3 research outputs found

    Kernel learning approaches for image classification

    Get PDF
    This thesis extends the use of kernel learning techniques to specific problems of image classification. Kernel learning is a paradigm in the eld of machine learning that generalizes the use of inner products to compute similarities between arbitrary objects. In image classification one aims to separate images based on their visual content. We address two important problems that arise in this context: learning with weak label information and combination of heterogeneous data sources. The contributions we report on are not unique to image classification, and apply to a more general class of problems. We study the problem of learning with label ambiguity in the multiple instance learning framework. We discuss several different image classification scenarios that arise in this context and argue that the standard multiple instance learning requires a more detailed disambiguation. Finally we review kernel learning approaches proposed for this problem and derive a more efficcient algorithm to solve them. The multiple kernel learning framework is an approach to automatically select kernel parameters. We extend it to its infinite limit and present an algorithm to solve the resulting problem. This result is then applied in two directions. We show how to learn kernels that adapt to the special structure of images. Finally we compare different ways of combining image features for object classification and present significant improvements compared to previous methods.In dieser Dissertation verwenden wir Kernmethoden fĂŒr spezielle Probleme der Bildklassifikation. Kernmethoden generalisieren die Verwendung von inneren Produkten zu Distanzen zwischen allgemeinen Objekten. Das Problem der Bildklassifikation ist es, Bilder anhand des visuellen Inhaltes zu unterscheiden. Wir beschĂ€ftigen uns mit zwei wichtigen Aspekten, die in diesem Problem auftreten: lernen mit mehrdeutiger Annotation und die Kombination von verschiedenartigen Datenquellen. Unsere AnsĂ€tze sind nicht auf die Bildklassififikation beschrĂ€nkt und fĂŒr einen grösseren Problemkreis verwendbar. Mehrdeutige Annotationen sind ein inhĂ€rentes Problem der Bildklassifikation. Wir diskutieren verschiedene Instanzen und schlagen eine neue Unterteilung in mehrere Szenarien vor. Danach stellen wir Kernmethoden fĂŒr dieses Problem vor und entwickeln einen Algorithmus, der diese effizient löst. Mit der Methode der Kernkombination werden Kernfunktionen anhand von Daten automatisch bestimmt. Wir generalisieren diesen Ansatz indem wir den Suchraum auf kontinuierlich parametrisierte Kernklassen ausgedehnen. Diese Methode wird in zwei verschiedenen Anwendungen eingesetzt. Wir betrachten spezifische Kerne fĂŒr Bilddaten und lernen diese anhand von Beispielen. Schließlich vergleichen wir verschiedene Verfahren der Merkmalskombination und zeigen signifikante Verbesserungen im Bereich der Objekterkennung gegenĂŒber bestehenden Methoden

    Generalising history matching for enhanced calibration of computer models

    Get PDF
    History matching using Gaussian process emulators is a well-known methodology for the calibration of computer models. It attempts to identify the parts of input parameter space that are likely to result in mismatches between simulator outputs and physical observations by using emulators. These parts are then ruled out. The remaining “Not Ruled Out Yet (NROY)” input space is then searched for good matches by repeating the history matching process. The first section of this thesis illustrates an easily neglected limitation of standard history matching: the emulator must simulate the target NROY space well, else good parameter choices can be ruled out. We show that even when an emulator passes standard diagnostic checks on the whole parameter space, good parameter choices can easily be ruled out. We present novel methods for detecting these cases and a Local Voronoi Tessellation method for a robust approach to calibration that ensures that the true NROY space is retained and parameter inference is not biased. The remainder of this thesis looks into developing a generalised history matching for calibrating computer models with high-dimensional output. We address another limitation of the standard (PCA-based) history matching, which only works well when the parameters are responsible for the strength of various patterns. We show that when the parameters control the position of patterns, e.g. shifting currents, current approaches will not generally be able to calibrate these models. To overcome this, we extend history matching to kernel feature space, where output space for moving patterns can be compared with the observations. We develop kernel-based history matching as a generalisation to history matching and examine the multiple possible interpretations of the usual implausibility measure and threshold for defining NROY. Automatic kernel selection based on expert modeller judgement is introduced to enable the experts to define important features that the model should be able to reproduce

    Kernel Learning Approaches for Image Classification

    No full text
    This thesis extends the use of kernel learning techniques to specific problems of image classification. Kernel learning is a paradigm in the field of machine learning that generalizes the use of inner products to compute similarities between arbitrary objects. In image classification one aims to separate images based on their visual content. We address two important problems that arise in this context: learning with weak label information and combination of heterogeneous data sources. The contributions we report on are not unique to image classification, and apply to a more general class of problems. We study the problem of learning with label ambiguity in the multiple instance learning framework. We discuss several different image classification scenarios that arise in this context and argue that the standard multiple instance learning requires a more detailed disambiguation. Finally we review kernel learning approaches proposed for this problem and derive a more efficient algorithm to solve them. The multiple kernel learning framework is an approach to automatically select kernel parameters. We extend it to its infinite limit and present an algorithm to solve the resulting problem. This result is then applied in two directions. We show how to learn kernels that adapt to the special structure of images. Finally we compare different ways of combining image features for object classification and present significant improvements compared to previous methods
    corecore