27,243 research outputs found

    Bandwidth selection for kernel estimation in mixed multi-dimensional spaces

    Get PDF
    Kernel estimation techniques, such as mean shift, suffer from one major drawback: the kernel bandwidth selection. The bandwidth can be fixed for all the data set or can vary at each points. Automatic bandwidth selection becomes a real challenge in case of multidimensional heterogeneous features. This paper presents a solution to this problem. It is an extension of \cite{Comaniciu03a} which was based on the fundamental property of normal distributions regarding the bias of the normalized density gradient. The selection is done iteratively for each type of features, by looking for the stability of local bandwidth estimates across a predefined range of bandwidths. A pseudo balloon mean shift filtering and partitioning are introduced. The validity of the method is demonstrated in the context of color image segmentation based on a 5-dimensional space

    ASTErIsM - Application of topometric clustering algorithms in automatic galaxy detection and classification

    Full text link
    We present a study on galaxy detection and shape classification using topometric clustering algorithms. We first use the DBSCAN algorithm to extract, from CCD frames, groups of adjacent pixels with significant fluxes and we then apply the DENCLUE algorithm to separate the contributions of overlapping sources. The DENCLUE separation is based on the localization of pattern of local maxima, through an iterative algorithm which associates each pixel to the closest local maximum. Our main classification goal is to take apart elliptical from spiral galaxies. We introduce new sets of features derived from the computation of geometrical invariant moments of the pixel group shape and from the statistics of the spatial distribution of the DENCLUE local maxima patterns. Ellipticals are characterized by a single group of local maxima, related to the galaxy core, while spiral galaxies have additional ones related to segments of spiral arms. We use two different supervised ensemble classification algorithms, Random Forest, and Gradient Boosting. Using a sample of ~ 24000 galaxies taken from the Galaxy Zoo 2 main sample with spectroscopic redshifts, and we test our classification against the Galaxy Zoo 2 catalog. We find that features extracted from our pipeline give on average an accuracy of ~ 93%, when testing on a test set with a size of 20% of our full data set, with features deriving from the angular distribution of density attractor ranking at the top of the discrimination power.Comment: 20 pages, 13 Figures, 8 Tables, Accepted for publication in the Monthly Notices of the Royal Astronomical Societ

    Difference of Normals as a Multi-Scale Operator in Unorganized Point Clouds

    Full text link
    A novel multi-scale operator for unorganized 3D point clouds is introduced. The Difference of Normals (DoN) provides a computationally efficient, multi-scale approach to processing large unorganized 3D point clouds. The application of DoN in the multi-scale filtering of two different real-world outdoor urban LIDAR scene datasets is quantitatively and qualitatively demonstrated. In both datasets the DoN operator is shown to segment large 3D point clouds into scale-salient clusters, such as cars, people, and lamp posts towards applications in semi-automatic annotation, and as a pre-processing step in automatic object recognition. The application of the operator to segmentation is evaluated on a large public dataset of outdoor LIDAR scenes with ground truth annotations.Comment: To be published in proceedings of 3DIMPVT 201

    Survey of data mining approaches to user modeling for adaptive hypermedia

    Get PDF
    The ability of an adaptive hypermedia system to create tailored environments depends mainly on the amount and accuracy of information stored in each user model. Some of the difficulties that user modeling faces are the amount of data available to create user models, the adequacy of the data, the noise within that data, and the necessity of capturing the imprecise nature of human behavior. Data mining and machine learning techniques have the ability to handle large amounts of data and to process uncertainty. These characteristics make these techniques suitable for automatic generation of user models that simulate human decision making. This paper surveys different data mining techniques that can be used to efficiently and accurately capture user behavior. The paper also presents guidelines that show which techniques may be used more efficiently according to the task implemented by the applicatio
    corecore