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Aurélie Bugeau , Patrick Pérez
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Abstract: Kernel estimation techniques, such as mean shift, suffer from one major drawback: the

kernel bandwidth selection. The bandwidth can be fixed for all the data set or can vary at each points.

Automatic bandwidth selection becomes a real challenge in case of multidimensional heterogeneous

features. This paper presents a solution to this problem. Itis an extension of [4] which was based

on the fundamental property of normal distributions regarding the bias of the normalized density

gradient. The selection is done iteratively for each type offeatures, by looking for the stability of

local bandwidth estimates across a predefined range of bandwidths. A pseudo balloon mean shift

filtering and partitioning are introduced. The validity of the method is demonstrated in the context of

color image segmentation based on a 5-dimensional space.

Key-words: kernel estimation, mean shift filtering, automatic bandwidth selection



Estimation à noyau adaptatif dans des espaces

multidimensionnels h́etérogènes

Résuḿe : Les méthodes d’estimation à noyau, telles que le mean shift, ont un inconvénient majeur :

le choix de la taille du noyau. La taille peut être fixe pour l’ensemble des données ou varier en chaque

point. La sélection de cette taille devient vraiment difficile dans le cas de données multidimensionnelles

et hétérogènes. Ce rapport présente une solution à ce problème. Il s’agit d’une extension de l’algorithme

présenté dans [4]. La taille est choisie itérativement pour chaque type de données, en cherchant

dans un ensemble de tailles prédéfinies celle qui donne localement les résultats les plus stables.

La sélection itérative nécessite l’introduction d’un algorithme de segmentation mean shift basé sur

l’estimateur dit balloon. La méthode est validée dans le contexte de la segmentation d’image couleur.

Mots-clés : estimateur à noyau, filtrage mean shift, taille de noyau
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1 Introduction

Clustering is an important task in a wide range of applications of computer vision. Many methods

exist [11]. Most of them rely upon somea priori. For example, for methods such as EM, the number

of clusters must be known beforehand. It can be estimated by optimizing a global criterion. Other

methods assume known the shape, often elliptical, of the clusters, which is often not sufficient to

handle the complexity of real images. A method that does not rely on these two priors is the ”mean
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4 Bugeau & Ṕerez

shift” search for the modes of a kernel density estimation. The non-parametric aspect of the approach

makes it very versatile to analyze arbitrary feature spaces. Hierarchical clustering methods are also

non-parametric. However, they are computationally expensive and defining the stopping criterion

is not simple. These reasons explain why the mean shift clustering became recently so popular in

computer vision applications.

Mean shift was first introduced by Fukunaga [9] and latter by Cheng [3]. It has then been widely

studied, in particular by Comaniciu [7, 6, 5]. Mean shift is an iterative gradient ascent method used

to locate the density modes of a cloud of points,i.e. the local maxima of its density. The estimation

of the density is done through a kernel density estimation. The difficulty is to define the size of the

kernel,i.e. the bandwidth matrix. The value of the bandwidth matrix highly influences the results of

the mean shift clustering.

There are two types of bandwidth matrices. The first ones are fixed for the all data set. At the

opposite, the variable bandwidth matrices vary along the set and capture the local characteristics of

the data. Of course, the second type is more appropriate for real scenes. In fact, a fixed bandwidth

affects the estimation performance by undersmoothing the tails of the density and oversmoothing the

peaks. A variable bandwidth mean shift procedure has been introduced in [5]. It is based on the

sample point density estimator [10]. The estimation bias ofthis estimator decreases in comparison to

the fixed-bandwidth estimators, while the covariance remains the same. The choice of a good value

for the bandwidth matrix is really essential for the variable bandwidth mean shift. Indeed, when

the bandwidth is not selected properly, the performance is often worse than with a fixed bandwidth.

Another variable bandwidth estimator is the balloon estimator. It suffers of several drawbacks and

has therefore never been used in a mean shift algorithm. However, it has been shown in [23] that

this estimator gives better result than the fixed bandwidth and the sample point estimators when the

dimensionality of the data is higher than three. Hence, in section 3.3.2, we will propose a new mean

shift clustering algorithm based on the balloon estimator.

The bandwidth selection can be statistical analysis-basedor task-oriented. Statistical analysis-

based methods compute the best bandwidth by balancing the bias against the variance of the density

estimate. Task-oriented methods rely on the stability of the feature space partitioning. For example, a

semi parametric bandwidth selection algorithm, well adapted for variable bandwidth mean shift, has

been proposed by Comaniciu in [4, 7]. It works as follows. Fixed-bandwidth mean shift partitionings

are run on the data for several predefined bandwidth values. Each cluster obtained is described by

a normal law. Then, for each point, the clusters to which it belongs across the range of predefined

bandwidths are compared. The final selected bandwidth for this point corresponds to the one, within

the predefined range, that gave the most stable among these clusters. The results obtained for color

segmentation were promising. However, this method has somelimits. In particular, in case of a mul-

tidimensional data points composed of independent features, the bandwidth for each feature subspace

should be chosen independently. Indeed, the most stable cluster is not always the same for all the fea-

ture subspaces. A solution could be to define a set of bandwidths for each domain and to partition the

INRIA



Bandwidth selection for kernel estimation in mixed multi-dimensional spaces 5

data using all the possible bandwidth matrices resulting from the combination of the different sets.

However as the dimensions become high and/or if the sets of predefined bandwidths become large,

the algorithm can become very computationally expensive.

In this paper we address the problem of data-driven bandwidth selection for multidimensional

data composed of different independent features (a data point is a concatenation of different, possibly

multidimensional features, thus living in a product of different feature spaces). As no statistically

founded method exists for variable bandwidth and for high dimension, we concentrate on a task-

oriented method,i.e. a method that relies on the stability of the feature space partitionings. Band-

widths are selected by iteratively applying the stability criteria of [4] for each different feature space

or domain. We also introduce a new pseudo balloon mean shift which is better adapted for high

dimensional feature spaces than the variable bandwidth mean shift of [7].

We first recall some theory on kernel density estimation (section 2) and mean shift filtering (sec-

tion 3), and introduce the pseudo balloon mean shift filtering and partitioning (subsection 3.3.1). In

section 4, we present our algorithm for bandwidth selectionalgorithm in case of multivariate data and

finally we show results of our algorithm for color clusteringand color image segmentation (section

5).

2 Kernel density estimation

For the clarity of the paper, we start by reminding several results on fixed and variable bandwidth

kernel density estimation.

2.1 Fixed bandwidth estimator

Given{x(i)}i=1..n, n points in thed-dimensional spaceRd, the non-parametric kernel density estima-

tion at each pointx is given by:

f̂(x) =
1

n

n∑

i=1

KH(x − x(i)) (1)

whereKH is a kernel, and the bandwidth matrix,H, controls the size of the kernel. The shape of the

kernel is constrained to be spherically symmetric. Equation 1 can also be written as:

f̂(x) =
1

n|H|1/2

n∑

i=1

K(H−1/2(x − x(i))) . (2)

The theory of kernel density estimation indicates that the kernelK must be a bounded function with

compact support satisfying:
∫

Rd

K(x)dx = 1 , lim
‖x‖→∞

‖x‖dK(x) = 0 ,

∫

Rd

xK(x)dx = 0 ,

∫

Rd

xxT K(x)dx = ckI ,

(3)

RR n° 6286



6 Bugeau & Ṕerez

whereck is a constant andI is the identity matrix.

In many cases fixed bandwidth kernel estimators are not a goodchoice to represent the data. In-

deed a variable bandwidth is more appropriate to capture thelocal characteristics of the data. Two

main variable bandwidth estimators exist. The first one allows the definition of bandwidths at the dif-

ferent data points and is referred to as the sample point estimator. The second one lets the bandwidth

vary with the estimation points and is often referred to as the balloon estimator or nearest neighbor

estimator.

2.2 Sample point estimator

The sample point estimator was first introduced by Breimanet al. [12]. It is a mixture of similar

kernels centered on data points, possibly with different bandwidths. It is defined as:

f̂(x) =
1

n

n∑

i=1

KH(x(i))(x − x(i))

=
1

n

n∑

i=1

1

|H(x(i))|1/2
K(H(x(i))−1/2(x − x(i))) .

(4)

In [23] the advantages and drawbacks of this estimator have been studied. The major advantages

are that it is a density and that a particular choice ofH(x(i)) can considerably reduce the bias [10].

However finding this value for multivariate data is a hard problem not yet solved. A disadvantage is

that the estimate at a point may be influenced by observationsvery far away and not just by points

nearby. In [23] simulations have shown that this estimator has a very good behavior for small-to-

moderate sample sizes. It deteriorates in performance compared to fixed bandwidth estimates as the

sample size grows.

2.3 Balloon estimator

The balloon estimator was first introduced by Loftsgaarden and Quensberry [14]. It is defined as:

f̂(x) =
1

n

n∑

i=1

KH(x)(x − x(i))

=
1

n

n∑

i=1

1

|H(x)|1/2
K(H(x)−1/2(x − x(i))) .

(5)

This estimator allows a straightforward asymptotic analysis since it uses standard pointwise results

[15]. On the other hand, when applied globally, the estimatetypically does not integrate to 1 and thus

is usually not itself a density, even whenK is. In [23] the authors have investigated the improvement

that this estimator allows over fixed bandwidth kernel estimates. For data of fewer than 3 dimensions,

the improvement seems to be very modest. However the balloonestimator becomes very efficient as

soon as the number of dimensions becomes higher than 3.

INRIA
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2.4 Quality of an estimator

The quality of an estimator depends on the closeness off̂ to the target densityf . A common measure

of this closeness is the mean squared error (MSE), equal to the sum of the variance and the squared

bias:

MSE(x) = E
[
(f̂(x) − f(x))2

]

= var(f̂(x)) +
[
Bias(f̂(x))

]2
.

(6)

A good estimator has a small bias and a small variance. We detail in this subsection the computation

of the bias and the variance for the fixed bandwidth estimator. For that purpose, we denote as∇f the

gradient of functionf and asH(f) the Hessian matrix of second partial derivatives. The second-order

Taylor expansion off(•) aroundx [24, p.94] is:

f(x + δx) = f(x) + δxT∇f(x) +
1

2
δxTH(f(x))δx + o(δxT δx) . (7)

Applying to the fixed kernel estimator, it leads to the expectation:

E
(
f̂(x)

)
=

∫
1

|H|1/2
K(H−1/2(u− x))f(u)du

=
[ ∫

K(s)dsf(x) +

∫
K(s)sT ds H1/2T

∇f(x)+

∫
1

2
K(s)(H1/2s)

T
H(f(x))(H1/2s)ds +

∫
K(s)o(sTHs)ds

]
.

(8)

Using the kernel properties (equation 6), the fact that the trace of a scalar is just the scalar, and the

identity tr(AB) = tr(BA), the bias of the fixed kernel estimator becomes:

Bias(f̂(x)) = E
(
f̂(x)

)
− f(x)

= cktr
[
H1/2T

H(f(x))H1/2
]
+

∫
K(s)o(sTHs)ds .

(9)

The variance is

var(f̂(x)) = var
[ 1

n

n∑

i=1

KH(x − x(i))
]

=
1

n|H|1/2

( ∫
(K(s))2dsf(x) +

∫
K(s)o(sTHs)ds) .

(10)

Several other measures exist, mainly the mean integrated squared error (MISE) or the asymptotic

mean integrated squared error (AMISE). A detailed derivation of these measures can be found in [19]

and [24]. As discussed in 4.1, these measures can be used to select the best value forH.

3 Mean shift partitioning

An appealing technique for clustering is the mean shift algorithm, which does not require to fix the

(maximum) number of clusters. In this section we first remindthe definition of kernel profiles and

RR n° 6286



8 Bugeau & Ṕerez

the principle of mean shift filtering and partitioning. As weare interested in variable bandwidth

estimation, we give the result of [7] in which the mean shift for the sample point estimator was

developed. We then introduce a novel pseudo balloon mean shift based on the balloon estimator.

3.1 Kernel profile

The profile of a kernelK is the functionk : [0,∞) → R such thatK(x) = ckk(‖x‖2), whereck is

a positive normalization constant which makesK(x) integrate to one. Using this profile the fixed

bandwidth kernel density estimator can be rewritten as:

f̂(x) =
1

n|H|1/2

n∑

i=1

K(H−1/2(x − x(i)))

=
ck

n|H|1/2

n∑

i=1

k(‖H−1/2(x − x(i))‖2)

(11)

Two main kernels are used for mean shift filtering. Using a fixed bandwidth estimator, it can be shown

[19, p.139][24, p.104] that the AMISE measure is minimized by the Epanechnikov kernel having the

profile:

kE(x) =





1 − x 0 ≤ x ≤ 1

0 x > 1 .
(12)

The drawback of the Epanechnikov kernel is that it is not differentiable at the boundary of its support

(for x = 1). The second kernel is the multivariate normal one defined bythe profile:

k(x) = exp(−
1

2
x) (13)

which leads to the interesting property:

g(x) = −k′(x) = −
1

2
k(x) . (14)

The normalization for this profile isck = (2π)−d/2.

3.2 Fixed bandwidth mean shift filtering and partitioning

Mean shift is an iterative gradient ascent method used to locate the density modes of a cloud of points,

i.e. the local maxima of its density. The mean shift filtering is well described in [5]. Here the theory

is briefly reminded.

The density gradient of the fixed kernel estimator (equation1) is given by:

∇f̂(x) = H−1 f̂(x) m(x) (15)

wherem is the ”mean shift” vector,

m(x) =

∑n
i=1 x(i) g

(
‖H−1/2(x − x(i))‖2

)
∑n

i=1 g
(
‖H−1/2(x − x(i))‖2

) − x . (16)

INRIA



Bandwidth selection for kernel estimation in mixed multi-dimensional spaces 9

Using exactly this displacement vector at each step guaranties convergence to the local maximum

of the density [5]. A mode seeking algorithm (algorithm 1), or mean shift filtering can be derived

by iteratively computing the mean shift vector. Each computation of this vector leads to a trajectory

point y(j). The first trajectory pointy(1) is the estimation pointx itself while the last pointy(tm) is

the associated modez . The final partition of the feature space is obtained by grouping together all

the data points that converged to the same mode (algorithm 2).

Algorithm 1 Mean shift filtering

Let {x(i)}i=1,...,n be n input points in thed-dimensional space and{z(i)}i=1,...,n their associated

modes. Fori = 1 . . . n

1. Initializej = 1, y(1) = x(i).

2. Repeat

• y(j+1) = y(j) + m(y(j)) according to equation 16.

• j = j + 1.

Until y(j−1) = y(j).

3. Assignz(i) = y(j).

Algorithm 2 Mean shift partitioning

Let {x(i)}i=1,...,n be n input points in thed-dimensional space and{z(i)}i=1,...,n their associated

modes.

1. Run the mean shift filtering algorithm.

2. Group together allz(i) which are closer thanH, i.e two modesz(i) andz(j) are grouped together

if :

‖z(i) − z(j)‖ ≤ ‖H‖ .

3. Group together allx(i) whose associated mode belongs to the same group.

Mean shift with normal kernel usually needs more iterationsto converge, but yields results that

are almost always better than the ones obtained with the Epanechnikov kernel. In the sequel we will

only consider the multivariate normal kernel. With ad-variate Gaussian kernel, equation 16 becomes

m(x) =

∑n
i=1 x(i) exp(− 1

2D2(x,x(i),H))
∑n

i=1 exp(− 1
2D2(x,x(i),H))

− x (17)

RR n° 6286



10 Bugeau & Ṕerez

where

D2(x,x(i),H) ≡ (x − x(i))T H−1(x − x(i)) (18)

is the squared Mahalanobis distance fromx to x(i).

3.3 Variable bandwidth mean shift

In the sequel we detail the mean shift using the two variable bandwidth estimators. The first version,

called ”variable bandwidth mean shift”, is based on the sample point estimator and was introduced

in [7]. The second one is novel, since the balloon estimator has never been used in a mean shift

algorithm. We will refer to the algorithm as ”pseudo balloonmean shift”.

3.3.1 Variable bandwidth mean shift using sample point estimator

The mean shift filtering using the sample point estimator wasfirst introduced in [7]. Using this

estimator, equation 17 becomes:

m(x) =

∑n
i=1 |H(x(i))|−1/2x(i) exp(− 1

2D2(x,x(i),H(x(i))))
∑n

i=1 |H(x(i))|−1/2 exp(− 1
2D2(x,x(i),H(x(i))))

− x . (19)

As with fixed bandwidth kernel estimator, a mean shift filtering algorithm can be derived based on this

mean shift vector. The proof of convergence of mean shift filtering using the sample point estimator

can be found in [7].

3.3.2 Pseudo balloon mean shift

As mentioned earlier, the balloon estimatorf̂(x) is not always a density (does not always integrate

to one), and leads to discontinuity problems. Its derivative ∇f̂(x) contains terms that depend on

(x − x(i))2 and ofH′(x). Thus there is no closed-form expression for the mean shift vector. To be

able to develop a mean shift filtering algorithm based on the balloon estimator, several assumptions

must be made. In the context of mean shift algorithms, the bandwidth functionH is only defined

discretely at estimation points. To turn the estimator intoa density and to give a closed form to the

derivatives, we assume that∀i = 1 . . . n,H′(x(i)) = 0. Using the kernel profilek, equation 5 evaluated

at data points becomes, fori = 1 . . . n:

f̂(x(i)) =
ck

n

n∑

j=1

1

|H(x(i))|1/2
k(‖H(x(i))−1/2(x(j) − x(i))‖2) . (20)

INRIA



Bandwidth selection for kernel estimation in mixed multi-dimensional spaces 11

Since we considerH′(x(i)) = 0, its derivative is:

∇̂f(x(i)) = ∇f̂(x(i))

=
ck

n|H(x(i))|1/2

n∑

j=1

H(x(i))−1(x(j) − x(i))k(‖H(x(i))−1/2(x(j) − x(i))‖2)

=
ck

n|H(x(i))|1/2
H(x(i))−1

n∑

j=1

k(‖H(x(i))−1/2(x(j) − x(i))‖2)(x(j) − x(i))

=
1

n

[ n∑

i=1

H(x(i))−1K
H(x(i))(x

(j) − x(i))
][

∑n
j=1 x(j)KH(x(i))(x

(j) − x(i))
∑n

j=1 KH(x(i))(x
(j) − x(i))

− x(i)
]

.

(21)

A mean shift filtering algorithm can be derived using the lastterm of previous equation as the mean

shift vector:

m(x) =

∑n
j=1 x(j)KH(x)(x − x(j))
∑n

j=1 KH(x)(x − x(j))
− x . (22)

Previous equation is only valid at the data points. Therefore, if H varies for each trajectory point, the

mean shift filtering algorithm is not valid and its convergence can not be proved. The solution that

we propose is to defined a pseudo balloon mean shift where the bandwidth varies for each estimation

point but is fixed for all trajectory points. This means that the data points influencing the computation

of a trajectory point are taken with the same bandwidth alongall the gradient ascent trajectory. The

advantage is that the estimate at a point will not be influenced by observations too far away. We then

take the bandwidthH(x) constant for all trajectory pointsy(j) corresponding to the estimation point

x (belonging to the data points). In other words, for a given starting point, the procedure amounts

to a fixed bandwidth mean shift, with bandwidth depending on the starting point. We call this new

mean shift pseudo balloon mean shift. The convergence of thepseudo balloon mean shift filtering if

H(x)T = H(x) is demonstrated in appendix. The pseudo balloon mean shift partitioning algorithm

is described in Algorithm 3. We use the minimum of the two bandwidths in step 2 to avoid the

aggregation of two very distant modes.

4 Bandwidth selection for mixed feature spaces

Results of mean shift filtering or partitioning always highly depend on the kernel bandwidthH which

has to be chosen carefully. Various methods for bandwidth selection exist in literature. In particular,

several statistical criteria, which generally aim at balancing the bias against the variance of an esti-

mator, have been introduced. They are called statistical-analysis based methods, and can be applied

to any method based on kernel estimation. Other techniques,only dedicated to clustering, define a

criteria based on the stability of the clusters. They are called stability based methods. In subsection

4.1, we present a review of these two types of techniques. Many of these methods have proven to be

RR n° 6286



12 Bugeau & Ṕerez

Algorithm 3 Pseudo balloon mean shift partitioning algorithm

Let {x(i)}i=1,...,n be n input points in thed-dimensional space and{z(i)}i=1,...,n their associated

modes.

1. Fori = 1, . . . , n, run the mean shift filtering algorithm fromx = x(i), with H(x) = H(x(i)),

using equation (22).

2. Group together two modesz(i) andz(j) if:

‖z(i) − z(j)‖ ≤ min(‖H(x(i))‖, ‖H(x(j))‖) .

3. Group together allx(i) whose associated modes belong to the same group.

very efficient. Nevertheless, none of them is really adaptedto data in high dimensional heterogeneous

spaces.

Therefore, in this section we propose an algorithm dedicated to the mean shift partitioning in

high dimensional heterogeneous space. We assume that thed-dimensional input space can be decom-

posed as the Cartesian product ofP independent spaces associated to different types of information

(e.g. position, color), also called feature spaces or domains, with dimensiondρ, ρ = 1 . . . P (where
∑P

ρ=1 dρ = d).

4.1 Existing methods for bandwidth selection

This first subsection present a short review of existing bandwidth selection methods of both types.

4.1.1 Statistical-analysis based methods

Statistical methods aim at improving the quality of the kernel estimator. We remind that a good

estimator is an estimator that has a small bias and a small variance. The quality is usually evaluated

by measuring the distance (MSE, MISE, AMISE...) between theestimatef̂ and the target densityf .

These measures are of little practical use since they dependon the unknown density functionf both

in the variance and the squared bias term (subsection 2.4). However, the definition of the bias and

the variance leads to the following property: the absolute value of the bias increases and the variance

decreases asH increases. Therefore to minimize the mean squared error (orany other measure), we

are confronted with a bias-variance trade-off.

Several good solutions can be found in literature to find the best value forH. In particular, we

can mention the ”rule of thumb” method [21], the ”plug-in” rules [17, 20] and the cross validation

methods [17][22, p.46]. However, all these techniques havesome drawbacks. The ”rule of thumb”

assumes that the density is Gaussian. A practical algorithmbased on the plug-in rule for one dimen-

sional data can be found in [5]. An algorithm for the case of multivariate data is presented in [24,
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p.108] but it is difficult to implement. Finally, cross validation methods becomes very computation-

ally expensive for a large set of data.

For variable bandwidth, the most often used method takes thebandwidth proportional to the

inverse of the square root of a first-order approximation of the local density. This is the Abramson’s

rule [1]. Two parameters must then be tuned in advance: a proportionality constant and an initial

fixed bandwidth. The proportionality constant influences a lot the result. Also, for multidimensional

multimodal data, the initial fixed bandwidth is hard to determine. The application of this technique to

the variable bandwidth mean shift,i.e. to the sample point estimator, has been proposed and discussed

in [7]. It leads to good results on toy examples. Evaluation of partitioning on real data is subjective,

and it is hard to assert the superiority of such statistical methods. Furthermore, their application to

high dimensional multimodal data is still an open problem.

4.1.2 A stability based method

Methods for bandwidth selection specially dedicated to clustering have also been studied. They are

based on cluster validation. Many criteria determining thevalidity of a cluster exist [16]. For ex-

ample, some methods evaluate the isolation and connectivity of the clusters. Another criterion is the

stability. It is based on human visual experience: real clusters should be perceivable over a wide range

of scales. This criterion has been used in the scale space theory in [13] or in [8] where the stability

of clusters depends on the size of the clusters. An application of a stability criterion to bandwidth

selection for mean shift partitioning was introduced in [4]. The idea is that a partition should not

change when a small variation is applied to the bandwidth.

As no statistical methods are currently well adapted to the variable bandwidth estimation in high

dimensional heterogeneous data, we decided to use the stability to validate the partitions and to find

the best bandwidth at each point. The basic principle of the method that we propose is based on the

one in [4]. The goal is to find the best bandwidth at each point within a set of predefined bandwidths.

Given a set ofB predefined matrices{H(b), b = 1, . . . , B}, the best bandwidth, denoted asΥ(x(i)), in

this predefined set, at each pointx(i) indexed byi, is the one that gives the most stable clusters. The

method is composed of two main steps.

The first step is called bandwidth evaluation at the partition level. The mean shift partitioning is

run for each of the predefined matrices. For each scaleb of this range, the data is divided into a certain

number of clusters. For simplicity we introduce the function c which, for each scaleb, associates a

data point indexed byi to its corresponding cluster. If thei-th data point belongs to theu-th cluster at

scaleb, thenc(i, b) = u. Each cluster is then represented parametrically. Indeed the stability criteria

chosen in [4] asserts that if the clusters can be representedby normal laws, then the best cluster is the

one for which the normal law is the most stable. If few points are added to the partition or if some

are left apart, the distribution of the cluster should not change. The assumption of normality seems
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reasonable in a small neighborhood of a point, this neighborhood being found by the partitioning.

Each cluster indexed byu at scaleb is then represented parametrically by a normal lawN (µ
(b)
u ,Σ

(b)
u ).

Let C(b)
u be the set of indices of points belonging to a clusteru at scaleb, C(b)

u = {i/c(i, b) = u}. The

meanµ(b)
u corresponding to clusteru at scaleb is defined as:

µ(b)
u =

1

|C
(b)
u |

∑

i∈C
(b)
u

x(i) , (23)

and the empirical covarianceΣ(b)
u as:

Σ(b)
u =

1

|C
(b)
u |

∑

i∈C
(b)
u

(x(i) − µ(b)
u )(x(i) − µ(b)

u )T . (24)

These expectation and covariance estimates are easily corrupted by non-Gaussian tails which might

occur. In [4], other formula have been established to solve this problem. However, the proposed

covariance does not seem reliable since it can be negative. Therefore, in the sequel, we will consider

that all the means and covariances are computed with the traditional definitions. This choice gave

satisfactory results for all the tests we have run but we believe that further work should concentrate

on finding a better way to compute the covariance based on existing techniques for robust covariance

matrix estimation [18, 25].

After building all the normal laws, each point is associatedat each scale to the law of the cluster it

belongs to. The point indexed byi is associated for scaleb to the distributionp(b)
i = N (µ

(b)
c(i,b),Σ

(b)
c(i,b)).

The second step evaluates for each point the clusters to which this point was associated and

finds the most stable one. This second step is called bandwidth evaluation at the data level. It

mainly consists in the comparison of the clusters, through the comparison of the normal laws. Several

divergence measures between multiple probability distributions have been studied in literature. In [4],

the authors use the Jensen-Shannon divergence to compare the distributions. Givenr d-variate normal

distributionspj , j = 1, . . . , r, defined by their meanµj and covarianceΣj, the Jensen-Shannon

divergence is defined as:

JS(p1 . . . pr) =
1

2
log

|1r
∑r

j=1 Σj |

r

√∏r
j=1 |Σj |

+
1

2

r∑

j=1

(µj −
1

r

r∑

j=1

µj)
T (

r∑

j=1

Σj)
−1(µj −

1

r

r∑

j=1

µj) . (25)

The comparison is done between three neighboring scales (r = 3) and for each domain independently,

the distributions beingpb−1
i , pb

i andpb+1
i . The best scaleb∗ = argminbJS(p

(b−1)
i , p

(b)
i , p

(b+1)
i ) is the

one for which the Jensen-Shannon divergence,

JS(p
(b−1)
i , p

(b)
i , p

(b+1)
i ) =

1

2
log

|13
∑b+1

j=b−1 Σ
(j)
c(i,b)|

3

√∏b+1
j=b−1 |Σ

(j)
c(i,b)|

+

1

2

b+1∑

j=b−1

(µ
(j)
c(i,b) −

1

3

b+1∑

j=b−1

µ
(j)
c(i,b))

T (
b+1∑

j=b−1

Σ
(j)
c(i,b))

−1(µ
(j)
c(i,b) −

1

3

b+1∑

j=b−1

µ
(j)
c(i,b)) ,

(26)
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is minimized. The final best bandwidth for the pointx(i) is the predefined matrix that gave the

most stable cluster:Υ(x(i)) = H(b∗). This is in the contrast with the original method in [4], where

Υ(x(i)) = Σ
(b∗)

c(i,b∗). The latter choice does not guarantee that the estimated bandwidth lies between

the extremal bandwidths of the selected range (H(1) andH(B) when they are sorted).

These two steps are described in Figure 1. The final partitionof the data is obtained by rerunning

a variable or a pseudo balloon mean shift partitioning usingthe selected matrices. Unfortunately, this

algorithm is limited to data composed of one feature space. Therefore, in next subsection we propose

an iterative algorithm, based on the previous method, that handles the heterogeneity of the data.

- For each point compute the threefold JS divergences

JS

JS

- Mean shift partitioning at each scale

- Compute the distribution for each cluster- The bandwidth corresponds to the lowest divergence

Bandwidth evaluation at the partition level: Evaluate the bandwidth at the data level:

N (µu

(1),Σ
(1)
u )

b

Figure 1: Scheme of an iteration of our algorithm.

4.2 Handling heterogeneity: iterative selection

For high dimensional heterogeneous data the set of predefined bandwidths can become large. Indeed,

if the different domains of multidimensional data are independent, the bandwidth for each feature

space should be chosen independently. The most stable cluster is not obtained for the same scale

for all the domains. A solution could be to define a set of bandwidths for each feature space and

to partition the data using all the possible bandwidth matrices resulting from the combination of the

different sets. However as the dimensions become high and/or the sets of predefined bandwidths
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16 Bugeau & Ṕerez

become larges, the algorithm can become computationally very expensive: if we have a range ofBρ

analysis bandwidths for each feature spaceρ, the mean shift partitioning has to be run
∏P

ρ=1 Bρ times

to take into account every possibility. Thus the algorithm is not adapted for spaces composed of

several independent components. The solution is then to findthe best bandwidth iteratively for each

feature space, so that the mean shift partitioning is run only
∑P

ρ=1 Bρ times.

Suppose that we are trying to select the best bandwidth at each data point for the first feature

space. We fix temporary matrices̃Hρ, ρ = 2, . . . , P for each of the other feature spaces. These

matrices are constant for all scales and equal to the mean over all theBρ possible matrices:

H̃ρ =
1

Bρ

Bρ∑

b=1

H(b)
ρ , ρ > 1 . (27)

The bandwidth selection algorithm previously defined (Figure 1) is run for the matrix range

{H̃(b) = diag[H
(b)
1 , H̃2, . . . , H̃P ], b = 1, . . . , B1}

and finds the best bandwidthΥ1(x
(i)) for each pointx(i). The same procedure is then run for every

other feature space. The difference is that for the feature spaces that have already been studied the

bandwidth matrix is not constant anymore:

H̃(b)(x(i)) = diag[Υ1(x
(i)), . . . ,Υρ−1(x

(i)),H(b)
ρ , H̃ρ+1 . . . H̃P ] . (28)

A variable bandwidth mean shift must then be used. As the dimension of the data is higher than 3,

we prefer the balloon based mean shift partitioning, but thesample point estimator could be used as

well within the same procedure.

4.3 Bandwidth selection final algorithm

The proposed iterative algorithm solves the bandwidth selection for high dimensional heterogeneous

data problem. Each feature space is processed successivelyin two stages. The first stage consists in

partitioning the data for each scale and building a parametric representation of each cluster. The sec-

ond stage selects for each data point the most stable clusterwhich finally leads to the best bandwidth.

The final algorithm is presented in algorithm 4.

5 Experimental results

This section presents some results of our method on color image segmentation. The final partition

of the data is obtained by applying a last time the pseudo balloon mean shift partitioning with the

selected variable bandwidths. The data set is the set of all pixels of the image. To each data point

is associated a 5-dimensional feature vector: two dimensions for the position and three for the color.
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Algorithm 4 Iterative estimation of bandwidths

Given a set ofBρ predefined bandwidths{H(b)
ρ , b = 1 . . . B} for each feature spaceρ. The bandwidth

selection is as follows.

Forρ = 1, . . . , P

• Evaluate the bandwidth at the partition level: For allb = 1, . . . , B

1. For allρ′ = ρ + 1, . . . , P , computeH̃ρ′ :

H̃ρ′ =
1

Bρ′

Bρ′∑

b=1

H
(b)

ρ′ . (29)

2. Define, fori = 1, . . . , n,

{H̃(b)(x(i)) = diag[Υ1(x
(i)), . . . ,Υρ−1(x

(i)),H
(b)
ρ , H̃ρ+1 . . . H̃P ], b = 1, . . . , Bρ}.

3. Partition the data using the balloon mean shift partitioning. The result isn(b) clusters

denoted asC(b)
u , u = 1 . . . n(b). Introduce the functionc that associates a point indexed by

i to its clusteru: c(i, b) = u.

4. Compute the parametric representationN (µ
(b)
u ,Σ

(b)
u ) of each partition using:

µ(b)
u =

1

|C(b)
u |

∑

i∈C
(b)
u

x
(i) =





µ
(b)
u,1

...

µ
(b)
u,P



 , (30)

and

Σ
(b)
u =

1

|C(b)
u |

∑

i∈C
(b)
u

(x(i) − µ(b)
u )(x(i) − µ(b)

u )T = diag[Σ
(b)
u,1, . . . ,Σ

(b)
u,P ] . (31)

5. Associate to each pointx(i) the meanµ(b)
c(i,b),ρ and covarianceΣ(b)

c(i,b),ρ of the cluster it

belongs to and the corresponding normal distributionp
(b)
i,ρ.

• Evaluate the bandwidth at the data level: For each pointx(i)

1. Select the scaleb∗ giving the most stable normal distribution by solving:

b∗ = argminr=2,...,B−1JS(p
(r−1)
i,ρ , p

(r)
i,ρ , p

(r+1)
i,ρ ) (32)

whereJS is the Jensen-Shanon divergence defined by equation (26).

2. The best bandwidthΥρ(x
(i)) is H

(b∗)
ρ .

We here consider the independency of all the dimensions,i.e. 5 features spaces each composed of

one dimension. The order in which the dimensions are processed by our algorithm is the following: x

coordinate, y coordinate, red, green and blue channels. In the final subsection we discuss the influence

of the order in which the feature spaces are processed. For all the results presented in this section the
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18 Bugeau & Ṕerez

same predefined bandwidths are used. For all the feature spaces, we used 9 predefined bandwidths in

the range of 10-30. Of course this range is large and it would be better to adapt it to each image, for

example by using some information on the noise as in [2], but it is sufficient to validate our algorithm.

The color of a pixel in the segmented images corresponds to the color of its associated mode.

The two novel features of our algorithm are successively validated with comparisons to other

methods. First we validate the iterative bandwidth selection in independent feature spaces by com-

paring our algorithm with the same method in which the bandwidths evolve jointly in the different

feature spaces. We then compare the variable mean shift based on the sample point estimator and the

pseudo balloon mean shift. Several results for each of thesetwo points are shown.

5.1 Validation of the iterative bandwidth selection

We start by validating the iterative selection on several examples. The comparison is done between

our algorithm with five feature spaces and our algorithm witha single five-dimensional feature space.

In the last case, all dimensions are consider dependent and the same scale is finally selected for all

dimensions.

The first results are presented on an outdoor image. Figure 2 shows the final partitioning for the

non iterative selection Figure 2(b)) and the iterative selection Figure 2 (c)). With the non-iterative

algorithm, 21 clusters were found, while the iterative method gave 31 clusters. At the end of the

segmentation the sky and the mountains are merged together with the non iterative algorithm. Differ-

ences are also visible on the mountains, in which the iterative method gave more clusters. In figure

a) b) c)

Figure 2: Validation of the iterative selection on the outdoor image. a) Original image; b) Non

iterative bandwidth selection; c) Iterative bandwidth selection.

3 the evolution through scales of the mean shift partitioning that corresponds to the first step of the

non iterative algorithm (“evaluate the bandwidth at the partition level”) is shown. The evolution for

our iterative algorithm is presented in figure 4. This time the evolution is shown through scales and

through feature spaces. Because bandwidths evolve jointlyin the different feature spaces with the

non-iterative algorithm, many details are rapidly lost. Our algorithm allows more stability between

two consecutive scales.
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b = 2 b = 4 b = 6 b = 8

Figure 3: Evolution through scales of the partitionings forour non iterative algorithm.

ρ = 1

ρ = 2

ρ = 3

ρ = 4

ρ = 5

b = 2 b = 4 b = 6 b = 8

Figure 4: Evolution through scales and feature spaces of partitionings with our algorithm.

We show other segmentation results on the hand image (Figure5 a)). For the first one 13 clusters

are found against 37 for the second. The ring and the nails arenot detected by the non iterative

method because the selected color bandwidths are too large.The reason is that the regions to be
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segmented are large, leading to large position bandwidths.Because the bandwidths for position and

color are chosen jointly, the color bandwidth are also too large as a result.

a) b) c)

Figure 5: Validation of the iterative selection on the hand image. a) Original image; b) Non iterative

bandwidth selection; c) Iterative bandwidth selection.

A last result is presented on the bull image (Figure 6 a)). Major differences between the segmenta-

tions obtained with the two methods are visible on the bull itself. In particular, the iterative algorithm

keeps more details on the head of the animal. The number of clusters found by the two algorithms are

not so different though. Indeed, the iterative method found136 clusters while the non-iterative one

gave 130 clusters. While more important details are kept on the bull by the iterative method, some

little (but less important) clusters are lost on the grass.

a) b) c)

Figure 6: Validation of the iterative selection on the bull image. a) Original image; b) Non iterative

bandwidth selection; c) Iterative bandwidth selection.

A surprising result concerns the computational cost. One could think that the non iterative method

would be much faster than our iterative algorithm. This is not the case, even sometimes the iterative

selection is faster. This can be explained as follows. Whilethe first iterations are run for large

bandwidths (mean over all the predefined bandwidths), in subsequent iterations, the best bandwidths

have been chosen for the first feature spaces. These bandwidths are more adapted and lead to faster

computation of the mean shift partitionings.

To conclude, the iterative method permits to keep more details than the non iterative one, even if

the results are, sometimes, visually close. With the iterative method, it is not the same scale that is
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chosen for all the dimensions. Furthermore, the introduction of our iterative selection method does

not cause any computation overhead.

5.2 Validation of the pseudo balloon mean shift partitioning

A novelty of our approach is the introduction of the pseudo balloon mean shift partitioning. We

compare this partitioning method to the variable mean shiftpartitioning introduced by Comaniciu

in [7]. In [23] it has been shown that the balloon estimator gives good results when the number of

dimensions increases, which led to its use in this paper. Thecomparison is done as follows. The

bandwidth selection using the pseudo balloon mean shift partitioning as described in this paper is

first run. Then using the selected bandwidths, the variable bandwidth and the pseudo balloon mean

shift partitioning are run and give the final segmentations.

Here again we start by showing the results on the outdoor image. Figure 7 shows the final parti-

tioning for the variable mean shift based on the sample pointestimator (b)) and the pseudo balloon

mean shift (c)). Nearly the same results were obtained by thetwo partitioning method. The sample

point estimator gave 29 clusters against 31 for the pseudo balloon mean shift partitioning. Few tiny

differences can be found in the clouds.

a) b) c)

Figure 7: Validation of ”pseudo balloon mean shift” on the outdoor image. a) Original image; b)

Variable mean shift partitioning; c) Pseudo balloon mean shift partitioning.

The next result is on the hand image (Figure 8). The segmentations are again very close with

the two estimators. The variable mean shift partitioning [7] gave 35 clusters and the pseudo balloon

37. The segmentation of the forefinger for the variable sample point mean shift is slightly less clean

(composed of two clusters).

We end this subsection by presenting the segmentation results on the bull image (Figure 9). Con-

trary to the two previous results, many differences are visible between the final partitioning obtained

with the variable mean shift based on the sample point estimator (Figure 9(b)), which gave 128 clus-

ters, and the pseudo balloon mean shift (c), which led to 136 clusters. The pseudo balloon mean shift

permits to keep more details on the head of the bull. Also, theclusters found on the back are less

messy than the ones found with the algorithm using the samplepoint estimator.
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a) b) c)

Figure 8: Validation of the ”pseudo balloon mean shift” on the hand image. a) Original image; b)

Variable mean shift partitioning; c) Pseudo balloon mean shift partitioning.

a) b) c)

Figure 9: Validation of the ”pseudo balloon mean shift” on the bull image. a) Original image; b)

Variable mean shift partitioning; c) Pseudo balloon mean shift partitioning.

To conclude, the results presented in this subsection show that the pseudo balloon mean shift

partitioning can be as good (or even better) as the variable mean shift of Comaniciu [7]. In addition,

the balloon estimator is more adapted to high-dimensional (d ≥ 3) heterogeneous data (e.g. five-

dimensional data in color segmentation), thanks to the iterative bandwidth selection we introduced in

4.

5.3 Ordering the feature spaces

One could wonder if the order in which the feature spaces are studied is important. In fact it has only

a small influence (Figures 10 and 11). These results have beenobtained using 9 bandwidths in the

range 3-20. As judging a segmentation depends on the subsequent application, defining the order in

which the feature spaces should be processed is at this stagenot really possible. An intuition would

be to start with the position before processing successively the feature spaces having the highest noise

or the highest contrast in the image.

6 Conclusion

Automatic bandwidth selection for kernel bandwidth estimation has become an important research

area as the popularity of mean shift methods for image and video segmentation increases. Several
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a) b)

Figure 10: Ordering the feature spaces. Results of the balloon mean shift partitioning on the outdoor

image when the feature spaces are ordered in the following ways: a) x-coordinate, y-coordinate, red

channel, green channel, blue channel; b) blue channel, green channel, red channel, y-coordinate,

x-coordinate.

a) b)

Figure 11: Ordering the feature spaces. Results of the balloon mean shift partitioning on the baboon

image when the feature spaces are ordered in the following ways: a) x-coordinate, y-coordinate, red

channel, green channel, blue channel; b) blue channel, green channel, red channel, y-coordinate,

x-coordinate.

methods already exist in literature but none of them is really adapted to the case of multidimensional

heterogeneous features. This is the problem we addressed inthis paper. To this end, we first intro-

duced the pseudo balloon mean shift filtering and partitioning to which the kernel bandwidth selection

was applied. The convergence of this filtering method has been proved. Following [4], the selection is

is based on the intuition that a good partition must be stablethrough scales. The bandwidth selection

method is based on an iterative selection over the differentfeature subspaces. It allows a richer search

of optimal analysis bandwidths than the non iterative method in [4]. The validity of our algorithm was

shown on color image segmentation. Note that our algorithm has also been used for motion detection

in [2], leading to very promising results. A direction of future research concerns the computation of

covariance matrices. It would indeed be valuable to devise anew way of computing them that permits

to capture the distribution near cluster’s mode and the tails of a cluster.
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Appendix

Proof of convergence of the pseudo balloon mean shift filtering

The balloon kernel density estimator is defined as:

f̂(x) =
ck

n

n∑

i=1

1

|H(x)|1/2
k(‖H(x)−1/2(x − x(i))‖2) . (A.1)

The proof of convergence of mean shift filtering using this estimator is closed to the one of the fixed

bandwidth mean shift filtering [5]. We first show thatf̂ is convergent for the trajectory points defined

in algorithm 1,i.e. thatf̂(y(j)) converges whenj becomes large ifm(x) is defined as in (22). Sincen

is finite, f̂ is bounded :0 < f̂(x) ≤ ck

n|H(x)|1/2 . It is then sufficient to show that̂f is strictly increasing

or decreasing. Since the bandwidthH(x) is constant for all trajectory pointsy(j) associated to the
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estimation pointx, we get:

f̂(y(j+1)) − f̂(y(j))

=
ck

n|H(x)|1/2

n∑

i=1

(
k(‖H(x)−1/2(y(j+1) − x(i))‖2) − k(‖H(x)−1/2(y(j) − x(i))‖2)

)
.

(A.2)

The convexity of the profilek implies that:

∀(x1, x2) ∈ [0, +∞) k(x2) ≥ k(x1) + k′(x1)(x2 − x1) ,

and thus:

f̂(y(j+1)) − f̂(y(j)) ≥
ck

n|H(x)|1/2

n∑

i=1

k′(‖H(x)−1/2(y(j) − x(i))‖2)

(
‖H(x)−1/2(y(j+1) − x(i))‖2 − ‖H(x)−1/2(y(j) − x(i))‖2

)
.

(A.3)

We assume thatH(x)T = H(x). Developing the last term and using the definition of the meanshift

vector (equation 22) implies after some manipulations:

f̂(y(j+1)) − f̂(y(j))

≥
ck

n|H(x)|1/2

n∑

i=1

k′(‖H(x)−1/2(y(j) − x(i))‖2)
(
‖H(x)−1/2(y(j+1) − y(j))‖2

)
.

(A.4)

Summing terms of previous equation for indexj, j + 1, . . . , j + m − 1, and introducing

M = argminl≥0k(‖H(x)−1/2(y(l) − x(i))‖2 results in:

f̂(y(j+m)) − f̂(y(j)) ≥
ck

n|H(x)|1/2
M‖H(x)−1/2(y(j+m) − y(j))‖2 ≥ 0. (A.5)

We have shown that the sequence{f̂(y(j))}j=1,2... is strictly increasing, bounded, and thus conver-

gent. It is also a Cauchy sequence. Inequality (A.5) impliesthat {y(j)}j=1,2... is also a Cauchy

sequence with respect to Mahalanobis norm, hence with respect to Euclidean norm (by vertue of

norm equivalence inRd). This proves the convergence of trajectory points towardsa local mode of

f̂ .
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