
Purdue University
Purdue e-Pubs
Department of Electrical and Computer
Engineering Technical Reports

Department of Electrical and Computer
Engineering

3-26-2018

HDArray: Parallel Array Interface for Distributed
Heterogeneous Devices
Hyun Dok Cho
Purdue University, cho111@purdue.edu

Okwan Kwon
Nvidia Corporation, okwank@nvidia.com

Samuel Midkiff
Purdue University, smidkiff@purdue.edu

Follow this and additional works at: https://docs.lib.purdue.edu/ecetr

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Cho, Hyun Dok; Kwon, Okwan; and Midkiff, Samuel, "HDArray: Parallel Array Interface for Distributed Heterogeneous Devices"
(2018). Department of Electrical and Computer Engineering Technical Reports. Paper 487.
https://docs.lib.purdue.edu/ecetr/487

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/220144373?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F487&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F487&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F487&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F487&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F487&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F487&utm_medium=PDF&utm_campaign=PDFCoverPages


HDArray: Parallel Array Interface for Distributed Heterogeneous Devices

Hyun Dok Cho
Purdue University

West Lafayette, IN 47907
cho111@purdue.edu

Okwan Kwon
NVIDIA Corporation

Santa Clara, CA 95050
okwank@nvidia.com

Samuel P. Midkiff
Purdue University

West Lafayette, IN 47907
smidkiff@purdue.edu

Abstract—Heterogeneous clusters with nodes containing one
or more accelerators, such as GPUs, have become common.
While MPI provides a mechanism and management of inter-
address space communication, and OpenCL provides a way to
manage computation and communication within a process with
access to heterogeneous computational resources, programmers
are forced to write hybrid programs that manage the interac-
tion of both of these systems. This paper describes an array
programming interface that provides users with automatic or
manual distributions of data and work. Using the distribution
and information about what data is used and defined by
kernels, communication among processes and among devices in
a process is performed automatically. The interface provides
a unified programming model to the user, thus simplifying
program development.

Keywords-Parallel Programming Model; Distributed Shared
Memory; Heterogeneous Systems; MPI; OpenCL

I. INTRODUCTION

As GPU programming becomes more mainstream, both
large and small scale multi-node systems with one or more
GPUs per node have become common. But these nodes
complicate already messy distributed system programming
by adding an additional layer of complexity. Traditional multi-
node programming utilizes either distributed shared memory
systems such as UPC [1] or message passing interfaces
such as MPI [2]. Neither of these is well adapted to the
problem of multiple address spaces on a node that requires
proprietary communication mechanisms among the different
CPU and GPU processing units. This complicates program-
ming of these nodes because programs must incorporate, and
developers must maintain, two programming models: one
for intra-process communication among devices and one for
inter-process communication across address spaces.

Several systems have been devised to try to solve these
problems. Many proposed language extensions [3]–[6] sup-
port transparent access to accelerators on different nodes.
Other library-based approaches [7], [8] provide high-level
language abstractions and flexible array representations.
However, all of these systems require either low-level details
of accelerator programming or explicit communication code.
Other systems [9]–[11] implicitly expose the communication
messages to programmer, but data is owned by a thread,
which leads to less flexible data and work distribution.
Finally, compiler-assisted runtime systems [12], [13] translate

and execute OpenMP programs on accelerator clusters, but
the distribution of work and data are limited by OpenMP
semantics and expressiveness.

To overcome the limitations, we introduce the Heteroge-
neous Distributed Array (HDArray) interface and runtime
system. HDArray targets program execution on distributed
systems whose nodes contain one or more accelerators.
Parallelism is achieved using OpenCL [14] to create work
on the devices, which can be accelerators or cores. HDArray
provides a global address space programming model with
libraries and annotations to address two challenges: 1) more
flexible distribution options and 2) avoiding low-level and
explicit communication code.

First, annotations and APIs give programmers flexible
distribution options: explicit and implicit partitionings across
the devices, which overcome the intrinsic limitations of
static compiler techniques [12], [13]. The programmers can
then selectively use different partitioning methods for any
computation, e.g., launching kernels with different work
distributions. Programmers can also distribute data using an
offset that refers to the data boundary each OpenCL work
item accesses. This way, HDArray separates work partitioning
from the concept of data distribution so that programmers
can change both work and data partitioning at any program
point. Therefore, there is no data ownership, which addresses
issues of [9]–[11] and leads to the flexible data and work
distributions.

Second, HDArray supplies an API which provides a layer
of abstraction for the different underlying communication
models. In addition, annotations allow the specifications of
the data read and written during kernel invocations. The
specifications also describe the offsets which can be easily
derived from each kernel code. With the distribution, use/def,
and offset information, the HDArray runtime automatically
generates efficient communication, overcoming the limitation
of [3]–[8]. Therefore, the API and annotations avoid forcing
programmers to handle explicit communication and allow
them to focus on kernel programming.

To summarize, our contributions are
1) An easy programming model that can efficiently run

on distributed heterogeneous devices. We introduce
a novel programming model which separates work
partitioning from data distribution, enabling flexible



work and data distribution.
2) Fully automated intra-node and inter-node communica-

tion. We introduce a runtime communication generation
scheme and present the implementation of the runtime
system.

3) A flexible user interface that can be tuned for high
performance. The interface lets users utilize device
resources to balance workloads and manually distribute
data to reduce communication cost.

4) A runtime system that is maintainable and extensible.
We also discuss the overheads of the runtime system
and opportunities for improvement.

5) Experimental results showing good performance and
speedups on small clusters with eight nodes and 1 to
32 GPUs.

The rest of the paper is organized as follows. Sections II
and III describe the design and implementation of the HDAr-
ray interface. Section IV presents a performance evaluation
of the HDArray runtime system. Section V discusses related
work, and conclusions and future work follow in Section VI.

II. DESIGN OF THE HDARRAY INTERFACE

We now present the overall design of the HDArray
interface, including its runtime system, and how it provides
an efficient and straightforward array programming model.
As shown in Figure 1, HDArray is a logical representation
of two arrays: a host buffer used for communication and
device buffer used for computation. We follow a Single
Program Multiple Data (SPMD) execution model [15], so
every process has its own copy of HDArrays. This paper
targets regular array programs, meaning that arrays’ access
patterns are same for all threads and rectangular shaped.

HDArray 
frontend

M

Kernel

 mapping 

information

EC/C++ 
compiler

Transformed

programHDArray 

program
Executable

(a) The HDArray frontend

E

Runtime 
Section manager 
Communication manager 
Computation manager

HDArray A 
Host buffer

Device buffer

HDArray B 
Host buffer

Device buffer

M
A process’s resources

(b) The HDArray runtime within a single process

Figure 1. An overview of the HDArray system.

The HDArray system allows the user to add distribution
information to the shared memory program to target ac-
celerator clusters and write OpenCL code to exploit many-
core parallelism. We choose OpenCL because of its strong
portability across different computational units. Calls are
made to HDArray library functions to execute the device code.

1 void main(int argc, char *argv[])
2 {
3 int ni, nj, nk, part0;
4 float a[ni][nk], b[nk][nj], c[ni][nj], alpha, beta;
5 HDArray_t *pA, *pB, *pC;
6
7 ni = nj = nk = 1024;
8 ... // initialize variables
9

10 HDArrayInit(argc, argv, "gemm.cl", NULL);
11 part0 = HDArrayPartition(ROW, 2, ni, nj, 0, 0, ni, nj)
12
13 pA = HDArrayCreate("a", "float", a, 2, ni, nk);
14 pB = HDArrayCreate("b", "float", b, 2, nk, nj);
15 pC = HDArrayCreate("c", "float", c, 2, ni, nj);
16
17 HDArrayWrite(pA, a, part0);
18 HDArrayWrite(pB, b, part0);
19 HDArrayWrite(pC, c, part0);
20
21 HDArrayApplyKernel("gemm", part0,
22 pA, pB, pC, alpha, beta, ni, nj, nk);
23 HDArrayRead(pC, c, part0);
24 HDArrayExit();
25 }

Listing 1. GEMM host code.

The underlying HDArray runtime system then distributes data,
manages communication, and runs the device code.

A. A Case Study: Matrix Multiply

Listing 1 and 2 show an implementation of General Matrix
Multiply (GEMM) using the HDArray programming model.
The program uses C host code and OpenCL device code to
perform the matrix multiply C = A×B on three 1024×1024
2D matrices.

The host code in Listing 1 initializes variables and the
system, generates the partition ID used for data and work
partitioning, registers user program arrays with the HDArrays,
invokes the kernel with arguments, writes/reads arrays to/from
the accelerator devices, and closes down the system.

Line 10 initializes the MPI and OpenCL environments
and finds available devices to run the OpenCL kernel
implemented in “gemm.cl”. Line 11 evenly partitions the
highest dimension of 2D array domain with regards to the
number of devices. The function returns partition ID, part0,
which represents the partitioned region and is used throughout
the program.

On lines 13-15, the host creates HDArrays and allocates
host and device buffers with the same size of user arrays.
After the allocation, the host binds program array variables
(a, b, c) to handles (pA, pB, pC) that point into structures
in the HDArray runtime and allow users to access device
buffers holding data for their respective program arrays.

Lines 17-19 write user arrays into the device buffer of
HDArrays according to the part0 specification. Therefore,
the data is distributed to different devices. On lines 21-22, the
host launches the “gemm” kernel using the part0 and kernel
arguments. part0 is used for work distribution. The HDArray
runtime then binds HDArray handles and host variables to
the kernel arguments, handles necessary communication, and
invokes the kernel (Listing 2), as described in Section III-B

Line 23 retrieves the result of the computation from the
device memory and moves it into user array c. Similar to



the HDArrayWrite call, the HDArrayRead call uses part0
to read each portion of the distributed array pC into user
array c. Finally, the host frees all the resources, including
HDArray’s, and finalizes the parallel program in line 24.

1 #pragma hdarray use(A,(0,*)) use(B,(*,0)) def(C,(0,0))
2
3 __kernel void gemm(__global float *A, __global float *B,
4 __global float *C, float alph, float beta,
5 int ni, int nj, int nk)
6 {
7 int i = get_global_id(1);
8 int j = get_global_id(0);
9

10 if ((i < ni) && (j < nj)) {
11 C[i * nj + j] *= beta;
12 for(int k=0; k < nk; k++)
13 C[i*nj+j] += alph * A[i*nk+k] * B[k*nj+j];
14 }
15 }

Listing 2. GEMM device code.

The device code in Listing 2 shows the kernel to be called,
which is an ordinary OpenCL kernel with an annotation on
line 1. The annotation is a #pragma hdarray statement
with use and def clauses. These specify slices of the A, B,
and C arrays that are used and defined by the kernel call.
The slice of the array is specified using an offset relative to
an OpenCL work item index that operates on the array in
the kernel. Hereafter, we use the terms work item and thread
interchangeably. The code informs the runtime system that a
single thread reads all elements of the row of array A and all
elements of the column of array B. The zero offset indicates
that each thread writes the result of the multiplication to its
work item index of array C. With the per-thread array element
access (offset) and work partitioning (part0) information,
the runtime generates communication and launches the kernel.

B. The HDArray Programming Interface

We now discuss the details of the HDArray interface. The
interface has three types of specifications: (1) pragmas of
the form #pragma hdarray [clauses] (described in the
previous section); (2) clauses for pragmas; and (3) library
functions.

1) Pragma Clauses: Table I lists all available clauses for
HDArray annotations. The use and def clauses are required
for arrays that are accessed in kernel calls; therefore, each
HDArray accessed in a kernel must have a type of use, def, or
both. These clauses specify elements of arrays that are to be
read and written by a single work item. The supported offsets
are shown in Table II. The zero value indicates the current
position of an array element relative to the work item index.
The direction of the offset is specified by + and − symbols;
e.g., (0,−1) refers to previous element of the same row. The
asterisk denotes all elements of the array in the dimension
of interest. For example, (0, ∗) denotes all elements in a row
of a 2-dimensional array, which corresponds to the offset of
array A in Listing 2. The partition clause, used for manual
partitioning, is discussed in Section II-D.

Table I
HDARRAY DIRECTIVE CLAUSES

Clause Description
use (array name, offset) Declare offset(s) of an array to be used.

def (array name, offset) Declare offset(s) of an array to be defined.

partition (partition ID, dev:ID, region) Manually distribute work to devices.

Table II
TYPES OF SUPPORTED OFFSETS FOR use AND def CLAUSES

Dimension Offset Description.
1D (-1) Access previous element in dimension 1 (dim1).
2D (0, +1) Access next element of the row (dim1).
3D (0, 0, *) Access all elements in dim3.

2) HDArray Library Functions: Table III describes the
library functions in detail. These further support writing
array-based parallel programs. The library functions en-
capsulate low-level details of the programming model. For
example, HDArrayInit initiates MPI processes, and each
process is assigned a single OpenCL device. HDArrayExit
cleanly shuts down the MPI and OpenCL systems. Our
library functions also allow users to tune a program’s
performance. For example, a user can partition a work
item region in several different ways to distribute both
work and data when calling HDArrayPartition. The
appropriate region information with the offset may result
in ideal data affinity among processes, which minimizes
communication cost. HDArrayApplyKernel manages com-
munication and computation. Other functions are utility
functions: HDArrayRead and HDArrayWrite perform I/O
operations; and HDArrayReduce performs a reduction and
returns a scalar value. We discuss the implementation details
of all the library functions in Section III-B.

C. Communication Handling

A major advantage of using HDArrays is that communi-
cation between host processes, and data transfer between
host and device, are managed automatically. This is possible
because the HDArray runtime system knows that each device
will access distributed arrays through the partition ID and
the HDArray pragma. From this information, each process
knows what array sections it and other processes own; i.e., it
has the coherent copy of HDArrays, and what array sections
it and the other processes are using in a kernel call. From
this information, what needs to be communicated can be
calculated.

HDArray does greedy communication. The HDArray
runtime determines and performs the communication before
launching kernels in the HDArrayApplyKernel call. This
is done by using three sets of array sections: global, i.e.,
across all kernels, definition sections (GDEF); local, i.e., for
a particular kernel, definition sections (LDEF); and local
use sections (LUSE). The three sets are summarized by
one or more sections of [LB:UB] that give the lower and
upper bounds of the array sections for “all” processes. To
be more precise, GDEF is a set of written sections not



Table III
HDARRAY INTERFACE LIBRARY FUNCTIONS

int HDArrayInit(int argc, char *argv[], char *kpath, char *dpath) Initialize HDArray runtime environment. Returns device ID. kpath is the
path to the OpenCL kernel file and dpath (optional) is the path to the
device information file.

void HDArrayExit(void) Terminate the HDArray runtime environment.
void HDArrayShowDeviceInfo(int deviceId) Display a mapping from each MPI rank to devices and device information.

Takes a deviceId which is the same as the MPI rank.
HDArray_t *HDArrayCreate(char *symbol, char *type, void *buf, int
dim, ... )

Allocate array to host and device buffer and returns HDArray handles. The
1st and 2nd parameters are the name and type of an array. Takes a variable
argument list for the array size.

int HDArrayPartition(HDARRAY_PARTITION part, int dim, ... ) Partition work item regions. The 1st parameter is type of partitioning. Takes
a variable argument list for the array size and regions for each dimension.
The list of currently supported part: ROW, COL, and BLOCK.

void HDArrayApplyKernel(char *kernalName, int partitionID, ... ) Perform communication and kernel execution. Takes the kernel name,
partition ID, and kernel arguments. The order of the kernel arguments
must be identical to the order of kernel parameters.

void HDArrayRead(HDArray_t *HDArr, void *userArr, int partitionID) Read an array section from the HDArray object (HDArr) to host memory
(userArr). Takes partition ID that specifies the array section to be read.

void HDArrayWrite(HDArray_t *HDArr, void *userArr, int partitionID) Write an array section to an HDArray object (HDArr) from host memory
(userArr). Takes partition ID that specifies the array section to be written.

void HDArrayReduce(HDArray_t *HDArr, void *res, HDARRAY_RE-
DUCE_OP op, int partitionID)

Reduce specific array sections to a scalar value and copy it to res. The list
of currently supported ops: HDARRAY_REDUCE_SUM, HDARRAY_-
REDUCE_PRODUCT, HDARRAY_REDUCE_MAX, and HDARRAY_-
REDUCE_MIN.

DETECT 
COMM

GDEF 
UPDATE

GDEFOUT

GDEF0
’

GDEF1
’

P0→P1 : GDEF0 ∩ LUSE1

Communication

P0←P1 : GDEF1 ∩ LUSE0

LUSE0

GDEFIN LUSE

P1 LUSE1

Process

GDEF0P0
GDEF1

GDEF1

GDEF0 GDEF0
∩ = P0→P1

(-1,0)
offset GDEF1

’

GDEF0
’

LUSE1

Figure 2. Process 0’s array sections for use type HDArray before and after communication (GDEFIN and GDEFOUT respectively). The HDArray runtime
system updates LUSE with offset information and detects the communication pattern. The system then finds array sections to be communicated among the
processes by intersecting globally defined and locally used elements, and then performs the communication. Finally, it updates the GDEF information on
each process to reflect the globally defined data that is not present in a process 0.

propagated to different processes, and LUSE/LDEF is the
set of sections each process reads/writes in the kernel. Each
process maintains coherent local copies of the three sets
without communicating with other processes. This is possible
because each process knows its rank and the total number
of processes and executes the same HDArray functions.

When the program invokes an HDArrayApplyKernel,
the runtime analyzes LDEF and LUSE by composing the
partitioned work item region with the offset provided by each
kernel. The runtime then communicates only necessary array
sections by intersecting LUSE with the GDEF. The data to
be sent is found by intersecting the process’s GDEF with
the LUSE of every other process for the kernel. The data to
be received is found by each process intersecting its LUSE
with the GDEF of every other process. The system also uses
the intersection to perform a necessary data transfer between
host and device buffer of HDArray.

After the communication and kernel execution, the system
updates GDEF to reflect the changes in the HDArrays. Each

process updates its copy of GDEF for all HDArrayk that
are used with Eqn. 1:

GDEFOUT (k) −= GDEFIN (k) ∩ LUSE (k) (1)

This update removes the data a process received from its
copy of GDEF and prevents it from being received again at
the next kernel call, unless it is redefined by another process.
Figure 2 shows how the system maintains the GDEF with
two processes when HDArrays are used in a kernel. Then, for
all HDArrayk that are defined in the kernel, each process
computes:

GDEFOUT (k) = GDEFIN (k) ∪ LDEF (k) (2)

The LDEF is merged into GDEF, indicating that the updated
GDEF may have new candidates for the communication. If a
process pd defined data that a process pr had received from
it, and that pr had subtracted from its set in Eqn. 1, this will
add the redefined elements into pr’s copy of GDEF so that



the new values will be communicated should they be used
in a later kernel call.

D. Multi-node Accelerator Resource Management

The HDArray interface lets users pass a device information
file as the last parameter of the HDArrayInit function. The
file contains tuples of (MPI rank, device ID). The MPI
rank can be fixed and known before the program runs, so
the rank becomes the unique ID of each device. Once the
programmer provides a known unique device ID to the
HDArray interface, the system is able to select the user-
preferred device and let users manage device resources. The
users also can look up the device ID and other information
through the HDArrayShowDeviceInfo library function.

1 ...
2 #pragma hdarray partition(part0,dev:0,(0,1024),(0,512),\
3 dev:1,(0,1024),(512,512))
4 ...
5 HDArrayApplyKernel("2mm_ker1", part0, pA, pB, pD);
6 HDArrayApplyKernel("2mm_ker2", part0, pC, pD, pE);
7 ...

Listing 3. Manually partitioned 2MM (D=A×B, E=C×D) host code.

The HDArray interface also lets users partition arrays
at any program point using the partition clause shown in
Table I. This is beneficial because different kernels may
need different partitions, and the default partitioning options
may not be optimal. In the experimental results shown in
Section IV-A, the difference of the communication cost is
negligible between different types of partitioning for the
code in Listing 2. However, with two matrix multiplications
(2MM), D = A×B followed by E = C ×D, the column-
wise partitioning of array D (Listing 3) gives us a lower
communication cost than the row-wise partitioning. This is
because each process needs all elements of the column of
array D when doing E = C ×D, and the program always
defines the array before using it.

Other examples where manual partitioning can be useful
are distributing the different amount of work to devices
depending on the devices’ capabilities for load balancing,
or making some device computationally idle to avoid com-
munication when communication would be more expensive
than un-utilizing computational resources. Although manual
partitioning requires understanding of the communication
patterns of the kernels, it gives more control and flexibility
to programmers.

E. Discussion: Comparing with Compiler-assisted Commu-
nication Generation

Unlike, for example, Hydra [12], the HDArray runtime
handles communication at runtime without any static analysis.
This makes the compilation simpler and can give more precise
information, e.g., when data is manually partitioned or when
use and def clauses are symbolically expressed, leading to
lower communication costs than with static analyses. Another
benefit of our approach is portability. Unlike with compiler

analyses, programmers can use separate compilation and
external libraries as long as they update arrays through
HDArrayRead and HDArrayWrite calls. While using the
interface requires more work from the programmer than
a fully automatic solution, we believe that the benefits of
enabling performance tuning and higher portability, as well
as the ease of maintaining the HDArray system, outweigh
the cost.

III. IMPLEMENTATION OF RUNTIME SYSTEM

This section describes the implementation details of the
HDArray runtime system which consists of a frontend and
an execution phase.

A. Frontend Phase

The frontend phase, shown in Figure 1a, uses a simple
parser, written in Python, that performs three tasks: (1) parse
OpenCL kernel functions and HDArray pragmas, (2) collect
information that is written to a file and passed to the runtime,
(3) generate code for HDArray pragmas that pass partitioning
information to the runtime. The frontend phase creates the
file that stores information for all kernel functions and all
HDArrays of each kernel function. The information for each
HDArray handle includes the offset information and the types
(either USE or DEF).

If the frontend phase encounters manual partitioning direc-
tives, as discussed in Section II-D, the parser expresses the
directives as calls to internal HDArray runtime routines. The
call is essentially same as HDArrayPartition and returns
partition ID to the variable defined in the partition clause.
Because the information is passed at runtime, variables can
be used to specify regions, etc., and their value will be used
to update GDEF, LDEF, and LUSE.

B. Execution Phase

Figure 1b shows the execution phase. The main tasks of
the HDArray execution phase are (1) maintaining information
about HDArray sections residing on hosts and in devices,
(2) determining and scheduling communication to ensure up-
to-date data is available for computations, and (3) launching
kernel executions.

1) Program Startup: With the HDArrayInit call, the
runtime reads in the file the frontend generated and creates
a kernel table which maps each kernel argument to the
HDArrays. The table also contains the use/def and offset
information for each HDArray, and this information is used
when updating LDEF and LUSE, scheduling communication,
and launching the kernel. The selective device feature is
implemented using clGetDeviceInfo() to find a unique
device ID that the device information file specifies. The
unique ID is a combination of the PCI bus and slot ID for
each device.



Algorithm 1 Pseudo code of HDArrayApplyKernel
1: procedure HDArrayApplyKernel(kernel name, region, arguments)
2: get kernel ID from kernel table
3: set kernel arguments
4: for each HDArray in kernel arguments do
5: if type of HDArray is USE then
6: update LUSE
7: detect and schedule communication
8: if scheduled then
9: data transfer from device to host

10: execute communication
11: data transfer from host to device
12: update GDEF (subtraction)
13: end if
14: end if
15: end for
16: kernel execution
17: for each HDArray in kernel arguments do
18: if type of HDArray is DEF then
19: update LDEF
20: update GDEF (union)
21: end if
22: clear LDEF and LUSE
23: end for
24: end procedure

2) Creating HDArray and Partitioning Data and Work:
An HDArrayCreate call creates two internal buffers: a
host buffer using malloc() and a device buffer using
clCreateBuffer(), and then allocates GDEF sections for
each process. HDArrayPartition calls create the work
item region maintained by the partition table where a unique
partition ID identifies each entry.

3) Binding Arguments to Kernel Calls: Algorithm 1
sketches the logic of HDArrayApplyKernel. On lines
2-3, the runtime sets argument values for a kernel and
passes the argument values to the OpenCL function
clSetKernelArg(). The runtime system finds the device
buffer from the argument of the HDArray handle and calls
the OpenCL function. The system binds all other arguments
directly.

4) Communication Generation: On lines 4-15, HDArrays
designated as use trigger communication. The LUSE of the
HDArray is updated using the mapped offset in the kernel
table and the work item region in the partition table. As
described in Section II-C, the LUSE is intersected with the
GDEF for an HDArray to determine what should be commu-
nicated and what communication pattern is needed, i.e., point-
to-point or collective communication. If the intersections are
most recently updated in the device memory, they are first
transferred to the host memory by the non-blocking OpenCL
function, clEnqueueReadBufferRect(). Once the data
is available in the host memory, MPI communication is
performed. The HDArray runtime supports asynchronous
point-to-point MPI_Isend(), MPI_Irecv(), and MPI_-
Waitall() communications, and MPI_Allgatherv() and
MPI_Alltoallw() collective communications. As a re-
sult of the communication, the host buffer has up-to-date
sections while the device buffer does not. Therefore, the
execution phase writes the sections from the host buffer

to the device buffer using the non-blocking OpenCL func-
tion, clEnqueueWriteBufferRect(). Finally, GDEF is
updated by subtracting the intersection from GDEF, as
described in Eqn. 1.

5) Executing the Kernel: On line 16, after all
HDArrays have been communicated, the OpenCL ker-
nel function is executed using the OpenCL function,
clEnqueueNDRangeKernel(). The execution phase finds
the preferred work-group size to accommodate multiple
architectures and receive the benefit of accessing OpenCL
local memory. It queries the device for the CL_KERNEL_-
PREFERRED_WORK_GROUP_SIZE_MULTIPLE param-
eters by calling clGetKernelWorkGroupInfo() and sets
the work-group size, e.g., the warp size of NVIDIA GPU,
accordingly.

On lines 17-23, the kernel execution can modify device
buffers, and from the def clauses, the runtime knows which
HDArrays are defined. If the HDArray is defined, the LDEF
is updated using the mapped offset in the kernel table and
the work item region in the partition table. The LDEF is
then used to update the GDEF of the defined HDArrays as
seen in Eqn. 2. It also updates the state bit of the defined
section to show that the device, and not the host, has the
latest data.

6) Utility Library Functions: The HDArray runtime
provides two kinds of utility functions that operate on
HDArrays: (1) I/O functions that read and write data from
and to HDArrays, and (2) a reduction operation on HDArrays.

The I/O utility functions allow the user to explicitly move
data between the user array and the device buffer. LUSE
and LDEF are updated with partition ID. HDArrayRead
updates the LUSE according to the requested section, with
the LUSE being intersected with the GDEF set to perform the
necessary host/device data transfer and MPI communication.
The runtime then copies the HDArray’s internal buffer
to the designated user space buffer using memcpy() or
clEnqueueReadBufferRect(). HDArrayWrite updates
the LDEF and writes the section directly to the device mem-
ory using clEnqueueWriteBufferRect(). For both func-
tions, the GDEF is updated to reflect the communication in
the same way as was done with the HDArrayApplyKernel
call; therefore, the GDEF is consistent with the actual state
of the memory.

The reduction utility function HDArrayReduce produces a
scalar value by applying local and global reductions to HDAr-
rays. First, the local reduction is performed on partitioned data
within an MPI process. The runtime executes an OpenMP
reduction if the latest data is only in the host memory;
otherwise, the runtime executes an OpenCL implementation
of Two-stage Reduction [16]. Second, MPI_Allreduce()
is used for the global reduction on the results of the local
reductions each process has performed.



Figure 3. Scalability for the HDArray runtime system with different partitioning methods. We show the speedup for each benchmark, which is the ratio of
the execution time of a single device to the execution time of the number of devices indicated on the x-axis.

C. Discussion: Improving Runtime Overhead

A major runtime overhead comes from computing the
intersections to perform communication. If the LUSE and
GDEF for a kernel call are unchanged from the last call, the
intersection from the last call can be used. If use and def for
a kernel call is constant and the intersection is unchanged, it
can be shown that the intersection will never change unless an
HDArray is repartitioned. When an HDArray is repartitioned,
all LUSE, GDEF, and intersections involving the array are
set to NULL, forcing their re-computation. Our system uses
this optimization to improve performance.

IV. EXPERIMENTAL RESULTS

In this section, we evaluate the effectiveness of the
proposed techniques with four publicly available benchmarks.
Our evaluation is done using up to 32 OpenCL devices on the
Xsede Comet cluster [17]. Comet has 1,944 compute nodes
and 72 GPU nodes, connected by a 56 Gbps FDR Infiniband
and 10 Gbps Ethernet network. Each compute node consists
of two 12 core Intel Xeon CPU E5-2680 processors running
at 2.50 GHz, 128 GB of main memory. The GPU nodes
consist of 36 NVIDIA P100 nodes and 36 NVIDIA K80
nodes, and each node has 4 GPUs. We use P100 GPU nodes,
each of which has total 40GB of device memory.

We compile all the programs with gcc 4.9.2 with -O3
and use OpenMPI version 1.8.4. OpenCL version 1.2 is
used to support NVIDIA devices. We use four benchmarks
that compute on 2-dimensional arrays: GEMM, 2MM, 2D
Convolution, and Jacobi that are micro-kernels from the
Polyhedral Benchmark Suite for GPUs and accelerators [18].
The OpenCL device code is modified to embed the HDArray
pragma for use and def clauses, and C host code that includes
HDArray library calls and HDArray partitioning pragmas are
added. Our first evaluation (Section IV-A) utilizes up to 8
nodes with 4 GPU devices per node. The second evaluation
(Section IV-B) uses up to 6 nodes with 2 devices per node.

A. Scalability

Figure 3 shows strong scaling for both automatic and
manual distributions. The baseline time is for one process
running on one core with one device (GPU). Automatic
partitioning performs a row-wise partition, and manual

partitioning performs a column-wise partition. We use 8
nodes with up to four devices per node, with additional
nodes added only after four processes are executing on a
node.

GEMM, shown in Section II-A, uses 10,240×10,240
matrices with 100 iterations. With automatic partitioning,
HDArray runtime system detects and generates all-gather
collective communication because each OpenCL work-item
needs row and column elements of arrays for computation.
Scaling is good to 32 processes for both the manual and
automatic partitioning, with an efficiency of over 90%.

2MM performs two matrix multiplications, as discussed
in Section II-D. It differs from GEMM in that 2MM runs
two kernel functions within a loop and exhibits a data
dependency because one kernel defines an array used by the
other kernel. With automatic partitioning, the efficiency drops
off to about 60% at 32 processes because the communication
is proportional to the number of iterations. For manual
partitioning, shown in Listing 3, communication occurs only
twice for arrays A and C, and the efficiency is about 95%
at 32 processes. Table IV shows communication volumes
of all 32 processes and noticeable volume difference for
2MM. This result shows the value of integrating manual and
automatic communication.

Table IV
TOTAL COMMUNICATION VOLUME FOR 32 PROCESSES

Partition GEMM 2MM CONV JACOBI

Automatic 0.41 GB 42.36 GB 5.07 GB 507.85 GB
Manual 0.41 GB 0.83 GB 5.07 GB 507.85 GB

Both Convolution and Jacobi kernels are iterative stencil
codes, with eight and four neighbors, respectively. The
offsets of use and def clauses have similar patterns for both
benchmarks. For Jacobi, the device code consists of two
kernels. One kernel processes the following computation:

A[i][j] = (B[i][j−1]+B[i][j+1]+B[i−1][j]+B[i+1][j])/4

The use clauses are specified for the function with four
offsets, (0,-1), (0,+1), (-1,0), (+1,0), for an array B. The
other kernel performs B[i][j] = A[i][j], and zero offsets
are inserted. The host code allocates user space arrays
to have boundary or ghost cells then distributes data and



work. Convolution has four additional offsets added. Both
kernels use 20,480×24,080 matrices with 100,000 iterations,
and the runtime detects and schedules a point-to-point
communication. The performance of manual and automatic
partitioning is essentially identical with the efficiency of
80% for Convolution and 56% for Jacobi at 32 processes.
Scaling is poor primarily because of HDArray runtime system
overhead, not communication overhead.

Table V
RUNTIME OVERHEAD OF JACOBI AS A PERCENTAGE OF TOTAL

EXECUTION TIME: CACHING DISABLED AND ENABLED

Number of Processes 2 4 8 16 32

No Caching 0.261 0.779 2.147 5.539 14.120
Caching 0.109 0.351 0.923 2.882 8.472

The HDArray system’s largest runtime overhead is perform-
ing intersections. Table V shows that the overhead is reduced
by the caching strategy of Section III-C. Other overheads are
primarily from LDEF, LUSE, and GDEF computations, which
linearly increase as the number of processes increases. Both
Convolution and Jacobi suffer from the overhead because
the runtime generates many LUSE sections. Worse, the
runtime updates and clears LUSEs and LDEFs for each
kernel invocation, as shown in Algorithm 1.

0
1
2
3
4
5
6
7
8
9
10

2 4 8 16 32

%
	o
f	T
ot
al
	E
xe
cu
tio

n	
Ti
m
e

Number	of	Processes

JACOBI	
Total	overhead
LDEF	and	LUSE
GDEF	subtraction
GDEF	union

Figure 4. Breakdown of runtime overhead for Jacobi

Figure 4 shows the percentage of each runtime com-
ponent’s overhead, based on total execution time. All the
overheads of LDEF, LUSE, and GDEF updates are linearly
increasing. Improving the scalability of the HDArray runtime
is part of our ongoing work. One opportunity is to expand our
caching techniques to the section updates. The system already
avoids unnecessary intersections by caching each HDArray’s
intersection history for each kernel, and the system at this
point has enough information to skip unnecessary section
updates.

B. Network and Process Effect on Communication Cost

With multiple nodes and four GPUs per node, executions
on a small number of processors can be placed on one or
two nodes or spread across multiple nodes with one process
per node. The former takes advantage of faster intra-node
communication and should be the fastest as long as data
fits in the memory of the nodes. Our experiments show that
with up to 12 processes on 6 nodes and use of Infiniband,

(a) 2MM Results (b) Jacobi results
Figure 5. The effects on process scheduling with Infiniband and Ethernet.

process placement makes little difference. Some difference is
noticeable when using Ethernet. Figure 5 gives the results for
Jacobi and 2MM, which show the most dramatic differences
between Infiniband and TCP for jobs with 2 processes per
node and 4 per node.

V. RELATED WORK

Our paper is related to previous efforts to simplify
distributed accelerator programming with runtime support
for efficient communication.

A. Programming Models for Accelerator Clusters

UPC [1], Co-array Fortran [19], and X10 [20] are
Partitioned Global Address Space (PGAS) languages that
expose a global shared array so that a programmer can
partition the array without worrying about the communi-
cation. These programming paradigms have been extended
to support accelerator clusters [9]–[11]. PGAS languages
require programmers to specify the affinity between data and
threads, which is difficult to change during program execution.
Our approach gives more freedom to the programmer
to re-distribute data at any parallel program point. High
Performance Fortran (HPF) also provides a global address
space programming model that runs on clusters [21], [22].
Programmers explicitly distribute data using HPF directives,
which guides computation partitioning and communication
handling. HPF does not support accelerators.

Researchers have proposed language extensions for the
programmability of heterogeneous clusters. SnuCL [3] and
SnuCL-D [4] enable OpenCL applications to run in a
distributed manner without any modification by making
all the devices on a cluster logically appear on a single
local node. dCUDA [5] automatically overlaps on-node
computation and inter-node communication with hardware
support and device-side remote memory access operations.
It combines the MPI and CUDA programming models into
a single CUDA kernel. IMPACC [6] integrates MPI and
OpenACC [23] while exploiting shared memory parallelism.
It reduces the communication cost through unified MPI
communication routines, a unified node virtual address space,
node heap aliasing technique, etc. Despite their optimized
communication with little or no code changes, programmers
are forced to manage numerous low-level details of the
accelerator or MPI programming because these tools provide



an abstraction level analogous to OpenCL/CUDA or MPI,
and require explicit data transfer or communication code.

OmpSs [24] supports task parallelism and provides direc-
tives for computation offloading and communication handling.
Programmers need to specify accessed regions of shared data,
and OmpSs does not provide a convenient way to define and
operate on subarrays. Our approach supports data parallelism
and is different from OmpSs in that users specify per-thread
offset information which can be easily derived for regular
applications, and both work and data partitioning can be
done automatically or manually.

HOMP [25] proposes an extension of OpenMP for dis-
tributing and binding computation and data, which gives
users more control of managing data and computation. It
also provides a number of loop distribution algorithms for
better load-balancing. Unlike HDArray, HOMP lacks cluster
support and manual partitioning for specific devices.

Viñas et al. [8] proposed the hybrid use of Hierarchically
Tiled Array (HTA) [26] for globally distributed arrays
and Heterogeneous Programming Library (HPL) [27] for
accelerators. Both HTA and HPL C++ libraries provide
implicit parallelism and communication and hide many low-
level details of MPI and OpenCL; however, there exist
two different arrays: an HTA and an HPL Array, which
programmers need to define and maintain. Explicit data
transfer from the HPL Array to an HTA is also necessary.

PARRAY [7], [28] is a C language extension that intro-
duces novel array types using a very flexible notation with a
Single-Program-Multiple-Codeblock (SPMC) programming
style. The data array type separates the physical storage and
logical structure of data to support logical multi-dimensional
array operations. The thread array type indicates what kind
of process/thread will be used for the array dimensions to
unify various communication mechanisms (MPI, Pthread,
CUDA, or other optimized libraries, e.g., PGAS calls). Unlike
HDArray, users need to specify communication mechanisms
for every array and explicitly insert communication code.

Skeleton libraries [29], [30] are another approach to
exploit accelerator clusters with less programming effort.
One limitation is that they can only support applications
in which all the computational patterns are covered by the
skeletons.

B. Easier Accelerator Programming

Due to the difficulty of programming accelerators, systems
to make this easier have been proposed. One approach
is enabling accelerator programming in simple scripting
languages. NumbaPro [31], Arrayfire [32], PyCUDA [33],
and Copperhead [34] support Python libraries for accelerators.
OpenACC is an OpenMP-like directive-based accelerator
programming model. OpenMP 4.0 includes the OpenACC
feature. Unlike HDArray, all of these APIs and programming
models target a single node.

VI. CONCLUSIONS AND FUTURE WORK

We have presented the HDArray interface and runtime
system for accelerator clusters. The interface features a novel
global programming model which separates work partitioning
from the concept of data distribution, thus enabling flexible
work and data distribution.

The interface abstracts away many low-level details of
multiple address space programming, yet supports a low-
level array programming environment through the HDArray
annotations and APIs for performance tuning. We showed
how the HDArray interface could help programmers to write
and tune array-based programs for distributed devices.

The HDArray runtime system performs efficient and fully
automatic communication by managing the array sections. As
a trade-off, the system incurs runtime overhead depending on
communication patterns; however, our caching mechanism
can overcome the overhead.

A. Future Work

With additional enhancements, the HDArray can be more
efficient and reliable with a wider range of array-based
programs. We discuss these now.

1) The Expressiveness of the Offset Clause: The offset
helps users to write kernel code without considering com-
munication; however, it cannot express non-regular, e.g.,
triangular, array access patterns of kernels. As a result,
the users can only make conservative offsets for those
kernels, causing unnecessary communication. Instead of
using “relativeness” of the offset, we can have users directly
specify LUSE and LDEF for each device, similar to manual
partitioning. To enhance the programming model, we can
provide additional directive clauses and APIs for an easier
way of expressing the absolute array sections for non-regular
applications.

2) Handling Applications that Exceed Device Memory:
Unlike CPUs, accelerators typically have small physical
memories and no virtual addressing. The HDArray program
will fail if the available device memory size is smaller than
needed for computation because it allocates the entire array
when HDArrays are created and uses the entire partitioned
work item region for a kernel. To fit in the device memory, we
can allocate the device buffer during the kernel computation
and use a host buffer as a backing store to split the partitioned
region to work with smaller data. This optimization is feasible
by enhancing HDArrayApplyKernel.

3) Automatic Utilizations of Computational Resources:
The HDArray runtime does not support automatic load bal-
ancing. For repetitive programs, in which the communication
pattern is the same in all iterations of the serial loop enclosing
kernel calls, the runtime can balance the work by analyzing
the performance of devices at each iteration and dynamically
adjust work and data distributions. Another utilization such
as overlapping computation and communication is not also



supported because of the SPMD execution model we use.
The design of providing the overlap is ongoing future work.

REFERENCES

[1] U. Consortium et al., “UPC Language Specifications V1.2,”
Lawrence Berkeley National Laboratory, 2005.

[2] W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable
Parallel Programming with the Message-Passing Interface.
MIT press, 1999, vol. 1.

[3] J. Kim et al., “SnuCL: An OpenCL Framework for Heteroge-
neous CPU/GPU Clusters,” in Proceedings of the 26th ACM
International Conference on Supercomputing, ser. ICS ’12.

[4] J. Kim, G. Jo et al., “A Distributed OpenCL Framework using
Redundant Computation and Data Replication,” in Proceedings
of the 37th ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI ’16.

[5] T. Gysi, J. Bär, and T. Hoefler, “dCUDA: Hardware Supported
Overlap of Computation and Communication,” in Proceed-
ings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ’16.

[6] J. Kim et al., “IMPACC: A Tightly Integrated MPI+ Ope-
nACC Framework Exploiting Shared Memory Parallelism,” in
International Symposium on High-Performance Parallel and
Distributed Computing, ser. HPDC ’16.

[7] Y. Chen, X. Cui, and H. Mei, “PARRAY: A Unifying Array
Representation for Heterogeneous Parallelism,” in Proceedings
of the 17th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, ser. PPoPP ’12.

[8] M. Viñas et al., “Towards a High Level Approach for
the Programming of Heterogeneous Clusters,” in Parallel
Processing Workshops (ICPPW), 2016 45th International
Conference on. IEEE, 2016, pp. 106–114.

[9] J. Lee et al., “An Extension of XcalableMP PGAS Language
for Multi-node GPU Clusters,” in Proceedings of the 2011
International Conference on Parallel Processing, ser. Euro-
Par’11. Springer-Verlag, 2012, pp. 429–439.

[10] S. Potluri et al., “Extending openSHMEM for GPU Com-
puting,” in Parallel & Distributed Processing (IPDPS), 2013
IEEE 27th International Symposium, pp. 1001–1012.

[11] M. Nakao et al., “XcalableACC: Extension of XcalableMP
PGAS Language Using OpenACC for Accelerator Clusters,”
in Workshop on Accelerator Programming using Directives
(WACCPD), 2014.

[12] P. Sakdhnagool, A. Sabne, and R. Eigenmann, “HYDRA:
Extending Shared Address Programming for Accelerator
Clusters,” in International Workshop on Languages and
Compilers for Parallel Computing. Springer, 2015.

[13] O. Kwon et al., “A Hybrid Approach of OpenMP for Clusters,”
in Proceedings of the 17th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, ser. PPoPP
’12, 2012, pp. 75–84.

[14] J. E. Stone, D. Gohara, and G. Shi, “OpenCL: A Parallel Pro-
gramming Standard for Heterogeneous Computing Systems,”
Computing in Science Engineering, vol. 12, no. 3, May 2010.

[15] F. Darema et al., “A single-program-multiple-data compu-
tational model for EPEX/FORTRAN,” Parallel Computing,
vol. 7, no. 1, pp. 11–24, 1988.

[16] B. Catanzaro. OpenCL Optimization Case Study: Simple
Reductions. [Online]. Available: http://developer.amd.com

[17] R. L. Moore et al., “Gateways to Discovery: Cyberinfras-
tructure for the Long Tail of Science,” in Proceedings of the
2014 Annual Conference on Extreme Science and Engineering
Discovery Environment, ser. XSEDE ’14. ACM, 2014.

[18] S. Grauer-Gray et al., “Auto-tuning a High-level Language Tar-
geted to GPU Codes,” in 2012 Innovative Parallel Computing
(InPar), May 2012, pp. 1–10.

[19] R. W. Numrich and J. Reid, “Co-Array Fortran for Parallel
Programming,” in ACM Sigplan Fortran Forum, vol. 17, no. 2.
ACM, 1998, pp. 1–31.

[20] P. Charles et al., “X10: An Object-Oriented Approach to Non-
Uniform Cluster Computing,” in Acm Sigplan Notices, vol. 40,
no. 10. ACM, 2005, pp. 519–538.

[21] C. Rice University, “High Performance Fortran Language
Specification,” SIGPLAN Fortran Forum, Dec. 1993.

[22] M. Gupta et al., “An HPF Compiler for the IBM SP2,” in
Proceedings of the 1995 ACM/IEEE Conference on Supercom-
puting, ser. Supercomputing ’95. ACM, 1995.

[23] The OpenACC Application Programming Interface Version
2.5, 2015. [Online]. Available: http://www.openacc.org/sites/
default/files/OpenACC_2pt5.pdf

[24] J. Bueno et al., “Productive Programming of GPU Clusters
with OmpSs,” in Parallel & Distributed Processing Symposium
(IPDPS), 2012 IEEE 26th International, pp. 557–568.

[25] Y. Yan et al., “HOMP: Automated Distribution of Parallel
Loops and Data in Highly Parallel Accelerator-Based Systems,”
in Parallel and Distributed Processing Symposium (IPDPS),
2017 IEEE International. IEEE, 2017, pp. 788–798.

[26] G. Bikshandi et al., “Programming for Parallelism and Locality
with Hierarchically Tiled Arrays,” in Proceedings of the
eleventh ACM SIGPLAN symposium on Principles and practice
of parallel programming, ser. PPoPP ’06.

[27] M. Viñas, Z. Bozkus, and B. B. Fraguela, “Exploiting Hetero-
geneous Parallelism with the Heterogeneous Programming
Library,” Journal of Parallel and Distributed Computing,
vol. 73, no. 12, pp. 1627–1638, 2013.

[28] X. Cui, X. Li, and Y. Chen, “Programming Heterogeneous
Systems with Array Types,” in 2015 15th IEEE/ACM Interna-
tional Symposium on Cluster, Cloud and Grid Computing.

[29] S. Ernsting and H. Kuchen, “Data Parallel Algorithmic
Skeletons with Accelerator Support,” International Journal of
Parallel Programming, vol. 45, no. 2, pp. 283–299, 2017.

[30] M. Majeed et al., “Cluster-SkePU: A Multi-Backend Skeleton
Programming Library for GPU Clusters,” in Proceedings
of the International Conference on Parallel and Distributed
Processing Techniques and Applications (PDPTA), 2013.

[31] S. K. Lam. NumbaPro: High-Level GPU Programming
in Python for Rapid Development. [Online]. Available:
http://on-demand-gtc.gputechconf.com/

[32] ArrayFire. [Online]. Available: https://arrayfire.com/
[33] A. Klöckner et al., “PyCUDA and PyOpenCL: A Scripting-

based Approach to GPU Run-time Code Generation,” Parallel
Comput., vol. 38, no. 3, pp. 157–174, Mar. 2012.

[34] B. Catanzaro, M. Garland, and K. Keutzer, “Copperhead: Com-
piling an Embedded Data Parallel Language,” in Proceedings
of the 16th ACM Symposium on Principles and Practice of
Parallel Programming, ser. PPoPP ’11, New York, NY, USA.


	Purdue University
	Purdue e-Pubs
	3-26-2018

	HDArray: Parallel Array Interface for Distributed Heterogeneous Devices
	Hyun Dok Cho
	Okwan Kwon
	Samuel Midkiff

	tmp.1522170612.pdf.FsTmt

