769 research outputs found

    Kernel-assisted and Topology-aware MPI Collective Communication among Multicore or Many-core Clusters

    Get PDF
    Multicore or many-core clusters have become the most prominent form of High Performance Computing (HPC) systems. Hardware complexity and hierarchies not only exist in the inter-node layer, i.e., hierarchical networks, but also exist in internals of multicore compute nodes, e.g., Non Uniform Memory Accesses (NUMA), network-style interconnect, and memory and shared cache hierarchies. Message Passing Interface (MPI), the most widely adopted in the HPC communities, suffers from decreased performance and portability due to increased hardware complexity of multiple levels. We identified three critical issues specific to collective communication: The first problem arises from the gap between logical collective topologies and underlying hardware topologies; Second, current MPI communications lack efficient shared memory message delivering approaches; Last, on distributed memory machines, like multicore clusters, a single approach cannot encompass the extreme variations not only in the bandwidth and latency capabilities, but also in features such as the aptitude to operate multiple concurrent copies simultaneously. To bridge the gap between logical collective topologies and hardware topologies, we developed a distance-aware framework to integrate the knowledge of hardware distance into collective algorithms in order to dynamically reshape the communication patterns to suit the hardware capabilities. Based on process distance information, we used graph partitioning techniques to organize the MPI processes in a multi-level hierarchy, mapping on the hardware characteristics. Meanwhile, we took advantage of the kernel-assisted one-sided single-copy approach (KNEM) as the default shared memory delivering method. Via kernel-assisted memory copy, the collective algorithms offload copy tasks onto non-leader/not-root processes to evenly distribute copy workloads among available cores. Finally, on distributed memory machines, we developed a technique to compose multi-layered collective algorithms together to express a multi-level algorithm with tight interoperability between the levels. This tight collaboration results in more overlaps between inter- and intra-node communication. Experimental results have confirmed that, by leveraging several technologies together, such as kernel-assisted memory copy, the distance-aware framework, and collective algorithm composition, not only do MPI collectives reach the potential maximum performance on a wide variation of platforms, but they also deliver a level of performance immune to modifications of the underlying process-core binding

    CRAFT: A library for easier application-level Checkpoint/Restart and Automatic Fault Tolerance

    Get PDF
    In order to efficiently use the future generations of supercomputers, fault tolerance and power consumption are two of the prime challenges anticipated by the High Performance Computing (HPC) community. Checkpoint/Restart (CR) has been and still is the most widely used technique to deal with hard failures. Application-level CR is the most effective CR technique in terms of overhead efficiency but it takes a lot of implementation effort. This work presents the implementation of our C++ based library CRAFT (Checkpoint-Restart and Automatic Fault Tolerance), which serves two purposes. First, it provides an extendable library that significantly eases the implementation of application-level checkpointing. The most basic and frequently used checkpoint data types are already part of CRAFT and can be directly used out of the box. The library can be easily extended to add more data types. As means of overhead reduction, the library offers a build-in asynchronous checkpointing mechanism and also supports the Scalable Checkpoint/Restart (SCR) library for node level checkpointing. Second, CRAFT provides an easier interface for User-Level Failure Mitigation (ULFM) based dynamic process recovery, which significantly reduces the complexity and effort of failure detection and communication recovery mechanism. By utilizing both functionalities together, applications can write application-level checkpoints and recover dynamically from process failures with very limited programming effort. This work presents the design and use of our library in detail. The associated overheads are thoroughly analyzed using several benchmarks

    Improving the Performance of the MPI_Allreduce Collective Operation through Rank Renaming

    Get PDF
    Proceedings of: First International Workshop on Sustainable Ultrascale Computing Systems (NESUS 2014). Porto (Portugal), August 27-28, 2014.Collective operations, a key issue in the global efficiency of HPC applications, are optimized in current MPI libraries by choosing at runtime between a set of algorithms, based on platform-dependent beforehand established parameters, as the message size or the number of processes. However, with progressively more cores per node, the cost of a collective algorithm must be mainly imputed to process-to-processor mapping, because its decisive influence over the network traffic. Hierarchical design of collective algorithms pursuits to minimize the data movement through the slowest communication channels of the multi-core cluster. Nevertheless, the hierarchical implementation of some collectives becomes inefficient, and even impracticable, due to the operation definition itself. This paper proposes a new approach that departs from a frequently found regular mapping, either sequential or round-robin. While keeping the mapping, the rank assignation to the processes is temporarily changed prior to the execution of the collective algorithm. The new assignation makes the communication pattern to adapt to the communication channels hierarchy. We explore this technique for the Ring algorithm when used in the well-known MPI_Allreduce collective, and discuss the obtained performance results. Extensions to other algorithms and collective operations are proposed.The work presented in this paper has been partially supported by EU under the COST programme Action IC1305, ’Network for Sustainable Ultrascale Computing (NESUS)’, and by the computing facilities of Extremadura Research Centre for Advanced Technologies (CETACIEMAT), funded by the European Regional Development Fund (ERDF). CETA-CIEMAT belongs to CIEMAT and the Government of Spain

    HDArray: Parallel Array Interface for Distributed Heterogeneous Devices

    Get PDF
    Heterogeneous clusters with nodes containing one or more accelerators, such as GPUs, have become common. While MPI provides a mechanism and management of interaddress space communication, and OpenCL provides a way to manage computation and communication within a process with access to heterogeneous computational resources, programmers are forced to write hybrid programs that manage the interaction of both of these systems. This paper describes an array programming interface that provides users with automatic or manual distributions of data and work. Using the distribution and information about what data is used and defined by kernels, communication among processes and among devices in a process is performed automatically. The interface provides a unified programming model to the user, thus simplifying program development

    KNEM: a Generic and Scalable Kernel-Assisted Intra-node MPI Communication Framework

    Get PDF
    International audienceThe multiplication of cores in today's architectures raises the importance of intra-node communication in modern clusters and their impact on the overall parallel application performance. Although several proposals focused on this issue in the past, there is still a need for a portable and hardware-independent solution that addresses the requirements of both point-to-point and collective MPI operations inside shared-memory computing nodes. This paper presents the KNEM module for the Linux kernel that provides MPI implementations with a flexible and scalable interface for performing kernel-assisted single-copy data transfers between local processes. It enables high-performance communication within most existing MPI implementations and brings significant application performance improvements thanks to more efficient point-to-point and collective operations

    Programming Models\u27 Support for Heterogeneous Architecture

    Get PDF
    Accelerator-enhanced computing platforms have drawn a lot of attention due to their massive peak computational capacity. Heterogeneous systems equipped with accelerators such as GPUs have become the most prominent components of High Performance Computing (HPC) systems. Even at the node level the significant heterogeneity of CPU and GPU, i.e. hardware and memory space differences, leads to challenges for fully exploiting such complex architectures. Extending outside the node scope, only escalate such challenges. Conventional programming models such as data- ow and message passing have been widely adopted in HPC communities. When moving towards heterogeneous systems, the lack of GPU integration causes such programming models to struggle in handling the heterogeneity of different computing units, leading to sub-optimal performance and drastic decrease in developer productivity. To bridge the gap between underlying heterogeneous architectures and current programming paradigms, we propose to extend such programming paradigms with architecture awareness optimization. Two programming models are used to demonstrate the impact of heterogeneous architecture awareness. The PaRSEC task-based runtime, an adopter of the data- ow model, provides opportunities for overlapping communications with computations and minimizing data movements, as well as dynamically adapting the work granularity to the capability of the hardware. To fulfill the demand of an efficient and portable Message Passing Interface (MPI) implementation to communicate GPU data, a GPU-aware design is presented based on the Open MPI infrastructure supporting efficient point-to-point and collective communications of GPU-residential data, for both contiguous and non-contiguous memory layouts, by leveraging GPU network topology and hardware capabilities such as GPUDirect. The tight integration of GPU support in a widely used programming environment, free the developers from manually move data into/out of host memory before/after relying on MPI routines for communications, allowing them to focus instead on algorithmic optimizations. Experimental results have confirmed that supported by such a tight and transparent integration, conventional programming models can once again take advantage of the state-of-the-art hardware and exhibit performance at the levels expected by the underlying hardware capabilities

    Towards a Mini-App for Smoothed Particle Hydrodynamics at Exascale

    Full text link
    The smoothed particle hydrodynamics (SPH) technique is a purely Lagrangian method, used in numerical simulations of fluids in astrophysics and computational fluid dynamics, among many other fields. SPH simulations with detailed physics represent computationally-demanding calculations. The parallelization of SPH codes is not trivial due to the absence of a structured grid. Additionally, the performance of the SPH codes can be, in general, adversely impacted by several factors, such as multiple time-stepping, long-range interactions, and/or boundary conditions. This work presents insights into the current performance and functionalities of three SPH codes: SPHYNX, ChaNGa, and SPH-flow. These codes are the starting point of an interdisciplinary co-design project, SPH-EXA, for the development of an Exascale-ready SPH mini-app. To gain such insights, a rotating square patch test was implemented as a common test simulation for the three SPH codes and analyzed on two modern HPC systems. Furthermore, to stress the differences with the codes stemming from the astrophysics community (SPHYNX and ChaNGa), an additional test case, the Evrard collapse, has also been carried out. This work extrapolates the common basic SPH features in the three codes for the purpose of consolidating them into a pure-SPH, Exascale-ready, optimized, mini-app. Moreover, the outcome of this serves as direct feedback to the parent codes, to improve their performance and overall scalability.Comment: 18 pages, 4 figures, 5 tables, 2018 IEEE International Conference on Cluster Computing proceedings for WRAp1
    • …
    corecore