAPslid .
Finally, the obtained Fspe, Fspa and Flid are concatenated into one stacked
vector Ffusion.

Another strategy would be to make up a large stacked vector from the
spectral features, the spatial profiles of EMAPshsi and elevation profiles of
MAPslid [Khodadadzadeh 15], and then extract effective features from this
large stacked vector (Figure 4.7b). In that case however, since the differ-
ent feature sources have different distributions, the information will be not
equally represented in the stacked vector, and some important features may
get lost or mixed if we project stacked features from different sources into a
low-dimensional feature space together. We verified experimentally that the
first strategy is the more effective one.

4.2.3 Cloud-shadow Detection

Cloud shadow cannot be always avoided during the acquisition of optical remote
sensing data. The presence of cloud and shadow complicates the analysis of re-
mote sensing data, leading e.g. to false detection of land cover change [Zhu 14],
biased estimation of Normalized Difference Vegetation Index (NDVI) values,
and mistakes in classification tasks. Therefore, the detection of cloud shadow
is an initial and important step [Arvidson 01]. Actually, many approaches
have been developed to detect cloud shadow, such as geometry-based meth-
ods [Luo 08] and the Fmask algorithm [Zhu 12,Frantz 15].

Since cloud-shadow detection is not the primary goal of this work, we will
apply a simple method based on area attribute filters [Mura 11] to detect
big cloud-shadow regions, because in our specific case study area, the area
of the cloud-shadow is much larger and darker than other ground objects. By
increasing the thresholds of the area attribute, more and more bright objects are
filtered out, leaving finally the largest dark cloud shadow region (Figure 4.8b).
The cloud-shadow mask is then obtained by binarizing the result (Figure 4.8c).
In fact, there is a very small cloud-shadow region present at the top center-right
of the image. We just choose the large main cloud-shadow as an example here,
as all shadowed testing samples are located in this large cloud-shadow region.
Denote G = {gij} as the cloud-shadow mask, with pixel values gij = 0 in the
cloud-shadow region and gij = 1 in the shadow-free region.
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(a) False RGB image of hyperspectral data

(b) Area attribute thinning with area size 3000 of hyperspectral data

(c) Extracted cloud-shadow map

Figure 4.8: Cloud map detection.

4.2.4 Co-training Samples Generation

In this section, we describe a new method to generate and label a separate
training set (called co-training samples) for the cloud-shadow regions. Since
LiDAR data are not influenced by clouds (based on laser pulse), our proposed
method uses single elevation information (i.e., Flid, see section 4.2.2) to obtain
an initial classification map (Mlid). However, single elevation information from
LiDAR data is not sufficient for a reliable classification, as many objects from
different class in urban areas are of similar height. Therefore, we combine the
spectral and spatial information from the hyperspectral image with Mlid to
generate new co-training samples from cloud-shadow regions in the following
way (Figure 4.9a):

Suppose XSta = {xSta
i }ni=1 denote the set of samples, xSta

i = {xspe
i ;xspa

i },
y
′

= {y ′i}ni=1, x
spe
i and xspa

i denote the spectral information in the hyperspec-
tral image and spatial information in EMAPshsi of the ith pixel respectively,
y
′

i ∈ {1, · · · , C} denotes the label of pixel i in the classification map (Mlid, see
Figure 4.9a) obtained by the LiDAR feature source.

In fact, multiple feature sources (i.e., the original hyperspectral image,
EMAPshsi from hyperspectral image and MAPslid from LiDAR image) can
be seen as information from different aspects for pixels. For two samples, if
their information are similar from all aspects, we assume they belong to same



104 Classification based on Joint Cloud-shadow HS and LiDAR Data

class and share same labels. Let X
′

c(1) be a set of initial co-training samples
(selected based on Map Mlid and information from hyperspectral data) which
belong to class c. X

′

c(1) can be obtained as follows:

X
′

c(1) = {xSta
i : xspe

i ∈ knn(mspe
c(1)) andx

spa
i ∈ knn(mspa

c(1))}, (4.6)

where

mspe
c(1) =

1

nc(0)

nc(0)∑
i=1

xspe
i ,with y

′

i = c, (4.7)

mspa
c(1) =

1

nc(0)

nc(0)∑
i=1

xspa
i ,with y

′

i = c, (4.8)

mspe
c(1) and mspa

c(1) can be seen as the initial center of class c in spectral feature
space and spatial feature space respectively, nc(0) is the number of initial gen-
erated co-training samples in class c, knn(mc(1)) denotes the set of k-nearest
neighbors of mc(1). Here k-nearest neighbors are selected based on Euclidean
distance, as Euclidean distance is simple and widely used in k-nearest neighbors
searching. In this way, the generated co-training samples for each class have
similar spectral, spatial and elevation information. For details see Figure 4.9.

However, as map Mlid is obtained only based on a single elevation feature
source, the classification accuracies for some classes are relatively low, leading to
less accurate class centers. As a result, the co-training samples generated based
on equation (4.6) are not reliable. In order to solve this problem, we iteratively
update the class centers, similar as in a mean shift algorithm. Suppose X

′

c(k)

is a set of training samples belonging to class c, generated in the kth iteration.
This set can be obtained from the training set at the (k−1)th iteration through
the following criterion:

X
′

c(k) = {xSta
i : xspe

i ∈ knn(mspe
c(k)) andx

spa
i ∈ knn(mspa

c(k))}, (4.9)

where

mspe
c(k) =

1

nc(k−1)

nc(k−1)∑
i=1

xspe
i ,with xSta

i ∈ X
′

c(k−1), (4.10)

mspa
c(k) =

1

nc(k−1)

nc(k−1)∑
i=1

xspa
i ,with xSta

i ∈ X
′

c(k−1), (4.11)

mspe
c(k) and mspa

c(k) denote the centers of X
′

c(k−1) in spectral feature space and
spatial feature space, respectively, nc(k−1) is the number of samples in X

′

c(k−1).
The iteration procedure can be stopped by introducing two thresholds εspe and
εspa. When

|mspe
c(k) −mspe

c(k−1) |< εspe & |mspa
c(k) −mspa

c(k−1) |< εspa, (4.12)

the center of co-training samples in each class are stable. We define the final co-
training samples set as: X

′

train = {X′1(k),X
′

2(k), · · · ,X
′

c(k)}. The algorithmic
procedure of the proposed co-training samples selection method is formally
stated in Algorithm 2.
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(a)

(b)

Figure 4.9: (a) Co-training samples generation; xspe
i and xspa

i represent spectral
reflectance and EMAPshsi of the ith pixel; (b) xSta

i = {xspe
i ;xspa

i }; the pixel is
labeled c in map Mlid (y

′
i = c); mspe

c and mspa
c are the centers of class c in spectral

and spatial feature space, here xSta
1 and xSta

3 are nearest neighbors of the center
of class c, both in spectral and spatial feature space, and selected as candidate co-
training samples.

4.2.5 Classification Map Fusion

After obtaining the new co-training samples under cloud-shadow regions, mul-
tiple features classification is applied in the same way as for cloud-free regions,
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Algorithm 2 Co-training samples generation algorithm

1: Input: Samples under cloud shadow XSta = {xSta
i }ni=1, xSta

i =

{xspe
i ;xspa

i }, and their labels y
′

= {y ′i}ni=1 in Map Mlid.
2: Calculate the initial spectral center of every class mspe

c(1)(c ∈ {1, · · · , C})
via equation (4.7).

3: Calculate the initial spatial center of every class mspa
c(1)(c ∈ {1, · · · , C}) via

equation (4.8).
4: Find the common nearest neighbors X

′

c(1) via equation (4.6).
5: k = 1
6: Loop
7: Update mspe

c(k) via equation (4.10).
8: Update mspa

c(k) via equation (4.11).
9: if (|mspe

c(k) −mspe
c(k−1) |< εspe and |mspa

c(k) −mspa
c(k−1) |< εspa) then

10: break Loop
11: end if
12: Update X

′

c(k) via equation (4.9).
13: k ← k + 1
14: End Loop
15: Output: Final generated co-training samples X

′

train =

{X′1(k),X
′

2(k), · · · ,X
′

C(k)}.

the only difference being the way the training samples were obtained, where in
the cloud-free regions, we use available training samples outside of the cloud
mask, while in the cloud-shadow regions, we apply our proposed co-training
samples generation procedure. The final classification map is obtained by fu-
sion of the two maps: Mcloud and Mnocloud.

Mfusion = gi,jMcloud + gi,jMnocloud (4.13)

where gi,j is the logical inverse of gi,j .

4.3 Experiments

4.3.1 Data Description

In 2013, the Data Fusion Technical Committee of the IEEE Geoscience and
Remote Sensing Society (GRSS) organized a contest involving two types data
sources: a cloud-shadow hyperspectral image and a LiDAR derived digital sur-
face model (DSM), both at the same spatial resolution (2.5m) [Hyp 13]. The
competition was established to devise advanced methods for fusion and classifi-
cation of hyperspectral and LiDAR data [Debes 14]. This data set was captured
by the NSF-funded Center for Airborne Laser Mapping (NCALM) using the
compact airborne spectrographic imager (CASI-1500) on June 2012 over the
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University of Houston campus and its neighboring urban area. The hyperspec-
tral image has 144 spectral bands with a wavelength range from 380 to 1050
nm. The whole scene of the data contains 349× 1905 pixels. The ground truth
provided for this data set contains 15 classes, summed up in Table 4.2, also
mentioning between brackets the available numbers of training/test samples.
The false color image and LiDAR image are shown in Figure 4.1a and Fig-
ure 4.1b, the distribution of training and test samples are shown in Figure 4.1c
and Figure 4.1d. The given scene contains a large cloud-shadow region (see Fig-
ure 4.1a), which distorts the spectral reflectance of objects in the hyperspectral
image (darkening effect). More information can be found in [Hyp 13].

4.3.2 Experimental Setup

The input hyperspectral image is transformed by principal component analysis
(PCA), and the first two principal components are kept since they contain
almost all of the variance in the hyperspectral image (cumulative variation of
more than 99%). For the feature extraction (FE), we use the non-parametric
weighted feature extraction (NWFE) method [Kuo 04], as it has been shown
to be efficient in many applications [Ghamisi 14a]. To generate the EMAPs,
four attributes are considered: 1) (a) area λa (related the size of the objects);
2) (s) standard deviation λs (as a measure of homogeneity of the objects); 3)
(d) diagonal of the box bounding the objects λd; 4) (i) moment of inertia λi
(as a measure of the elongation of the objects).

For the purpose of generating enough attribute profiles from hyperpspectral
image and LiDAR data [Ghamisi 14b], we select large amount (≥ 10) threshold
values for each attribute filters as follows:

λa=[50 100 200 300 500 700 1000 1500 2000 2500 3000 4000];
λs=[5 10 15 20 25 30 35 40 50 60];
λd=[5 10 25 50 75 100 150 200 300 400 500];
λi=[0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1].
The SVM classifier [Chang ] with radial basis function (RBF) kernels is

applied, containing two parameters: the penalty factor C and the RBF kernel
widths γ. C is optimized within the given set {10−1, 100, 101, 102, 103} and γ
is optimized within the given set {10−3, 10−2, 10−1, 100, 101} by five-fold cross
validation.

In order to validate the efficiency of our proposed framework, we compare
the classification results by using following features as an input for SVM clas-
sifier:

1. Original hyperspectral image (Rawhsi);

2. spectral features Fspe extracted from the hyperspectral image by NWFE;

3. Spatial features Fspa extracted from EMAPshsi by NWFE;

4. Elevation features Flid extracted from MAPslid by NWFE;
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Figure 4.10: (a) OA for the whole scene with increasing number of nearest neighbors;
(b) OA for shadow area with increasing number of nearest neighbors.

5. Stacked features FEstacked, stacking all spectral features, EMAPshsi
and MAPslid first, similar as the approach of [Khodadadzadeh 15], and
then extracting low-dimensional features; by NWFE, as shown in Fig-
ure 4.7(b);

6. Fusion of stacked features Fspe, Fspa and Flid but only using the origi-
nal training samples Ffusion; this is the proposed approach without the
co-training samples generation procedure;

7. Features from the generalized graph-based fusion method Fggf, the same
as in the approach of [Liao 15].

The classification results are quantitatively evaluated by measuring the over-
all classification accuracy (OA), the average accuracy (AA), Kappa coefficient
(κ) on the test samples, shown in Figure 4.1d.

4.3.3 Effect of Number of Nearest Neighbors for Co-
training Generation

The number of nearest neighbors of each class center (e) is an important pa-
rameter in the co-training samples generation procedure. On the one hand,
when e is too small, the number of co-training samples will be insufficient. On
the other hand, a large e will lead to mislabeling of co-training samples, as
some samples with different labels will be included in the nearest neighbors if e
is too large. To investigate the effect of the number of nearest neighbors on the
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classification accuracy, we performed classification experiments with different
numbers of e. The number of nearest neighbors was increased from 50 to 250
with a step size of 10. Figure 4.10 shows the OA for the whole scene and for the
shadow area in function of an increasing number of nearest neighbors. As can
be seen, the average OA increases as the number of nearest neighbors grows
from 50 to 200, and then decreases with more nearest neighbors. This indicates
that if e is set to a small value, the generated number of co-training samples
will be too small to train the classifier well; if e is set to a large value, the
possibility of mislabeling co-training samples increases, leading to poor clas-
sification performances. For this data set, we have set the number of nearest
neighbors to 200 in our experiments.

4.3.4 Classification Results on the data set
This section mainly explores the performance (classification accuracy) of the
proposed method, compared to the other methods. The resulting accuracies
are reported in Tables 4.2, 4.3 and 4.4, and the classification maps are shown
in Figure 4.11 for visual comparison. From the tables and figures, we conclude
the following:

1. The proposed framework improves all results in terms of the overall accu-
racy (OA), the average accuracy (AA), the Kappa coefficient (κ) and the
quality of the classification map. On the shadow-free region, it outper-
forms the state of the art at least 2% in the overall classification accuracy,
in the cloud-shadow region, the improvements are dramatic. On the whole
scene, the proposed framework improves the OA with 3.87%-20.10% over
the other schemes.

2. In general, it can be observed that fusion of multiple features (spectral,
spatial and elevation features) leads to better classification performances
in comparison with using one single type of features. This shows that the
chosen sets of features are efficient and fusing them exploits the informa-
tion contained in both data sources.

3. When investigating the classification accuracies for each class separately
in Table 4.4, it can be clearly noticed that, when single features are
used, the Rawhsi approach produces better results on class ‘Tree’, whereas
the Fspa scheme performs better on classes ‘water’, ‘Residential’ and
‘Road’. However spectral or spatial features from the hyperspectral image
perform poor on classes ‘Commercial’ and ‘Railway’. On the contrary,
Flid, extracted from the LiDAR data performs much better on these two
classes. Classification accuracies for most classes improves by fusing those
three features, especially for classes ‘Residential’, ‘Road’ and ‘Parking
Lot 2’. The generalized graph-based fusion method (Fggf) [Liao 15]
improves the classification accuracy on classes ‘Grass Stressed’, ‘Tree’
and ‘Highway’. The proposed framework obtains the best classification
accuracies on 9 of the 15 classes.
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4. From the results reported on the shadow-free region (Table 4.2) and the
whole image (Table 4.4), one can infer that fusing the features extracted
from each source (hyperspectral image, EMAPshsi and MAPslid ) works
better than using the features extracted from the stacked vector of the
original hyperspectral image, EMAPshsi and MAPslid, with an improve-
ment of almost 3%. The main reason for this is that, because of their
different nature, when fusing features from different sources and then
projecting them on a lower dimensional space, information gets mixed up
and lost.

5. By comparing the classification maps in Figure 4.11 and classification
accuracies on the cloud-shadow region (Table 4.3), we can see that most
of the objects under the cloud-shadow region are not well classified when
only using the training samples located in the shadow-free region. Some
objects in the cloud-shadow region are classified better by using features
extracted from LiDAR data, because the elevation information contained
in the morphological features of LiDAR data is not influenced by the
cloud. For many other objects, the results are not good as the elevation
information is not sufficiently discriminative. Taking all feature sources
into consideration does not much improve the classification accuracy for
most of the classes. The proposed framework leads to an improved clas-
sification of most classes, due to the selection and use of specific training
samples in the cloud-shadow region.

As the described data set [Hyp 13] is very popular and open access, it
has been used in many recentl state of the art comparisons, such as in [Kho-
dadadzadeh 15], [Liao 15], [Bao 16] and [Zhong 16]. Compared with the exper-
imental results from these references, the proposed scheme performs better on
either cloud-shadow or shadow-free regions, with overall classification accuracy
97.91% and 81.15% respectively. This proves the proposed fused features are
effective and distinguishable, and generating new training samples from the
cloud-shadow regions is an efficient solution.

4.4 Conclusion
In this Chapter, we described a new method for classification of cloud mixed re-
mote sensing scenes by fusion of hyperspectral and LiDAR data. The proposed
method generates new samples as co-training samples in the cloud-shadow re-
gions and classifies shadow-free and cloud-shadow regions separately using their
own sets of training samples. In order to better combine hyperspectral and Li-
DAR data, additional spatial (EMAPhsi ) and elevation (MAPlid ) features
are extracted from hyperspectral and LiDAR data, and effectively integrated
without any regularization or weight parameters. Experimental results on the
classification of the real cloud-shadow hyperspectral and LiDAR data show the
efficiency of the proposed framework. In addition, the proposed approach can
be thought of as a general framework, in which the feature extraction step can
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be replaced by any other technique (kernel PCA, supervised or semi-supervised
feature extraction, ...), possibly to improve classification accuracies. Moreover,
the proposed framework is completely open and flexible in its capacity to inte-
grate additional types of (e.g. infrared) features.

Recent Earth observation missions (Landsat series from NASA, Sentinel
series from ESA) boost the use of the multi-sensor remote sensing imagery.
However, cloud/shadow effects cannot be avoided in the optical sensors. Other
sensors (e.g., synthetic aperture radar, thermal infrared, LiDAR, etc.) can pro-
vide complementary information for these cloud/shadow regions. The proposed
framework is applicable for fusion of optical hyperspectral images and other im-
ages (e.g., SAR, thermal infrared), where multi-sensor images are available.

The research in this chapter lead to one journal publication and one pro-
ceeding as follows:

1. Luo Renbo, Liao Wenzhi, Zhang Hongyan, Zhang Liangpei, Pi Youguo,
Scheunders Paul, Philips Wilfried, “Fusion of hyperspectral and LiDAR
data for classification of cloud-shadow mixed remote sensing scene”. IEEE
Journal of Selected Topics in Applied Earth Observations and Remote
Sensing. (under reviewing)

2. Luo Renbo, Liao Wenzhi, Zhang Hongyan, Pi Youguo, Philips Wilfried,
“Classification of cloudy hyperspectral image and LIDAR data based on
feature fusion and decision fusion”. IEEE Geoscience and Remote Sensing
International Symposium (IGARSS 2016). Jul. 2016.
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(a) RGB

(b) Fspe

(c) Fspa

(d) Flid

(e) FEstacked

(f) Ffusion

(g) Fggf

(h) Proposed

Figure 4.11: Classification maps produced by the described schemes.
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5
GPU-Acceleration for

Non-linear Feature
Extraction

In chapters 2 and 3, we discuss supervised and semi-supervised feature ex-
traction methods, all of them belong to linear methods. In this chapter, we
will focus on non-linear methods, and provide solutions to accelerate the non-
linear methods because of its computational complexities. One of traditional
and widely used non-linear feature extraction methods is kernel principle com-
ponent analysis (KPCA). However, the sequential implementations of KPCA
(in central processing units (CPU)) require long processing time due to its
relatively large computational complexity, such as the calculation and Eigen-
decomposition of Gram matrix. In this chapter, a parallel version of KPCA
based on graphics processing units (GPU) is presented and used for features
extraction of hyperspectural images. Experiments are conducted using a hyper-
spectral data set, the results reveal that GPU-based parallel KPCA (GPKPCA)
approach has great potential to improve computation speed without losing clas-
sification accuracy. The acceleration effect will be much more obvious, with
bigger data.

5.1 Introduction
As explained in chapter 1, it is possible nowadays to collect hyperspectral im-
ages with hundreds of bands [Heesung 05,Lu 14]. Hyperspectral images contain
much more information than regular RGB images, but most of their informa-
tion content can still be summarized into a small number of the well chosen
features [Qiao 15]. However, this initial processing and analysis of hyperspec-
tral images is computationally intensive [Plaza 11,Christophe 11]. Thus, the
development of computationally efficient techniques to extract the useful in-
formation quickly and accurately from large hyperspectral image data sest is
becoming more and more important in Earth observation [Plaza 11].
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Principal component analysis (PCA) is one of most traditional and popu-
lar feature extraction methods in the applications of hyperspectral images. It
extracts features (the first several component principles) defined by analysing
the covariance matrix of the original data. However, as a linear feature ex-
traction method, PCA uses only second-order statistics, which limits its per-
formance in many cases. Instead of computing the corresponding covariance
matrix, the Candid covariance-free incremental principal component analysis
(CCIPCA) [Weng 03] computes the principal components of a sequence of
samples incrementally without estimating the covariance matrix (so covariance-
free). To do this, CCIPCA keeps the scale of observations and computes the
mean of observations incrementally, which is an efficient estimate for some well
known distributions (e.g., Gaussian). CCIPCA is an iterative method and
performs better than PCA from the experiments in [Weng 03] in most cases.

However, PCA and CCIPCA depend on linear projection, for classification
on non-linearly separable data sets, linear feature extraction methods will per-
form poorly, as it is more difficult to separate non-linear data sets when project-
ing them into lower-dimensional feature space. In the last decade, a large num-
ber of non-linear techniques for dimensionality reduction have been proposed
to address this problem. For an overview, see, e.g., [Arunasakthi 14, Jia 13].
In particular for real world data, the non-linear dimensionality reduction tech-
niques may offer an advantage, because real world data is likely to form a
highly non-linear manifold in the hypersectral data space. As a non-linear ver-
sion of PCA, Kernel Principle Component Analysis (KPCA) [Scholkopf 98] is
more suitable to describe non-linear, higher-order and complex distributions.
In [Fauvel 09], KPCA performs better than PCA in terms of accuracy when
extracting features from hyperspectral images. However, in order to capture
non-linear kernel principal components, a large number of training samples are
required, particularly for high dimensional data, this leads to serious compu-
tational load problems [Michiel 01].

To improve the compute efficiency, several parallel computing technologies,
such as supercomputers, clusters, distributed computing, multicore central pro-
cessing units (CPU), field-programmable gate arrays (FPGAs) and graphics
processing units (GPU), have been used in hyperspectral data processing al-
gorithms [Christophe 11, Lee 11]. Among these acceleration schemes, GPU-
processing is quickly evolving as a standardized solution in hyperspectral pro-
cessing due to its low cost and weight, portability and excellent computing
performance for on-board processing [Plaza 11]. GPU has been wildly applied
to huge remote sensing data analysis, including target detection [Bernabe 13],
feature extraction [Qu 13,Du 13] and unmixing [Agathos 14,Chouzenoux 14].

However, to harness the compute power of GPUs, researchers need to ex-
press their algorithms in terms of texture operations, which is not easy. The
Compute Unified Device Architecture (CUDA) was introduced in 2007 and
OpenCL in 2009, to provide simpler GPU programming models. CUDA is a
program language proposed by Nvidia on its G80 GPU series. Because of the
benefits from the availability of numerous libraries, CUDA is becoming more
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and more popular. This language is specific to one vendor and its hardware
but still commonly used. OpenCL supports more hardware and provides a
standard for general purpose parallel programming across GPU. This makes
it easier for software developers to access powerful heterogeneous processing
platforms portably and efficiently [Wu 15]. Actually, both CUDA and OpenCL
exploit the concept of kernel. A kernel is a series of operations that will typically
be applied to one pixel. Each kernel will be handled by one of the numerous
GPU processors. Due to the C-like programming of CUDA and OpenCL, the
learning curve to benefit from the GPU is significantly flattened [Kirk 10].
Many research papers demonstrate excellent implementations for a wild range
of problems [Harish 07,Satish 09,Che 08].

In order to make the use of GPU more simple and practical, AccelerEyes
LLC developed Jacket Matlab toolbox (www.accelereyes.com) which with Mat-
lab language (with name.m files). The Jacket Matlab toolbox takes care of
packaging Matlab data into Jacket’s GPU data structure, and transforms Mat-
lab code into GPU functions. The interpretative nature of the Matlab language
is maintained by providing real-time, transparent access to the GPU compiler.
To make it easier and convenience for developers to use, the functions and op-
erations of GPU implemented within Jacket Matlab toolbox are transparent,
and their calls are almost similar to the CPU Matlab implementation. Thus,
Jacket is allowing a high level language as Matlab to utilize GPU without
writing C or C++ code. Benefiting from the development of GPU and its
operation language, GPU has been applied more and more on hyperspectral
images analysis, such as classification [Christophe 11], band selection [Yang 11],
endmember spectral unmixing [Chouzenoux 14].

In this Chapter, we explore GPU-accellerated non-linear feature extraction
from high-dimensional hyperspectral images. Specifically, we developed an ef-
ficient GPU implementation of the KPCA feature extraction algorithm based
on Jacket’s Matlab Toolbox and compare a CPU with a GPU implementation.

The remainder of this Chapter is organized as follows. Section 5.2 briefly
introduces the related background as GPU strategies and KPCA. Section 5.3
describes a new and fully optimized GPU-based KPCA implementation. Sec-
tion 5.4 evaluates the proposed GPU-based parallel KPCA implementation in
terms of computational performance by experiments. Section 5.5 concludes
this Chapter with some remarks.

5.2 Related Background

5.2.1 GPU Architecture

As shown in Figure 5.1, GPU and CPU have different architectures. The
architecture of CPU is single instruction single data stream (SISD) or multiple
instruction multiple data stream (MIMD) for dual or quad-cores. For instance,
the typical MIMD system includes an internet network, multiple processors and
multiple memory blocks. During the data processing, each machine processor



120 GPU-Acceleration for Non-linear Feature Extraction

Figure 5.1: CPU and GPU strategies

executes its own instruction pipeline. The strategy of CPU is to make the
workload (one computed thread) run as fast as possible. Moreover, the CPU’s
efficiency depends on instruction/data pre-fetching, caching and speculative
execution.

Different from CPU, the typical GPU architecture is organized into an array
of highly threaded streaming multiprocessors (SMs), where each multiprocessor
is characterized by a single instruction multiple data architecture (SIMD), i.e.,
in each clock cycle, each processor executes the same instruction while operating
on multiple data streams. Each SM has a number of streaming processors
that share a control logic and instruction cache and have access to a local
shared memory and to local cache memories in the multiprocessor, while the
multiprocessors have access to the global GPU (device) memory. GPUs can be
abstracted in terms of a stream model, under which all data sets are represented
as streams.

There is a hierarchy of parallelism on GPU. Parallelism comes in two
flavours: outer, asynchronous parallelism between thread groups or thread
blocks; and inner, synchronous parallelism within a thread block. Certain
number of thread composition thread pieces, and a certain number of threads
block is composed of one-dimensional or two-dimensional thread block grid.
The same block thread can cooperate with each other, through shared mem-
ory to share data, and its implementation to coordinate access to memory. A
block of all threads must be located in the same processor core; the number of
threads per block is limited by memory resources in processor core. A kernel
function may be executed by the thread blocks which have the same size, the
number of threads that execute the kernel function should be equal to each
block’s thread number plus the number of blocks, and we call these for thread
block grid. If thread blocks needed to execute independently, it must be able
to perform in any order whether parallel or sequential execution. The block
number of thread in a grid is usually limited by the processing of the data size,
rather than by the hardware processor number, the former may far exceed than
latter in quantity. Figure 5.2 shows the thread block grid in GPU.

In GPU, threads executing within a multiprocessor can share and commu-
nicate using the local memory, while threads executing on different multipro-
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Figure 5.2: Thread block grid in GPU

cessors cannot communicate or synchronize. All the threads of a thread block
will always be assigned as a group to a single multiprocessor, while different
thread blocks can be assigned to different multiprocessors, the main differences
between GPU and CPU can be seen in Table 5.

Table 5.1: Comparison between GPU and CPU.

GPU CPU

composed of hundreds of
cores that can handle thou-
sands of threads simultane-
ously

composed of few cores with
lots of cache memory that
can handle a few software
threads at a time

single instruction multiple
data (SIMD)

single instruction single data
stream(SISD)

high latency tolerance low latency tolerance

most die surface for integer
and fp units

few die surface for integer
and fp units

optimized for computational
and memory-intensive prob-
lems

optimized for caching or
controlling flow operations



122 GPU-Acceleration for Non-linear Feature Extraction

When porting one algorithm from CPU to GPU, the major challenge is how
to take advantage of the parallel architecture. In order to increase the efficiency
of calculation, CPU usually combines several parallelization techniques which
still work sequentially, such as out-of-order execution, branch prediction and
super-scalar. However, these techniques increase the computing complexity of
the CPU. Moreover, the number of CPUs embedded on a single chip is lim-
ited. In contrast, GPUs can simplify each processing unit and pack thousands
processing units on the chip, so it fits the data parallelism very well. For algo-
rithms with high inherent parallelism and when the latency of each thread can
be masked, the GPU will performs well. Specifically this is true when applying
the same operation in parallel to all pixels of the image.

5.2.2 KPCA

Principal Component Analysis (PCA) [Hotelling 33] performs feature extrac-
tion through analyzing the covariance matrix of the original data. The eigenval-
ues of the covariance matrix are considered to be an indicator of the information
content. Large values suggest more information content and low values indicate
the presence of mostly noise. Suppose X = (x1,x2, · · · ,xn) denotes the matrix
of original data, where xi ∈ RD (column vector), i = 1, 2, · · · , n, n represents
the total number of samples, and all data are centered as

∑n
i=1 xi = 0. In

mathematical terms, PCA is a basis transformation to diagonalize an estimate
of the covariance matrix of the centered data X, defined as:

C =
1

n

n∑
i=1

xix
T
i (5.1)

C is the covariance matrix the centered data X with D × D. By solving the
Eigen-decomposition of C as:

Cw = λw (5.2)

new coordinates in the Eigenvector basis {w1,w2, · · · ,wd} are d Eigenvectors
of equation (5.2)), i.e. the orthogonal projections onto the Eigenvectors, are
obtained and called principal components. For a testing sample xi, its principal
components are zi = WTxi, zi = {zi1, zi2, · · · , zid} ∈ Rd, zi1 is new coordinate
in the Eigenvector basis w1.

For non-linear data sets, it is difficult to separate them with a linear hy-
perplane (one less dimension than the dimension of original feature space), but
they may be separable if they are transformed into a higher or infinite dimen-
sional (F) Hilbert space. As shown in Figure 5.3, samples (belong two classes)
with two-dimension distributes as two circles, it is very difficult to separate
them with a line. However, it is very easy to separate these two class with a
plane in three-dimensional feature space. Assume for the moment that there
exists a function which can transform the original data into a higher or infinite
dimensional (F) Hilbert space H [Scholkopf 05]:
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Figure 5.3: There exist samples as x = (x, y), {x = (x, y)|x2 + y2 < 0.5} belong
class 1, {x = (x, y)|x2 + y2 > 0.5} belong class 2, they are not be separated by a line,
when they are transformed into three-dimensional space as x = (x, y, x2 + y2), they
can be separated by a plane.

φ :
RD → HF

xi → φ(xi)
(5.3)

A new data set can be obtained in the Hilbert feature space as Φ(X) =
{φ(x1), φ(x2), · · · , φ(xn)}. We do not require that φ can be calculated eas-
ily; it is enough that inner products between samples xi and xj are preserved
by Φ: κij = κ(xi,xj) = φT (xi)φ(xj). The covariance matrix C is defined in
the Hilbert feature space as follows:

C =
1

n

n∑
i=1

φ(xi)φ(xi)
T (5.4)

It satisfies the Eigenvalue equation:

Cv = λv, (5.5)

λ and v are the eigenvalues and eigenvectors of the covariance matrix C. In
the Hilbert feature space v can be described in the span of the data set Φ(X) =
{φ(x1), φ(x2), · · · , φ(xn)}:

v =

n∑
i=1

aiφ(xi) (5.6)

Defining K = Φ(X)T Φ(X), with elements κij = κ(xi,xj) = φ(xi)
Tφ(xj),

as shown:
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K =


φ(x1)T

φ(x2)T

...

φ(xn)T


[
φ(x1), φ(x2), · · · , φ(xn)

]

=


φ(x1)Tφ(x1) φ(x1)Tφ(x2) · · · φ(x1)Tφ(xn)

φ(x2)Tφ(x1) φ(x2)Tφ(x2) · · · φ(x2)Tφ(xn)
...

...
. . .

...

φ(xn)Tφ(x1) φ(xn)Tφ(x2) · · · φ(xn)Tφ(xn)



=


κ(x1,x1) κ(x1,x2) · · · κ(x1,xn)

κ(x2,x1) κ(x2,x2) · · · κ(x2,xn)
...

...
. . .

...

κ(xn,x1) κ(xn,x2) · · · κ(xn,xn)



(5.7)

Substituting equation (5.4) and (5.6) into (5.5), and we arrive at

1

n
K2a = λKa (5.8)

Both sides of the equation (5.8) are divided by K at the same time will arrive
at:

1

n
Ka = λa (5.9)

K is n × n Gram matrix, λ and a are the eigenvalues and eigenvectors of K,
a is a column vector as a = {a1, · · · , an}, which can be used in calculating the
kernel principle component for a new sample, see equation (5.10).

For kernel principal component extraction, we compute projections of the
image of a point xt onto the Eigenvectors v in Hilbert space according to

(v, φ(xt)) =

n∑
i=1

ai(φ(xi) · φ(xt)) =

n∑
i=1

aiκ(xi,xt) (5.10)

Note that neither equation (5.4) nor equation (5.10) requires the φ(xi) in
explicit form-they are only needed in dot products. Therefore, we are able to
use kernel functions for computing these dot products without actually per-
forming the map φ. For choices of kernel κ(xi,xj), three kernels which have
successfully been used in applications include:

1. Polynomial kernel: κ(xi,xj) = (xi · xj)
d;

2. RBF (Gaussian) kernel: κ(xi,xj) = exp(−γ||xi − xj ||2);
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3. Sigmoid kernel: κ(xi,xj) = tanh(αxi · xj + r).

It is assumed that the Gram matrix K is zero-mean, otherwise, it can be
centered as [Scholkopf 05]

K = K− InK−KIn + InKIn (5.11)

where In = 1
nIn×n, and In×n is the identity matrix of size n× n.

5.3 Parallel Version of KPCA on GPU
Due to non-linear methods have computational complexities, it’s time consum-
ing if they are executed in CPU with serial implementation. Taking KPCA
as an example, if there are n samples in the training dataset (normally in
order to extract efficiency kernel principle components, n should be very big
(e.g. n ≥ 1000)), then the size of the Gram matrix is n× n (D ×D for PCA,
D << n). The space complexity of storing the Gram matrix is O(n2), while the
time complexity (performing Eigen-decomposition on a n×n Gram matrix, see
equation (5.10)) is O(n3), which is much more complex than PCA with O(D3).

According to equation (5.10), it can be known that for a new pixel xt,
if we want to get its kernel principle component (a new coordinate) in the
Eigenvector basis v in Hilbert space, kernel function should be used between
xt and all training samples {x1,x2, · · · ,xn} as

∑n
i=1 aiκ(xi,xt), thus only for

one principle component of one pixel. If there are 1000 samples in training
samples set, in order to extract kernel principle component for a hyperspectral
image with small size 500 × 500, a Gram matrix K with size 250000 × 1000
should be calculated, thus is a large amount of computation.

From the definition of kernel function and Gram matrix K, the calculation
of every element κ(xi,xj) in Gram matrix K is independent. Therefore, the
big Gram matrix K (as with size 250000 × 1000) can be executed in GPU in
parallel. Suppose the number of training samples set in hyperspectral image is
n, the size of hyperspectral image is N×N , then the Gram matrix K is N2×n,
as shown in Figure 5.4. If GPU processor has m cores, the each core just needs
to calculate (N2 × n)/m kernels, thus can save much time than CPU.

The effective utilization of both CPUs and GPUs can provide compelling
benefits. GPU are specifically optimized for computational and memory-
intensive problems, whereas CPU devotes more resources to caching or control
flow operations. Therefore, we present a CPU-GPU heterogeneous framework,
Details and steps of the parallel implementation and optimization flow chart is
shown in Figure 5.5.

To achieve satisfactory parallel performance, the data throughput is criti-
cal in the design of GPU-based parallel algorithms, meaning that enough data
should be fed into the GPU to take advantage of the available compute power.
Due to the shared-memory architecture, the major bottleneck is memory com-
munication between the host and the device; unnecessary data transfer between
host and device should be avoided. In other words, most data computation
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Figure 5.4: The kernel Gram matrix KN2×n is used for calculating kernel principle
components for hyperspectral image, huge KN2×n can be calculated in parallel in
GPU, as every element κ(xt,xi) is independent.
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Figure 5.5: CPU-GPU optimization flow chart. In GPU, (1) n training samples are
used to construct kernel Gram matrix Kn×n, (2) do Eigen-decomposition for Kn×n

to get the its eigenvectors a, (3) construct construct kernel Gram matrix KN2×n

between all pixels in hyperspectral image (N × N × D, D is number of bands) and
training samples set, kernel principle components (PCs)for all pixels can be obtained
by combing a and KN2×n, see equation (5.10).

should take place in the GPU without interruption. While data sharing be-
tween GPU cores is much easier than in compute clusters, the data-throughput
requirement renders current GPUs inappropriate for solving numerous small
matrix-operation problems. For the feature extraction of hyperspectral image
with KPCA, GPU can be used to accelerate the composite kernel-related com-
putations, and the host CPU can be used to perform other small data compu-
tations and most of the control operations. Taking into consideration that the
calculation of composite kernels is a dominant part of KPCA that consists of
operations on big matrices and high-dimensional vectors, we can pre-compute
them and do Eigen-decomposition on the device (GPU), copy and cache the
computed results to the host (CPU). The rest of the computations (related
with control and small data structures) are computed on the CPU to dramat-
ically reduce the data transfer between the device and the host. In this way,
the workload between the GPU and CPU could be well balanced.

5.4 Experiments and Results

The hardware platforms used in our experiment are:
CPU: Intel(R) CoreI7-3630QM 2.4GHZ; memory size: 8GB;
GPU : NVidia’s GeForce GT650M that has 384 cores with 2 GB memory;
OS: Windows7 Professional Edition 64;
Development environment: Matlab 2012b, and the parallel algorithms
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Figure 5.6: Classification accuracies of different methods with increasing number of
features on a 50× 50 square region.

are implemented in Jacket 2.3 platform developed by AccelerEyes LLC
(www.accelereyes.com).

The data used is the AVIRIS Indian Pines image with 220 bands of size 145
lines by 145 samples, and the corresponding spatial resolution is approximately
20 m. From this image, 179 bands are selected by removing water absorption
and low signal-to-noise ratio bands. 50× 50, 80× 80 and 100× 100 image sizes
are selected from the top left corner of the original image (as the calculation
and Eigen-decomposition of Gram matrix need large memory, if whole image
145× 145 is used, KPCA method will be out of memory) to compare the exe-
cution time and the classification accuracy among PCA, CCIPCA [Weng 03],
KPCA and the proposed GPU-based parallel KPCA (GPKPCA). The time
measurement is started right after the hyperspectral image file is read to the
CPU memory and stopped right after the results of the target/anomaly detec-
tion algorithm are obtained and stored in the CPU memory.

For the classifier, we choose support vector machines (SVM) with a linear
kernel, the codes used are available in [Chang 01]. 10% samples from each
class are chosen randomly from experimental regions as training samples, the
remaining labelled samples acts as testing samples.

The classification accuracies for different methods are shown in Figure 5.6.
It is first important to emphasize that our parallel version of KPCA (GPKPCA)
provides exactly the same results as the serial version of KPCA algorithm. As
KPCA runs in central processing units (CPU) with sequential implementation,
while GPKPCA runs in graphics processing units (GPU) with parallel imple-
mentation, and the calculation resolution and data transmission modes between
CPU and GPU are different, the classification accuracies of KPCA and GP-
KPCA have small difference. What’s more, it can be concluded that non-linear
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Figure 5.7: The average computing time of extracting different number of features
on a 50× 50 square region.

feature extraction methods (KPCA and GPKPCA) outperform than linear
methods (PCA and CCIPCA), with 5% improvement at least. After the num-
ber of extracted features reaches to 10, the classification accuracies of KPCA
and GPKPCA almost keep stable, while the results of PCA and CCIPCA de-
crease with increasing extracted features, one reason for this is that PCA and
CCIPCA introduce more noise with more less important features.

The computation time of extracting increasing number of features for 50×50
image size are shown in Figure 5.7. Even using optimized CPU code the KPCA
algorithm still requires several seconds for this small region. The GPU however,
improves upon this time significantly, consistently achieving speedup of at least
45 times on this 50 × 50 image size, the overall execution time for the GPU
ranges from a few milliseconds up to hundreds milliseconds. It is also clear from
Figure 5.7 that the execution time of sequential KPCA are near 10 seconds after
6 features are extracted. The processing time of CCIPCA increase linearly with
increasing number of features, nearly 4 seconds corresponding 18 features. As
a linear method and with low complexity, PCA performs very fast with only a
few milliseconds, even when large number of features are extracted. Although
GPKPCA is a non-linear method, it performs faster than linear CCIPCA, its
processing time is less than 0.25 second in extracting 18 features.

In order to evaluate the parallel performance of proposed method GPKPCA,
we execute GPKPCA and sequential KPCA with different data sizes, as 50×50,
80 × 80 and 100 × 100. The speedup times have been shown in Figure 5.8. It
is easy to find that GPU is more appropriate for processing huge data sets,
the acceleration effect will be much more obvious as larger processed image
size. The use of the GPU are very effective in terms of fast feature extraction,
when the size of image is 100× 100, the GPKPCA produced about 250 times
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Figure 5.8: The acceleration effect (TGPKPCA/TKPCA) of GPU-based parallel
KPCA compared with sequential KPCA with different data sizes, TGPKPCA and
TKPCA demote the processing time of GPKPCA and sequential KPCA respectively.

acceleration effect compared to the conventional KPCA in CPU.

5.5 Conclusion
With the ultimate goal of drawing an accelerations of non-linear feature ex-
traction in GPU as high performance computing architectures in the context
of remote sensing applications, this chapter described a GPU-based parallel
KPCA (GPKPCA) implementation for feature extraction in hyperspectral im-
ages. As a parallel implementation, GPKPCA can make full use of powerful
GPU architecture to solve complex scientific computing problems. From exper-
imental results on real data set, it can been seen that GPKPCA has obvious
acceleration effect, especially for big data. The speedup times can be more
than 250 when dealing with bigger dataset.

Although the results obtained with a variety of sizes of hyperspectral image
are very encouraging, further experiments should be conducted in order to in-
crease the parallel performance of the proposed algorithms by resolving memory
issues and optimizing the parallel design of the algorithms in the GPU-based
implementations. Experiments with additional scenes are also highly desir-
able. Finally, GPU are still far from being exploited in real missions due to
power consumption and radiation tolerance issues, the exploration and exper-
iments with GPU devices will be required in order to evaluate the possibility
of adapting more parallel algorithms to hardware devices which have been al-
ready certified by international agencies and satellite platforms for Earth and
planetary observation from space.

The research in this chapter lead to one proceeding as follows:
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Luo Renbo, Pi Youguo, “GPU-based parallel kernel PCA feature extrac-
tion for hyperspectral images”. International Conference on Remote Sensing
and Wireless Communications (RSWC 2014). 2014.
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6
Conclusions and Future

Works

6.1 Conclusions

The latest advances in the remote sensing field have contributed significantly at
the broad availability of high quality data or images. Accordingly, the develop-
ment of efficient and robust algorithms for the analysis of these data is a very
important topics. In particular, classification is one of most important tasks,
especially for Earth observation. The classification problem, i.e., detecting and
identifying the different land-covers that characterize a given geographical area
of interest, is a complex process. Among the procedures involved in classifi-
cation problem, feature extraction and fusion, aiming to extract and analyze
all the useful information that different remote sensing data sets contain, is
a necessary pre-processed step. As collecting ground-truth is often expensive
and time consuming, the number of available training samples is almost al-
ways much smaller than the dimensionality of the feature space. This leads
to the Hughes phenomenon, i.e. for a limited number of training samples, the
classification accuracy decreases as the dimension increases. The present thesis
has focused on developing methodologies for feature extraction and fusion of re-
mote sensing data. Specifically the proposed solutions relate to semi-supervised
learning and to domain adaptation

Feature extraction and data fusion for classification of remote sensing im-
agery are challenging topics, and has been intensively investigated for decades.
However, the problems have not been solved, particularly due to the difficulty in
processing the “Big Remote Sensing Data”. Firstly, the high dimensionality of
remote sensing data (e.g. hyperspectral images) leads to problems with storage
resources and computational load. Secondly, most of the existing techniques
focus mainly on performing feature extraction in only the spectral domain,
omitting information about spatial structure and correlation. Although many
spectral-spatial methods have been proposed in recent years, spectral and spa-
tial information have not been well combined. Finally, different data sources
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have different limitations, such as hyperspectral images are easily influenced by
cloud and different weather conditions, whereas LiDAR data is difficult to dis-
criminate different objects with similar altitude, fusion of different data sources
for better classification is very necessary.

This thesis provided 4 solutions to address the above issues, as discussed
below.

6.1.1 Supervised Feature Extraction

In order to extract intersecting features for classification of hyperspectral re-
mote sensing imagery, two supervised feature extraction algorithms, which take
into account the label information of samples to infer class separability, were
proposed in chapter 2. They both integrated label information into unsuper-
vised feature extraction methods, leading to satisfactory results compared the
unsupervised methods in terms of classification accuracy.

By incorporating label information into linear unsupervised neighborhood
preserving embedding (NPE), this thesis proposed a Discriminative Supervised
Neighborhood Preserving Embedding (DSNPE) method. In this method each
data point was represented linearly by its nearest neighboring data points (with
the same label). This differed from existing methods which search the whole
nearest neighboring data points (including samples with different labels) in
NPE [He 05]. Based on the representation introduced above, a correlation
matrix (useful for calculating transformation matrix) between the samples was
obtained. Furthermore, we defined a new transformation criterion whose aim
is to pull the neighboring points with the same class label close to each other,
while simultaneously pushing the neighboring points with different labels far
away from each other after dimensionality reduction. The results validated on
real images demonstrated the effectiveness of the proposed DSNPE algorithm,
compared to representative dimensionality reduction algorithms.

By combining principle component analysis (PCA), label information and
locality preserving projections (LPP), a PCA-based supervised locality pre-
serving projection (PSLPP) was proposed. Unlike the unsupervised learning
scheme LPP, PSLPP used both label and local manifold information to model
the similarity of the data and enhance the discriminant power of the data
when mapping them into a low-dimensional space. Specifically, the original
high-dimensional data was first processed by PCA to remove the noisy and
redundancy, then local geometrical structure and label information were used
to model the similarity of data points. Experiments on a number of data sets
demonstrated that including label information can improve the feature extrac-
tion performance.

6.1.2 Semi-supervised Feature Extraction

Semi-supervised feature extraction methods have aroused a great deal of inter-
est in the machine learning community recently, since that manually labelling
data sets is time consuming and fairly expensive, while unlabelled samples
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could be available in large quantities at very low cost. As a result, chapter
3 focused on exploring semi-supervised feature extraction methods for classi-
fication of HS images, and proposed three new semi-supervised methods for
feature extraction of hyperspectral remote sensing imagery.

Firstly, we improved the semi-supervised local discriminant analysis (SELD)
method proposed in [Liao 13] for feature extraction of hyperspectral image. The
proposed improved SELD (ISELD) method aimed to find a projection which
can preserve local neighborhood information and maximize the class discrimi-
nation of the data. The proposed ISELD included correlations between labelled
and unlabelled samples in the within- and between-class scatter matrices which
would be used to find optimal projections. This lead to better class discrimi-
nation and better local manifold structure preservation than SELD.

Graph-based feature extraction methods rely upon the construction of a
graph representation, where the vertices are labelled and unlabelled samples
and the edges represent the similarity among samples in the dataset. Chap-
ter 4 built a semi-supervised graph which can better describe the similarities
between samples, especially between labelled and unlabelled samples. In our
semi-supervised graph, the training samples were divided into labelled and
unlabelled sets first, and the labelled samples were connected according to
their label information and unlabelled samples were connected by their nearest
neighborhood information. By sorting the mean distance between an unla-
belled sample and center of each class, we connected the unlabelled sample
with all labelled samples belonging to its nearest neighborhood class. Last
but not least, the proposed method set weighted edges to connected samples
by utilizing distance information between samples, thus better modelled the
actual differences and similarities between samples.

Finally, semi-supervised graph learning and multiple feature fusion were
coupled in a unified framework for remote sensing classification. In this method,
spectral, spatial and label information have been taken into account to con-
struct the semi-supervised fusion graph. For graph construction, samples were
connected according to not only their label information, but also their spectral-
spatial nearest neighborhood information, so the connected samples were not
only very near to each other, but also belong to the same class. By exploiting
the fused semi-supervised graph, two transformation matrices were obtained
to project high-dimensional hyperspectral image and morphological features to
their lower dimensional subspaces. The final classification map is obtained by
concentrating the lower-dimensional features together as an input of classifier.

Comparing with some related feature extraction methods on real remote
sensing data sets, our proposed semi-supervised methods have better perfor-
mance and classification accuracies. This is due to combining a small number
of labelled samples with a large number of unlabelled samples.

6.1.3 Fusion of Hyperspectral Image and LiDAR Data
As different modalities, such as hyperspectral image and LiDAR data, have
different advantages and disadvantages, fusing these data allows more reliable
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classification attracts increasing interests but remains challenging. Therefore
the topic of fusing data sets from different sensors attracts increasing inter-
est but remains challenging. Chapter 5 proposed a novel framework to fuse
hyperspectral and LiDAR data to classify remote sensing scenes mixed with
cloud shadow. The proposed method performed classification separately on
the cloud-shadow and non-shadow areas. Firstly, the method modelled spatial
(from HS image) and elevation (from LiDAR data) information by exploiting
attribute profiles, and extracted a cloud-shadow mask by thresholding the at-
tribute profiles of hyperspectral images. This way a remote sensing scene was
divided into cloud-shadow and shadow-free regions. The classification result
was much more reliable when using single elevation features than when using
spectral and/or spatial features alone. Assuming that different feature sources
share similar intra-cluster distance relations, new training samples set for cloud-
shadow region was generated by searching nearest neighbors of each class center
based on both spectral and spatial information. The final classification map
was produced by decision fusion of both cloud-shadow and non-shadow maps.
This way our proposed fusion method combines the advantages of both hyper-
spectral and LiDAR data. Experimental results on fusion of hyperspectral and
LiDAR data for classification of remote sensing scene mixed with cloud shadow
showed the efficiency of the proposed framework, with about 4% and 10% im-
provements over conventional methods in the shadow-free and cloud-shadow
regions, respectively.

6.1.4 GPU-based Non-linear Feature Extraction

Non-linear feature extraction methods, such as kernel principle component
analysis (KPCA), is more suitable to describe non-linear, higher-order and
complex distributions. However, the relatively large computational complexity
of non-linear feature extraction methods make it time consuming to process
huge data sets, as hyperspectral images. Therefore, an efficient implemen-
tation of non-linear feature extraction algorithm (KPCA) on GPU based on
Jacket’s MATLAB Toolbox in a parallel strategy was developed in chapter 5.
Experiments on hyperspectral data showed that the GPU based parallel KPCA
approach was much faster, without sacrificing accuracy. The acceleration effect
was more obvious with the increasing size of data set.

6.2 Future Research

Following the work derived from the present thesis, even though the contribu-
tions have achieved a certain level of achievements, several challenges still exist
and can be potentially improved. As with any new work, there are many open
avenues for future research that deserve attention and which will be explored
in our future developments. In the following, we list the most relevant of these
perspectives for future work:
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1. It would be interesting to integrate active learning into our proposed
SEGL (in chapter 3) method for unlabelled data sampling (e.g., search-
ing nearest neighborhood samples within a fixed radius, as well as inves-
tigating the choice of radius in unlabelled samples selection). What is
more, in order to better cope with the problems of multi-modality, we
will explore more criterions to connect unlabelled samples with labelled
samples instead of only using the mean distance.

2. As indicated by the promising results from preliminary assessments, the
performance of the co-training-based framework (in chapter 4) is still
under comprehensive investigation. It is foreseeable that the combination
of active learning, sparse representation and new criterion such as spectral
angle when selecting co-training samples from cloud shadow areas will
further advance the classification result.

3. In order to better classify and identify land-cover, future work may be
directed towards the fusion of different complementary data sources,
such as hyperspectral image, SAR and LiDAR data, and inclusion addi-
tional types of features such as texture, border-oriented features, spatial-
contextual features, elevation features, and so on.

4. Although the results obtained with big data sets on GPU are very en-
couraging, GPU is still far from being exploited in real missions due
to the power consumption and storage issues. GPU devices certified by
international agencies and satellite platforms for Earth and planetary ob-
servation from space differ from standard GPUs in the following ways:
a) tons of data to be processed; b) limited room and power on satellite
platforms, c) long time and uninterrupted operation. Porting the algo-
rithms on such a hardware needs to be investigated. Optimally addressing
memory restrictions about GPU is another research topic.

5. Last but not least, we can further improve and adapt the developed tech-
niques for a wide variety of real project applications such as urban man-
agement, weather analysis, land-cover mapping and modelling, species
identification in forested areas, and so on.



138 Conclusions and Future Works



Bibliography

[Agathos 14] A. Agathos, J. L i, D. Petcu & A. Plaza. Multi-GPU
implementation of the minimum volume simplex analysis
algorithm for hyperspectral unmixing. IEEE J. Sel. Topics
Appl. Earth Observ. Remote Sens., vol. 7, no. 6, pages
2281–2296, Jun. 2014.

[Arunasakthi 14] K. Arunasakthi & L. KamatchiPriya. A review on linear
and non-linear dimensionality reduction techniques. Ma-
chine Learning and Applications: An International Jour-
nal, vol. 1, no. 1, pages 65–76, Sep. 2014.

[Arvidson 01] T. Arvidson, J. Gasch & S. N. Goward. Landsat-7’s long-
term acquisition plan-An innovative approach to building
a global imagery archive. Remote Sens. Environ., vol. 78,
no. 1-2, pages 13–26, Oct. 2001.

[Bandos 06] T. Bandos, D. Zhou & G. Camps-Valls. Semi-supervised
hyperspectral image classification with graphs. Inter-
national Geoscience and Remote Sensing Symposium
(IGARSS), 2006.

[Bandos 09] T. V. Bandos, L. Bruzzone & G. Camps-Valls. Classifi-
cation of hyperspectral images with regularized linear dis-
criminant analysis. IEEE Trans. Geosci. Remote Sens.,
vol. 47, no. 3, pages 862–873, Mar. 2009.

[Bao 16] R. Bao, J. Xia, M. Dalla Mura, P. Du, J. Chanussot &
J. Ren. Combining morphological attribute profiles via
an ensemble method for hyperspectral image classifica-
tion. IEEE Geosci. Remote Sens. Lett., vol. 13, no. 3,
pages 359–263, Mar. 2016.

[Baudat 00] G. Baudat & F. Anouar. Generalized discriminant anal-
ysis using a kernel approach. Neural Comput., vol. 12,
pages 2385–2404, 2000.

[Belkin 02] M. Belkin & P. Niyogi. Laplacian eigenmaps and spec-
tral techniques for embedding and clustering. Advances in
Neural Information Processing Systems 14, MIT Press,
British Columbia, pages 585–591, 2002.



140 BIBLIOGRAPHY

[Belkin 03] M. Belkin & P. Niyogi. Laplacian eigenmaps for dimen-
sionality reduction and data representation. Neural Com-
putation, vol. 15, no. 6, pages 1373–1396, 2003.

[Bellens 08] R. Bellens, S. Gautama, L. Martinez-Fonte, W. Philips,
J.C.W. Chan & F. Canters. Improved classification of
VHR images of urban areas using directional morpholog-
ical profiles. IEEE Trans. Geosci. Remote Sens., vol. 46,
no. 10, pages 2803–2813, Oct. 2008.

[Benediktsson 05] J. A. Benediktsson, J. A. Palmason & J. R. Sveinsson.
Classification of hyperspectral data from urban areas based
on extended morphological profiles. IEEE Trans. Geosci.
Remote Sens., vol. 40, no. 3, pages 480–491, Mar. 2005.

[Bennet 99] K. Bennet & A. Demiriz. Semi-supervised support vec-
tor machines. Cambridge, 1999. in Advances in Neural
Information Processing Systems (NIPS).

[Bernabe 13] S. Bernabe, S. Lopez, A. Plaza & R. Sarmiento. GPU im-
plementation of an automatic target detection and classi-
fication algorithm for hyperspectral image analysis. IEEE
Geosci. Remote Sens. Lett., vol. 10, no. 2, pages 221–225,
Mar. 2013.

[Bioucas-Dias 13] J. M. Bioucas-Dias, A. Plaza, G. Camps-Valls, P. Scheun-
ders, N. Nasrabadi & J. Chanussot. Hyperspectral remote
sensing data analysis and future challenges. IEEE Geosci.
Remote Sens. Mag., vol. 1, no. 2, pages 6–36, Jun 2013.

[Bruce 13] D. Bruce, A. Lawrence, F. Ross, M. Elizabeth, C. Dou-
glas, T. Joel, G. Jeffrey, J. Kenneth, Vuong Ly &M. Paul.
NASA Goddard’s LiDAR, Hyperspectral and Thermal (G-
LiHT) Airborne Imager. Remote Sens., vol. 5, no. 8,
pages 4045–4066, Aug 2013.

[Bruzzone 06] L. Bruzzone, M. Chi & M. Marconcini. A novel trans-
ductive SVM for semisupervised classification of remote-
sensing images. IEEE Trans. Geosci. Remote Sens.,
vol. 44, no. 11, pages 3363–3373, Nov. 2006.

[Bruzzone 09] L. Bruzzone & C. Persello. A Novel Approach to the
Selection of Spatially Invariant Features for the Classifi-
cation of Hyperspectral Images With Improved General-
ization Capability. IEEE Trans. Geosci. Remote Sens.,
vol. 47, no. 9, pages 3180–3191, Sep. 2009.

[Cai 07] D. Cai, X. He & J. Han. Semi-supervised discriminant
analysis. IEEE 11th International Conference on Com-
puter Vision (ICCV07), 2007.



BIBLIOGRAPHY 141

[Campbell 02] J. B. Campbell. Introduction to remote sensing. The
Guilford Press, 3rd edition, 2002.

[Camps-Valls 05] G. Camps-Valls & L. Bruzzone. Kernel-based methods for
hyperspectral image classification. IEEE Trans. Geosci.
and Remote Sens., vol. 43, no. 6, pages 1351–1362, Jun.
2005.

[Camps-Valls 06] G. Camps-Valls & L. Bruzzone. Kernel-based methods for
hyperspectral image classification. IEEE Trans. Geosci.
Remote Sens., vol. 43, no. 6, pages 1351–1362, Jun. 2006.

[Camps-Valls 07] G. Camps-Valls, T. Bandos & D. Zhou. Semisuper-
vised graph-based hyperspectral image classification. IEEE
Trans. Geosci. Remote Sens., vol. 45, no. 10, pages 3044–
3054, Oct. 2007.

[Capobianco 09] L. Capobianco, A. Garzelli & G. Camps-Valls. Target
detection with semisupervised kernel orthogonal subspace
projection. IEEE Trans. Geosci. Remote Sens., vol. 47,
no. 11, pages 93–97, Nov. 2009.

[Chang ] C. Chang & C. Lin. A Library for Sup-
port Vector Machines. [Online], Available:
http://www.csie.ntu.edu.tw/cjlin/libsvm.

[Chang 01] C.C. Chang & C.J. Lin. LIBSVM: A Library for Support
Vector Machines, 2001.

[Chang 03] C.l Chang. Hyperspectral imaging: Techniques for spec-
tral detection and classification, volume 1. Springer Sci-
ence & Business Media, Jul. 2003.

[Chapelle 05] O. Chapelle & A. Zien. Semi-supervised classification
by low density separation. pages 57–64. In International
Conference on Artificial Intelligence and Statistics (AIS-
TATS), 2005.

[Che 08] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer &
K. Skadron. performance study of general-purpose appli-
cations on graphics processors using CUDA. J. Parallel
and Distributed Comput., vol. 68, no. 10, pages 1370–
1380, Oct. 2008.

[Chen 11] S. Chen & D. Zhang. Semi-supervised dimensionality re-
duction with pairwise constraints for hyperspectral image
classification. IEEE Geosci. Remote Sens. Lett., vol. 8,
no. 2, pages 369–373, 2011.



142 BIBLIOGRAPHY

[Chen 14] C. Chen, W. Li, H. Su & K. Liu. Spectral-spatial clas-
sification of hyperspectral image based on kernel extreme
learning machine. Remote Sens., vol. 6, no. 6, pages 5798–
5814, Jun. 2014.

[Chouzenoux 14] E. Chouzenoux, M. Legendre, S. Moussaoui & J. Idier.
Fast constrained least squares spectral unmixing using
primaldual interior point optimization. IEEE J. Sel. Top-
ics Appl. Earth Observ. Remote Sens., vol. 7, no. 1, pages
59–69, Jan. 2014.

[Christophe 11] E. Christophe, J. Michel & J. Inglada. Remote sensing
processing: From multicore to GPU. IEEE J. Sel. Topics
Appl. Earth Observ. Remote Sens., vol. 4, no. 3, pages
643–652, Sep. 2011.

[Coomans 82] D. Coomans & D.L. Massart. Alternative k-nearest neigh-
bour rules in supervised pattern recognition : Part 1. k-
Nearest neighbour classification by using alternative vot-
ing rules. Analytica Chimica Acta, vol. 136, pages 15–27,
1982.

[Dalponte 08] M. Dalponte, L. Bruzzone & D. Gianelle. Fusion of hy-
perspectral and LIDAR remote sensing data for classifica-
tion of complex forest areas. IEEE Trans. Geosci. Remote
Sens., vol. 46, no. 5, pages 1416–1427, May 2008.

[Dalponte 10] M. Dalponte. Analysis of forest areas by advanced remote
sensing systems based on hyperspectral and LiDAR data.
PhD thesis, University of Trento, Mar. 2010.

[Debes 14] C. Debes. Hyperspectral and LiDAR data fusion: out-
come of the 2013 GRSS Data Fusion Contest. IEEE
J. Sel.Topics Appl. Earth Observ. Remote Sens., vol. 7,
no. 6, pages 2405–2418, Jun. 2014.

[Dempster 77] N. Dempster, A. Laird & D. Rubin. Maximum likelihood
from incomplete data via the EM algorithm. Journal of
the royal statistical society, Series B, vol. 39, no. 1, pages
1–38, 1977.

[Du 13] Q. Du, W. Wei, B. Ma & N. H. Younan. Hyperspectral
image compression and target detection using nonlinear
principal component analysis. Processing IX. SPIE, Pro-
cessings of Satell. Data Compression Commun, Sep. 2013.

[Eismann 96] M. T. Eismann, C. R. Schwartz, J. N. Cederquist, J. A.
Hackwell & R. J. Huppi. Comparison of infrared imaging



BIBLIOGRAPHY 143

hyperspectral sensors for military target detection appli-
cations. volume 2819, pages 91–101. Proceedings of the
SPIE, 1996.

[Elakshe 08] A. F. Elakshe. Fusion of hyperspectral images and lidar-
based DEMs for coastal mapping. Optics Lasers Eng.,
vol. 46, pages 493–498, Jul. 2008.

[Fang 14] Y. Fang, H. Li, Y. Ma, K. Liang, Y. Hu, S. Zhang &
H. Wang. Dimensionality reduction of hyperspectral im-
ages based on robust spatial information using locally lin-
ear embedding. IEEE Geosci. Remote Sens. Lett., vol. 11,
no. 10, pages 1712–1716, Oct. 2014.

[Fauvel 08] M. Fauvel, J. A. Benediktsson, J. Chanussot & J. R.
Sveinsson. Spectral and Spatial Classification of Hy-
perspectral Data Using SVMs and Morphological Profile.
IEEE Trans. Geosci. Remote Sens., vol. 46, 2008.

[Fauvel 09] M. Fauvel, J. Chanussot & J. A. Benediktsson. Ker-
nel principal component analysis for the classification of
hyperspectral remote sensing data over urban areas. J.
EURASIP Journal on Advances in Signal Processing,
pages 1–14, Mar. 2009.

[Fong 07] M. Fong. Dimension reduction on hyperspectral images.
University of California, Los Angeles, United States, Re-
port, August 2007.

[Frantz 15] D. Frantz, A. Roder, T. Udelhoven & M. Schmidt. En-
hancing the detectability of clouds and their shadows in
multitemporal dryland landsat imagery: extending fmask.
IEEE Geosci. Remote Sens. Lett., vol. 12, no. 6, pages
1242–1246, Jun. 2015.

[Fukunaga 83] K. Fukunaga & J. Mantock. Nonparametric discrimi-
nant analysis. IEEE Trans. Pattern Anal. Mach. Intell.,
vol. PAMI-5, no. 6, pages 671–678, Nov. 1983.

[Fukunaga 90] K. Fukunaga. Introduction to statistical pattern recogni-
tion. 2nd. Boston, MA: Academic, 1990.

[Ghamisi 14a] P. Ghamisi, J. Benediktsson & M. Ulfarsson. Spectral-
spatial classification of hyperspectral images based on hid-
den Markov random fields. IEEE Trans. Geosci. and Re-
mote Sens., vol. 52, no. 5, pages 2565–2574, May 2014.

[Ghamisi 14b] P. Ghamisi, J. A. Benediktsson & J. R. Sveinsson. Au-
tomatic spectral-spatial classification framework based on



144 BIBLIOGRAPHY

attribute profiles and supervised feature extraction. IEEE
Trans. Geosci. Remote Sens., vol. 52, no. 9, pages 5771–
5782, 2014.

[Ghamisi 16] P. Ghamisi, B. Hofle & X. Zhu. Hyperspectral and LiDAR
data fusion using extinction profiles and deep convolu-
tional neural network. IEEE J. Sel. Topics Appl. Earth
Observ. Remote Sens., vol. pp, no. 99, pages 1–14, 2016.

[Green 98] R. 0. Green, M. L. Eastwood, C. M. Sarture, T. G.
Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust,
B. E. Pavri, C. J. Chovit, M. Solis & M. R. Olah. Imag-
ing Spectroscopy and the Airborne Visible/Infrared Imag-
ing Spectrometer (AVIRIS). Remote Sensing of Environ-
ment, vol. 65, no. 3, pages 227–270, 1998.

[Gu 15] Y. Gu, Q. Wang, X. Jia & J. A. Benediktsson. A Novel
MKL Model of Integrating LiDAR Data and MSI for Ur-
ban Area Classification. IEEE Trans. Geosci. Remote
Sens., vol. 53, no. 4, pages 5312–5326, Oct. 2015.

[Harish 07] P. Harish & P. J. Narayanan. Accelerating large graph
algorithms on the GPU using CUDA. ser. Lecture Notes
in Computer Science, Berlin/Heidelberg, 2007. Springer,
Proceedings of High Performance Computing-HiPC.

[He 04] X. He & P. Niyogi. Locality preserving projections. Ad-
vances in Neural Information Processing System 16, MIT
Press, British Columbia„ 2004.

[He 05] X. He, D. Cai, S. Yan & H. Zhang. Neighborhood preserv-
ing embedding. In Tenth IEEE International Conference
on Computer Vision 2005, vol. 2, pages 1208–1213, 2005.

[Heesung 05] K. Heesung & N.M. Nasrabadi. Kernel rx-algorithm:
a nonlinear anomaly detector for hyperspectral imagery.
IEEE Trans. Geosci. Remote Sens., vol. 43, no. 2, pages
388–397, Feb. 2005.

[Ho 95] T. K. Ho. Random Decision Forests. Montreal, QC, 1995.
Proceedings of the 3rd International Conference on Doc-
ument Analysis and Recognition.

[Hotelling 33] H. Hotelling. Analysis of a complex of statistical vari-
ables into principal components. Journal of Educational
Psychology„ vol. 24, pages 417–441, 1933.

[Huang 10] H. Huang & B. Kuo. Double nearest proportion feature
extraction for hyperspectral-image classification. IEEE



BIBLIOGRAPHY 145

Trans. Geosci. Remote Sens., vol. 48, no. 11, pages 4034–
4046, 2010.

[Huang 13] X. Huang & L. Zhang. SVM ensemble approach combin-
ing spectral, structural, semantic features for the classifi-
cation of high-resolution remotely sensed imagery. IEEE
Trans. Geosci. Remote Sens., vol. 51, no. 1, pages 257–
272, 2013.

[Hughes 68] G. F. Hughes. On the mean accuracy of statistical pattern
recognizers. IEEE Transactions on Information Theory,
vol. 14, no. 1, pages 55–63, 1968.

[Hyp 13] 2013 IEEE GRSS Data Fusion Contest.
http://www.grssieee.org/community/technical-
committees/data-fusion/, 2013.

[Hyvarinen 00] A. Hyvarinen & E. Oja. Independent component analysis:
algorithms and applications. Neural Networks, vol. 13,
pages 411–430, 2000.

[Jia 13] X. Jia, B. Kuo & M. M. Crawford. Feature Mining for
Hyperspectral Image Classification. Proceedings of the
IEEE, vol. 101, no. 3, pages 676 – 697, Feb. 2013.

[Jlliffe 86] I. Jlliffe. Principal Component Analysis. New York:
Springer-Verlag, 1986.

[Joachims 99] T. Joachims. Making large-scale support vector machine
learning practical. MIT Press, 1999.

[Jung 14] J. Jung, E. Pasolli, S. Prasad, J. Tilton & M. Crawford.
A framework for land cover classification using discrete
return LiDAR data: Adopting pseudo-waveform and hi-
erarchical segmentation. IEEE J. Sel. Topics Appl. Earth
Observ. Remote Sens., vol. 7, no. 2, pages 491–502, Feb.
2014.

[Kelman 13] T. Kelman, J. Ren & S. Marshall. Effective classification
of Chinese tea samples in hyperspectral imaging. Artificial
Intelligence Research, vol. 2, no. 4, pages 87–96, Oct.
2013.

[Khodadadzadeh 15] M. Khodadadzadeh, J. Li, S. Prasad & A. Plaza. Fusion
of hyperspectral and LiDAR remote sensing data using
multiple feature learning. IEEE J. Sel. Topics Appl. Earth
Observ. Remote Sens., vol. 8, no. 6, pages 2971–2983,
Jun, 2015.



146 BIBLIOGRAPHY

[Kirk 10] D. Kirk &W.-M.W. Hwu. Programming massively paral-
lel processors: A hands-on approach. New York: Elsevier
Science & Technology, 2010.

[kre 15] kret.com. The history of radar, from aircraft radio detec-
tors to airborne radar, Apr. 2015.

[Kuo 04] B. Kuo & D. Landgrebe. Nonparametric weighted feature
extraction for classification. IEEE Trans. Geosci. Remote
Sens., vol. 42, no. 5, pages 1096–1105, 2004.

[Kuo 07] B. Kuo & K. Chang. Feature extractions for small sample
size classification problem. IEEE Trans. Geosci. Remote
Sens., vol. 45, no. 3, pages 756–764, Mar. 2007.

[Kuo 09] B. C. Kuo, C. H. Li & J. M. Yang. Kernel nonparametric
weighted feature extraction for hyperspectral image clas-
sification. IEEE Trans. Geosci. Remote Sens., vol. 47,
no. 4, pages 1139 – 1155, Apr. 2009.

[Landgrebe 03] D. A. Landgrebe. Signal theory methods in multispectral
remote sensing. Hoboken, NJ: Wiley, 2003.

[Lee 11] C. A. Lee, S. D. Gasster & A. Plaza. Recent developments
in high performance computing for remote sensing: A re-
view. IEEE J. Sel. Topics Appl. Earth Observ. Remote
Sens., vol. 4, no. 3, pages 508–527, Sep. 2011.

[Liao 12] W. Liao, R. Bellens, A. Pizurica, W. Philips & Y. Pi.
Classification of hyperspectral data over urban areas us-
ing directional morphological profiles and semi-supervised
feature extraction. IEEE J. Sel. Topics Appl. Earth Ob-
serv. Remote Sens., vol. 5, no. 4, pages 1177–1190, Aug.
2012.

[Liao 13] W. Liao, A. Pizurica, W. Philips & Y. Pi. Semisuper-
vised Local Discriminant Analysis for Feature Extraction
in Hyperspectral Images. IEEE Trans. Geosci. Remote
Sens., vol. 51, no. 1, 2013.

[Liao 14] W. Liao, R. Bellens, A. Pizurica, S. Gautama &
W. Philips. Combining feature fusion and decision fusion
for classification of hyperspectral and LiDAR data. pages
1241–1244, Quebec City, Jul. 2014. Proceedings of In-
ternational Geoscience and Remote Sensing Symposium
(IGARSS).

[Liao 15] W. Liao, A. Pizurica, R. Bellens, S. Gautama &
W. Philips. Generalized graph-based fusion of hyperspec-
tral and LiDAR data using morphological features. IEEE



BIBLIOGRAPHY 147

Geosci. Remote Sens. Lett., vol. 12, no. 3, pages 552–556,
Mar. 2015.

[Liao 16] W. Liao, M. Dalla Mura, J. Chanussot & W. Philips
R. Bellens. Morphological Attribute Profiles With Par-
tial Reconstruction. IEEE Trans. Geosci. Remote Sens.,
vol. 54, no. 3, pages 1338–1756, 2016.

[LiD 13] LIDAR-Light Detection and Ranging-is a remote sensing
method used to examine the surface of the Earth. Avali-
able at::http://www.webcitation.org/6H82i1Gfx, 2013.

[Liu 07] Z. Liu, J. Yan, D. Zhang & Q. L. Li. Automated tongue
segmentation in hyperspectral images for medicine. Ap-
plied Optics, vol. 46, no. 34, pages 8328–8334, Dec. 2007.

[Lu 14] G. Lu & B. Fei. Medical hyperspectral imaging: a review.
Journal of Biomedical Optics, vol. 19, no. 1, pages 010
901/1–010 901/23, Jan. 2014.

[Luo 08] Y. Luo, A. P. Trishchenko & K. V. Khlopenkov. Develop-
ing clear-sky, cloud and cloud shadow mask for produc-
ing clear-sky composites at 250-meter spatial resolution
for the seven MODIS land bands over Canada and North
America. Remote Sens. Environ., vol. 112, no. 12, pages
4167–4185, Dec. 2008.

[Luo 15] R. Luo, W. Liao, W. Philips & Y. Pi. An improved semi-
supervised local discriminant analysis for feature extrac-
tion of hyperspectal image. pages 1–4. Joint Urban Re-
mote Sensing Event (JURSE 2015), 2015.

[Luo 16a] R. Luo, W. Liao, H. Huang, W. Philips & Y. Pi. Spectral-
Spatial Classification of Hyperspectral Images with Semi-
Supervised Graph Learning. volume 10004, pages 1–6,
Edinburgh, United Kingdom, Sep. 2016. SPIE.

[Luo 16b] R. Luo, W. Liao, X. Huang, W. Philips & Y. Pi. Clas-
sification of cloudy hyperspectral image and LIDAR data
based on feature fusion and decision fusion. In 2016 IEEE
Geoscience and Remote Sensing International Sympo-
sium (IGARSS 2016), Beijing, China, Jul. 2016. accepted.

[Luo 16c] R. Luo, W. Liao, X. Huang, W. Philips & Y. Pi. Feature
Extraction of Hyperspectral Images With Semisupervised
Graph Learning. IEEE J. Sel. Topics Appl. Earth Observ.
Remote Sens., 2016.



148 BIBLIOGRAPHY

[Marchesi 09] S. Marchesi & L. Bruzzone. ICA and kernel ICA for
change detection in multispectral remote sensing images.
In Proc. Int. Geosci. Remote Sens. Symp., pages 980–983.
IEEE, 2009.

[Meer 12] F. V. D. Meer, H. V. D. Werff, F. V. Ruitenbeek, C. A.
Hecker, W. H. Bakker, M. F. Noomen, M. V. D. Mei-
jde, E. J. M. Carranza, J. B. D. Smeth & T. Woldai.
Multi- and hyperspectral geologic remote sensing: A re-
view. International Journal of Applied Earth Observation
and Geoinformation, vol. 14, no. 1, pages 112–128, 2012.

[Michiel 01] Hazewinkel Michiel. Gram matrix, 2001.

[Montopoli 07] M. Montopoli, P. Tognolatti, F. Marzano, M. Pierdicca
& G. Perrotta. Remote sensing of the Moon sub-surface
from a spaceborne microwawe radiometer aboard the Eu-
ropean Student Moon Orbiter (ESMO). pages 4451–4454.
IEEE International Conference on Geoscience and Re-
mote Sensing Symposium (IGARSS), Jul. 2007.

[Mura 10a] M. Dalla Mura, J. Benediktsson, B. Waske & L. Bruz-
zone. Morphological attribute profiles for the analysis of
very high resolution images. IEEE Trans. Geosci. Remote
Sens., vol. 48, no. 10, pages 3747–3762, 2010.

[Mura 10b] M. Dalla Mura, J. A. Benediktsson, B. Waske & L. Bruz-
zone. Extended profiles with morphological attribute fil-
ters for the analysis of hyperspectral data. Int. J. Remote
Sens., vol. 31, no. 22, pages 5975–5991, Nov. 2010.

[Mura 11] M. Dalla Mura, A. Villa, J. A. Benediktsson & L. Bruz-
zone J. Chanussot. Classification of Hyperspectral Images
by Using Extended Morphological Attribute Profiles and
Independent Component Analysis. IEEE Geosci. Remote
Sens. Lett., vol. 8, no. 3, pages 541–545, 2011.

[Naidooa 12] L. Naidooa, M. Choa, R. Mathieua & G. Asner. Classi-
fication of savanna tree species, in the greater kruger na-
tional park region, by integrating hyperspectral and lidar
data in a random forest data mining environment. ISPRS
J. Photogramm. Remote Sens., vol. 69, pages 167–179,
Apr. 2012.

[NAS ] NASA. NASA Earth Observatory: Re-
mote Sensing. [Online] Available at:
http://earthobservatory.nasa.gov/Features/RemoteSensing/.



BIBLIOGRAPHY 149

[Nigam 06] K. Nigam, A. McCallum, & T. Mitchell. Semi-supervised
text classification using em, chapitre 3, pages 31–51.
Cambridge, MIT Press, 2006.

[Olivier 06] C. Olivier, S. Bernhard & Z. Alexander. Semi-supervised
learning. Cambridge, MIT Press, 2006.

[Ouzounis 07] G. K. Ouzounis & M. H. F. Wilkinson. Mask-based second
generation connectivity and attribute filters. IEEE Trans.
Pattern Anal. Mach. Intell., vol. 29, no. 6, pages 990–
1004, Jun. 2007.

[Palmason 05] J.A. Palmason, J.A. Benediktsson, J.R. Sveinsson &
J. Chanussot. Classification of hyperspectral data from
urban areas using morphological preprocessing and inde-
pendent component analysis. In Proc. Int. Geosci. Remote
Sens. Symp., volume 1, pages 176–179. IEEE, 2005.

[Pedergnana 12] M. Pedergnana, P. Reddy Marpu, M. Dalla Mura, J. A.
Benediktsson & L. Bruzzone. Classification of Remote
Sensing Optical and LiDAR Data Using Extended At-
tribute Profiles. IEEE Journals on Selected Topics in Sig-
nal Processing, vol. 6, no. 7, pages 856–865, Nov. 2012.

[Pesaresi 01] M. Pesaresi & J. A. Benediktsson. A new approach for
the morphological segmentation of high-resolution satel-
lite imagery. IEEE Trans. Geosci. Remote Sens., vol. 39,
no. 2, pages 309–320, 2001.

[Plaza 05] A. Plaza, P. Martinez, J. Plaza & R. Perez. Dimension-
ality reduction and classification of hyperspectral image
data using sequences of extended morphological transfor-
mations. IEEE Trans. Geosci. Remote Sens., vol. 43,
no. 3, pages 466–479, 2005.

[Plaza 11] A. Plaza, Q. Du, Y. Chang & R. King. High performance
computing for hyperspectral remote sensing. IEEE J. Sel.
Topics Appl. Earth Observ. Remote Sens., vol. 4, no. 3,
pages 528–544, Sep. 2011.

[Qiao 15] T. Qiao, J. Ren, C. Craigie, J. Zabalza, C. Maltin &
S. Marshall. Quantitative prediction of beef quality using
visible and NIR spectroscopy with large data samples un-
der industry conditions. Journal of Applied Spectroscopy,
vol. 82, no. 1, pages 137–144, Jan. 2015.

[Qu 13] H. Qu, J. Zhang, Z. Lin & H. Chen. Parallel acceleration
of SAM algorithm and performance analysis. IEEE J. Sel.
Topics Appl. Earth Observ. Remote Sens., vol. 6, no. 3,
pages 1172–1178, Jun. 2013.



150 BIBLIOGRAPHY

[Raudys 91] S. J. Raudys & A. K. Jain. Small sample size effects
in statistical pattern recognition: Recommendations for
practitioners. IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 13, no. 3, pages 152–164, 1991.

[Richards 06] J. A. Richards & X. Jia. Remote Sensing Digital Image
Analysis. Springer, 2006.

[Roush 97] T. L. Roush. Mars: Remote sensing. Encyclopedia of
Planetary Science. Springer, pages 459–461, 1997.

[Roweis 00] S. T. Roweis & L. K. Saul. Nonlinear dimensionality
reduction by locally linear embedding. Science, vol. 290,
no. 5500, pages 2323–2326, Dec. 2000.

[Salembier 09] P. Salembier & M. H. F. Wilkinson. Connected operators.
IEEE Signal Process. Mag., vol. 26, no. 6, pages 136–157,
Nov. 2009.

[Satish 09] N. Satish, M. Harris & M. Garland. Designing efficient
sorting algorithms for many core GPUs. pages 1–10,
Rome, Italy, May 2009. Processing of IEEE Int. Symp.
Parallel and Distributed Processing.

[Scholkopf 98] B. Scholkopf, A.J. Smola & K.R. Muller. Nonlinear com-
ponent analysis as a kernel eigenvalue problem. J. Neural
Computation, vol. 10, no. 5, pages 1299–1319, Jan. 1998.

[Scholkopf 05] B. Scholkopf, A. Smola & K. Muller. Kernel princi-
pal component analysis, volume 1327 of Artificial Neural
Networks-ICANN’97. Lecture Notes in Computer Sci-
ence, Jun. 2005.

[Schott 07] J. R. Schott. Remote sensing: the image chain approach.
Oxford University Press. p. 1., 2nd edition, 2007.

[Schowengerdt 07] R. A. Schowengerdt. Remote sensing: models and meth-
ods for image processing. Academic Press. p. 2., 3rd edi-
tion, 2007.

[Serpico 07] S.B. Serpico & G. Moser. Extractionction of spectral
channels from hyperspectral images for classification pur-
poses. IEEE Trans. Geosci. Remote Sens., vol. 45, no. 2,
pages 484–495, Feb. 2007.

[Shimoni 11] M. Shimoni, G. Tolt, C. Perneel & J. Ahlberg. Detec-
tion of vehicles in shadow areas. pages 1–4. Proceedings
of 3rd Workshop Hyperspectral Image Signal Process.:
Evol. Remote Sens. (WHISPERS), 2011.



BIBLIOGRAPHY 151

[Soille 03] P. Soille. Morphological image analysis: Principles and
applications. 2ed. Springer-Verlag New York, 2003.

[Sugiyama 07] M. Sugiyama. Dimensionality reduction of multimodal
labeled data by local fisher discriminant analysis. Journal
of Machine Learning Research, vol. 8, pages 1027–1061,
Mar. 2007.

[Sugiyama 10] M. Sugiyama, T. Ide, S. Nakajima & J. Sese. Semi-
supervised local Fisher discriminant analysis for dimen-
sionality reduction. Machine Learning, vol. 78, no. 35,
pages 35–61, Jan. 2010.

[Sun 10] D. Sun. Hyperspectral imaging for food quality analysis
and control. Elsevier, 2010.

[Tuia 16] D. Tuia, C. Persello & L. Bruzzone. Domain adaptation
for the classification of remote sensing data: An overview
of recent advances. IEEE Geosci. Remote Sens. Mag.,
vol. 4, no. 2, pages 41–47, Jun. 2016.

[Vapnik 98] V.N. Vapnik. Statistical learning theory. Wiley-
Interscience, 1998.

[Wang 06] J. Wang & C.I. Chang. Independent component analysis-
based dimensionality reduction with applications in hy-
perspectral image analysis. IEEE Trans. Geosci. Remote
Sens., vol. 44, no. 6, pages 1586–1600, 2006.

[Weng 03] J. Weng, Y. Zhang & W. Huang. Candid covariance-free
incremental principal component analysis. J. IEEE Trans
Pattern Analysis and Machine Intelligence, vol. 25, no. 8,
pages 1034–1040, 2003.

[Werff 06] H. Werff. Knowledge based remote sensing of complex ob-
jects: recognition of spectral and spatial patterns resulting
from natural hydrocarbon. Itc dissertation, Utrecht Uni-
versity, 2006.

[Wu 15] Z. Wu, Q. wang & A. Plaza. Parallel Implementation of
sparse representation classifiers for hyperspectral imagery
on GPUs. IEEE J. Sel. Topics Appl. Earth Observ. Re-
mote Sens., vol. 8, no. 6, pages 2912–2925, Jun. 2015.

[Yang 10] J. Yang, P. Yu & B. Kuo. A nonparametric feature extrac-
tion and Its application to nearest neighbor classification
for hyperspectral image data. IEEE Trans. Geosci. Re-
mote Sens., vol. 48, no. 3, pages 1279–1293, March 2010.



152 BIBLIOGRAPHY

[Yang 11] H. Yang, Q. Du & G. Chen. Unsupervised hyperspectral
band selection using graphics processing units. IEEE J.
Sel. Topics Appl. Earth Observ. Remote Sens., vol. 4,
no. 3, pages 660–668, Sep. 2011.

[Yokoya 14] N. Yokoya, S. Nakazawa, T. Matsuki & A. Iwasaki. Fu-
sion of hyperspectral and LiDAR data for landscape visual
quality assessment. IEEE J. Sel. Top. Appl. Earth Ob-
servat. Remote Sens., vol. 7, no. 6, pages 2419–2425, Jun.
2014.

[Zelnik 05] L. Zelnik & P. Perona. Self-tuning spectral clustering.
pages 1601–1608. Advances in Neural Information Pro-
cessing Systems 17, Cambridge, MA: MIT Press., 2005.

[Zhang 07] D. Zhang, Z. Zhou & S. Chen. Semi-supervised dimen-
sionality reduction. pages 629–634, 2007.

[Zhang 10] S. Zhang & G. Yu. Semi-supervised locality preserving
projections with compactness enhancement. pages 460–
464, 2010.

[Zhang 12] L. Zhang, L. Zhang, D. Tao & X. Huang. On combining
multiple features for hyperspectral remote sensing image
classification. IEEE Trans. Geosci. Remote Sens., vol. 50,
no. 3, pages 879–893, 2012.

[Zhong 16] Z. Zhong, B. Fan, K. Ding, H. Li, S. Xiang & C. Pan.
Efficient Multiple Feature Fusion With Hashing for Hy-
perspectral Imagery Classification: A Comparative Study.
IEEE Trans. Geosci. and Remote Sens., vol. 54, no. 8,
pages 4461–4478, Aug. 2016.

[Zhou 04] D. Zhou, O. Bousquet, T.N. Lal, J. Weston &
B. Scholkopf. Learning with local and global consis-
tency. Advances in Neural Information Processing Sys-
tems (NIPS), 2004.

[Zhou 15] Y. Zhou, J. Peng & C. P. Chen. Dimension reduction
using spatial and spectral regularized local discriminant
embedding for hyperspectral image classification. IEEE
Trans. Geosci. Remote Sens., vol. 53, no. 2, pages 1082–
1095, 2015.

[Zhu 08] X. Zhu. Semi-supervised learning literature survey. Tech-
nical report, Computer Sciences, University of Wisconsin-
Madison, 2008.



BIBLIOGRAPHY 153

[Zhu 12] Z. Zhu & C. E. Woodcock. Object-based cloud and cloud
shadow detection in Landsat imagery. Remote Sens. En-
viron., vol. 118, no. 15, pages 83–94, Mar. 2012.

[Zhu 14] Z. Zhu & C. E. Woodcock. cloud, cloud shadow, and snow
detection in multitemporal landsat data: An algorithm de-
signed specifically for monitoring land cover change. Re-
mote Sens. Environ., vol. 152, pages 217–234, Sep. 2014.

[Zubko 07] V. Zubko, Y. J. Kaufman, R. I. Burg & J. V. Mar-
tins. Principal component analysis of remote sensing of
aerosols over oceans. IEEE Trans. Geosci. Remote Sens.,
vol. 45, no. 3, pages 730–745, March 2007.



 



 


	thesis_ugent_cover
	phdthesis_liu0602 - 副本
	Acknowledgements
	Samenvatting
	Summary
	List of Abbreviations
	Introduction
	Remote Sensing
	Hyperspectral Image
	LiDAR Data

	Problem Statement
	Feature Extraction and Fusion
	Classification
	Challenges

	Contributions and Publications
	Structure of the Thesis

	Supervised Feature Extraction of Remote Sensing Data
	Introduction
	Unsupervised Feature Extraction Methods
	Supervised Feature Extraction Methods
	Proposed Supervised Local Feature Extraction Methods

	Discriminative Supervised Neighborhood Preserving Embedding (DSNPE)
	Neighborhood Preserving Embedding (NPE)
	Proposed DSNPE
	Experiments
	Experimental Data sets and settings
	Experimental Results


	PCA-based Supervised Locality Preserving Projection (PSLPP) 
	Locality Preserving Projection (LPP)
	Proposed PSLPP
	Experiments
	Experimental Datasets and Settings
	Experimental Results


	Conclusions

	Semi-supervised Feature Extraction of Remote Sensing Data
	Introduction
	Semi-supervised learning
	Semi-supervised Feature extraction
	Proposed Semi-supervised Feature Extraction

	Improved Semi-supervised Local Discriminant Analysis (ISELD)
	Semi-supervised Local Discriminant Analysis (SELD)
	Proposed ISELD
	Experiments and Results

	Semi-supervised Graph Learning (SEGL)
	Proposed SEGL
	Experiments and Results
	Hyperspectral Image Data Sets
	Experimental Setup
	Results on Different Number of Labelled Training Samples
	Results on Different Number of Unlabelled Training Samples
	Results on Different Number of Nearest Neighbors


	Improved Semi-supervised Graph Learning (ISEGL)
	Morphological Attribute Profiles With Partial Reconstruction
	Proposed ISEGL
	Experiments and Results

	Conclusions

	Classification based on Joint Cloud-shadow HS and LiDAR Data
	Introduction
	Proposed Framework
	Morphological Attribute Profiles
	Multiple Feature Classification
	Cloud-shadow Detection
	Co-training Samples Generation
	Classification Map Fusion

	Experiments
	Data Description
	Experimental Setup
	Effect of Number of Nearest Neighbors for Co-training Generation
	Classification Results on the data set

	Conclusion

	GPU-Acceleration for Non-linear Feature Extraction
	Introduction
	Related Background
	GPU Architecture
	KPCA

	Parallel Version of KPCA on GPU
	Experiments and Results
	Conclusion

	Conclusions and Future Works
	Conclusions
	Supervised Feature Extraction
	Semi-supervised Feature Extraction
	Fusion of Hyperspectral Image and LiDAR Data
	GPU-based Non-linear Feature Extraction

	Future Research

	Bibliography

	titlepg_recto_verso_Luo.pdf
	franse_pg_recto_Luo_nieuw.pdf
	franse_pg_verso_Luo_nieuw.pdf


