
Generalising history matching for

enhanced calibration of computer

models

Wenzhe Xu

Supervisor: Daniel Williamson

Peter Challenor

College of Engineering, Mathematics and Physical Sciences

University of Exeter

Submitted by Wenzhe Xu to the University of Exeter as a thesis for the degree of

Doctor of Philosophy in Mathematics, March 2021

This thesis is available for Library use on the understanding that it is copyright material

and that no quotation from the thesis may be published without proper

acknowledgement. I certify that all material in this thesis which is not my own work has

been identified and that any material that has previously been submitted and approved

for the award of a degree by this or any other University has been acknowledged.

(Signature) .

ii

Abstract

History matching using Gaussian process emulators is a well-known methodology

for the calibration of computer models. It attempts to identify the parts of input

parameter space that are likely to result in mismatches between simulator outputs

and physical observations by using emulators. These parts are then ruled out. The

remaining “Not Ruled Out Yet (NROY)” input space is then searched for good

matches by repeating the history matching process.

The first section of this thesis illustrates an easily neglected limitation of stan-

dard history matching: the emulator must simulate the target NROY space well,

else good parameter choices can be ruled out. We show that even when an em-

ulator passes standard diagnostic checks on the whole parameter space, good

parameter choices can easily be ruled out. We present novel methods for detecting

these cases and a Local Voronoi Tessellation method for a robust approach to cali-

bration that ensures that the true NROY space is retained and parameter inference

is not biased.

The remainder of this thesis looks into developing a generalised history match-

ing for calibrating computer models with high-dimensional output. We address

another limitation of the standard (PCA-based) history matching, which only

works well when the parameters are responsible for the strength of various pat-

terns. We show that when the parameters control the position of patterns, e.g.

shifting currents, current approaches will not generally be able to calibrate these

models. To overcome this, we extend history matching to kernel feature space,

where output space for moving patterns can be compared with the observations.

We develop kernel-based history matching as a generalisation to history match-

iv

ing and examine the multiple possible interpretations of the usual implausibility

measure and threshold for defining NROY. Automatic kernel selection based on

expert modeller judgement is introduced to enable the experts to define important

features that the model should be able to reproduce.

Acknowledgements

First and foremost, I want to thank my supervisor Daniel Williamson for the

continuous support of my PhD study and research. His guidance helped me in

all the time of research and writing of this thesis. I would also like to thank Peter

Challenor for his continuous encouragement and insightful comments. My sincere

thank also goes to my collaborators from HIGH-TUNE project. In particular, I

would like to thank Frédéric Hourdin, for spending a great deal of time helping

me with the Shiny app.

I would like to thank my family. I am extremely grateful to my parents, for their

love, prayers, caring and supporting. I am very much thankful to my husband

Ge for his love, understanding, and continuing support to complete this research

work.

Finally, I would like to say thanks to my friends and research colleagues over

the last few years, who have made my time in Exeter so enjoyable. Special mention

goes Victoria, Louise, Evan and Heba for all of the fun we have had in the last

four years. I would also like to thank my best friends, Diana and Qiaorong, for

standing with me all the time.

Publications

The majority of the results of Chapter 3 have published in the following:

Wenzhe Xu, Daniel B. Williamson and Peter Challenor “Local Voronoi tessella-

tions for robust multi-wave calibration of computer models.” International Journal

for Uncertainty Quantification (2020).

Table of contents

List of figures xv

List of tables xxiii

1 Introduction 1

1.1 Thesis Outline . 4

2 Background 7

2.1 Computer experiments and simulators 7

2.2 Uncertainty Quantification . 8

2.3 Emulation . 10

2.3.1 Gaussian process emulation 11

2.3.2 Covariance function (Kernel) 12

2.3.3 The nugget parameter . 13

2.3.4 Fitting a Gaussian process Emulator 15

2.3.5 Multivariate emulation . 19

2.3.6 Diagnostics for Gaussian process emulators 24

2.4 Calibration . 27

2.4.1 Discrepancy . 30

x Table of contents

2.5 History matching . 32

2.5.1 Refocusing . 35

2.5.2 Implausibility in Many Dimensions 36

2.5.3 Multivariate history matching using basis projection methods 38

3 Local Voronoi tessellations for robust multi-wave calibration

of computer models 43

3.1 Introduction . 43

3.2 Detection . 47

3.3 Finding X𝐷 . 50

3.3.1 Failed classification methods 50

3.3.2 Local Voronoi Tessellation . 56

3.3.3 Local augmentation . 59

3.4 Robust history matching . 59

3.5 Numerical examples . 61

3.5.1 The 1-dimensional function 61

3.5.2 A 5-dimensional function . 63

3.6 Application: process-based tuning of climate models 67

3.7 Discussion . 72

4 Kernel-based history matching for high-dimensional computer model

output 75

4.1 Introduction . 75

4.2 Kernel methods . 79

4.2.1 Kernels . 80

Table of contents xi

4.2.2 Kernel principal component analysis for emulation 83

4.2.3 Gaussian process emulators: Basis method with kernel PCA 87

4.2.4 Observation in feature space 88

4.2.5 Kernel PCA and reconstruction 90

4.2.6 Distance constraints . 93

4.3 History matching in feature space 95

4.3.1 Implausibility in feature space 97

4.4 History matching with projected uncertainties 99

4.4.1 Projecting uncertainties into feature space 99

4.4.2 Coefficient implausibility . 101

4.4.3 Threshold 𝑇 . 102

4.4.4 Limitations . 104

4.5 History matching in feature space with distance constraints 105

4.5.1 Implausibility in feature space 105

4.5.2 Threshold function 𝑇 (x) . 107

4.5.3 Accounting for uncertainties using distance constraints . . . 109

4.5.4 Emulator uncertainty . 110

4.6 Kernel-based history matching . 113

4.6.1 Capturing uncertainty through the kernel functions 113

4.6.2 Implausibility for kernel-based history matching 114

4.6.3 Implausibility I𝐹1(x): variable cut-off thresholds 115

4.6.4 Implausibility I𝐹2(x) . 118

4.7 Refocusing . 121

4.8 Numerical study . 123

xii Table of contents

4.8.1 True NROY space . 125

4.8.2 The limitation of standard history matching 126

4.8.3 History matching in feature space 127

4.9 Discussion . 131

5 Optimal kernel selection in kernel-based history matching 133

5.1 Introduction . 133

5.2 A mixture kernel for kernel PCA . 136

5.2.1 Kernel properties . 136

5.2.2 The structure of the mixture kernel 136

5.2.3 Achieving standard history matching with KHM 138

5.3 Fitting the kernel parameters . 142

5.3.1 Evaluation of history matching performance 143

5.3.2 Cutoff threshold: 𝑇 . 147

5.3.3 Kernel selection procedure 149

5.4 Numerical study 1 . 150

5.4.1 Kernel selection for the toy function 152

5.4.2 KHM for the toy example . 154

5.5 Numerical study 2 . 159

5.5.1 Wave 1 . 160

5.5.2 Refocusing: wave 2 . 162

5.6 Discussion . 164

6 Kernel-based history matching for climate models 167

6.1 Introduction . 167

Table of contents xiii

6.2 Tuning the boundary layer clouds 169

6.2.1 Simulation outputs . 170

6.3 Expert judgement . 173

6.3.1 The Shiny app . 173

6.3.2 The expert’s selection for wave 1 174

6.4 Kernel-based history matching . 175

6.4.1 Kernel selection . 175

6.4.2 NROY space . 179

6.5 Refocusing . 181

6.5.1 Wave 2 ensemble . 181

6.5.2 Wave 2 NROY space . 183

6.5.3 Wave 3 NROY space . 185

6.6 Discussion . 187

6.7 Conclusion . 189

7 Conclusion 191

References 199

Appendix A Mathematical proofs for Chapter 4 217

A.1 Proof of Equation (4.15) . 217

A.2 Proof of Equation (4.64) . 218

A.3 The expectation and variance of 𝑑2
𝜙(𝑧),𝜙(𝑓 (𝑥∗)) 220

A.4 Proof of Equation (4.84) . 221

A.5 Proof of Equation (5.11) . 222

xiv Table of contents

Appendix B R Shiny 223

Appendix C Addition remarks for examples 227

C.1 Chapter 4 toy model . 227

C.1.1 Emulator diagnostic . 229

C.2 Refocusing of Chapter 5 numerical example 1 230

C.3 Chapter 5 numerical example 2 . 234

C.4 Chapter 5: loading vector plots . 236

C.5 Boundary-layer cloud Model . 239

C.5.1 Wave 1 . 239

C.5.2 Refocusing: wave 2 & wave 3 242

List of figures

3.1 Top left: Leave One Out diagnostic plot against 𝑥. The emulator

prediction and two standard deviation intervals are given in black.

The true function values are in blue if they lie within two standard

deviation prediction intervals, or red otherwise. The pink line and

the pair of red dotted lines represent the observation with obser-

vation error and discrepancy in all 4 panels. Top right: Emulator

performance for the 1D model. The true function is represented by

the black curve and ten black points are inputs used to train the

emulator. The blue line represents the emulator posterior mean,

and the blue dotted lines give the two standard deviation predic-

tion intervals. Bottom left: History matching results and the true

NROY region. The blue interval defining the NROY space after first

wave, the red interval defining true NROY X ∗. Bottom right: As

with bottom left but enlarged over the NROY regions. 45

xvi List of figures

3.2 Logistic regression classification plots. Left: The logistic regression

cutoff level against the classification accuracy, the red dot is the auto-

matic selection of the threshold which returns the highest accuracy.

Middle: Logistic regression classification results with the automatic

selection threshold. The true function is plotted in black, red dot

is in the doubt points set and the blue dots are normal points. The

blue bar shows the classification results, which means all the input

space is in the normal region. Right: True classification results, the

blue narrow bar should be the normal region and the red bar is the

doubt region. 52

3.3 The optimization choice of cutoff level by ROC. Left: The ROC

curve, the colour on the ROC curve shows the cost corresponding

with each point, which is associated with the right panel. Green

represents the lowest total cost, and black means the highest total

cost. The tilted blue line declares the boundary of an average model,

with a 0.5 area under the curve. Right: The total cost against differ-

ent cutoff value choice. The black dotted line denotes where that

optimal cutoff value and minimum total cost lies. 54

3.4 Voronoi diagrams of 20 points under a Euclidean distance function. 57

3.5 Voronoi Tessellation classification results. The blue bar denotes the

normal region which can be employed in history matching. The red

bar represents the retained doubt region. 58

List of figures xvii

3.6 The results of multi-wave calibration of a 1-dimensional model. Left:

the results of robust history matching after one wave. The true func-

tion is represented by the black curve and the ten black points are

input points. The blue line represents the emulator posterior mean,

and the blue dotted lines give the two standard deviation prediction

intervals. The red interval defines the true NROY space, the blue

interval defines the NROY space by standard history matching and

the green interval defines the NROY space by our robust history

matching approach. Centre: leave One Out diagnostic plot against

x for a second wave emulator. The emulator prediction and two

standard deviation intervals are given in black. The true function

values are in blue if they lie within two standard deviation predic-

tion intervals, or red otherwise. The pink line and the pair of red

dotted lines represent the observation with observation error and

discrepancy. Right: history matching second wave result. The green

interval defining the NROY space after the second wave, the red

interval defining true NROY X ∗. 61

3.7 Leave one out diagnostic plots. Each panel represents leave one

out predictions from an emulator against one of the 5 inputs. Black

points and error bars are from the emulator posterior mean and two

standard deviation prediction intervals. The true function values

are in green if they lie within two standard deviation prediction

intervals, or red otherwise. 62

3.8 Local Voronoi cell plots over each pair of parameters. The red

point is the doubt point and the pink points are selected by our

augmentation step. The blue region is the Local Voronoi cell of the

doubt points which is the doubt region. 63

3.9 Target NROY space. 65

xviii List of figures

3.10 NROY density plots for 2-D projections of NROY space. Top left:

Wave 1 NROY space following standard history matching. Top right:

Wave 3 NROY space following standard history matching. Bottom

left: Wave 1 NROY space following robust history matching. Bottom

right: Wave 3 NROY space after robust history matching. The scale

corresponds to the colours in the upper triangles, whilst plots on

the lower triangle mirror the upper triangle but with independent

scales so as to reveal any structure hidden by the comparative colour

scheme (the change from light blue, blue to red indicates that the

density is rising). 66

3.11 Top: Leave one out diagnostic plots. Each panel represents one

left-out emulator predicted, black points and error bars are from

the emulator posterior mean and two standard deviation prediction

intervals. The true function values are in blue if they lie within

two standard deviation prediction intervals, or red otherwise. The

observation with observation error are in red and dotted red line

respectively. Middle: Validation results after wave 1 following stan-

dard history matching. All the points are from 150-member LHC

sampling, emulator training data are presented in black. The re-

maining data are used as validation data which are in green if they

are retained in the NROY after wave 1 history matching, or grey

otherwise. Bottom: Validation results after wave 1 following robust

history matching. The red point is the original doubt point and the

orange point is the doubt point selected by our augmentation step. 69

3.12 Top left: Wave 1 NROY space for LMDZ-SANDU after robust history

matching. Top right: Wave 3 NROY space for LMDZ-SANDU after

robust history matching. Bottom left: Wave 1 NROY space for LMDZ-

SANDU following standard history matching. Bottom right: Wave 3

NROY space for LMDZ-SANDU following standard history matching. 71

List of figures xix

4.1 The relationship between metric spaces. 95

4.2 The comparison between the pre-image and history matching. . . . 96

4.3 The observations, 𝑧, for the toy function. 124

4.4 Left: The true NROY density plots (upper triangle) and minimum

implausibility plots (lower triangle). Right:Standard history match-

ing X ∗
𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑

. 125

4.5 Top left: Method 1 NROY space calculated by implausibility I𝑐 (x).

Top right: Method 2 NROY space calculated by implausibility I𝐷 (x).

Bottom left: Method 3 NROY space calculated by implausibility

I𝐹1(x). Bottom right: Method 4 NROY space calculated by implausi-

bility I𝐹2(x). 130

5.1 The vectors 𝐵1, 𝐵2, . . . , 𝐵6 used to defined the toy example. 150

5.2 Left: the observations, z, for the toy function. Right: the mean of the

ensemble F. 152

5.3 The 60 ensemble members for wave 1. 153

5.4 Leave-one-out cross-validation plots for the emulators for the coef-

ficients on the first three basis vectors. 155

5.5 True NROY space. 156

5.6 Left: Wave 1 NROY space by performing KHM with I𝐹1(x). Right:

Wave 1 NROY space by performing KHM with I𝐹2(x). 157

5.7 The 60 ensemble members for wave 1. 158

5.8 Wave 1 Leave-one-out cross-validation plots for the emulators for

the coefficients on the first 5 basis vectors. 161

5.9 Left: Wave 1 NROY space by performing KHM with I𝐹1(x). Right:

Wave 1 NROY space by performing KHM with I𝐹2(x). 162

xx List of figures

5.10 Left: Wave 2 NROY space by performing KHM with I𝐹1(x). Right:

Wave 2 NROY space by performing KHM with I𝐹2(x). 163

6.1 LES reference for SANDU/REF case: time series of the hourly

averages of the cloud fraction profiles. 171

6.2 Some wave 1 ensemble runs from SCM simulators: the ensemble

outputs are plotted ordinarily from the 1st run to the 30th, the full

ensemble that contains the rest 60 runs are plotted in the appendix.

For each plot, it shows the hourly averages of the cloud fraction

profiles during 72 hours of SCM simulation. 172

6.3 The acceptable runs by expert’s selection. 175

6.4 The cloud fraction for the later hour (time=68) of the simulation

with the spread of the ensemble of simulations used for wave 1.

The wave 1 ensemble is presented in grey, green lines represent

the acceptable runs selected by the experts, blue lines represent the

first 14 ‘best’ runs that are close to the observation in model output

space, and the reference LES in thick red. 176

6.5 Leave-one-out cross-validation plots: wave 1 Gaussian process

emulators for C(X). 178

6.6 Upper triangle: wave 1 NROY density plots for each pair of parame-

ters. Lower triangle: minimum implausibility plots for each pair of

parameters. 180

6.7 The cloud fraction for the later hour (time=68) of the simulation

with the spread of the ensemble of simulations used for the differ-

ent waves indicated in different colours. The wave 1 ensemble is

presented in grey, the wave 2 ensemble is presented in yellow, wave

1 acceptable runs are in green and the reference LES in thick red. . 182

6.8 The acceptable runs by expert’s selection for wave 2. 183

List of figures xxi

6.9 Upper triangle: wave 2 NROY density plots for each pair of parame-

ters. Lower triangle: minimum implausibility plots for each pair of

parameters. 184

6.10 The cloud fraction for the later hour (time=68) of the simulation

with the spread of the ensemble of simulations used for the differ-

ent waves indicated in different colours. The wave 1 ensemble is

presented in grey, the wave 2 ensemble is presented in blue, wave 3

ensemble is presented in yellow, and the reference LES in thick red. 185

6.11 Upper triangle: wave 3 NROY density plots for each pair of parame-

ters. Lower triangle: minimum implausibility plots for each pair of

parameters. 186

B.1 Page 1: Overall of the ensemble. 223

B.2 Page 2: Selection page. 224

B.3 Page 3: Final check and save the data. 225

C.1 The ensemble plots for Chapter 6 toy model. 228

C.2 Leave-one-out cross-validation plots for the emulators for the coef-

ficients on the first 5 basis vectors. 229

C.3 The 60 ensemble members for wave 2. 231

C.4 Wave 2 Leave-one-out cross-validation plots for the emulators for

the coefficients on the first two basis vectors. 232

C.5 Wave 3 Leave-one-out cross-validation plots for the emulators for

the coefficients on the first three basis vectors. 232

C.6 Left: Wave 3 NROY space. Right: Wave 3 NROY space. 232

C.7 The 60 ensemble members for wave 3. 233

C.8 Wave 2 Leave-one-out cross-validation plots for the emulators for

the coefficients on the first five basis vectors. 234

xxii List of figures

C.9 The 60 ensemble members for wave 2. 235

C.10 Plot of the first three kernel principal component (PC) loading

vectors. 237

C.11 Plot of the first three principal component (PC) loading vectors. . . 237

C.12 Plot of the first 5 principal component (PC) loading vectors in wave

1. 238

C.13 Plot of the first 5 principal component (PC) loading vectors in wave

2. 238

C.14 Wave 1 Ensemble runs from SCM simulators: the ensemble outputs

are plotted ordinarily from the 1st run to the 90th. For each plot, it

shows the hourly averages of the cloud fraction profiles during 72

hours of SCM simulation. 240

C.15 Leave-one-out cross-validation plots: wave 1 Gaussian process

emulators for C(X). 241

C.16 Upper triangle: wave 1 NROY density plots for each pair of parame-

ters. Lower triangle: minimum implausibility plots for each pair of

parameters. 241

C.17 The acceptable runs by expert’s selection for wave 3. 242

C.18 Wave 1 Ensemble runs from SCM simulators: the ensemble outputs

are plotted ordinarily from the 1st run to the 90th. For each plot, it

shows the hourly averages of the cloud fraction profiles during 72

hours of SCM simulation. 243

C.19 Wave 2 Ensemble runs from SCM simulators. 244

C.20 Wave 2 Leave-one-out cross-validation plots for the emulators for

the coefficients on the first five basis vectors. 245

C.21 Wave 3 Leave-one-out cross-validation plots for the emulators for

the coefficients on the first five basis vectors. 245

List of tables

3.1 Type I and type II errors for the two different cutoff level of the

logistic regression classifier. 55

3.2 Local Voronoi tessellation classification results. 58

3.3 Standard vs robust history matching with top row as the percentage

of the original space as NROY and the bottom the percentage of

target NROY retained. 64

3.4 Comparison between standard history matching our method. . . . 70

4.1 History matching results of four methods. 129

4.2 Comparison between four methods. 129

5.1 A comparison study between I𝐹1(x) and I𝐹2(x). 157

5.2 KHM results for numerical example 2. 163

Chapter 1

Introduction

Computer models have been widely used in many areas of science to learn about

features of the real-world. Determining the settings of a computer model’s input

parameters, so that the outputs are consistent with real-world observations, is an

important problem. Before using these models to perform inference about the past,

current and future states of a complex system, careful parameter calibration (the

climate modelling community refers to calibration as ‘tuning’) is required to give

parameters that lead to accurate representations of the real world. Calibration

has been used in a variety of applications, such as climate systems, epidemiology,

galaxy formation and agro-ecosystem modelling (Andrianakis et al., 2015; Lehuger

et al., 2009; Salter and Williamson, 2016; Vernon et al., 2010; Williamson et al., 2015).

However, computer models are usually expensive and/or take a long time to run.

For example, high-resolution climate models can take days or even weeks to run

on supercomputers (Hourdin et al., 2017). When it is not possible to run the model

often enough to calibrate directly, a small, carefully chosen set of model runs,

often termed a ‘design’ or ‘ensemble’, can be run and used to explore the input

parameter space.

The field of Uncertainty Quantification (UQ) provides different approaches to

construct an ‘emulator’ or ’surrogate’: an inexpensive statistical model used to

approximate the computer model. We use the common choice, Gaussian process

emulators, as fast approximations for computer model output at input param-

2 Introduction

eters 𝑥. Emulators generate a prediction for the computer model together with

uncertainty on the prediction. After assessing the adequacy of a proposed GP

emulator to represent a model response, calibration can then be carried out using

the emulator to efficiently explore the input space.

Within the uncertainty quantification literature, there are different approaches

to calibration. The method that I consider in detail in this thesis is history matching.

History matching attempts to identify the parts of the input parameter space that

are likely to result in mismatches between computer outputs and observations by

iteratively removing those regions of parameter space in which we are virtually

certain that there are no good matches. In particular, the retained regions of

input space, termed “Not Ruled Out Yet” (NROY) space is then searched for good

matches by repeating the history matching process.

During this PhD, my supervisor, Prof. Williamson, has worked closely with

the climate modellers at LMDZ and Météo-France as part of the HIGH-TUNE

project (The French National Research Agency). The aim of HIGH-TUNE is

to use high-resolution simulators to improve and tune boundary-layer cloud

parameterisations. The climate modellers are interested in developing tools to

automatically tune boundary layer cloud parameterisations within their models,

based on history matching. As a member of Exeter UQ team, I helped Prof.

Williamson to deliver a workshop with the climate modellers aimed at developing

and maintaining software for tuning the French climate model. The collaboration

involves providing methods to both emulate and history match to a large number

of process-based metrics, rapidly and automatically, enabling the modellers to use

the tools independently. With multiple unsupervised calibrations, it is important

that history matching is robust enough to withstand potential ensemble issues.

Some unexplored limitations of standard history matching were found through

this close collaboration and these are the subject of this thesis. The first, easily

neglected, limitation can occur when an emulator is unable to simulate the target

NROY space effectively, even if it seems to pass all standard emulator diagnostic

checks. Poor simulation may result in true NROY space being ruled out without

3

any indication for the analyst that this has occurred. For simulators that are con-

stantly under development, such as climate models, this could be a costly mistake

that causes parameterizations or even computational methods and hardware to

be needlessly revisited, even though the model was already fit for purpose. We

present novel methods for detecting these cases and a Local Voronoi Tessellation

method for a robust approach to history matching that ensures that the true NROY

space is retained and parameter inference is not biased. These methods have been

published in Xu et al. (2021).

When history matching computer models with high-dimensional output (e.g.

a time series, a spatial field, or a spatio-temporal field), it is common to use

dimension reduction techniques: to represent the high dimensional output as

linear combinations of a fixed set of low dimensional basis vectors, reducing the

complexity of calculations. However, when we try to match spatio-temporal fields

(or spatial fields), sometimes what is important to the credibility of the model is

that the key physical patterns are present, even if they may not be in the right

place or be an exact replica. This is particularly true for climate models when

parameter values compatible with emergent phenomenon (such as large-scale

circulations) are often the target of the exercise, but where it is not expected

that these phenomena occur in exact the same place (or at the same time) as in

observations of the real climate. We found this limitation of standard history

matching by applying standard PCA-based history matching to the clouds model

at the HIGH-TUNE workshop, but this limitation can happen for any model.

Existing statistical methods for calibrating are only good at finding stronger or

weaker signals in fixed locations. In this thesis, we enhance history matching using

kernel methods. A kernel-based history matching (KHM) method is proposed to

perform history matching in a higher-dimensional feature space, where output

space for moving patterns can be compared with the observations.

The innovations in the thesis aim to ‘robustify’ history matching in order to

allow non-statisticians to independently perform automatic tuning of computer

models. In particular, we first develop a diagnostic to check whether a globally

4 Introduction

good emulator failed locally near the target NROY space, which is a crucial step

for checking whether performing history match with the current emulator is

dangerous or not. If the emulator cannot be trusted to calibrate directly, a Local

Voronoi Tessellation method provides a way to safely and automatically isolate

any possible target NROY regions of parameter space where we do not trust the

emulator, and to history match in the remaining space. This approach allows the

same emulator to be used appropriately for that emulation without having to

waste a whole wave or any further cost with further runs.

The remaining part of this thesis is focused on calibration with computer

models with high-dimensional output. We explored KHM as a generalisation to

history matching and examine the multiple possible interpretations of the usual

implausibility measure and threshold for defining NROY. Particularly important

is model discrepancy: what it means and how it is treated in kernel approaches.

Given our preferred approaches, we establish kernel selection methods: based

on expert input via a Shiny app. We applied KHM to IPSL-CM, the inspiring

French climate model that failed with the standard history match, to establish

the effectiveness and accuracy of KHM. KHM is a contribution to UQ, involve

harnessing expert input to deliver semi-automatic calibration.

1.1 Thesis Outline

In Chapter 2, we introduce the current literature in uncertainty quantification (UQ),

with a focus on Gaussian process emulation, the diagnostics used to validate and

assess the adequacy of a Gaussian process emulator for representing the simulator,

history matching, both for models with scalar output and multivariate output,

and we briefly discuss Bayesian calibration.

Chapter 3 presents a novel Local Voronoi Tessellation design that can be used

for robust multi-wave calibration of computer models. We present a novel de-

tecting method, taking place after the emulator diagnostic check, that attempts to

1.1 Thesis Outline 5

determine whether the emulator could have failed near the target NROY space.

A Local Voronoi Tessellation design is introduced after the detecting step. We

compare our approach to standard history matching and assess the performance

for two illustrative examples and a climate model, IPSL-CM.

In Chapter 4, we discuss the drawbacks of history matching for calibrating

computer models with high-dimensional output. A KHM method is proposed

to perform history matching in a high dimensional space (‘feature’ space). We re-

frame history matching in the feature space and introduce new distance measures

to define the implausibility in feature space. We propose new cut-off thresholds

for the implausibility to account for all sources of uncertainty. We finish Chapter

4 by comparing our methods to standard history matching based on PCA on an

idealised numerical example.

In Chapter 5, we investigate the important step in KHM: choosing a suitable

kernel for each application. We present an automatic optimization algorithm for

kernel selection that considers ‘expert’/‘modeller’ prior knowledge. Moreover,

we also prove that standard history matching can be achieved by KHM with a

specific kernel function, which shows our approach is a generalisation of standard

history matching.

In Chapter 6, we illustrate KHM with the French climate model, IPSL-CM, with

the goal of satisfying all of the modeller’s calibration targets. We start by designing

a new interactive R Shiny app to collate expert’s judgement (‘acceptable’ runs

in the training data). We first apply the optimisation algorithm of Chapter 5 to

select a kernel for this climate model, and then illustrate the KHM of Chapter 4 by

performing three iterations.

We conclude in Chapter 7, and highlight a number of potential areas for future

work.

Chapter 2

Background

2.1 Computer experiments and simulators

Computer models, or simulators, are systems of physical equations that are im-

plemented as computer code to make inferences about the real-world. Computer

models are used across many disciplines, such as in climate and environment

science (Bony and Dufresne, 2005; Edwards, 2001; Taylor et al., 2012), cosmology

(Bower et al., 2010; Kaufman et al., 2011; Vernon et al., 2010), social sciences (Sun

et al., 2006), engineering (Ankenman et al., 2010; Kirkpatrick, 2000) and biological

applications (Andrianakis et al., 2015, 2017). The physical processes being stud-

ied are usually representative of complex systems, making experimentation and

measurement difficult or expensive over the relative space. In order to learn about

features of the real-world, computer models can be used to represent the complex

system so it can be studied. There are two components of a computer model;

inputs and outputs. Santner et al. (2003) classify computer model inputs into three

classes based on the role they play in the code; control variables, environmental

variables and model variables. Control variables are usually set by engineers to

control the outputs. Environmental variables can also affect the computer outputs,

but the effect varies for specific users. Model variables, also known as model

parameters or tuning parameters, are usually unknown, or given with a subjective

8 Background

probability distribution, characterise the behaviour of the simulator. For example,

often a goal is to calibrate these parameters so the model behaviour is close to the

behaviour of the real system.

The output of a computer model can take many different forms such as a single

value, a spatial field, a time series or a combination of these. For climate models,

the output is produced in a grid of boxes over the globe with several different

output fields. For example, IPSL-CM is an atmosphere model that is used to

predict planetary atmospheres, including that of the Earth and other planets (Mars,

Titan, Venus), as well as regional climate process studies (Bony and Dufresne, 2005;

Hourdin et al., 2017; Voldoire et al., 2013). It simulates the different process of the

world over a horizontal and vertical grid, which can be arranged to give outputs

in each grid box over any given regional scale over time (Hourdin et al., 2006).

The outputs of a computer model usually correspond to process in the real

world. Since these simulator outputs are not able to perfectly represent the real

world, uncertainties in the outputs are inevitable. Therefore, uncertainty quan-

tification is required to quantify and reduce the uncertainties in the outputs of a

computer model (Kennedy and O’Hagan, 2001).

2.2 Uncertainty Quantification

There are many uncertainties associated with a computer model’s construction

and application. Uncertainty Quantification (UQ) refers to the methodologies

which are used to quantify these uncertainties of computer models (Smith, 2013).

The various sources of uncertainty in the computer models are grouped into

classes by Kennedy and O’Hagan (2001). Parameter uncertainty occurs when the

computer model contains unknown parameters whose exact values cannot be

controlled in experiments or defined by physical knowledge. To solve this issue,

calibration is a commonly used approach to estimate unknown parameter inputs

2.2 Uncertainty Quantification 9

by comparing computer model outputs with partial observations of the modelled

processes.

Even after eliminating parameter uncertainty, there is still no computer model

that can represent a real world process perfectly without any error. Structural un-

certainty, also called model discrepancy, is introduced to measure the uncertainty

that comes from computer model inadequacy. Model discrepancy will be dis-

cussed further in Section 2.4.1. If it is possible for there to be a difference between

the observed value and true value of a real world process, then the difference is

referred to as an observation error (or measurement error) (Kennedy and O’Hagan,

2001). There are many possible causes of this error, such as human error and the

limitation of instruments.

When a computer model is expensive and/or takes long time to run, it might be

not possible to run the model for every set of inputs that we are interested in. So, it

is necessary to construct a fast surrogate model to represent the simulator (Section

2.3). An extra source of uncertainty known as code uncertainty is introduced in

this situation (O’Hagan, 2006).

There are other sources of uncertainties particular to specific model types. For

example, with climate models, the predictions are of a chaotic nature, and are

sensitive to the initial value of state variables used in simulators (Palmer et al.,

2005). A slight difference in the initial conditions due to observation uncertainty

would lead to a very different prediction of future weather. Tebaldi and Knutti

(2007) define this uncertainty as “initial condition uncertainty". Boundary condi-

tion uncertainty is also mentioned by Tebaldi and Knutti (2007), which is caused

by human influences, future anthropogenic emissions and unpredictable natural

phenomena.

To quantify the uncertainties in computer experiments, a number of frame-

works have been developed in the uncertainty quantification literature. Apart

from calibration (details in Section 2.4), there are other approaches used to estimate

the different sources of uncertainties, such as uncertainty analysis and sensitiv-

10 Background

ity analysis (SA). Uncertainty analysis, also known as uncertainty propagation,

quantity the uncertainty in model outputs introduced by uncertainty in the inputs

(mainly parameter uncertainty) (Oakley and O’Hagan, 2002). SA is a study related

to an uncertainty analysis: the goal of SA is to identify how model inputs affect the

model outputs (Oakley and O’Hagan, 2004; Saltelli et al., 2000). The idea behind

SA is to study the sensitivity of the computer model’s output, with respect to each

input parameter. As parameter combinations may include non-linear interactions,

it is advised to investigate all parameters simultaneously not one by one (Saltelli

et al., 2005).

2.3 Emulation

Emulators are computationally cheap statistical models which are used to approx-

imate expensive computer simulators (Currin et al., 1991; Haylock and O’Hagan,

1996). Most standard techniques of uncertainty quantification require simulators

to be evaluated at a very large number of design variables. For instance, hundreds

of millions of model runs could be required in a Monte Carlo approximation

(Kennedy and O’Hagan, 2001) for uncertainty analysis. The majority of computer

models, however, are expensive and time consuming to run, hindering compre-

hensive future analyses. For example, a global climate model may take several

months to complete a single run (Rougier et al., 2009). In such situations, it is not

possible to run the computer model the number of times required to obtain valid

results (Williamson et al., 2017). In order to mitigate this issue, an emulator is

considered as a more efficient surrogate model of the simulator for further analysis,

which can significantly improve computational efficiency (Asher et al., 2015).

A computer model is a function, 𝑓 , that maps a vector of inputs, x, from input

space X into an output space with model output 𝑓 (x). An emulator treats a

computer model as a black box, and the mapping from x to 𝑓 (x) is learned by the

emulator without necessarily having any information of the inner workings of 𝑓 .

To build an emulator, a small ensemble of model runs based on a design in the

2.3 Emulation 11

parameter inputs is generated. With the knowledge gained from this ensemble,

an emulator is built to represent the computer model. For the given design input,

the emulator generates the same value as the computer model output with no

uncertainty. At other inputs, the emulator provides the entire range of possible

values for 𝑓 (x) rather than a single approximation value.

Whilst there are many different approaches to emulation, the general form of

an emulator is considered as the sum of two independent processes (Sacks et al.,

1989)

𝑓𝑖 (x) =
𝑘∑
𝑗=1
𝛽𝑖 𝑗ℎ 𝑗 (x) + 𝜖𝑖 (x), (2.1)

where 𝛽𝑖 𝑗 are unknown regression coefficients, ℎ 𝑗 (x) are chosen regression func-

tions and 𝜖 (x) is a correlated residual process representing the difference between

𝑓 (x) and the linear model. Starting from this general form, we devote the rest of

this section to presenting Gaussian process emulation.

2.3.1 Gaussian process emulation

A Gaussian Process (GP) is a stochastic process. Any finite number of random

variables from a Gaussian process has a joint Gaussian distribution (Rasmussen

and Williams, 2006). Specifically, 𝑓 (x) is a Gaussian process, if for any finite

collection of runs, x1, . . . , x𝑛, 𝑛 > 1, the vector of model output 𝑓 (x1), . . . , 𝑓 (x𝑛)

has a multivariate normal distribution. A Gaussian process for 𝑓 (x) is determined

by a mean function and a covariance function

𝑓 (x) |𝛽𝛽𝛽,𝜎2, 𝛿𝛿𝛿 ∼ GP
(
𝑚(x), 𝜎2𝑐(x,x′;𝛿𝛿𝛿)

)
, (2.2)

where 𝜎2 is a hyper-parameter that controls the scaling of the process and 𝛿𝛿𝛿 is

a vector of correlation length parameters used to define the correlation function

𝑐(x,x′). A detailed review of covariance functions is given in Section 2.3.2.

12 Background

In the formulation of equation (2.1), if we model the residual term 𝜖 (x) as a

Gaussian process with mean zero, this is equivalent to setting

𝑚(x) = ℎ(x)𝑇 𝛽𝛽𝛽, (2.3)

and

Cov [𝜖 (x), 𝜖 (x′)] = 𝜎2𝑐(x,x′;𝛿𝛿𝛿). (2.4)

2.3.2 Covariance function (Kernel)

The choice of covariance function, or kernel 𝑘 (x,x′), is one of the key elements

of the Gaussian Process. A covariance function is defined with a user-specified

correlation function 𝑐(x,x′;𝛿𝛿𝛿) (see equation (2.4)). The correlation function defines

the similarity or nearness between inputs: two inputs which are immediate neigh-

bours are likely to give similar outputs (Rasmussen and Williams, 2006). There are

many choices of correlation functions within the kernel-based methods literature.

We give some of the most popular below.

A widely-used choice is the Gaussian or squared exponential correlation func-

tion (Kennedy and O’Hagan, 2000),

𝑐(x,x′) = exp

{
−

𝑝∑
𝑖=1

(
𝑥𝑖 − 𝑥′𝑖
𝛿𝑖

)2
}
. (2.5)

The distance between two inputs for each input dimension is scaled by the corre-

sponding correlation length parameter 𝛿𝑖, 𝑖 = 1, . . . , 𝑛. The squared exponential

correlation function is infinitely differentiable, which leads to the Gaussian process

being infinitely mean-square differentiable and very smooth (Rasmussen and

Williams, 2006).

2.3 Emulation 13

A general form of the squared exponential correlation function is the power

exponential correlation function,

𝑐(x,x′) = exp

{
−

𝑝∑
𝑖=1

(
𝑥𝑖 − 𝑥′𝑖
𝛿𝑖

) 𝜅𝑖}
,

with 0 < 𝜅𝑖 ≤ 2. 𝜅𝑖 is estimated for each dimension of the inputs 𝑖. When 𝜅𝑖 is less

than 2, the smoothness of a GP with a power exponential correlation function is

lower than a GP with squared exponential correlation function.

Another standard choice is the Matérn correlation function,

𝑐(x,x′) = 21−𝑣

Γ(𝑣)

[√
2𝑣
𝛿

|x−x′|
]𝑣
𝐾𝑣

[√
2𝑣
𝛿

|x−x′|
]
, (2.6)

where Γ() is the gamma function, 𝐾𝑣 is the modified Bessel function of the second

kind of order 𝑣, and 𝛿 is correlation length parameter (Abramowitz, 1985). For 𝑣→

∞, the Matérn correlation function is the same as squared exponential correlation

function (Nychka et al., 2002). When 𝑣 is a half-integer, 𝑣 = 1
2 + 𝑝 where 𝑝 is

non-negative integer, the Matérn correlation function becomes a product of an

exponential and a polynomial of order 𝑝,

𝑐(x,x′) = exp

(
−
√

2𝑣 |x−x′|
𝛿

)
Γ(𝑞 +1)
Γ(2𝑞 +1)

𝑝∑
𝑖=0

(𝑝 +1)!
𝑖!(𝑝−1)!

(√
8𝑣 |x−x′|
𝛿

) 𝑝−𝑖
.

Two common choices of 𝑣 are 𝑣 = 3/2 and 𝑣 = 5/2 (Rasmussen, 2003). In addition to

these correlation functions, we present further discussion of kernels in Chapter 4.

2.3.3 The nugget parameter

In the Gaussian process model shown in equation (2.2), the emulator interpolates

the model runs exactly at the given design input, with zero variance. This may not

always be a useful property. For instance, in climate models, different model out-

puts for the same input could occur by varying the initial conditions (Williamson

and Blaker, 2014), it is inappropriate to interpolate the model runs exactly for this

14 Background

application. Craig et al. (1996) modify the emulation definition in equation (2.1)

by adding a nugget term, 𝜐(x),

𝑓 (x) = ℎ(x)𝑇 𝛽𝛽𝛽+ 𝜖 (x) +𝜐(x). (2.7)

The nugget term 𝜐(x) is independent and identically distributed of other terms

with mean zero and prior variance 𝜎2
𝜐 for all inputs. More precisely,

Cov [𝜐(x), 𝜐(x′)] =


𝜎2
𝜐 , x = x′

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(2.8)

One interpretation for equation (2.13) is that the emulators contains some variabil-

ity, 𝜎2
𝜐 , which is not introduced by the inputs (Andrianakis and Challenor, 2012).

The addition of the nugget modifies the probabilistic specification for simulator

𝑓 (𝑥) in equation (2.2),

𝑓 (x) |𝛽𝛽𝛽,𝜎2, 𝛿𝛿𝛿 ∼ GP
(
𝑚(x), 𝑘 (x,x′;𝜎2, 𝛿𝛿𝛿,𝜎2

𝜐)
)
, (2.9)

with the same defined mean function as equation (2.3) and a new covariance

function

𝑘 (x,x′;𝜎2, 𝛿𝛿𝛿,𝜎2
𝜐) = 𝜎2𝑐(x,x′;𝛿) +𝜎2

𝜐111{x = x′}, (2.10)

where the indicator function is

111{x = x′} =


1, x = x′

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(2.11)

However, this parameterisation leads to a marginalisation of 𝜎2 which is ana-

lytically intractable, implying that 𝜎2 would have to be estimated jointly with 𝛿𝛿𝛿

or even marginalised numerically (Andrianakis and Challenor, 2012). Another

way to add a nugget parameter to the covariance function by Andrianakis and

2.3 Emulation 15

Challenor (2012); Gramacy and Lee (2012) is

𝑘 (x,x′;𝜎2, 𝛿𝛿𝛿,𝜎2
𝜐) = 𝜎2

(
𝑐(x,x′;𝛿) +𝜎2

𝜐111{x = x′}
)
, (2.12)

where 𝜎2𝜎2
𝜐 represents the variability which is not captured by the correlated part.

Craig et al. (1997, 1996) divide the inputs into active inputs x𝐴𝑐𝑡𝑖𝑣𝑒 and inactive

inputs x𝐼𝑛𝑎𝑐𝑡𝑖𝑣𝑒 based on their effect on the output: only active inputs are used to

build an emulator. An emulator representation for 𝑓 (x) then becomes

𝑓 (x) = ℎ(x𝐴𝑐𝑡𝑖𝑣𝑒)𝑇 𝛽𝛽𝛽+ 𝜖 (x𝐴𝑐𝑡𝑖𝑣𝑒) +𝜐(x). (2.13)

The nugget term 𝜐(x) could be used to account for uncertainty in the inactive

inputs. This model could significantly reduce the input dimensionality of 𝜖 (x𝐴𝑐𝑡𝑖𝑣𝑒),

and hence provide significant computational savings.

There are other possible reasons to include a nugget term in deterministic

model emulators. Gramacy and Lee (2012) demonstrate that a nugget term could

be used to account for the discrepancies between the Gaussian process emulator

and computer model, which can lead to a better performing emulator. Moreover,

adding a nugget parameter on to the principal diagonal of the design correlation

matrix can be used to alleviate numerical problems in fitting Gaussian processes to

data (Neal, 1997). Numerical problems occur when the covariance matrix for the

design points is ill-conditioned, mostly occurs with the squared exponential corre-

lation function, so its inversion might be inaccurate or not feasible (Andrianakis

and Challenor, 2012).

2.3.4 Fitting a Gaussian process Emulator

A Bayesian approach is typically used for fitting a Gaussian process emulator

(Currin et al., 1991). Let the computer model run at 𝑛 points, x = (𝑥1, . . . , 𝑥𝑛)𝑇 ∈ X ,

where X is the 𝑝-dimensional input space. Also, let F= (𝑓 (𝑥1), . . . , 𝑓 (𝑥𝑛)) represent

known outputs of the model at the inputs. According to equation (2.2), the output

16 Background

F has a multivariate normal distribution,

F|𝛽𝛽𝛽,𝜎2, 𝛿𝛿𝛿 ∼ MVN(H𝑇 𝛽𝛽𝛽, 𝜎2A),

where,

H𝑇 = (ℎ(x1)𝑇 , . . . , ℎ(x𝑛)𝑇),

A =



1 𝑐(x1,x2) . . . 𝑐(x1,x𝑛)

𝑐(x2,x1) 1
...

...
. . .

𝑐(x𝑛,x1) . . . 1


.

Given the emulator hyperparameters and the distribution of 𝑓 (𝑥) in equation (2.2),

the posterior distribution of 𝑓 at a new input x, given ensemble {X,F}, is

𝑓 (x) |{X,F}, 𝛽𝛽𝛽, 𝛿𝛿𝛿,𝜎2 ∼ GP (𝑚∗(x), 𝜎2𝑐∗(x,x′)), (2.14)

with well-known analytic expressions for 𝑚∗(x)

𝑚∗(x) = ℎ𝑇 (x)𝛽𝛽𝛽+ 𝑡 (x)𝑇A−1(F−H𝛽𝛽𝛽), (2.15)

and 𝑐∗(𝑥, 𝑥′)

𝑐∗(x,x′) = 𝑐(x,x′) − 𝑡 (x)𝑇A−1𝑡 (x′), (2.16)

where

𝑡 (x)𝑇 = (𝑐∗(x,x1), . . . , 𝑐∗(x,x𝑛)).

There are different approaches to handling hyperparameters 𝛽, 𝛿𝛿𝛿 and 𝜎2. Cur-

rin et al. (1991) adopt a maximum likelihood method to fit the hyperparameters.

The likelihood in this case is

𝑝(F|𝛽𝛽𝛽, 𝛿𝛿𝛿,𝜎2) = |A|−1/2

(2𝜋𝜎2)𝑛/2 exp
(
− 1

2𝜎2 (F−H𝛽𝛽𝛽)𝑇A−1(F−H𝛽𝛽𝛽)
)
.

2.3 Emulation 17

The hyperparameters can be estimated by maximising the likelihood equation,

𝛽̂𝛽𝛽 = (H𝑇A−1H)−1H𝑇A−1F,

𝜎2 =
(F−H𝛽̂𝛽𝛽)A−1(F−H𝛽̂𝛽𝛽)

𝑛
,

and

𝛿̂𝛿𝛿 = argmin
𝛿𝛿𝛿

[
𝑝(F| 𝛽̂𝛽𝛽, 𝜎̂2, 𝛿𝛿𝛿)

]
.

This approach has a drawback, in that the hyperparameters are usually highly

confounded, leading to a ridge on the likelihood surface for large 𝛿 and 𝜎2. One

possible resolution to this problem is to specify 𝛿.

Haylock and O’Hagan (1996) propose a ‘non-informative’ prior:

𝑃(𝛽,𝜎2) ∝ 𝜎−2. (2.17)

A benefit of ‘non-informative’ prior is that the posterior analysis is tractable. By

integrating out 𝛽𝛽𝛽, the posterior distribution can be written down conditioned on

the ensemble and parameters:

𝑓 (x) |𝛿𝛿𝛿,𝜎2 ∼ GP (𝑚∗∗(x),𝜎2𝑐∗∗(x,x′)),

with mean

𝑚∗∗(x) = ℎ𝑇 (x) 𝛽̂𝛽𝛽+ 𝑡 (x)𝑇A−1(F−H𝛽̂𝛽𝛽),

and variance

𝑐∗∗(x,x′) = 𝑐(x,x′)−𝑡 (x)𝑇A−1𝑡 (x′)+ (ℎ𝑇 (x)−𝑡 (x)𝑇A−1H) (H𝑇A−1H)−1(ℎ𝑇 (x′)−𝑡 (x′)𝑇A−1H)𝑇 ,

for 𝛽̂𝛽𝛽 = (H𝑇A−1H)H𝑇A−1F. By integrating out 𝜎2, the posterior distribution for

𝑓 (x) |𝛿𝛿𝛿 is a multivariate student t-distribution with 𝑛− 𝑞 degrees of freedom,

𝑓 (x) −𝑚∗∗(x)√
F𝑇 (A−1−A−1H(H𝑇 A−1H)−1H𝑇 A−1)F𝑐∗∗ (x,x′)

𝑛−𝑞−2

∼ 𝑡𝑛−𝑞, (2.18)

18 Background

where 𝑞 is the rank of the matrix H. Therefore, Gaussian process emulators can be

used to make predictions of the simulator output for an input x given the values

of the correlation parameters 𝛿𝛿𝛿.

This formulation does not account for the inclusion of the nugget in the Gaus-

sian process. However, the method of Haylock and O’Hagan (1996) can be adapted

to add a nugget to covariance function, with the form

𝑘 (x,x′;𝜎2, 𝛿𝛿𝛿,𝜎2
𝜐) = 𝜎2

(
𝑐(x,x′;𝛿) +𝜎2

𝜐111{x = x′}
)
. (2.19)

The original covariance function can then be replaced, and the addition of a nugget

term does not change the posterior distribution for 𝑓 (𝑥) with a non-informative

prior for 𝛽 and 𝜎2.

Different prior distribution choices for the hyperparameters are also well

established in the literature. Oakley and O’Hagan (2004) use an informative

Normal-inverse gamma prior for 𝛽 and 𝜎2,

𝑃(𝛽,𝜎2) ∝ 𝜎−(𝑝+𝑞+2)/2 exp
(
−

(
(𝛽𝛽𝛽−z)𝑇V−1(𝛽𝛽𝛽−z) + 𝑎

)
/2𝜎2

)
, (2.20)

where z, V and 𝑞 are user-specified parameters that allow the user to incorporate

prior knowledge about 𝑓 into the model. Given the data, the posterior of 𝑓 (x) can

be shown to be
𝑓 (x) −𝑚∗(x)
𝜎̂
√
𝑐∗(x,x′)

∼ 𝑡𝑝+𝑛, (2.21)

with

𝑚∗∗(x) = ℎ𝑇 (x) 𝛽̂𝛽𝛽+ 𝑡 (x)𝑇A−1(F−H𝛽̂𝛽𝛽),

and

𝑐∗∗(x,x′) = 𝑐(x,x′)−𝑡 (x)𝑇A−1𝑡 (x′)+ (ℎ𝑇 (x)−𝑡 (x)𝑇A−1H) (H𝑇A−1H)−1(ℎ𝑇 (x′)−𝑡 (x′)𝑇A−1H)𝑇 ,

for

𝛽̂𝛽𝛽 = V∗(V−1z+H𝑇A−1F),

2.3 Emulation 19

𝜎2 =
(
𝑎 +z𝑇V−1z+F𝑇A−1F− 𝛽̂𝛽𝛽(V∗)−1 𝛽̂𝛽𝛽

)
/(𝑛+ 𝑝 +2),

V∗ = (V−1 +H𝑇AH)−1.

The posterior distribution is a multivariate 𝑡-distribution with 𝑝 + 𝑛 degrees of

freedom.

Higdon et al. (2008), Gramacy and Lee (2012) and Volodina and Williamson

(2020) fit GPs via Full Bayes Markov chain Monte Carlo (MCMC) methods, with

a benefit that prior distributions over all parameters can be used to penalise the

ridge on the likelihood surface. In this case, we cannot analytically define the

posterior distribution, hence MCMC is used to sample it. This approach allows

flexible prior specification, but comes at an expensive computational cost. Gu

et al. (2018) estimate GP emulator hyperparameters by a marginal posterior mode

estimator, which provides stable results for emulator with lower predictive errors.

2.3.5 Multivariate emulation

In the previous sections, we introduced some approaches to constructing a GP for

computer models with univariate output. However, computer models can give a

number of different forms of multivariate output, for instance, a time-series output

could be generated by dynamic simulators to make inference of time-evolving

systems. A single run of such simulators consists of an extensive simulation over

time for each input. In general, the output length is a multiple of the length of

the time-series output, which can be extremely large. The form of the emulation

depends on the forms of the computer model output. There is a wide literature on

multivariate emulation approaches, in particular those that can handle computer

models with different forms of multivariate outputs (Conti and O’Hagan, 2010;

Higdon et al., 2008; Liu et al., 2009; Overstall and Woods, 2016).

For computer models with spatial or spatio-temporal output, the univariate

emulation can be directly extended to multivariate emulation by building the

emulator for each of the responses separately (each model grid cell). Lee et al.

20 Background

(2013) apply this approach for emulating the global model simulations of cloud

condensation nuclei (CCN). In their paper, the model output is the monthly mean

CCN for each model grid cell. They build independent emulators for every

month, and every model grid cell, with no correlation across outputs. However,

since the simulator generates a massive quantity of data for every coordinate

during each simulator run, building individual emulators is computationally

expensive. Another drawback of this approach is that no account is taken of

spatial or temporal correlation.

In a similar way, Gu et al. (2016) build emulators for every spatial and temporal

output independently. In that paper, they are working with the test bed simulator

TITAN2D (Patra et al., 2005). The specific simulator they emulate is a volcanic

pyroclastic flow simulator, which will generate up to 109 outputs over a space-

time grid of coordinates during each simulator run. To achieve a computationally

efficient emulator, they use a joint mean function, and the correlation parameters

are only estimated once. These estimated correlation parameters are adopted for

every emulator of the outputs.

To construct emulators for computer models with a time-series output, Kennedy

and O’Hagan (2001) treat time as an input variable and consider time in the cor-

relation structure. Therefore they can emulate the response via the univariate

GP emulator. Instead of emulating a complete multi-step run of the simulators,

Conti et al. (2009) emulate a single-step simulator and then use the emulator itera-

tively. The fundamental assumption is that simulator output at time 𝑡 = 𝑇 , 𝑓𝑇 (·)

can be expressed iteratively in terms of the single-step simulator (Conti et al., 2009;

Mohammadi et al., 2019). For a computer model 𝑓 , the 𝑙-dimensional Gaussian

process is

𝑓 (x) |𝐵,Σ, 𝑅 ∼ GP (𝑚(x), 𝑐(x,x′)Σ) , (2.22)

this implies that, for any input x, the expectation is

E [𝑓 (x) |𝛽𝛽𝛽,Σ, 𝑅] = 𝛽𝛽𝛽𝑇ℎ(x),

2.3 Emulation 21

for any x and x′, and the covariance is

Cov [𝑓 (x), 𝑓 (x)′|𝛽𝛽𝛽,Σ, 𝑅] = 𝑐(x,x′)Σ,

where 𝛽𝛽𝛽 is the 𝑞× 𝑙 coefficient matrix, 𝑐(x,x′) is the correlation functions over input

space dependent on parameters 𝑅 and Σ is the 𝑙 × 𝑙 covariance matrix across the

outputs at an input. For any given input, they assume a common correlation

length parameter to make the computing efficient, but for different inputs, indi-

vidual covariance matrices for the outputs need to be calculated, which leads to

computationally expensive matrix operations.

Rougier (2008) introduces an efficient emulating framework for simulators

with multivariate outputs, known as the outer product emulator (OPE). Given

𝑙 different outputs 𝑠1, . . . 𝑠𝑙 of the computer model 𝑓 (·), Rougier (2008) fitted an

emulator with a similar form to equation (2.22):

𝑓𝑖 (x) =
𝑝∑
𝑗=1
𝜃𝜃𝜃𝑖 𝑗ℎ 𝑗 (x, 𝑠 𝑗) + 𝜖𝑡 (x, 𝑠𝑖).

He assumes the residual covariance function is separable over the outputs and

inputs,

𝑐((x, 𝑠), (x′, 𝑠′)) = 𝑐𝑥 (x,x′) × 𝑐𝑠 (𝑠, 𝑠′),

where the 𝑐𝑥 () and 𝑐𝑠 () are covariance functions over input space and output

space individually. Rougier (2008) shows that the OPE is an efficient approach to

building multivariate emulators, even with hundreds of simulator outputs or/and

simulator evaluations. However, using a common covariance structure across

the whole output space might be unsuitable for some cases. For example, for

time-series data, the covariance might change over time.

Liu et al. (2009) propose another emulation approach for dynamic simulators.

The time-series output computer model is modelled via a time-varying auto-

22 Background

regressive model (TVAR), with independent Gaussian processes for every time

𝑓𝑡 (x) =
𝑝∑
𝑗=1
𝜃𝜃𝜃𝑡𝑡𝑡 𝑓𝑡−1(x) + 𝜖𝑡 (x),

where the lag 𝑝 is specified, 𝜖𝑡 (x) is a zero mean Gaussian process with Cov [𝜖𝑡 (x), 𝜖𝑡 (x′)] =

𝜎𝑡𝑐(x,x′) and 𝜃𝜃𝜃𝑡𝑡𝑡 = (𝜃𝑡1, . . . , 𝜃𝑡 𝑝) is a vector of auto-regressive parameters. They

assume the auto-regressive parameters vary over time, so that 𝜃𝜃𝜃𝑡𝑡𝑡 is modelled

following a random walk through time,

𝜃𝜃𝜃𝑡 = 𝜃𝜃𝜃𝑡−01 +𝑤𝑡 ,𝑤𝑡 ∼ 𝑁 (0, 𝜍2 𝑊𝑡),

for a matrix𝑊𝑡 . This approach specification is extended for computer models that

may exhibit chaotic behaviour in Williamson and Blaker (2014).

Another approach for handling spatio-temporal output is to use dimension

reduction techniques to represent the high dimensional output as linear combina-

tions of a fixed set of low dimensional basis. Bayarri et al. (2007) suggest that the

wavelet decomposition would be a suitable basis representation: the emulators

are built on the wavelet coefficients, and can be transformed back to the output

space. Williamson et al. (2012) use B-splines, and constructed emulators on the

linear coefficients of the basis. Principal component analysis (PCA) is the most

usual default approach for emulating the high-dimensional model output due to

its simplicity (Higdon et al., 2008; Wilkinson, 2010).

Principal component analysis (PCA) is a feature extraction method that trans-

forms a number of correlated data into a set of uncorrelated variables called

principal components (Jolliffe, 2011; Wold et al., 1987). Higdon et al. (2008) apply

PCA to computer outputs F = (𝑓 (x1), . . . , 𝑓 (x𝑛)), where the model output 𝑓 (x𝑖)

is a vector of length 𝑙, F is a matrix that has dimension 𝑙 ×𝑛, and the 𝑛 uncertain

inputs are X = (x1, . . . ,x𝑛)𝑇 . Basis vectors (principal components) can be obtained

via singular value decomposition (SVD) of the standardised output matrix F̃,

F̃ = (𝑓 (x1) −u, . . . , 𝑓 (x𝑛) −u),

2.3 Emulation 23

where u is the ensemble mean u = (𝑢1, . . . , 𝑢𝑛), and 𝑢𝑖 is the mean of 𝑖-th output,

𝑢𝑖 =
1
𝑛

𝑛∑
𝑗=1

𝑓𝑖 (x 𝑗).

In the majority of applications, the ensemble size 𝑛 is typically less than the number

of outputs 𝑙. Therefore, the basis vectors will not be full rank (it only represents

the ensemble with n orthogonal directions). We denote the matrix of basis vectors

as Γ, where

Γ = (𝛾1, . . . , 𝛾𝑛−1),

is a collection of orthogonal vectors with length 𝑛−1. Each individual basis vector

𝛾𝑖 is a vector of length 𝑙, and there are 𝑛 − 1 basis vectors because the 𝑛-th as

the ensemble mean has been removed. PCA proposes that the majority of the

variability in 𝐹 is explained by the first few basis vectors, Γ𝑞 = (𝛾1, . . . , 𝛾𝑞) (Jolliffe,

2011). Following this property, the number of the components 𝑞 could be selected

by requiring that the majority of the variance in the ensemble is explained by

projection onto the basis. For instance, Γ𝑞 should explain more than 99% of the

total variance of the data, as suggested by (Higdon et al., 2008). However, the later

basis vectors explain low percentages of the variability in the ensemble, making

accurate emulation for later coefficients difficult, and even if only the first few are

used, the model output may still be correctly represented. More discussion will be

given in Section 4.2

The vector of coefficients for the projection of the computer model output onto

a given basis is

c(x) = Γ𝑇𝑞 (𝑓 (x) −u),

where c(x) = (𝑐1(x), . . . , 𝑐𝑞 (x))𝑇 . The output can then be represented as:

𝑓 (x) = Γ𝑞c(x) +u+ 𝜖,

where 𝜖 is the reconstruction error, and the elements of coefficient vector c(x) are

GPs over the input space. Higdon et al. (2008) fit univariate Gaussian process

24 Background

emulators for each set of coefficients 𝑐𝑖 (x) separately,

𝑐𝑖 (x) ∼ 𝐺𝑃(0, 𝜆−1
𝑤𝑖 𝑐(x,x′)).

They use a power exponential correlation function 𝑐(., .′) and precision parameter

𝜆𝑤𝑖. Wilkinson (2010) fits GPs, with mean functions as in equation (2.2). The

Gaussian process emulators’ expectation and variance at x are given by

E [𝑐(x)] = (E [𝑐1(x)] , . . . , E
[
𝑐𝑞 (x)

]
),

and

Var [𝑐(x)] = diag(Var [𝑐1(x)] , . . . , Var
[
𝑐𝑞 (x)

]
).

The E [𝑐(x)] and Var [𝑐(x)] can be transformed into the 𝑙-dimensional model output

space:

E [𝑓 (x)] = Γ𝑞E [𝑐(x)] ,

and

Var [𝑓 (x)] = Γ𝑞Var [𝑐(x)]Γ𝑇𝑞 +Γ−𝑞Σ−𝑞Γ−𝑞,

where Γ−𝑞 is Γ with the first 𝑞 columns removed and Σ−𝑞 is a diagonal matrix

with diagonal elements containing the discarded eigenvalues (Salter et al., 2019;

Wilkinson, 2010). We will revisit this approach with calibration in Section 2.5.3,

Chapter 4, 5 and 6.

2.3.6 Diagnostics for Gaussian process emulators

To construct an emulator, several assumptions are made. Inappropriate assump-

tions can lead to poor emulator predictions of simulator outputs. Therefore, before

using an emulator with other approaches, diagnostics must be used to validate and

assess the adequacy of a Gaussian process emulator for representing the simulator.

The most popular diagnostic method is a ‘leave one out’ validation approach.

In this approach, the output at one data point is removed from the ensemble runs,

2.3 Emulation 25

and an emulator is built with the remaining data. Then, we predict the removed

simulation point using this emulator. This procedure is repeated for all runs.

Prediction intervals are calculated for each run using the emulator’s prediction:

if the true function value does not lie within 3 (2 also commonly used) standard

deviations of the mean (it can also be outside 90% or 95% prediction intervals),

there will be a conflict between the emulator and the simulator (Rougier et al.,

2009).

Bastos and O’Hagan (2009) also propose diagnostics that compare Gaussian

process emulator predictions with simulation outputs. They separate the data set

into two clusters, training data and validation data. The training data is used to

build the emulator and the validation data is used to evaluate the performance of

the emulator.

Let F = (𝑓 (x1), . . . , 𝑓 (x𝑛)) represent the emulator training data with inputs

X = (x1, . . . ,x𝑛), and let F′ = (𝑓 (x′1), . . . , 𝑓 (x
′
𝑚)) be the validation data with the

validation input X′ = (x′1, . . . , x′𝑚). For each validation input x′
𝑖
, 𝑖 = 1,2, . . . , 𝑚, the

emulator gives predictive mean E
[
𝑓 (x′

𝑖
)
]

with variance Var
[
𝑓 (x′

𝑖
)
]
.

Individual prediction errors are given by the difference between the simulator

outputs 𝑓 (x′
𝑖
) and the Gaussian process emulator predictive mean E

[
𝑓 (x′

𝑖
)
]
, for 𝑖 =

1,2, . . . , 𝑚 at the same validation inputs. This method considers each standardised

prediction error as a diagnostic,

𝐷 𝐼
𝑖 (𝑓 (x′𝑖)) =

𝑓 (x′
𝑖
) −E

[
𝑓 (x′

𝑖
)
]√

Var
[
𝑓 (x′

𝑖
)
] , 𝑖 = 1,2, . . . , 𝑚. (2.23)

Bastos and O’Hagan (2009) state that standardised large errors (larger than 2)

suggest that there could be a conflict between the emulator and the simulator. We

should expect 5% of points to fail this test if we have not been under-confident,

and we may have extrapolation issues on the input space boundaries. In practice,

if less than 5% of the errors are large and there is no systematic problem (e.g. all

large errors are in the same region of parameter space) an emulator is considered

to have been ‘validated’.

26 Background

In order to summarise the collection of individual standardised errors 𝐷 𝐼
𝑖
(𝑓 (x′

𝑖
))

into a single diagnostic, a 𝜒2 test can be used as a validation approach (Hills and

Trucano, 1999). Define 𝐷2
𝜒 (F′) via

𝐷2
𝜒 (F′) =

𝑚∑
𝑖=1
𝐷 𝐼
𝑖 (𝑓 (x′𝑖))2. (2.24)

The distribution of 𝐷2
𝜒 (𝑓 (x′𝑖)) converges to a chi-squared distribution with 𝑚-

degrees freedom when the emulator has a large training data set.

A natural extension of equation (2.24) is the Mahalanobis distance between

simulator and emulator outputs for the validation data set:

𝐷𝑀𝐷 (F′) = (F′−E [𝑓 (X′)])𝑇 (Var [𝑓 (X′)])−1(F′−E [𝑓 (X′)]). (2.25)

The correlation among the outputs is captured/accounted for by the Mahalanobis

distance. Similarly to individual prediction errors, extreme values (unexpectedly

large or small) of 𝐷𝑀𝐷 (𝑦∗) indicate the existence of a conflict between the emulator

and the simulator.

Individual prediction errors are correlated, so that they may be ineffective in

finding the conflict between the emulator and the simulator. For example, if we

found that two individual errors are individually small but were of opposite sign,

there might be a conflict when they are strongly positively correlated (Bastos and

O’Hagan, 2009).

Graphical methods are also frequently-used in diagnostics for Gaussian process

emulators. For instance, we might plot the individual errors against the emulator’s

predictions, or plot the errors against the index and quantile-quantile plots(QQ-

plots). Demonstrations of these graphical methods are presented within the

subsequent Chapters.

If an emulator passes the validation tests, then it is usually assumed that the

emulators have represented the simulators adequately. The test described above

may be sufficient to assess the global performance of an emulator, but for some

2.4 Calibration 27

uncertainty quantification approaches, the primary concern should be the local

performance of the emulator within the specific area, e.g. history matching (one

of the calibration methods which will be introduced in Section 2.5). For example,

to pass the ‘leave one out’ validation check, we would expect no more than 5%

of points lie outside of 2 (or 3) standard deviation prediction intervals. However,

the failed points might be near a specific local area which could result in biased

results for uncertainty quantification without any indication for the analyst that

this has occurred. No current methods exist for highlighting or solving this issue

that we are aware of. We discuss this in details in Chapter 3, and present a novel

contribution to address it.

2.4 Calibration

Hundreds of parameters can be introduced when constructing an computer model.

For climate models, for example, these parameters control the behaviour of the

atmosphere, oceans and a variety of other processes. Before using the model to

study the real world, a parameter calibration (the climate modelling community

refers calibration as ‘tuning’) step needs to be considered. Calibration of computer

models broadly involves using partial and imperfect observations of the real

world to learn which values of the model’s input parameters lead to outputs that

are consistent with real-world observations, given relevant uncertainties such as

measurement error and model discrepancy (Kennedy and O’Hagan, 2001; Rougier,

2007). Calibration has been seen in a variety of applications, including oil reservoir

modelling, climate systems, epidemiology, galaxy formation and agro-ecosystem

modelling (Andrianakis et al., 2015; Lehuger et al., 2009; Salter and Williamson,

2016; Vernon et al., 2010; Williamson et al., 2015). Calibration with GP emulators

is widely used to find input parameter values that give outputs consistent with

the observation.

Kennedy and O’Hagan (2001) present a Bayesian approach to calibration. They

split the input parameter into two parts: control variables x𝑐𝑜𝑛 and calibration

28 Background

variables x𝑐𝑎𝑙 , so that x = (x𝑐𝑜𝑛,x𝑐𝑎𝑙). Given control variable inputs, x𝑐𝑜𝑛, the true

value of the real process is denoted as 𝜍 (x𝑐𝑜𝑛).

Bayesian calibration requires a ‘best input’ assumption. Denoting x∗ as the best

calibration input, the computer model output 𝑓 (x∗,x𝑐𝑜𝑛) with the best inputs x∗

returns the best representation of the real system 𝜍 (x𝑐𝑜𝑛). A statistical model then

links the computer model and reality via

𝜍 (x𝑐𝑜𝑛) = 𝜌 𝑓 (x∗,x𝑐𝑜𝑛) +𝜂(x𝑐𝑜𝑛), (2.26)

where 𝜌 is an unknown regression parameter, (the simplest choice is 𝜌 = 1), and

𝜂(·) is the model discrepancy function, which is independent of 𝑓 (x) and x∗. To

learn about x∗, we study the calibration data, comprised of the 𝑚 observations

z = (𝑧1, . . . , 𝑧𝑚)𝑇 . For each observation 𝑖, 𝑧𝑖 is an observation of 𝜍 (x𝑖𝑐𝑜𝑛)

𝑧𝑖 = 𝜍 (x𝑖𝑐𝑜𝑛) + 𝑒𝑖, (2.27)

where 𝑒𝑖 is the observation error for the 𝑖-th observation and follows an indepen-

dent normal distribution with zero mean.

Kennedy and O’Hagan (2001) assign Gaussian process prior as the prior in-

formation for both unknown functions, 𝑓 (·) and 𝜂(·). The posterior distribution

for the best input can then be derived from equation (2.32). They use the same

equation as history matching to derive the posterior distribution, which we will

consider in Section 2.5. In the thesis, we mainly focus on history matching, we

will not go details of Bayesian calibration.

Rougier (2007) discusses calibration with only one set of the observations which

have the same control variable. Therefore, there is only one suitable setting of the

calibration input. Assumptions of this type are typically made in the context of

climate models. There, they denote climate as a vector 𝑦 = (𝑦ℎ, 𝑦 𝑓), where 𝑦ℎ and 𝑦 𝑓

are corresponding to historical or current climate and future climate respectively.

𝑦ℎ depends on the available data, and the observation data of historical climate

2.4 Calibration 29

is denoted by 𝑧. The real climate and the observation is linked by an uncertain

observation error 𝑒,

𝑦ℎ = 𝑧+ 𝑒. (2.28)

there is a unique defined input x∗, for which

𝑦ℎ = 𝑓 (x∗) +𝜂, (2.29)

where 𝜂 is the discrepancy of the computer model. Rougier (2007) specifies that

the best input, model discrepancy and observation error are independent of each

other. The distributions of the error terms are assumed to have the following form:

𝜂 ∼ 𝑁 (0, Σ𝜂), 𝑒 ∼ 𝑁 (0, Σ𝑒). (2.30)

When the computer model has a one-dimensional output, these variances take a

single value. In the higher dimensional case, the variances are covariance matrices

that can represent different uncertainties across the different dimensions of the

outputs. By applying calibration techniques to the historical data, a probability

distribution over future data can be derived. This allows probabilistic inference

for future climate to be made using an ensemble of climate model evaluations.

The approach developed by Kennedy and O’Hagan (2001) create a large impact

for calibration area (Bayarri et al., 2007; Han et al., 2009; Higdon et al., 2004, 2008).

However, Gramacy et al. (2015) state concerns over using the method by Kennedy

and O’Hagan (2001). Tuo et al. (2015) show that the method by Kennedy and

O’Hagan (2001) can lead to unreasonable estimates: the posterior distribution of

the parameter will depend on the prior distribution of the discrepancy, even with

a large number of observations. Based on this justification, Tuo and Wu (2016)

suggest a new mathematical framework for calibration: they define 𝐿2 consistency

as a justification for the calibration approach. Based on this justification, which

is called 𝐿2 calibration, the standard modelling assumption for this calibration

is the same as equations (2.32) and (2.27). The ‘best input’ x∗ is defined as the

30 Background

parameter choice that minimise the 𝐿2 norm between the physical process, 𝜍 (·),

and the computer output, 𝑓 (x, ·),

x∗ = argmin
x∈X

∥ ˆ𝜍 (·) − 𝑓 (x, ·) ∥𝐿2 (X) , (2.31)

where 𝑓 (x, ·) is the emulator for 𝑓 (x, ·).

Plumlee (2017) proposes a new method for Bayesian calibration. In that method,

the core methods of Bayesian calibration by Kennedy and O’Hagan (2001) are left

intact, but they overcome the concerns associated where a parameter’s posterior

depends on the choice of the bias prior. Plumlee (2017) define the minimisation

of loss as a parameter. For example, the generalised loss function used in Tuo

et al. (2015). Under this assumption, the prior distribution on the bias should be

orthogonal to the gradient of the computer model, and problems associated with

Bayesian calibration are mitigated.

To calibrate in higher dimensions, the approach of Kennedy and O’Hagan

(2001) can be extended to multivariate models by using a multivariate emulator

for 𝑓 (·). However, for a computer model with high dimensional output, this

might be computationally expensive. To overcome these challenges, Higdon et al.

(2008) use the basic framework of Kennedy and O’Hagan (2001) with principal

components (as discussed in Section 2.3.5) to reduce the dimensionality of the

observation and speed up the computations.

2.4.1 Discrepancy

In order to do calibration appropriately, no matter which method is used, specify-

ing the model discrepancy term is an important step. Brynjarsdóttir and O’Hagan

(2014) demonstrate the importance of model discrepancy, by illustrating that cal-

ibration without model discrepancy might lead to biased parameter estimation,

and that this bias persists with increasing observations. Extrapolation and param-

2.4 Calibration 31

eters inferences can be biased with a non informal discrepancy model. Therefore,

including an accurate discrepancy is critical.

We have already discussed alternative discrepancy approach based on altering

best input (e.g. Plumlee (2017) and Tuo and Wu (2016)) above. With the standard

framework, a discrepancy variance (or GP kernel) needs to be specified, corre-

sponding to beliefs about the extent to which the computer model represents the

reality. Kennedy and O’Hagan (2001) represent the model discrepancy 𝜂(x𝑐𝑜𝑛) as

a Gaussian process with mean 0 and variance 𝜎2𝑐(x𝑐𝑜𝑛,x′𝑐𝑜𝑛 |𝛿), where 𝑐(·, ·|𝛿) is

the squared exponential correlation function, expressing a prior belief that the

discrepancy is a smooth function. The zero mean shows there is no prior expec-

tation that discrepancy term is negative or positive. Brynjarsdóttir and O’Hagan

(2014) believe that formulating discrepancy prior information is the key to the

application of calibration. However, translating a simulator’s deficiencies into a

discrepancy prior is a difficult task. Moreover, if a weak prior belief is set, the

posterior will rely heavily on the ensemble runs from the computer model in

particular the difference between the ensemble members and the observation.

Chang et al. (2014, 2016) introduce a discrepancy model for calculating the

discrepancy associated with ice sheet model calibration. The ice sheet model has

high-dimensional binary spatial data. They calculate the signed proportion of

mismatch between computer model output and the observation for each location

𝑠 𝑗 ,

𝑟 𝑗 =

𝑝∑
𝑖=1

sgn(𝑓 𝑗 (𝑥𝑖) − 𝑧 𝑗)𝐼 (𝑓 𝑗 (𝑥𝑖) ≠ 𝑧 𝑗),

where sgn(·) is the sign function. Based on 𝑟 𝑗 , they define the discrepancy as

𝜂𝜂𝜂 𝑗𝑗𝑗 =


log(1+𝑟 𝑗

1−𝑟 𝑗), |𝑟 𝑗 > 𝑐 |,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

for a chosen threshold 𝑐. The binary spatial data works well with this discrepancy

method, because only a small number of model outputs are in conflict with the

observations in the example, so a non-zero discrepancy is set for these locations.

32 Background

For high dimensional output calibration, Salter et al. (2019) model the discrep-

ancy as a multivariate Gaussian process with mean zero and covariance matrix,

Σ
𝑖 𝑗
𝜂 = 𝑣𝑖𝑣 𝑗𝑐(𝑠𝑖, 𝑠 𝑗),

where 𝑐(., .′) is the correlation function between two locations 𝑠𝑖 and 𝑠 𝑗 , and they

specify the variance 𝑣𝑖 based on whether the location 𝑖 is in the key feature set 𝑆.

This method specifies the different tolerance of mismatch between observation

and model output for different locations, and the method could be extended to k

sets of indicators for spatial output.

Zhang et al. (2018) adopt a 𝐿2 discrepancy model for the field output calibra-

tion,

𝜂(x) =∥ 𝑧− 𝑓 (x) ∥𝐿2 ,

where ∥ · ∥𝐿2 is the 𝐿2 norm. This calibration locates the best input, which min-

imises the discrepancy model. For spatial output, a 𝐿2 discrepancy term is not able

to capture correctional errors across the computer outputs. In fact, it weights each

error independently. For a field output computer or time-series model, specifying

a discrepancy covariance matrix would carry more physical information than

defining a 𝐿2 discrepancy.

2.5 History matching

History matching is another prominent technique for computer model calibration

(Craig et al., 1996; Vernon et al., 2010; Williamson et al., 2013). History matching

attempts to identify the parts of the input parameter space that are likely to re-

sult in mismatches between computer outputs and observations by iteratively

removing those regions of parameter space where a good match is very unlikely

to exist. Previous research has applied history matching to many fields, including

oil reservoir modelling (Craig et al., 1997; Cumming and Goldstein, 2010), epi-

demiology (Andrianakis et al., 2015, 2017), galaxy formation and (Bower et al.,

2.5 History matching 33

2010; Rodrigues et al., 2017; Vernon et al., 2010) climate systems (Edwards et al.,

2011; Gladstone et al., 2012; McNeall et al., 2013; Salter and Williamson, 2016;

Williamson and Blaker, 2014; Williamson et al., 2013, 2015).

To employ the history matching method, the inconsistencies between the

computer model and the physical reality must be examined at the beginning

(Goldstein and Rougier, 2009). In history matching, similar to Bayesian calibration,

simulator inadequacy can be expressed through a relation of the form

𝑦𝑖 = 𝑓𝑖 (x∗) +𝜂𝑖, (2.32)

where 𝑦𝑖 represents reality, x∗ is the ‘best input’ of the computer model and 𝜂𝑖 is

the model discrepancy. The discrepancy term is independent of 𝑓𝑖 (x) and x∗ (Craig

et al., 1996; Goldstein and Rougier, 2004). To learn about x∗, we have observations

𝑧𝑖 with unknown measurement error 𝑒𝑖 such that

𝑧𝑖 = 𝑦𝑖 + 𝑒𝑖, (2.33)

where 𝑒 has zero mean and is uncorrelated with of 𝜂𝑖. Because of the majority

of computer models are expensive and can take a long time to run, emulators

are used to predict the output of the computer model 𝑓 (x). For any parameter

setting, x, the emulator gives an expectation, E [𝑓 (x)], with variance Var [𝑓 (x)].

The implausibility measure is used to eliminate any parameter settings which

produce outputs which are ’too far’ from the observations. For a single output at a

given value, x, implausibility is defined as

I𝑖 (x) =
|𝑧𝑖 −E [𝑓𝑖 (x)] |√

Var [𝑧𝑖 −E [𝑓𝑖 (x)]]
. (2.34)

34 Background

Under equations (2.32) and (2.33), when x = x∗

Var [𝑧𝑖 −E [𝑓𝑖 (x)]] = Var [𝑧𝑖 − 𝑓𝑖 (x∗) + 𝑓𝑖 (x∗) −E [𝑓𝑖 (x)]]

= Var [𝑧𝑖 − 𝑦𝑖 + 𝑦𝑖 − 𝑓𝑖 (x∗) + 𝑓𝑖 (x∗) −E [𝑓𝑖 (x)]]

= Var [𝑒𝑖 +𝜂𝑖 + 𝑓𝑖 (x∗) −E [𝑓𝑖 (x)]]

= Var [𝑒𝑖] +Var [𝜂𝑖] +Var [𝑓𝑖 (x∗) −E [𝑓𝑖 (x)]]

= Var [𝑒𝑖] +Var [𝜂𝑖] +Var [𝑓𝑖 (x)] ,

(2.35)

such that only the observation, observation error variance, discrepancy variance

and emulator prediction variance is required to calculate the implausibility (Salter

et al., 2019; Williamson et al., 2017). However, because of the emulator uncertainty,

a small value of implausibility can either occur when the distance between the

observation and emulator prediction is small, or when the emulator is extremely

uncertain. Therefore, the input with the optimal of implausibility cannot guarantee

that the model is consistent with observations (Williamson et al., 2015).

Instead of finding a good choice of calibration input, large values of I𝑖 (x) can

indicate that 𝑓 (x) is too far from the observations, even with all the uncertainties.

History matching uses the implausibility measure to rule out parameter settings

that deviate most significantly from the observations. The space that has not yet

been ruled out, ‘Not Ruled Out Yet’ (NROY) space, X𝑁𝑅𝑂𝑌 , is defined as

X𝑁𝑅𝑂𝑌 = {x ∈ X |I𝑖 (x) ≤ 𝑇}, (2.36)

where 𝑇 is a chosen threshold. A common choice is 𝑇 = 3 based on the three sigma

rule (Pukelsheim, 1994), which states that for any unimodal continuous probability

distribution 95% of the population lies within three standard deviations of the

mean.

2.5 History matching 35

2.5.1 Refocusing

History matching does not seek to identify NROY space using a single set of

computer model evaluations, but through iteratively designed experiments known

as ‘waves’ (Vernon et al., 2010). In the first wave, the emulator is constructed based

on an ensemble at a set of points which cover the whole input space, X . History

matching is used to rule out space from the initial space through equation (2.42)

and the NROY space after wave 1 is denoted as X 1. A new emulator can then be

constructed using an ensemble 𝑓 (x2) at a new set of points from the first wave

NROY space x2 ∈ X 1. After that, the second wave of history matching can be

carried out. This process is called ‘refocusing’. In general, at wave 𝑘 , a new

emulator is built from a new set of points x𝑘 drawn from the wave 𝑘 −1 NROY

space, x𝑘 ∈ X 𝑘−1, and the wave 𝑘 NROY space is defined as

X 𝑘 = {𝑥 ∈ X 𝑘−1 |I 𝑘 (𝑥) ≤ 𝑇𝑘 }, (2.37)

where I 𝑘 (𝑥) is the implausibility (equations 2.34 and 2.38) defined on X 𝑘−1 and

with the wave 𝑘 emulator and 𝑇𝑘 is a selected threshold for wave 𝑘 .

The refocusing process first builds emulators using an ensemble in the full

parameter space, and then the implausibility is used to cut down parameter space.

As later waves are reached, the density of model runs is increased in the reduced

space. Since the emulators only need to be accurate over the reduced parameter

space at later waves, the emulator is more accurate than the initial wave, where

we need it to be. For each wave, applying different implausibility measurements

can provide a lot of flexibility (Williamson et al., 2017).

A key question for this process is how many waves to run or when to stop.

Williamson et al. (2015) suggest stopping the process when the entire space is

ruled out by a certain metric. The stopping criteria could also rely on the emulator

variance. When the emulator variance is small enough, such that it will not

significantly change the NROY space in the next wave, it would be meaningless to

continue the process (Williamson et al., 2017). However, in real applications, these

36 Background

two scenarios are rare. Either budget or a time limit would typically be the reason

why the process stops.

2.5.2 Implausibility in Many Dimensions

When computer model output represents multiple metrics, a multivariate version

of the implausibility must be used (Craig et al., 1997),

I (x) = (z−E [𝑓 (x)])𝑇Var [z−E [𝑓 (x)]]−1 (z−E [𝑓 (x)])

= (z−E [𝑓 (x)])𝑇 (Var [𝑒] +Var [𝜂] +Var [𝑓 (x)])−1 (z−E [𝑓 (x)]),
(2.38)

where z and E [𝑓 (x)] are vectors with length 𝑟, and Var [𝑒],Var [𝜂] and Var [𝑓 (x)]

are 𝑟 × 𝑟 variance matrices. This implausibility takes account of the correlation

between different components of the model outputs (Vernon et al., 2010), and is

especially useful for climate models (Williamson et al., 2017). To calculate the

implausibility, the variance matrices for the observation error and discrepancy

need to be specified.

For setting the cutoff threshold, the implausibility I (x) can be compared with a

Chi-squared distribution with 𝑟 degrees of freedom (Vernon et al., 2010). Then the

threshold 𝑇 could be 95% or 99.5% of a Chi-squared distribution with 𝑟 degrees of

freedom. A NROY space X𝑁𝑅𝑂𝑌 can then be defined with this threshold

X𝑁𝑅𝑂𝑌 =

{
x ∈ X |I (x) ≤ 𝜒2

𝑟, 0.995

}
. (2.39)

However, there are some limitations of using the implausibility measure defined

in equation (2.38). Firstly, that measurement does not allow different thresholds

for different dimensions of the model output: the measurement can give a larger

value when a single poorly matching component occurs in one dimension (Craig

et al., 1997).

When specifying discrepancy error and observation error for each of the out-

puts only, separate implausibility measures for each metric I𝑖 (x) can be evaluated

2.5 History matching 37

with individual emulators. Even if the model outputs are correlated, accurate emu-

lators for each metric of the outputs could be as good as the multivariate emulator.

In this case, the implausibility can be defined as the maximum of the implausi-

bility measures for each output (Craig et al., 1997). The maximum implausibility

measure is

I𝑀 (x) = max
𝑖

I𝑖 (x). (2.40)

Using the maximum implausibility measure might be too sensitive, meaning that

there is a chance to rule out good parameter choices. When the cutoff threshold is

set as 3, it is expected that we would rule out up to 5% of model outputs which

are consistent with the observations. Vernon et al. (2010); Williamson et al. (2017)

use the second or third largest implausibility, the second implausibility is given by

I2𝑀 (x) = max
𝑖

(I𝑖 (x)\I𝑀 (x)) ,

and the third largest implausibility is

I3𝑀 (x) = max
𝑖

(I𝑖 (x)\{I𝑀 (x), I2𝑀 (x)}) .

In general, the 𝑞-th maximum implausibility is

I𝑞𝑀 (x) = max
𝑖

(
I𝑖 (x)\{I𝑀 (x), I2𝑀 (x), . . . , I(𝑞−1)𝑀 (x)}

)
. (2.41)

The NROY space with the 𝑞-th maximum implausibility is then also given by

X𝑁𝑅𝑂𝑌 = {x ∈ X |I𝑞𝑀 (x) ≤ 𝑇}. (2.42)

All of the implausibilities (e.g. I (x) and I𝑞𝑀 (x)) are computed with emulator

predictions, which indicates that the performance of history matching relies on the

emulator prediction. Before cutting areas of parameter space, diagnostics must be

used to assess the adequacy of an emulator. We presented a variety of diagnostics

that compare Gaussian process emulator predictions and simulation outputs at

38 Background

validation points in Section 2.3.6. Whilst the test described in Section 2.3.6 may be

adequate to assess the global performance of an emulator, when history matching

the primary concern should be the local performance of the emulator near x∗.

When the emulator is inaccurate near x∗, good parameter choices can easily be

ruled out. We present novel methods for detecting these cases and a Local Voronoi

Tessellation method for a robust approach to calibration that ensures that the true

NROY space is retained and parameter inference is not biased in Chapter 3.

2.5.3 Multivariate history matching using basis projection meth-

ods

For computer model with high-dimensional output, history matching with the

basis projection method for emulation is proposed (multivariate emulation is

introduced in Section 2.3.5 (Salter et al., 2019). For basis emulators, multivariate

history matching can be applied in different ways.

Firstly, the implausibility can be calculated on the coefficient space. The uni-

variate implausibility for each coefficient 𝑐𝑖 (x) follows equation (2.34), and is

calculated as

I𝑖 (x) =
|𝑐𝑖 (z) −E [𝑐𝑖 (x)] |√

Var [𝑐𝑖 (z) −E [𝑐𝑖 (x)]]
, (2.43)

where 𝑐𝑖 (z) is defined as the projection of the observation onto the 𝑖-th column of

Γ, and c(z) = (𝑐1(z), . . . , 𝑐𝑞 (z)), where

c(z) = Γ𝑇 (z−u)) = Γ𝑇 (z−u)). (2.44)

2.5 History matching 39

The variance term Var [𝑐𝑖 (z) −E [𝑐𝑖 (x)]] can also be written as in terms of the

observation error and discrepancy on the coefficient space:

Var [𝑐𝑖 (z) −E [𝑐𝑖 (x)]] = Var [𝑐𝑖 (z) − 𝑐𝑖 (x∗) + 𝑐𝑖 (x∗) −E [𝑐𝑖 (x)]]

= Var [𝑐𝑖 (z) − 𝑐𝑖 (𝑦𝑖) + 𝑐𝑖 (𝑦𝑖) − 𝑐𝑖 (x∗) + 𝑐𝑖 (x∗) −E [𝑓𝑖 (x)]]

= Var [𝑐𝑖 (𝑒) + 𝑐𝑖 (𝜂) + 𝑐𝑖 (x∗) −E [𝑐𝑖 (x)]]

= Var [𝑐𝑖 (𝑒)] +Var [𝑐𝑖 (𝜂)] +Var [𝑐𝑖 (x∗) −E [𝑐𝑖 (x)]]

= Var [𝑐𝑖 (𝑒)] +Var [𝑐𝑖 (𝜂)] +Var [𝑐𝑖 (x)] ,

where 𝑐𝑖 (𝜂) and 𝑐𝑖 (𝑒) are defined as the projection of the observation error and

discrepancy onto the 𝑖-th column of Γ respectively. For each basis, the variance of

the projection of observation error Var [𝑐𝑖 (𝑒)] and discrepancy Var [𝑐𝑖 (𝜂)] could be

set as the 𝑖𝑡ℎ vector of 𝑛×𝑛 matrices Var [c(𝑒)] and Var [c(𝜂)],

Var [c(𝑒)] = Var
[
Γ𝑇 (𝑒−u)

]
= Γ𝑇Var [𝑒]Γ,

and

Var [c(𝜂)] = Var
[
Γ𝑇 (𝜂−u)

]
= Γ𝑇Var [𝜂]Γ.

Given equations (2.40) and (2.41), the maximum implausibility measure and 𝑞-th

maximum implausibility can be applied on the coefficient space.

Another option is to use the multivariate implausibility in equation (2.38) on

coefficient space. Following the emulators in equation (2.2), the multivariate

implausibility in equation (2.38) then becomes

I𝑐 (x) = (c(z) −E [𝑐(x)])𝑇Var [c(z) −E [𝑐(x)]]−1 (c(z) −E [𝑐(x)])

= (c(z) −E [𝑐(x)])𝑇 (Var [c(𝜂)] +Var [c(𝑒)] +Var [𝑐(x)])−1 (c(z) −E [𝑐(x)]).
(2.45)

One final way to do multivariate history matching is analogous to the multivari-

ate calibration in Wilkinson (2010), where E [𝑐(x)] and Var [𝑐(x)] are transferred

40 Background

back to the original model output space. The implausibility measurement in

equation (2.38) can then be applied.

Salter et al. (2019) discuss how PCA-based methods can cause a ‘terminal

case analysis’, where the calibration can fail when the observations are not in the

linear subspace defined by the PCA. Choosing the low dimensional space that

best explains the maximum variability in the ensemble, cannot guarantee that the

key features of the observations are preserved. Salter et al. (2019) use a rotation

algorithm to find a calibration-optimal basis which considers the observation

reconstruction error in the basis selection step. The observation reconstruction

error measures how accurately the observation can be represented by a basis Γ𝑞:

RW(Γ𝑞,z) = | |z−Γ𝑞 (Γ𝑇𝑞W−1Γ𝑞)−1Γ𝑇𝑞W−1z| |W, (2.46)

where | |v| |W = v𝑇W−1v is the norm of vector v, W is a 𝑙 × 𝑙 positive definite weight

matrix. By setting W = Var [𝜂] +Var [𝜂], RW(Γ𝑞,z) is equivalent to equation (2.38)

if the emulator variance is zero. If RW(Γ𝑞,z) is bigger than the history matching

threshold, the representation of 𝑧 on Γ𝑞 would be ruled out. To avoid this situation,

they developed a calibration-optimal basis vector, Γ∗ = ΓΛ (Λ is a rotation matrix),

to minimise the reconstruction error, RW(Γ∗
𝑞,z), subject to a constrain that Γ∗

𝑞

explains the enough variability in the ensemble for building emulators for the new

coefficients.

The projections for 𝑓 (x), z, Var [𝜂] and Var [𝑒] onto basis Γ𝑞 with the given W

are
c(x) = (Γ𝑇𝑞W−1Γ𝑞)−1Γ𝑇𝑞W−1(𝑓 (x) −u)),

c(z) = (Γ𝑇𝑞W−1Γ𝑞)−1Γ𝑇𝑞W−1(z−u)),

Var [c(𝜂)] = (Γ𝑇𝑞W−1Γ𝑞)−1Γ𝑇𝑞W−1Var [𝜂]W−1Γ𝑞 (Γ𝑇𝑞W−1Γ𝑞)−𝑇 ,

Var [c(𝑒)] = (Γ𝑇𝑞W−1Γ𝑞)−1Γ𝑇𝑞W−1Var [𝑒]W−1Γ𝑞 (Γ𝑇𝑞W−1Γ𝑞)−𝑇 .

(2.47)

When W is the identity matrix, these projections are the same as standard PCA.

The coefficient implausibility following equation (2.45) could be calculated with

the projections in equation (2.47), and we denote the implausibility as IW(x). Salter

2.5 History matching 41

and Williamson (2019) show that computer models with large output fields can be

history matched efficiently with IW(x). By setting W = Var [𝜂] +Var [𝑒], we have

I (x) = IW(x) +RW(Γ𝑞,z). (2.48)

Hence, the calculation of the expensive implausibility I using 𝑙 × 𝑙 matrix inver-

sions only requires 𝑞× 𝑞 matrix inversions at each x, without any loss of informa-

tion.

When we try to calibrate computer models with high-dimensional output, the

model has to be able to represent the pattern we want our model to replicate.

PCA-based history matching introduced by Salter et al. (2019) works well when

the parameters are responsible for the strength of various patterns. However, if

the parameters control the position of patterns e.g. shifting currents, existing basis

calibration methods will fail. We will explore kernel based methods from machine

learning for history matching to overcome the limitation of current basis methods.

In this thesis, we are interested in improving history matching. Two limitations

of history matching will be demonstrated in the following chapters. The first

shows that standard diagnostic checks for GP emulators may be satisfied yet lead

to good regions of parameter space being ruled out. In Chapter 3, we illustrate the

problem, offer a new diagnostic to test for this situation and propose an extension

to history matching for cases when this diagnostic raises a flag that ensures that

current emulator can safely be used for remove space. The second limitation

addressed is related to the above discussion on PCA-based history matching for

high dimensional output. We argue that current methods are only really effective

if key signals do not move around the output space as the inputs are charged and

if the model and reality can, should and do have the timing and location of these

signals in common. When this is not the case, similar to the issue presented by

Salter and Williamson (2019), we are using a basis that leads to a terminal case. To

overcome this, we extend history matching to kernel feature space. In so doing,

42 Background

we discover that we need to revisit the notion of what it means for a model to be

implausible and to generalise the concept of history matching accordingly.

Chapter 3

Local Voronoi tessellations for robust

multi-wave calibration of computer

models

3.1 Introduction

Chapter 2 reviews the well-known calibration methodology. History matching

uses emulators to rule out parameter settings which lead to models that deviate

most significantly from observations. The remaining space is Not Ruled Out

Yet (NROY) space. A limitation of history matching occurs when an emulator

is unable to simulate the unknown target NROY space, X ∗, effectively, even if it

seems to pass all standard emulator diagnostic checks (introduced in Section 2.3.6).

Emulator diagnostic checks may be adequate to assess the global performance of

an emulator, but when using history matching the primary concern should be the

local performance of the emulator near the target NROY space. Note, there is no

history matching tailored diagnostic.

When an emulator at a given wave is incorrect outside the target NROY space,

the worst thing that could happen is that a poor parameter choice is retained.

Although, that parameter choice could still be removed by a future wave with

44
Local Voronoi tessellations for robust multi-wave calibration

of computer models

a more accurate emulator. However, when the emulator is incorrect inside the

target NROY space, good parameter choices could be irrecoverably ruled out.

For instance, the “leave one out” validation approach usually expects about 5%

validation points to lie outside of the two standard deviation prediction interval.

Once the emulators meet this requirement, it is viewed as appropriate to use

history matching. However, if the points that failed the validation test are near the

target NROY space, that could lead to biased calibration results. Since the target

NROY is unknown, to confirm whether the failed points are in the target NROY

space or not, we compare those points with the observations. If an isolated large

error is found near the observations, there is a chance that the emulator has not

accurately simulated the target NROY space. Poor simulation may result in the

true NROY space being ruled out without any indication to the analyst that this

has occurred.

Figure 3.1 demonstrates the performance of a GP emulator and the results of

the first wave of history matching, compared to the true NROY space found for the

model directly. The 1D function used was first considered by Xiong et al. (2007),

which takes the form

𝑦(𝑥) = sin (30(𝑥−0.9)4) cos (2(𝑥−0.9)) + (𝑥−0.9)
2

.

We use a 10-run maximin Latin Hypercube (LHC) (Morris and Mitchell, 1995) to

design the runs to train the emulators used in this example.

The true function (black line) and the corresponding emulator posterior mean

(blue line) with uncertainty (blue dashed lines) is shown in the top right panel. We

can see that it is hard to predict the region [0,0.4] by directly comparing the true

function and the emulator prediction. The leave one out diagnostic plot (top left

panel) indicates that the emulator has failed at one point, but this single failure

would not usually be deemed serious enough to invalidate the emulator. The

result of history matching with this emulator is shown in the bottom left panel,

and the bottom right panel shows a zoomed in version of the result. The blue

3.1 Introduction 45

interval defines the NROY space after the first wave of history matching, and the

red interval defines the true NROY. Comparing the true model calibration results

with the emulator calibration results, we find that nearly one third of the true

NROY space is ruled out.

Fig. 3.1 Top left: Leave One Out diagnostic plot against 𝑥. The emulator prediction
and two standard deviation intervals are given in black. The true function values
are in blue if they lie within two standard deviation prediction intervals, or red
otherwise. The pink line and the pair of red dotted lines represent the observation
with observation error and discrepancy in all 4 panels. Top right: Emulator perfor-
mance for the 1D model. The true function is represented by the black curve and
ten black points are inputs used to train the emulator. The blue line represents
the emulator posterior mean, and the blue dotted lines give the two standard
deviation prediction intervals. Bottom left: History matching results and the true
NROY region. The blue interval defining the NROY space after first wave, the red
interval defining true NROY X ∗. Bottom right: As with bottom left but enlarged
over the NROY regions.

46
Local Voronoi tessellations for robust multi-wave calibration

of computer models

In an application with many emulators being used to cut a high dimensional

parameter space using many metrics, such critical cases may often occur and

be difficult to catch. A trainable nugget would enable simpler functions to fit

the data Gramacy and Lee (2012), and this might alleviate the problem in some

cases, particularly if we have achieved what looks like an acceptable fit by over-

fitting. We would generally use a trainable nugget when building emulators, for

these reasons. However, in most cases where we see this pathology, the emulator

fits well across the parameter space, but near the true NROY there is an issue

which would not normally raise a diagnostic flag. In these cases, it is likely that

the overall fit is good, but that there is some local non-stationarity near where

the function behaves like the data. In such cases, if a trainable nugget had not

already been used, one would be unlikely to solve the problem and may lead to

reduction in global performance (i.e. we may still have a good emulator from

a validation perspective, but might rule out less space given that there will be

a larger posterior variance). With or without a trainable nugget, we should still

expect 5% of predicted points to lie outside our prediction intervals. If most or all

of these occur near true NROY, we may still rule out good parts of that space by

mistake.

The history matching literature usually recommends only ruling space out if 3

or more outputs have large implausibility, and this might insure against ruling out

true NROY in some cases (if we have more than 1 or 2 metrics). However, a poor

emulator near the true NROY region may often be a feature of the design that can

appear for emulators of all metrics, and flagging this issue in a key region might

make us wary of trusting emulators for other metrics in that region.

Larger cutoff thresholds are sometimes used in earlier waves to retain more

space until we are more confident about ruling out. If this is done routinely, it may

still be that true NROY is ruled out using the larger threshold. If this is done to

ensure that all points where there may be an issue are not ruled out, the cutoff may

have to be set so high as to ensure that no space would be ruled out at all. Indeed,

no current methods exist for highlighting this potential issue that we are aware

3.2 Detection 47

of, nor of proceeding robustly with history matching following detection. In this

chapter, we will discuss which factors can contribute towards ruling out good

parameter choices, and we will then present a novel Local Voronoi Tessellation

design that can be used for robust multi-wave calibration, ensuring that the true

NROY space is retained without biasing the parameter inference.

This chapter has the following structure. Section 3.2 demonstrates a novel

detecting method, taking place after the emulator diagnostic check, that attempts

to determine whether the emulator could have failed near the target NROY space.

Section 3.3 introduces our Local Voronoi Tessellation design, alongside other tested

methods. Section 3.4 presents the procedure for the robust multi-wave history

matching of computer models. In Section 3.5, we apply our methods to two

illustrative examples. In Section 3.6, we apply our method to the output of the

French climate model, IPSL-CM, an atmosphere model that is used to predict

planetary atmospheres, including the Earth and other planets (Mars, Titan, Venus)

(Bony and Dufresne, 2005; Hourdin et al., 2017; Voldoire et al., 2013). We then

conclude in Section 3.7 with a discussion.

3.2 Detection

In practice, emulators are typically fitted before applying history matching. Once

the emulator passes diagnostic checks, history matching can be applied. Above

used a simple one dimensional example to show that an emulator could pass a

diagnostic check across the whole input space, but still fail near the target NROY

space. A detection method is required before applying history matching, to test

whether this situation occurs in practice. We describe our approach to detection

below.

Let F = (𝑓 (x1), . . . , 𝑓 (x𝑛)) represent the emulator training data with inputs

X = (x1, . . . ,x𝑛). In cases where we do not have validation runs, we use leave one

out cross-validation as an initial diagnostic: one run is removed from the ensemble

48
Local Voronoi tessellations for robust multi-wave calibration

of computer models

runs, an emulator is built with the remaining data, and this emulator is used to

predict the removed run. This procedure is repeated for all runs. For each input

x𝑖, the emulator gives predictive mean E [𝑓 (x𝑖)] with variance Var [𝑓 (x𝑖)]. As pre-

sented in Section 2.3.6, using the prediction results we can compute standardised

errors 𝐷𝑖 (𝑓 (x𝑖)) which are given by the differences between the simulator outputs

and the Gaussian process emulator predictive mean at the same input:

𝐷𝑖 (𝑓 (x𝑖)) =
𝑓 (x𝑖) −E [𝑓 (x𝑖)]√

Var [𝑓 (x𝑖)]
. (3.1)

Bastos and O’Hagan (2009) propose that standardised large errors suggest that

there could be a conflict between the emulator and the simulator. Based on that,

we define the points with large 𝐷𝑖 (𝑓 (x𝑖)) as candidate problem points. We firstly

identify the emulator ‘failed’ set, X𝐹 ⊆ X, with

X𝐹 = {𝑥𝑖 ∈ X|𝐷𝑖 (𝑓 (𝑥𝑖)) > 𝑇𝐹}, (3.2)

where 𝑇𝐹 is a threshold which is usually set as 2 (or even 1.96 with the argument

that if the emulator were a good fit, 5% of these points should raise a flag). If X𝐹

is not empty then X𝐹 is a candidate set of points that may indicate the existence

of an emulator that could remove regions of target NROY, X ∗. This could only

happen if a point in X𝐹 were inside or close to the target NROY space.

To determine whether the failure points are near the target NROY space, we

define the NROY space found by the computer model directly (without an emu-

lator) as “true” NROY space or target NROY. Target NROY space X ∗ is defined

as

X ∗ =

{
x ∈ X | |𝑧− 𝑓 (x) |√

Var [𝑒] +Var [𝜂]
≤ 𝑇

}
, (3.3)

where 𝑇 is the history matching threshold, 𝑧 is the observation, 𝑒 is the observation

error and 𝜂 is the model discrepancy. For each point 𝑥𝑚 ∈ X𝐹 , 𝑓 (x𝑚) is compared

with the observation 𝑧 to determine whether the emulator failure points are near

X ∗, and we form a set of ‘doubt points’ that could be close enough to target NROY

3.2 Detection 49

to cause an issue. The doubt points set, X𝐷 , is defined using equation (3.3) as

X𝐷 =

{
x𝑚 ∈ X𝐹 | |𝑧− 𝑓 (x𝑚) | ≤ 𝑇

√
Var [𝑒] +Var [𝜂]

}
(3.4)

We define the set of remaining points X𝑁 , X𝑁 = X\X𝐷 .

Standard history matching can be applied directly if X𝐷 is empty. Otherwise,

in principle, with existing methods we might have to seek to add further runs

from the computer model and/or find a more complex or bespoke emulation. The

latter may not always be easy or even possible. Emulation and history matching

are increasingly popular with modellers as a way of calibrating their own models.

Developing a bespoke emulator using a tailored kernel or mean function may

be possible for UQ experts in any given problem, but it raises barriers to wider

application in general that may not be necessary. Further model runs near X𝐷

will likely enable standard methods to work well and fix the issue in many cases.

However, in applications like climate modelling where running the model requires

specialist equipment (e.g. supercomputers) and scientist time, it often the case

that runs need to be done in batches, and time/budget constraints mean that only

a small number of batches will be possible. Wasting one of these resources just

to improve part of an emulator may sacrifice a whole potential wave of history

matching. To automatically tune the computer model, such as the climate model

in the HIGH-TUNE project, we propose a robust multi-wave history matching.

Our method is based on the notion that the emulator works well enough in

most of the parameter space so that it can be used for history matching anyway.

However, in regions of space near X𝐷 , it would be safer not to remove space at

all, and to re-sample that space in wave two. Essentially, we will add further runs

of our simulator to correct the errors in this region, but we will firstly cut out all

of the space that can safely be cut out with the existing emulator. The goal then,

when X𝐷 is not empty, is to separate the whole input space into two regions, one

containing X𝐷 , X𝐷 ⊇ X𝐷 , and the other containing X𝑁 , X𝑁 ⊇ X𝑁 . History matching

will be only applied on X𝑁 and the X𝐷 will be retained throughout in such a way

50
Local Voronoi tessellations for robust multi-wave calibration

of computer models

that we can ensure that history matching in the latter region only will not discard

parts of X ∗.

3.3 Finding X𝐷

Given the doubt points set, X𝐷 , and the normal data set X𝑁 , we require a partition

X = X𝐷 ∪X𝑁 . The doubt region, X𝐷 , will be retained in the next wave to ensure

that good parameter choices will not be ruled out. To find X𝐷 , several different

approaches can be employed to partition the input space into two distinct regions.

One conventional approach is to use a classification method (Bailey, 1994; Clifford

et al., 1975; Duda et al., 2012). In our case, the response variables are “doubt points”

and “normal data”.

We first attempted to use common classification methods on our problem, such

as logistic regression (Menard, 2002). However, these classification methods failed

because the data is very unbalanced. To deal with imbalanced data, a new Local

Voronoi Tessellation is used as a classification method to identify the doubt region,

X𝐷 (Murphy, 1990). We develop the approach below.

3.3.1 Failed classification methods

Logistic regression is a statistic model that uses a logistic function to model the

discrete binary outputs (Hosmer Jr et al., 2013; Kleinbaum et al., 2002; Menard,

2002). Logistic regression is commonly used for classification with binary outputs:

given the model inputs, the logistic function itself models the probability of the

binary outputs. Mathematically, the logistic function is defined as

log
(
𝑃(x)

1−𝑃(x)

)
= 𝛽x,

where x is the model inputs, 𝛽 is a length 𝑚+1 coefficient vector, 𝛽 = [𝛽0, . . . , 𝛽𝑚+1],

and 𝑃(x) is the probability of response being 1 at given input 𝑥. There are multiple

3.3 Finding X𝐷 51

methods for estimating the value of parameters 𝛽. Maximum likelihood estimation

is a commonly used approach to determine the values of the parameters: the value

of 𝛽 can be estimated by maximising the likelihood function:

𝐿 (𝛽) =
𝑛∏
𝑖=1

𝑃(x𝑖)y𝑖 (1−𝑃(x𝑖))1−y𝑖 ,

where (x,y) is the training data. To use logistic regression to classify the doubt

and normal regions, we denote 𝑦 is 1 when the simulator output is in the doubt

points set, else 𝑦 is 0, 𝑦(x𝑖). Apart from that, maximising a posterior (MAP) and

Markov chain Monte Carlo (MCMC) can be used within a Bayesian setting. A

common prior used for logistic regression is 𝛽 𝑗 ∼ 𝑁 (𝜇 𝑗 , 𝜎2
𝑗
), where 𝜇 𝑗 is usually

set as zero and 𝜎2
𝑗

is usually chosen from the range 10 to 100.

We use the simulator inputs as the logistic function inputs, for a given input

𝑥, the logistic function gives the probability for a unclassified sample point to be

class 1, 𝑃(𝑦 = 1|𝛽, x) = 𝑃(x). Solving 𝑃(x) gives,

𝑃(x) = exp(𝛽x)
1+ exp(𝛽x) =

1
1+ exp(−𝛽x) .

We have that 𝑦 = 1 with the probability 𝑃(x) and 𝑦 = 0 with the probability 1−𝑃(x).

To use the predication as a classifier, we set a cutoff level 𝑇𝑐𝑙 . Classifier accuracy is

a widely used measurement to choose the cutoff level. The classifier gives a set of

classes based on the probability 𝑃(x),

Class(x) =


1, 𝑃(x) > 𝑇𝑐𝑙

0, otherwise.

We consider the performance of logistic regression classification on the 1D

example introduced in Section 3.1. The results of using the detection clearly

show that there exist one doubt point. By setting this doubt point response as

1 and others as 0, we can apply a logistic regression classification. Figure 3.2

demonstrates the example classification results. To set a suitable cutoff level, we

52
Local Voronoi tessellations for robust multi-wave calibration

of computer models

Fig. 3.2 Logistic regression classification plots. Left: The logistic regression cutoff
level against the classification accuracy, the red dot is the automatic selection
of the threshold which returns the highest accuracy. Middle: Logistic regression
classification results with the automatic selection threshold. The true function is
plotted in black, red dot is in the doubt points set and the blue dots are normal
points. The blue bar shows the classification results, which means all the input
space is in the normal region. Right: True classification results, the blue narrow
bar should be the normal region and the red bar is the doubt region.

plot the classifier accuracy against the cutoff level by leave one out cross-validation

in the left panel. By automatically choosing the cutoff to reach the highest accuracy

(90%), the cutoff level becomes 0.8. The classification results with automatically

selected cutoff level are plotted in the middle panel. To quantify the classification

performance, we compare the classification result with the “true” doubt region

(overlapped region of the target NROY region (red bar) and the emulator failed

region (red bar) in Figure 3.1). On the middle panel and the right panel, the real

function is plotted in black, the red point is the only doubt point, and the blue

points are the normal points. The results of the classification method are shown

by the blue bar and red bar on the bottom, which represent the normal region X𝑁

and doubt region X𝐷 respectively.

The classifier attempts to put all points in the normal region, and thus fails

to capture the doubt region adequately. By classifying all of the points into the

normal region, the classifier can attain the highest possible accuracy (around 90%).

To get an idea of why this classification problem is performing poorly, we check

the proportion of each category. The doubt data X𝐷 only contains one data point,

which is only 10% of the whole training data. The classification training data

3.3 Finding X𝐷 53

will always be imbalanced, not only in this one-dimensional example, because

the doubt data set is constructed by the failed emulator data, and it thus should

not exceed 5-10% (else we would not consider it a good emulator). Indeed, most

classification data sets do not have equal amounts of data in each class. The slight

difference rarely matters, but when the data is excessively imbalanced it will lead

to problems: classifiers are very likely to predict all the points in the normal class,

and a high accuracy can be easily achieved.

To ensure that the target NROY space is retained after history matching, when

there might be a doubt region, we need to identify the whole doubt region. There-

fore, we should avoid the potential error of predicting the actual doubt points as

lying in the normal region. Such an error is called a Type I error, also known as

false positive (FP). A type II error, also called false negative (FN), occurs when a

classifier incorrectly predicts a normal point to be in the doubt class (Casella and

Berger, 2002). A significant type II error might retain a vast region of the input

space that makes the history matching wave meaningless.

Instead of using accuracy to set the cutoff level, we want the cutoff level to

be used to quantify the tradeoff between type I and type II error. A Receiver

Operating Characteristic curve (ROC) can be used to decide which cutoff value

to choose (Zweig and Campbell, 1993). The ROC curve is a graphical method,

allowing us to balance the True Positive Rate (TPR) and the False Positive Rate

(FPR).The TPR and the FPR are calculated by using the True Positive counts (TP),

True Negative counts (TN), FP and FN, as:

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁 ,

𝐹𝑃𝑅 =
𝐹𝑃

𝑇𝑁 +𝐹𝑃 .

A ROC curve is generated by plotting the TPR (the y axis) against the FPR (x axis)

at various cutoff settings. By specifying the different cost for making a type I error

and a type II, the total cost can be calculated.

54
Local Voronoi tessellations for robust multi-wave calibration

of computer models

Fig. 3.3 The optimization choice of cutoff level by ROC. Left: The ROC curve, the
colour on the ROC curve shows the cost corresponding with each point, which
is associated with the right panel. Green represents the lowest total cost, and
black means the highest total cost. The tilted blue line declares the boundary of
an average model, with a 0.5 area under the curve. Right: The total cost against
different cutoff value choice. The black dotted line denotes where that optimal
cutoff value and minimum total cost lies.

Figure 3.3 shows the ROC curve for the one-dimensional toy model in the

left panel, and a total cost against various cutoff settings in the right panel. By

assigning the cost for a type I error and type II error to be 200 and 10 respectively

(we set a large weight for type I error to find all possible doubt region). The optimal

cutoff to minimise the total cost is calculated to be 0.13, with the corresponding

total cost 27700. To compare the new cutoff level 0.13 selected by a ROC curve

with the cutoff level 0.8, we calculate the type I error and type II error for the two

cutoff choices with a new set of validation data. The results of this are shown in

Table 3.1. The real doubt region is around 2.8 per cent of the whole input space.

With a cutoff level 0.13, we catch all of the valid doubt region, but around 36.7% of

the normal region is misclassified. With a cutoff level of 0.8, the classifier classifies

the whole right doubt region wrongly, but the accuracy of the classifier is around

90%. This example demonstrates that type I error can be controlled as zero by

choosing a suitable logistic regression cutoff value, but, accordingly, it leads to

low accuracy, with a prominent type II error. Both logistic regression classifiers

results for this simple one-dimensional case are not ideal. In practice, we might

expect more than one doubt point when we use extensive training data with high

3.3 Finding X𝐷 55

Type I error Type II error
Cutoff level=0.1 0 36.7%
Cutoff level=0.8 2.8% 0

Table 3.1 Type I and type II errors for the two different cutoff level of the logistic
regression classifier.

dimensional inputs. Using logistic regression for problems such as this leads to a

large chance of ruling out good parameter choices, especially if the structure of the

doubt points is complicated, such as being located in different regions of the input

space. The new cutoff seems to offer an alternative way to do logistic regression

classification with unbalanced training data, but the results show that the method

is far away from being as required.

To overcome the imbalanced data, under-sampling and oversampling are two

techniques which can produced class-balanced data. The simpler undersampling

method randomly removes sampling from the majority class to strike a rough

balance of two classes. However, undersampling should/can not be applied to

our extreme unbalanced data, which may only contain one or two inputs in the

minority class.

Oversampling involves the generation of more training data in the minority

class. To avoid running the simulator additional times, we use oversampling

techniques to add more data to the doubt class. One machine learning method that

can be used for classification on class-imbalanced data is the Synthetic Minority

Oversampling Technique (SMOTE) (Chawla et al., 2002). SMOTE uses synthetic

data generation to increase the number of samples in the minority class, so that

the data set becomes balanced. SMOTE first finds the n-nearest neighbours in

the minority class for each of the samples in the class, then random samples

are generated on the lines between the neighbours. Though promising, SMOTE

requires at least two points in X𝐷 which in many instances will not apply.

Whilst well-known methods for classification are typically built based on the

logical or statistical reasoning, those approaches may fail in cases with imbalanced

data. Primarily, we want the classification to be able to identify a small and

56
Local Voronoi tessellations for robust multi-wave calibration

of computer models

unreliable region around the doubt points which gives nearly zero type I error

and a small type II error. Inspired by finding the local region around doubt

points, we propose a strategy for classification based on partitioning of the input

space through Voronoi tessellation, where the doubt region could be set as a local

Voronoi tile area.

3.3.2 Local Voronoi Tessellation

A Voronoi tessellation works with a finite number, 𝑛, of points in the Euclidean

plane, where 2 < 𝑛 <∞. The 𝑛 points are labelled by X = (x1, . . . ,x𝑛)𝑇 ∈ X , each x𝑖

is distinct from any other point, x𝑖 ≠ x 𝑗 . Supposing the 𝑛 points are a set of centres

of an 𝑛-cell Voronoi tessellation, a Voronoi tessellation then partitions the space

into 𝑛 convex cells which are called Voronoi regions, V𝑖 (Gallier, 2008). A Voronoi

region is defined as the set of points in X , whose ‘nearest’ point is x𝑖, given by

V𝑖 =
{
x ∈ X |𝑑 (x,x𝑖) ≤ 𝑑 (x,x 𝑗)

}
, ∀ 𝑗 ∈ {1, . . . , 𝑛}\𝑖. (3.5)

where 𝑑 (x,x′) is a distance function, commonly defined as the Euclidean distance,

𝑑𝐸 (x,x′) =

√√
𝑝∑
𝑖=1

(𝑥𝑖 − 𝑥′𝑖)2,

or the Manhattan distance

𝑑𝑀 (x,x′) =
𝑝∑
𝑖=1

|𝑥𝑖 − 𝑥′𝑖 |.

In Figure 3.4 we provide a visual demonstration of Voronoi regions on a two-

dimensional input space. We used a 20-run maximin Latin Hypercube(LHC)

design to sample 20 input points, which are shown in the figure with black points.

The input space is separated into 20 Voronoi cells V𝑖, 𝑖 = 1, . . . , 20 associated with

the 20 input points. Each Voronoi cell has a boundary made up of Voronoi edges:

the Voronoi edges are the black boundary lines shown in the figure. Mathemati-

3.3 Finding X𝐷 57

Fig. 3.4 Voronoi diagrams of 20 points under a Euclidean distance function.

cally, if

V𝑖 ∩V 𝑗 ≠ ∅,

we set the V𝑖 ∩V 𝑗 set to be a Voronoi edge.

When history matching, our correlation function, 𝑐(𝑥, 𝑥′), provides an appro-

priate notion of distance between inputs. Our 𝑛 inputs 𝑥 ∈ X can be used as the

centres of a Voronoi tessellation. We cannot use the correlation directly (as the

distance between the two points increases, the correlation decreases), therefore we

define a Voronoi Tessellation V𝑖 with the emulator posterior correlation function as

V𝑖 =
{
𝑥 ∈ X  |𝑐∗(𝑥, 𝑥𝑖) | ≥ |𝑐∗(𝑥, 𝑥 𝑗) |

}
, ∀ 𝑗 ∈ {1, . . . , 𝑛}\𝑖. (3.6)

Finding a Voronoi tessellation can be computationally challenging when the

design is large or when the input dimensions become even moderately sized (e.g.

> 4). However, we do not need to map the whole parameter space. Our goal is

to find the local Voronoi tiles that cover X𝐷 , ensuring that all possible values we

have not run, but might doubt our emulator for near the true NROY are included.

Specifically, a local Voronoi tessellation will partition the input space into a doubt

region, X𝐷 ⊇ X𝐷 , and normal region, X𝑁 ⊇ X𝑁 , by finding X𝐷 . We define a local

58
Local Voronoi tessellations for robust multi-wave calibration

of computer models

Fig. 3.5 Voronoi Tessellation classification results. The blue bar denotes the normal
region which can be employed in history matching. The red bar represents the
retained doubt region.

Voronoi tessellation X𝐷 =
⋃

{𝑖:𝑥𝑖∈X𝐷}V𝑖, with

V𝑖 = {𝑥 ∈ X  |𝑐∗(𝑥, 𝑥𝑖) | ≥ |𝑐∗(𝑥, 𝑥 𝑗) |}, ∀ 𝑗 s.t. 𝑥 𝑗 ∈ X𝑁 .

To test the local Voronoi tessellation classification, we apply it to the 1-dimensional

toy model, for which we present the results of classification in Figure 3.5. As be-

fore, the blue points and red point represent the normal data and the doubt data

respectively, the doubt region is highlighted in a red bar on the bottom and the

normal region is highlighted in a blue bar. To compare with the logistic regression

classification method, we also compute the classification accuracy, type I error

and type II error for the local Voronoi tessellation classification, given in Table 3.2.

Similarly to logistic regression classification by ROC-set cutoff, the local Voronoi

tessellation classification guarantees that the Type I error is zero: all the true doubt

regions are identified. In addition, the results also shows that there is a large

increase of both accuracy and Type II error associated with these improvements.

Accuracy Type I error Type II error
VT classification 91% 0 8.09%

Table 3.2 Local Voronoi tessellation classification results.

3.4 Robust history matching 59

3.3.3 Local augmentation

The local Voronoi tessellation, X𝐷 , represents the union of convex sets around the

doubt points. Given that the emulator failed to predict the doubt points, but was

able to predict the surrounding normal points, we can deduce that there is a region

between each normal point and each doubt point where the emulator is reliable (it

predicts the normal points well) and a region near the doubt points where it is not.

Though X𝐷 will contain much of the doubt region, if not all, there is no guarantee

that it should contain the whole badly performing region. We therefore include

an augmentation step to ensure that as much of the region where the emulator

cannot be trusted (near target NROY) is included in X𝐷 as is possible.

For any design point 𝑥𝑖, the design point 𝑥 𝑗 with the largest value of 𝑐∗(𝑥𝑖, 𝑥 𝑗)

is the point with the most influence on 𝑓 (𝑥) in the Gaussian process. For 𝑥𝑖 ∈ X𝑁 ,

we want to ensure that the most influential points are not doubt points where we

do not trust our emulator, as this would indicate a possibility that some part of

the region bordering X𝐷 and near to 𝑥 𝑗 is unreliable. Our augmentation step adds

all points from X𝑁 with this property to X𝐷 before arriving at a final X𝐷 .

Specifically, for each 𝑥𝑖 ∈ X𝑁 , let

𝑥𝑘 (𝑖) = arg max
𝑘:𝑥𝑘∈X

𝑐∗(𝑥𝑖, 𝑥𝑘).

Let X𝐷 ′ =
{
𝑥𝑖 : 𝑥𝑘 (𝑖) ∈ X𝐷

}
, be the set of points in X𝑁 whose most influential point is

a doubt point. We then augment the doubt set by X𝐷 ′ so that X𝐷 = X𝐷 ∪X𝐷 ′, and

compute the local Voronoi tessellation on the augmented set as before.

3.4 Robust history matching

Having isolated a region of parameter space, X𝑁 = X \X𝐷 in which we feel confi-

dent enough in our emulator to rule out parameter space, we can history match in

60
Local Voronoi tessellations for robust multi-wave calibration

of computer models

just that region. Specifically, we define

X ′
𝑁 = {𝑥 ∈ X𝑁 : I (𝑥) ≤ 𝑇} (3.7)

where I (𝑥) is the implausibility measurement. The NROY space, X 1
𝑁𝑅𝑂𝑌

, after the

first wave is defined as

X 1
𝑁𝑅𝑂𝑌 = X𝐷 ∪X ′

𝑁 . (3.8)

The detection step is adopted before history matching in each wave, and the Local

Voronoi tessellation approach is applied when there is a sign of doubt points. Our

robust history matching uses the following algorithm:

1. Fit an emulator using the training data X .

2. Calculate the emulator’s cross-validation mean and variance for the training

data, and compute the standardised errors for each training data input by

equation (3.1).

3. Identify the failed set X𝐹 , and then, for each point in the failed set, compare

the failed data output with the observation via equation (3.4) to discover a

doubt point set, X𝐷 .

4. Apply history matching if X𝐷 = ∅. Else, set a local Voronoi region for the

doubt points set to identify the doubt region X𝐷 , the rest part of input space

is denoted as the normal region X𝑁 .

5. Apply history matching in X𝑁 , The NROY space X𝑁𝑅𝑂𝑌 is defined as

X𝑁𝑅𝑂𝑌 = X𝐷 ∪X ′
𝑁 , (3.9)

where X ′
𝑁

is the retained part (NROY space) of normal region,

X ′
𝑁 = {𝑥 ∈ X𝑁 : I (𝑥) ≤ 𝑇}. (3.10)

3.5 Numerical examples 61

Fig. 3.6 The results of multi-wave calibration of a 1-dimensional model. Left: the
results of robust history matching after one wave. The true function is represented
by the black curve and the ten black points are input points. The blue line repre-
sents the emulator posterior mean, and the blue dotted lines give the two standard
deviation prediction intervals. The red interval defines the true NROY space,
the blue interval defines the NROY space by standard history matching and the
green interval defines the NROY space by our robust history matching approach.
Centre: leave One Out diagnostic plot against x for a second wave emulator. The
emulator prediction and two standard deviation intervals are given in black. The
true function values are in blue if they lie within two standard deviation prediction
intervals, or red otherwise. The pink line and the pair of red dotted lines represent
the observation with observation error and discrepancy. Right: history matching
second wave result. The green interval defining the NROY space after the second
wave, the red interval defining true NROY X ∗.

3.5 Numerical examples

We apply the methodology of the last section to the 1-dimensional function from

the introduction and a 5-dimensional function described below. We use the R pack-

age DiceKriging (Roustant et al., 2012) to construct the emulators throughout.

3.5.1 The 1-dimensional function

We present our robust history match of the one-dimensional toy function in Figure

3.6. The wave one result is shown in the left panel, where the green interval defines

the first wave NROY space, and the red interval defines the true NROY space. To

compare with standard history matching results, we plot the blue interval, which

is the first wave NROY space. After the first wave, our approach retains 16.24% of

the input space, which covers all of the true NROY space (4.6% input space). A

second wave is performed with ten randomly selected runs within NROY space:

62
Local Voronoi tessellations for robust multi-wave calibration

of computer models

Fig. 3.7 Leave one out diagnostic plots. Each panel represents leave one out
predictions from an emulator against one of the 5 inputs. Black points and error
bars are from the emulator posterior mean and two standard deviation prediction
intervals. The true function values are in green if they lie within two standard
deviation prediction intervals, or red otherwise.

the leave one out diagnostic plot against inputs for the second wave emulator is

shown in the middle panel, highlighting that there are no doubt points. Having

passed the diagnostic check, we apply the standard history matching on the first

wave NROY space. The right panel shows the second wave results. After the

second wave, the NROY space retains 5.3% input space, and the figure shows that

all of the target NROY space is retained. The blue interval shows the second wave

results following standard history matching, and even though the second wave

performs well, more than one third of the target NROY space has already been

ruled out by the first wave.

3.5 Numerical examples 63

x1

x2

x3

x4

x5

Fig. 3.8 Local Voronoi cell plots over each pair of parameters. The red point is the
doubt point and the pink points are selected by our augmentation step. The blue
region is the Local Voronoi cell of the doubt points which is the doubt region.

3.5.2 A 5-dimensional function

In order to examine the performance of our method in higher dimensions, we look

at a 5-dimensional function,

𝑓 (x) = √
𝑥1 +

1
√
𝑥2

+ 𝑥3 + sin(𝑥4) + exp(𝑥5).

Note that this function tends to infinity as 𝑥2 tends to zero which could happen in

a physical model as an input approaches a hard physical boundary. We use a 50

member maximin Latin Hypercube (LHC) to select points for the first wave, and

use the function evaluations to construct an emulator.

Leave one out diagnostics against each input are presented in Figure 3.7. Black

points and error bars are calculated from the emulator posterior mean and two

standard deviation prediction intervals. The true function values are in red if

they do not lie within two standard deviation prediction intervals, which are

then assigned to the emulator failed data set. By eye, we see that the emulator

64
Local Voronoi tessellations for robust multi-wave calibration

of computer models

Standard
wave 1

Standard
wave 2

Standard
wave 3

Robust
wave 1

Robust
wave 2

Robust
wave 3

Retained
NROY volume 0.6373% 0.4445% 0.2664% 4.6660% 3.9132% 0.2251%

Retained target
NROY volume 24.667% 29.744% 24.615% 99.643% 99.643% 99.449%

Table 3.3 Standard vs robust history matching with top row as the percentage
of the original space as NROY and the bottom the percentage of target NROY
retained.

has individual large errors near the observations, which might indicate that the

emulator does not simulate the target ‘NROY’ space effectively. Using equation

3.4 we identified one doubt point. Following robust history matching, a local

Voronoi tessellation using the local augmentation approach is applied to identify

the doubt region. The local Voronoi tessellation plot for both inputs is presented

in Figure 3.8. The red point is the doubt point and the pink point is selected by

the augmentation step. The blue range is the Local Voronoi tessellation. We apply

the robust history matching algorithm described in Section 3.4, retaining the local

Voronoi tiles as part of the NROY space, and apply the usual constraint to the rest

of the space.

We compare our robust method with standard history matching in Figure 3.10.

Figure 3.9 shows the target NROY space as a reference. In these density plots, each

pixel on any panel represents the proportion of points behind that pixel in the

other 3 dimensions of the parameter space that is NROY. The scale corresponds to

the colours in the upper triangles, whilst plots on the lower triangle mirror the

upper triangle but with independent scales so as to reveal any structure hidden by

the comparative colour scheme.

The left panel of Figure 3.10 shows the first wave and third wave NROY space

following standard history matching. Comparing with the target NROY space,

we can see the first wave following standard history matching has incorrectly cut

out a large corner of the target region (low 𝑥1 and low 𝑥2, 𝑥3, 𝑥4 and the lower

half of 𝑥5). Wave 1 of robust history matching, shown in the bottom left panel of

Figure 3.10, does not have this issue and cuts out less parameter space overall (as

3.5 Numerical examples 65

Fig. 3.9 Target NROY space.

expected). We continue to perform robust history matching for 2 further waves,

for which waves 2 and 3 produced no doubt points, and are thus the same as

standard history matching (but from a different wave 1). The wave 3 NROY space

is shown in bottom right panel of Figure 3.10.

Table 3.3 shows the volume of NROY space as a percentage of the original

space (top row) and the percentage of target NROY retained following each wave

of history matching (bottom row). Target NROY is 0.09% of the original space.

Though standard history matching cuts more space than our robust method in

wave 1, it cuts out nearly 75% of target NROY, whilst we only cut 0.2%. After 2

further waves of history matching, we have still retained the target NROY, but

have reduced our NROY to 0.17% of the original space.

This example shows a case where history matching can be non-robust in 5

dimensions and that our robust history matching effectively enables us to continue

the analysis, without having to run a new wave 1. We now show a case from our

work on tuning climate models where this issue has presented itself, and show

how our method performs.

66
Local Voronoi tessellations for robust multi-wave calibration

of computer models

Fig. 3.10 NROY density plots for 2-D projections of NROY space. Top left: Wave 1
NROY space following standard history matching. Top right: Wave 3 NROY space
following standard history matching. Bottom left: Wave 1 NROY space following
robust history matching. Bottom right: Wave 3 NROY space after robust history
matching. The scale corresponds to the colours in the upper triangles, whilst plots
on the lower triangle mirror the upper triangle but with independent scales so
as to reveal any structure hidden by the comparative colour scheme (the change
from light blue, blue to red indicates that the density is rising).

3.6 Application: process-based tuning of climate models 67

3.6 Application: process-based tuning of climate mod-

els

We introduced the literature on climate model tuning in Chapter 2. Hourdin et al.

(2017) state there still exist challenges when using calibration approaches. The

main challenge is the computational cost of running climate simulators. For high-

resolution climate models, only the calibration methods which can be used with

the emulators can be considered. Also, a challenge for automatic tuning methods

is that tuning based on a handful of metrics may lead to over-tuning because

the improved performance in those metrics may risk achieving bad performance

in metrics which are not involved in the tuning process. Process-based tuning

of climate models explicitly avoids the over-tuning issue. The developers of the

French climate models CNRM-CM and IPSL-CM are developing tools to automat-

ically tune boundary layer cloud parameterisations within their models based on

history matching to high resolution Large Eddy Simulations. Our collaboration

involves providing methods to both emulate and history match to a large number

of process-based metrics quickly and automatically, so that the modellers can use

the tools independently.

With multiple unsupervised history matches, it is important that our methods

are robust to possible ensemble issues, and so the method we describe in this

paper should be part of our set of tools. We illustrate its importance through an

example of a metric that fails our tests in IPSL-CM. IPSL-CM is an atmosphere

model that is used to predict planetary atmospheres, including that of the Earth

and other planets (Mars, Titan, Venus), as well as regional climate process studies

(Bony and Dufresne, 2005; Hourdin et al., 2017; Voldoire et al., 2013). We run a

single column version of the model (SCM) and perturb 4 cloud parameters chosen

by the modellers. The model is run for a particular boundary layer case (in this

case SANDU/REF, which captures transitions from cumulus to stratocumulus

clouds, where stratocumulus clouds are low-level patches of clouds.) with the

idea of seeing which parameter choices lead to a reasonable representations of

68
Local Voronoi tessellations for robust multi-wave calibration

of computer models

clouds in these region types (as compared to high-resolution simulations). The

parameters are thermals fact epsilon, thermals ed dz, cld lc lsc

and cld tau lsc, where parameter ranges were determined by the project, and

in our analysis we have mapped the parameters onto [−1,1] for fitting emulators

and history matching.

We generate a 30-member design as the first 2 LHCs in a 150-member extended

LHC composed of ten 15-member LHCs following (Williamson, 2015) (each addi-

tional LHC ensures that the composite design is orthogonal and fills the space in

each extension phase). Leave one out diagnostic plots for our fitted emulator are

presented in the top row of Figure 3.11. To history match, we use an observation

of 12.18, and the observation error variance and discrepancy variance are both set

as 0.0006.

Figure 3.11 shows there are 2 failed points near the observation, which might

indicate that the emulator does not simulate the target NROY space well. Using

equation (3.4) we identify 1 doubt point, and another doubt point is defined by

our augmentation step. Since the target NROY is unknown in the climate model,

in order to fairly compare our method with standard history matching, we use the

remaining 120 data points (from our 150 member LHC) as validation data. The

validation results are shown in Figure 3.11 in the middle and bottom rows. The

first wave emulator training data are presented in black, and the rest of the data

are from the validation set. The validation inputs are in green if they are retained

in the NROY after wave 1 history matching, or grey otherwise. The middle panel

shows the validation results following the standard history matching. In this small

data set, we have 11 points in target NROY space, the standard history matching

misses one target point after wave 1 (around 9% target NROY space is missed). The

bottom panel shows the validation results after wave 1 following robust history

matching, where the red point is the original doubt point, and the orange point

is the doubt point selected by our augmentation step. The results show that our

method retains all the true NROY. After a validation test with a small data set, to

fairly compare two methods, we do three waves with each methodology.

3.6 Application: process-based tuning of climate models 69

−1.0 −0.5 0.0 0.5 1.0

12.2

12.4

12.6

12.8

13.0

13.2

thermals_fact_epsilon

q
v
5
0
0

−1.0 −0.5 0.0 0.5 1.0

12.2

12.4

12.6

12.8

13.0

13.2

thermals_ed_dz

q
v
5
0
0

−1.0 −0.5 0.0 0.5 1.0

12.2

12.4

12.6

12.8

13.0

13.2

cld_lc_lsc

q
v
5
0
0

−1.0 −0.5 0.0 0.5 1.0

12.2

12.4

12.6

12.8

13.0

13.2

cld_tau_lsc

q
v
5
0
0

−1.0 −0.5 0.0 0.5 1.0

12.0

12.5

13.0

13.5

thermals_fact_epsilon

q
v
5
0
0

−1.0 −0.5 0.0 0.5 1.0

12.0

12.5

13.0

13.5

thermals_ed_dz

q
v
5
0
0

−1.0 −0.5 0.0 0.5 1.0

12.0

12.5

13.0

13.5

cld_lc_lsc

q
v
5
0
0

−1.0 −0.5 0.0 0.5 1.0

12.0

12.5

13.0

13.5

cld_tau_lsc

q
v
5
0
0

−1.0 −0.5 0.0 0.5 1.0

12.0

12.5

13.0

13.5

thermals_fact_epsilon

q
v
5
0
0

−1.0 −0.5 0.0 0.5 1.0

12.0

12.5

13.0

13.5

thermals_ed_dz

q
v
5
0
0

−1.0 −0.5 0.0 0.5 1.0

12.0

12.5

13.0

13.5

cld_lc_lsc

q
v
5
0
0

−1.0 −0.5 0.0 0.5 1.0

12.0

12.5

13.0

13.5

cld_tau_lsc

q
v
5
0
0

Fig. 3.11 Top: Leave one out diagnostic plots. Each panel represents one left-out
emulator predicted, black points and error bars are from the emulator posterior
mean and two standard deviation prediction intervals. The true function values
are in blue if they lie within two standard deviation prediction intervals, or red
otherwise. The observation with observation error are in red and dotted red line
respectively. Middle: Validation results after wave 1 following standard history
matching. All the points are from 150-member LHC sampling, emulator training
data are presented in black. The remaining data are used as validation data which
are in green if they are retained in the NROY after wave 1 history matching, or
grey otherwise. Bottom: Validation results after wave 1 following robust history
matching. The red point is the original doubt point and the orange point is the
doubt point selected by our augmentation step.

The NROY density plots are presented in Figure 3.12, and a comparison of

retained NROY volume after each wave for these two methods is presented in

Table 3.4. Only the first wave was detected with doubt points, and thus standard

history matching is applied to wave 2 and 3 for both approaches (when there is no

70
Local Voronoi tessellations for robust multi-wave calibration

of computer models

Wave 1 retained
NROY volume

Wave 2 retained
NROY volume

Wave 3 retained
NROY volume

Standard
History matching 20.952% 17.376% 15.649%

Robust
History matching 22.088% 17.63% 16.839%

Table 3.4 Comparison between standard history matching our method.

doubt point, the robust history matching is the same as standard history matching).

We can see that the standard history matching cuts off more space in the third

wave, which might be because of the emulator or the training data sample. As

mentioned, the later waves give a more accurate emulators in the reduced space.

We compare the later wave’s NROY with the first wave doubt region, to detect

whether the first wave doubt region is still retained in the final NROY space. By

comparing the standard history matching wave 1 NROY density plot with robust

wave 1’s NROY density plot, we can see that our method retains more space in the

first wave (around 1%). We can see from Figure 3.12 that this retained space is in

the centre of the space spanned by thermals fact epsilon and thermals

ed dz. The wave 3 NROY density plot of robust history matching shows the

doubt area is still in the NROY space, showing that standard history matching

incorrectly ruled out part of target NROY parameter space.

This application showed that incorrectly ruling out parameter space can occur

in practice, in this case when history matching to tune climate models. For climate

models in particular, this mistake could prove very costly as history matching is

used to assess the quality of a given parametersiation or an alternative. If good

models are accidentally discarded, the parameterisation or even the resolution of

the model or its implementation might be needlessly changed, wasting the time

and/or resources of the modelling centre.

3.6 Application: process-based tuning of climate models 71

Fig. 3.12 Top left: Wave 1 NROY space for LMDZ-SANDU after robust history
matching. Top right: Wave 3 NROY space for LMDZ-SANDU after robust history
matching. Bottom left: Wave 1 NROY space for LMDZ-SANDU following standard
history matching. Bottom right: Wave 3 NROY space for LMDZ-SANDU following
standard history matching.

72
Local Voronoi tessellations for robust multi-wave calibration

of computer models

3.7 Discussion

In this chapter we demonstrated a potential issue with history matching that

occurs when emulators that seem to validate well by most standard analyses do

not simulate the (unknown) target subspace well enough. We showed that this

can lead to good parts of parameter space being ruled out unintentionally. We

developed a method for detecting these cases based on standard diagnostics. We

then presented a robust history matching method based on using a tailored local

Voronoi tessellation designed to capture the region where the emulator is not as

good as it needs to be, and isolate it so that the rest of the input space can be

pruned as normal, without having to re-run the simulator.

We demonstrated the efficacy of our method in comparison to standard history

matching for 2 numerical examples designed to demonstrate the issue, and then

applied the method to a process metric from a single column version of the French

climate model. We showed that, unlike standard history matching, our method

manages to effectively cut parameter space whilst ensuring that the target space

is preserved. There are several possible extensions to our developed approaches.

Our detect step based on standard diagnostic can easily identify the doubt region

when the emulation failed runs lie in the true NROY space. However, where no

model runs in the true NROY space, there may still be inaccuracies in history

matching if the failure points are close to NROY space. More emulation diagnostic

approaches could be considered for these possible situations in the future.

Whilst it may be possible to observe the diagnostic issue we have highlighted,

and to offer a bespoke history match for a particular quantity in any given applica-

tion, this is unlikely to be feasible in applications where tens, hundreds or even

thousands of emulators are built, and are to be compared with observations (see,

e.g. Gu et al., 2016; Lee et al., 2012). We also want methods that do not require

frequent intervention by an experienced statistician. Hence our robust method

provides a way to safely and automatically isolate any regions of parameter space

where it would be dangerous to history match with the current emulator, but

3.7 Discussion 73

still allow the same emulator to be used appropriately without requiring a be-

spoke analysis. To achieve this aim, we will continue study history matching for

different cases in the following chapters, especially for computer model with high-

dimensional outputs. The climate model will also be studied further in Chapter

6.

Chapter 4

Kernel-based history matching for

high-dimensional computer model

output

4.1 Introduction

There are a number of different approaches for emulation and calibration of

computer models with high-dimensional output (e.g. a time series, a spatial field,

or a spatio-temporal field), as discussed in Section 2.3.5 and Section 2.5.3. The

most commonly used method to handle high-dimensional output is principal

component analysis (PCA), which projects the computer model output onto a

low dimension basis, derived from an ensemble of computer runs (Higdon et al.,

2008; Wilkinson, 2010). PCA reduces the dimensionality of the model output

significantly, such that a straight-forward and efficient emulation can be built for

the coefficients, either univariately or multivariately.

Both history matching and calibration can be performed in conjunction with

the PCA basis projection method for emulation (see Section 2.4 and Section 2.5.3

for more details). Section 3.1 provides a short summary of the general advantages

of history matching. Particularly for climate models, a prior distribution for the

76 Kernel-based history matching for high-dimensional computer model output

discrepancy error is hard to estimate. Bayesian calibration, introduced by Kennedy

and O’Hagan (2001) specifically requires discrepancy information. Furthermore,

due to the complexity of the physical processes being studied, climate models

often require vast amounts of computing even for a single run, meaning that only

a small number of runs can be evaluated. Using Bayesian calibration to optimise a

vast state vector concerning only a relatively small amount of data could easily

lead to overfitting/overtuning (Hourdin et al., 2017). Hence, we will only focus

on history matching for computer models with high-dimensional output in this

chapter.

For emulators built using basis coefficients, history matching can be performed

either on these coefficients, or on reconstructions of the original field. Salter et al.

(2019) investigate the properties of the PCA basis method for history matching:

they present a ‘terminal case’ to show there is a chance that the basis vectors

fail to represent the key features in the observations in which the calibration

is interested. To solve that limitation, they offer a rotation algorithm to find a

calibration-optimal PCA basis. Moreover, Salter and Williamson (2019) present an

efficient way to compute calibration for high-dimensional computer model output

via history-matching.

However, when we try to match spatial output, even the rotated PCA-based

history matching might fail when the output space is not well approximated by

a linear subspace. To explain the reasons why the existing approaches can fail,

consider the following analogy. Imagine a room with spotlights which form pat-

terns (like the basis vectors), and each of them has a dimmer which is responsible

for the strength of various patterns (similar to the coefficient controlled by the

input parameters). The rotated PCA-based history matching can find the right

way to set the dimmers to make the lights stronger or weaker, which gives certain

lighting conditions consistent with the key pattern in the observation. But when

the locations of the spot lights are unrestricted in the 2-D space of the output, the

positions of key features in the output space can be different for each run, and can

be misaligned compared to observations. When we try to calibrate such spatial

4.1 Introduction 77

output, what is important for the credibility of the model (in our application) is

that the key physical patterns are present, even if they may not be in the right

place or exact. The current state of the art statistical methods for calibrating these

models cannot handle these problems well, and are typically only good at finding

stronger or weaker signals in fixed locations.

This kind of situation can happen for simulators with a large spatial output

where the model input parameters control the position of the pattern. Such situa-

tions are prevalent in climate models; resolution-dependent currents or signals

may move around the output space. When we try to calibrate these computer

models, sometimes the goal is that the model has to be able to represent key

features that the modellers want their model to replicate, even if they may not

happen in exactly the same place in reality.

Kernel methods for pattern recognition and feature extraction from machine

learning could hold the key to overcoming the limitations of current calibration

methods. We investigate the application of kernel methods to history matching.

A novel method is introduced as kernel-based history matching. We will show

that kernel-based history matching is not only an extension of current calibration

approaches, but a generalised version of the traditional history matching using

PCA. Through our investigating, we will generalise the notion of the method and

the meaning of key elements, such as discrepancy, implausibility and NROY space

as needed.

In this chapter, we first adopt kernel methods for model outputs which can

be represented by a spatial field to highlight the key features that the modellers

want to calibrate. Essentially, there is a mapping function that maps our model

output from the simulator output space to another space (a higher-dimensional

“feature space”), in which the simulator exhibits a more linear behaviour. There

is no requirement that we know the explicit expression of the mapping function.

Kernel methods allow us to get rid of the need to compute the coordinates of the

mapped model output in feature space: the same procedures are achieved with a

kernel function which computes dot products between the data in feature space.

78 Kernel-based history matching for high-dimensional computer model output

With a user specified kernel function, we position the calibration problem in

the corresponding feature space. We perform history matching as defined within

the same framework introduced before, but in feature space. This method is based

on the distance (implausibility) between the simulator outputs and observation

in feature space, with respect to observation error and discrepancy (though the

meaning of the latter will be revisited), and we use this distance to rule out regions

of input space that give model outputs that are ‘too far’ from the observation.

To avoid building thousands of emulators for high-dimensional outputs, linear

PCA is performed on the feature space. This procedure is known as kernel prin-

cipal component analysis (kernel PCA), which is a non-linear extension of PCA

using kernel methods to process nonlinear data sets. Kernel PCA can extract the

nonlinear characteristics of data, and obtain the best description of data, while

keeping the data variance unchanged. By projecting the output onto a low dimen-

sional basis space (a sub-space of feature space), we only need a few emulators

similar to other basis emulation methods introduced in Chapter 2. Kernel-based

history matching will be performed on the feature space with these emulators,

giving both efficiency and effectiveness. We will introduce kernel-based history

matching over two chapters: this chapter gives the background of kernel methods

and introduces kernel-based history matching. Getting the calibration right may

require tailoring our kernels to physical knowledge, so an algorithm for optimal

kernel selection in kernel-based history matching will be developed in Chapter 5.

This chapter has the following structure. In Section 4.2 we introduce the back-

ground of kernel methods and kernel PCA. The multivariate emulation approach

with kernel PCA is also introduced. We present our proposed kernel-based history

matching on the feature space in Section 4.3, and demonstrate three potential

approaches with newly defined implausibility and cut-off threshold in Section 4.4,

4.5, 4.6, and 4.7 . In Section 4.8, we apply our method to a numerical example. We

finish off with a discussion in Section 4.9.

4.2 Kernel methods 79

4.2 Kernel methods

Kernel methods are a category of approaches for pattern analysis which have

become popular in machine learning over the past 2 decades (Joachims, 2002;

Schölkopf et al., 2002; Shawe-Taylor et al., 2004). For many linear algorithms

in pattern analysis which can only efficiently detect linear relationships within

data (e.g. PCA), kernel methods are introduced to extend linear hypotheses to

nonlinear relationship by embedding the original data set in a feature space, F , in

which algorithms based on linear algebra can be applied to identify patterns in

embedded data (Burges, 1998; Soentpiet et al., 1999).

The transformation from original space to a feature space is a user-specified

mapping function 𝜙(·), which maps the data from an initial data space, M, into

feature space F , 𝜙 : 𝑥 → 𝜙(𝑥). However, a feature space usually has higher di-

mensionality than the original space, and could even be the infinite-dimensional

space, which means the mapping function and it’s inverse function are difficult to

find, or even impossible. In contrast, kernel methods require only a user-specified

kernel, without needing to compute the coordinates of the data in feature space,

but rather by only needing to compute the inner product between two vectors

in the feature space (Bishop, 2006; Genton, 2001; Hofmann et al., 2008; Scholkopf

and Smola, 2001). For all 𝑥 and 𝑥′ from the initial space, M, of dimension 𝑚, a

kernel function 𝑘 (𝑥, 𝑥′) defines an inner product of 𝜙(𝑥) and 𝜙(𝑥′) in the respective

feature space F of dimension 𝐷, F ⊂ R𝐷

𝑘 (𝑥, 𝑥′) = < 𝜙(𝑥), 𝜙(𝑥′) >, (4.1)

where the feature space F is a dot product space and features are finite dimensional

vectors (Hofmann et al., 2008), so that the inner product can be written as a dot

product:

< 𝜙(𝑥), 𝜙(𝑥′) > = 𝜙(𝑥)𝑇𝜙(𝑥′).

80 Kernel-based history matching for high-dimensional computer model output

Instead of explicitly computing the mapped data 𝜙(𝑥) in the higher dimensional

feature space, a kernel method allows us to represent the data 𝜙(𝑥) and 𝜙(𝑥′) only

through a set of pairwise comparisons between the original data 𝑥 and 𝑥′. This

approach is called the kernel trick (Lanckriet et al., 2004; Shawe-Taylor et al.,

2004). Using the kernel trick is often computationally cheaper than computing an

explicit mapping function. This approach works because the algorithms can be

implemented such that they only require dot products between embedded data.

There are many algorithms capable of operating with kernels, such as SVM, PCA

and ridge regression. We illustrate the kernel trick thought our account of Kernel

PCA in Section 4.2.2.

4.2.1 Kernels

Theoretically, 𝑘 (𝑥, 𝑥′) is required be positive-definite (Gehler, 2009; Mercer, 1909).

To give the definition of a positive-definite kernel, we denote 𝑥1, . . . 𝑥𝑛 as n input

data from initial data space M. Given a kernel function 𝑘 (𝑥, 𝑥′), a 𝑛× 𝑛 kernel

matrix K = [𝐾𝑖 𝑗] can be calculated, where 𝐾𝑖 𝑗 = 𝑘 (𝑥𝑖, 𝑥 𝑗). The semi-definite matrix,

K, is positive definite when
𝑛∑

𝑖, 𝑗=1
𝑐𝑖𝑐 𝑗𝐾𝑖 𝑗 ≥ 0 (4.2)

is true for any nonzero constants 𝑐1, . . . , 𝑐𝑛 ∈ R of the same sign. When the kernel

matrix is positive definite for any given input, then its associated kernel function is

a positive definite kernel. Aronszajn (1950) presents the Moore-Aronszajn theorem:

for a positive definite kernel: there is a Hilbert space H and an implicitly defined

map function 𝜙 such that 𝜙 : X →H and 𝑘 (𝑥, 𝑥 ′) =< 𝜙(𝑥), 𝜙(𝑥 ′) >. Hence, as long

as the feature space F is an inner product space, an explicit representation for 𝜙 is

not required.

In our research, we mainly study kernel methods that work with PCA. Hof-

mann et al. (2008); Hsu et al. (2003); Schölkopf et al. (2002); Souza (2010) present

different types of positive definite kernel functions for kernel PCA (we will intro-

4.2 Kernel methods 81

duce the kernel PCA algorithm in Section 4.2.2). The most commonly used kernel

functions are introduced below.

1. Linear kernels are the most simple kernel functions with

𝑘 (𝑥, 𝑥′) = 𝑥𝑥′+ 𝑐, (4.3)

for constant 𝑐. When 𝑐 = 0, 𝑘 (𝑥, 𝑥′) is called the homogeneous linear kernel.

The linear kernel function needs fewer control parameters and calculation is

fast, making their use computationally attractive.

2. Polynomial kernels are popular in image processing (Meijering et al., 1999).

The most commonly used form for a polynomial kernel is

𝑘 (𝑥, 𝑥′) = (𝛼𝑥𝑇𝑥′+ 𝑐)𝑑 , (4.4)

where 𝑐 is a constant, 𝛼 is an adjustable slope parameter and 𝑑 is a positive

integer referring to the polynomial degree.

3. Gaussian kernels are general-purpose kernels, which have been popular in

machine learning (Souza, 2010). The Gaussian kernel is written

𝑘 (𝑥, 𝑥′) = exp
(
−∥ 𝑥− 𝑥′ ∥2

2𝜎2

)
, (4.5)

where ∥ 𝑥 − 𝑥′ ∥2 is the 𝐿2 norm, 𝜎 is an adjustable parameter known as

the length scale. The Gaussian kernel (squared exponential correlation

function) is also a default kernel for Gaussian process emulators, which

were introduced in Section 2.3.2. The Gaussian kernel is universal, and

it is infinitely differentiable. It can project the mapped data 𝜙(𝑥) in to a

infinite dimensional feature space. Gaussian kernels are examples of radial

basis function (RBF) kernels, i.e. a kernel that depends only on the distance

between the two arguments, ∥ 𝑥− 𝑥′ ∥.

82 Kernel-based history matching for high-dimensional computer model output

4. The (absolute) exponential kernel is also an RBF kernel, similar to the Gaus-

sian kernel, the expression is

𝑘 (𝑥, 𝑥′) = exp
(
−∥ 𝑥− 𝑥′ ∥

2𝜎2

)
, (4.6)

where ∥ 𝑥− 𝑥′ ∥=
√
∥ 𝑥− 𝑥′ ∥2, and 𝜎 is the length scale hyper-parameter. Un-

like the squared exponential function, the exponential kernel is only continu-

ous, and it is not differentiable. The exponential kernel can be a good choice

for fitting non-differentiable functions.

5. Laplacian kernels are similar to the exponential kernel (it is also a RBF kernel).

The Laplacian kernel has the form

𝑘 (𝑥, 𝑥′) = exp
(
−∥ 𝑥− 𝑥′ ∥

𝜎

)
. (4.7)

For multidimensional input, by default the same length scale is adopted for

each input dimension if we use the kernels introduced above. Automatic Rele-

vance Determination (ARD) kernels are introduced for multivariate input data in

Van Gestel et al. (2001); Wang et al. (2010). Most basic kernel functions have an

ARD extended version. A general form for linear kernels can be found by adding

a positive definite matrix, Σ, onto the input components

𝑘 (x,x′) = x𝑇Σ−1x′+ 𝑐. (4.8)

For Gaussian kernels, the general form is given by

𝑘 (x,x′) = exp
(
−(x−x′)𝑇Σ−1(x−x′)

)
. (4.9)

When Σ is a diagonal matrix, 𝑘 (x,x′) can be written as

𝑘 (x,x′) = exp

(
−

𝑛∑
𝑖=1

(x𝑖 −x′
𝑖
)2

𝜎2
𝑖

)
, (4.10)

4.2 Kernel methods 83

where 𝜎𝑖 is the length scale of dimension 𝑖. When 𝜎𝑖 is infinity, the corresponding

dimension is ignored. If every dimension is ignored then this kernel would be

a constant. If there is a dimension that contains important information, then we

could find the optimal corresponding length scale, 𝜎𝑖, to scale that dimension

appropriately.

Which kernel to use and how to choose or fit its properties is an important

question and depends on the specific problem at hand. We will discuss the kernel

(and kernel parameter) selection problem in the next chapter.

4.2.2 Kernel principal component analysis for emulation

Kernel principal component analysis (kernel PCA) is a nonlinear extension of

PCA using kernel methods, which can extract the nonlinear characteristics of data.

As our goal is to generalise PCA approaches to emulation and calibration, we

introduce kernel PCA over the outputs of a computer experiment, analogous to

Section 2.3.5.

Let 𝑓 represent the computer model and F = (𝑓 (x1), . . . , 𝑓 (x𝑛)) ∈M ⊆ R𝑚 rep-

resent a set of simulator runs with inputs X = (x1, . . . ,x𝑛) ∈ X ⊆ R𝑝, where X is the

𝑝-dimensional simulator input space and M is the 𝑚-dimensional simulator out-

put space. As we introduced in Section 4.2, kernel PCA maps the 𝑚-dimensional

output data into a higher 𝐷-dimensional feature space F ⊂ R𝐷 via a mapping

function 𝜙(·) : 𝑥→ 𝜙(𝑥) which is defined by a kernel function

𝑘 (𝑓 (x′), 𝑓 (x)) = 𝜙(𝑓 (x′))𝑇𝜙(𝑓 (x)). (4.11)

PCA is then applied to the feature space F , via the 𝐷 ×𝑛 matrix representing the

mapped ensemble, Φ = (𝜙(𝑓 (x1)), . . . , 𝜙(𝑓 (x𝑛))). The majority of variability in

the training data (on feature space) can be explained by the first few orthogonal

84 Kernel-based history matching for high-dimensional computer model output

directions. Define the mean of the mapped ensemble 𝜙 = (𝜙1, . . . , 𝜙𝐷), where

𝜙 𝑗 =
1
𝑛

𝑛∑
𝑖=1
𝜙 𝑗 (𝑓 (x𝑖)),

and define the centred mapped ensemble Φ̃ = (𝜙(𝑓 (x1)), . . . , 𝜙(𝑓 (x𝑛))), where

𝜙(𝑓 (x𝑖)) = 𝜙(𝑓 (x𝑖)) −𝜙. Note, throughout, we will not have access to 𝜙(𝑓 (x)) or 𝜙,

but can access terms involving 𝜙(𝑓 (x))𝑇𝜙(𝑓 (x)) using the kernel. Analogous to

PCA, we find the eigen-decomposition of the 𝐷 ×𝐷 covariance matrix,

𝐺 =
1
𝑛

𝑛∑
𝑖=1
𝜙(𝑓 (x𝑖))𝜙(𝑓 (x𝑖))𝑇 . (4.12)

We have to find eigenvalues 𝜆 > 0 and eigenvectors W ∈ F satisfying

𝐺W = 𝜆W, (4.13)

where 𝜆 is a 𝐷 × 𝐷 diagonal matrix, and W is a 𝐷 × 𝑛 matrix of eigenvectors,

W = (𝑊1, . . . , 𝑊𝑛), and each 𝑊𝑖 has length 𝐷. Note that, as with PCA, for the

𝑘th eigenvector𝑊𝑘 ,𝑊𝑘 ∈ span(𝜙(𝑓 (x1)), . . . , 𝜙(𝑓 (x𝑛))). There is a 𝑛×𝑛 matrix of

coefficients, 𝐴, with the k-𝑡ℎ column vector of 𝐴, 𝛼𝑘 = (𝛼𝑘1, . . . , 𝛼𝑘𝑛)𝑇 , such that

𝑊𝑘 =

𝑛∑
𝑖=1
𝛼𝑘𝑖𝜙(𝑓 (x𝑖)). (4.14)

However, directly solving for the eigenvectors and eigenvalues of 𝐺 in equa-

tion (4.13) may not be feasible (𝜙, 𝜙 and Φ̃ are typically unknown). The eigen-

decomposition can be performed instead using the kernel trick (Hoffmann, 2007;

Ma and Zabaras, 2011; Schölkopf et al., 1997). The eigen-decomposition of equa-

tion (4.13) is equivalent to the eigen-decomposition of the centred kernel matrix K̃

(the full proof is given by Schölkopf et al. (1998b)),

𝜆𝐴 =
1
𝑛

K̃𝐴, (4.15)

4.2 Kernel methods 85

where K̃ is the centred kernel matrix defined via

𝐾̃𝑖 𝑗 = 𝜙(𝑓 (x𝑖))𝑇𝜙(𝑓 (x 𝑗))

= (𝜙(𝑓 (x𝑖)) −𝜙)𝑇 (𝜙(𝑓 (x 𝑗)) −𝜙)

= 𝜙(𝑓 (x𝑖))𝑇𝜙(𝑓 (x 𝑗)) −
1
𝑛

𝑛∑
𝑙=1
𝜙(𝑓 (x𝑖))𝑇𝜙(𝑓 (x𝑙)) −

1
𝑛

𝑛∑
𝑘=1

𝜙(𝑓 (x𝑘))𝑇𝜙(𝑓 (x 𝑗))

+ 1
𝑛2

𝑛∑
𝑙=1

𝑛∑
𝑘=1

𝜙(𝑓 (x𝑘))𝑇𝜙(𝑓 (x𝑙))

= 𝐾𝑖 𝑗 −
1
𝑛

𝑛∑
𝑙=1
𝐾𝑖𝑙 −

1
𝑛

𝑛∑
𝑙=1
𝐾𝑘 𝑗 +

1
𝑛2

𝑛∑
𝑙=1

𝑛∑
𝑘=1

𝐾𝑘𝑙 ,

(4.16)

where 𝐾̃𝑖 𝑗 is the 𝑖 𝑗-th element in the centred kernel matrix, K̃. By defining a centre

matrix H = I−1𝑛, where I is the 𝑛×𝑛 identity matrix, 𝑛 is the number of data points.

and 1𝑛 is a 𝑛×𝑛 matrix with all elements equal to 1
𝑛
, the centred kernel matrix can

be expressed as

K̃ = HKH. (4.17)

Equation (4.15) shows that 𝛼𝑘 is an eigenvector of K̃, such that the eigenvectors,𝑊 ,

of covariance matrix 𝐺 can be represented by the eigenvectors of K̃. Also, given

the eigenvalues of K̃, 𝜆̃, the eigenvalues 𝜆 of covariance matrix 𝐺 are determined

by 𝜆̃ = 𝑛𝜆. By requiring that the corresponding eigenvectors of 𝐺 be normalised,

i.e. 1 =𝑊𝑇
𝑘
𝑊𝑘 , the eigenvectors of the centred kernel matrix can be normalised:

1 =

𝑛∑
𝑖=1, 𝑗=1

𝛼𝑘𝑖𝛼𝑘 𝑗𝜙(𝑓 (x𝑖))𝑇𝜙(𝑓 (x 𝑗))

=

𝑛∑
𝑖=1, 𝑗=1

𝛼𝑘𝑖𝛼𝑘 𝑗 𝑘 (𝑓 (x𝑖), 𝑓 (x 𝑗))

= 𝛼𝑇𝑘 K̃𝛼𝑘

= 𝜆̃𝑘𝛼
𝑇
𝑘𝛼𝑘 .

(4.18)

Let the normalised eigenvector matrix, 𝐴, be 𝐴̃. For the 𝑘𝑖-th entry of 𝐴̃, we have

𝛼̃𝑘𝑖 =
𝛼𝑘𝑖√
𝜆̃𝑘𝑖

. Note that, we can compute 𝛼𝑘 and K̃. Therefore, the k-th eigenvector

86 Kernel-based history matching for high-dimensional computer model output

𝑊𝑘 becomes

𝑊𝑘 =

𝑛∑
𝑖=1
𝛼̃𝑘𝑖𝜙(𝑓 (x𝑖)) = 𝛼̃𝑘Φ̃. (4.19)

Although we cannot calculate the mapped data Φ̃ without the explicit mapping

function (which is generally unavailable), the projection of the mapped data

𝜙(𝑓 (x)) can be calculated directly via the kernel trick. We denote the projection of

the mapped data 𝜙(𝑓 (x)) onto the eigenvector𝑊𝑘 as 𝐶𝑘 (x), where

𝐶𝑘 (x) =𝑊𝑇
𝑘 𝜙(𝑓 (x))

=

𝑛∑
𝑗=1
𝛼̃𝑘 𝑗𝜙(𝑓 (x 𝑗))𝑇𝜙(𝑓 (x))

=

𝑛∑
𝑗=1
𝛼̃𝑘 𝑗 𝑘̃ (𝑓 (x), 𝑓 (x 𝑗)).

(4.20)

As with PCA, we can truncate to the first few eigenvectors, giving 𝜙𝑟 (𝑓 (x)) as

𝜙𝑟 (𝑓 (x)) =
𝑟∑
𝑘=1
𝑊𝑘𝐶𝑘 (x) +𝜙, (4.21)

and

𝜙(𝑓 (x)) = 𝜙𝑟 (𝑓 (x)) + 𝜖, (4.22)

where 𝜖 is a residual vector of length 𝐷 which is orthogonal to each𝑊𝑘 , 𝑘 = 1, . . . , 𝑛.

Equation (4.22) can be written in matrix form as:

𝜙(𝑓 (x)) = W𝑟C𝑟 (x) +𝜙+ 𝜀, (4.23)

where C𝑟 (x) is the projections of 𝜙(𝑓 (x)) onto the first 𝑟 eigenvectors, C𝑟 (x) =

[𝐶1(x), . . . , 𝐶𝑟 (x)]𝑇 and W𝑟 = [𝑊1, . . . ,𝑊𝑟]. C𝑟 (x) can be written as:

C𝑟 (x) = (W𝑟𝑇W𝑟)−1W𝑟𝑇
(
𝜙(𝑓 (x)) −𝜙

)
= W𝑟𝑇𝜙(𝑓 (x)), (4.24)

where W𝑟𝑇W𝑟 = I.

4.2 Kernel methods 87

Note that a kernel PCA with a linear kernel,

𝑘 (𝑓 (x′), 𝑓 (x)) = 𝑓 (x′)𝑇 𝑓 (x),

is exactly equivalent to standard PCA. This is because the kernel matrix K with

entries 𝐾𝑖 𝑗 = 𝑘 (𝑓 (x𝑖), 𝑓 (x 𝑗)) = 𝑓 (x𝑖)𝑇 𝑓 (x 𝑗) is equal to the standard Gram matrix

𝐺𝑖 𝑗 = 𝑓 (x𝑖)𝑇 𝑓 (x 𝑗). Hence the principal components will not change.

4.2.3 Gaussian process emulators: Basis method with kernel PCA

Computing 𝐶𝑘 (x𝑖), 𝑘 = 1, . . . , 𝑟 for each ensemble member 𝑓 (x𝑖), transforms F (𝑚×

𝑛) into an 𝑟×𝑛matrix, C= (C𝑟 (x1), . . . , C𝑟 (x𝑛)), where C𝑟 (x𝑖) = [𝐶1(x𝑖), . . . , 𝐶𝑟 (x𝑖)]𝑇 .

By approximating 𝑟 coefficients for each input, rather than 𝑚 initial simulator out-

puts, the dimensionality of the simulator outputs is reduced. Either univariate or

multivariate Gaussian process emulators could be built for the coefficients (Xing

et al., 2016). Before building emulators, the number of components, 𝑟, needs to

be specified. The common approach selects 𝑟 by requiring that the majority of

the variance in the ensemble is explained by projection onto W𝑟 . Denote the total

proportion of ensemble variability to be explained by the first 𝑟 basis vectors as

𝑉 (W𝑟) =
∑𝑟

𝑖=1𝜆𝑖∑𝑛
𝑖=1𝜆𝑖

. We require that

𝑉 (W𝑟) > 𝑇𝑣,

where 𝑇𝑉 is set by the user and is the proportion of ensemble variability we want

to be explained (often 𝑇𝑣 = 0.95), and setting 𝑇𝑣 too high can lead to a large 𝑟 being

selected. However, the later basis vectors explain low percentages of the variability

in the ensemble, making accurate emulation for later coefficients difficult. Higdon

et al. (2008) show that, for PCA, Gaussian process emulation works well for the

first few components, but not so for the later components. They suggest that one

does not take take more than 5 basis vectors in practice, we follow this suggestion

for kernel PCA.

88 Kernel-based history matching for high-dimensional computer model output

By constructing univariate Gaussian process emulators for the coefficients

𝐶𝑘 (x) for each basis vector separately,

𝐶𝑘 (x) ∼ GP (𝑚𝑘 (x), 𝜎2
𝑘 𝑐𝑘 (x,x)), 𝑘 = 1, . . . , 𝑟, (4.25)

with the emulator expectation for each of the 𝑟 basis vectors given by

E [C𝑟 (x)] = [E [𝐶1(x)] , . . . , E [𝐶𝑟 (x)]]𝑇 ,

and the associated emulator variance matrix:

Var [C𝑟 (x)] = diag[Var [𝐶1(x)] , . . . , Var [𝐶𝑟 (x)]] .

The expressions for E [𝜙(𝑓 (x))] and Var [𝜙(𝑓 (x))] can be extracted for history

matching, which can be written in terms of the coefficient emulators,

E [𝜙(𝑓 (x))] = W𝑟E [C𝑟 (x)] +𝜙, (4.26)

Var [𝜙(𝑓 (x))] = W𝑟Var [C𝑟 (x)]W𝑟𝑇 . (4.27)

Note that W𝑟 and 𝜙 are unavailable directly, but we will show that neither the

explicit form of W𝑟 or 𝜙 are required in history matching.

4.2.4 Observation in feature space

Consider observations, 𝑧, of the modelled process that we intend to use for history

matching. Denote 𝜙(𝑧) as the mapped observation in feature space, and the

projection of the mapped observation, 𝜙(𝑧), onto W as C(𝑧), where C(𝑧) is a 𝑛

vector, C(𝑧) = [𝐶1(𝑧), . . . , 𝐶𝑛 (𝑧)]𝑇 . Note that 𝜙(𝑧) is unknown with no explicit

representation for the mapping function, but its projection, C(𝑧), can be obtained

via the kernel trick. To calculate C(𝑧), the mapped ensemble mean will first be

4.2 Kernel methods 89

removed from the 𝜙(𝑧), with the centred mapped observation is defined as

𝜙(𝑧) = 𝜙(𝑧) −𝜙.

The 𝑘-th projection 𝐶𝑘 (𝑧) is given by:

𝐶𝑘 (𝑧) =𝑊𝑇
𝑘 𝜙(𝑧)

=

𝑛∑
𝑖=1
𝛼̃𝑘𝑖𝜙(𝑓 (x𝑖))𝑇 [𝜙(𝑧) −𝜙]

=

𝑛∑
𝑖=1
𝛼̃𝑘𝑖 [𝜙(𝑓 (x𝑖)) −𝜙]𝑇 [𝜙(𝑧) −𝜙]

=

𝑛∑
𝑖=1
𝛼̃𝑘𝑖 [𝜙(𝑓 (x𝑖))𝑇𝜙(𝑧) −𝜙𝑇𝜙(𝑧) −𝜙(𝑓 (x𝑖))𝑇𝜙+𝜙𝑇𝜙]

= 𝛼̃𝑇𝑘K𝑧 −
1
𝑛

1𝑇K𝑧 (𝛼̃𝑇𝑘 1) − 1
𝑛
𝛼̃𝑇𝑘 (K1) + 1

𝑛2 1𝑇K1(𝛼̃𝑇𝑘 1).

(4.28)

Here K𝑧 = [𝑘 (𝑧, 𝑓 (x1)), 𝑘 (𝑧, 𝑓 (x2)), . . . , 𝑘 (𝑧, 𝑓 (x𝑛)))], and 1 = [1, . . . ,1]𝑇 is an 𝑛× 1

vector. For computation, equation (4.28) can be written as:

𝐶𝑘 (𝑧) =𝑊𝑇
𝑘 𝜙(𝑧) = 𝛼̃

𝑇
𝑘 K̃𝑧, (4.29)

where K̃𝑧 = [𝑘̃ (𝑧, 𝑓 (𝑥1)), 𝑘̃ (𝑧, 𝑓 (𝑥2)), . . . , 𝑘̃ (𝑧, 𝑓 (𝑥𝑛))]. Each element 𝑘̃ (𝑧, 𝑓 (x)) can

be calculated as:

𝑘̃ (𝑧, 𝑓 (x)) = 𝜙(𝑧)𝑇𝜙(𝑓 (x))

= [𝜙(𝑧) −𝜙]𝑇 [𝜙(𝑓 (x)) −𝜙]

= 𝑘 (𝑧, 𝑓 (x)) − 1
𝑛

𝑛∑
𝑖=1

𝑘 (𝑧, 𝑓 (x𝑖)) −
1
𝑛

𝑛∑
𝑖=1

𝑘 (𝑓 (x), 𝑓 (x𝑖)) +
1
𝑛2

𝑛∑
𝑖=1

𝑛∑
𝑗=1
𝑘 (𝑓 (x′), 𝑓 (x𝑖))

= 𝑘 (𝑧, 𝑓 (x)) − 1
𝑛

1𝑇K𝑧 −
1
𝑛

1𝑇K 𝑓 (x) +
1
𝑛2 1𝑇K1.

90 Kernel-based history matching for high-dimensional computer model output

K̃𝑧 can then be expressed as:

K̃𝑧 = [𝑘̃ (𝑧, 𝑓 (𝑥1)), 𝑘̃ (𝑧, 𝑓 (𝑥2)), . . . , 𝑘̃ (𝑧, 𝑓 (𝑥𝑛)))]

= K𝑧 −
1
𝑛

1𝑇K𝑧1−
1
𝑛

K1+ 1
𝑛2 1𝑇K11

= H(K𝑧 −
1
𝑛

K1),

where H is the centring matrix, and I is the 𝑛×𝑛 identity matrix.

If a mapped observation is projected onto the first r basis vectors, W𝑟 , giving

the projections 𝐶𝑘 (𝑧). We use 𝐶𝑘 (𝑧) to reconstruct 𝜙𝑟 (𝑧) on the D-dimensional

feature space,

𝜙𝑟 (𝑧) =
𝑟∑
𝑘=1
𝑊𝑘𝐶𝑘 (𝑧) +𝜙. (4.30)

This reconstruction of the mapped observation 𝜙𝑟 (𝑧) cannot replace 𝜙(𝑧) without

quantifying the difference between these two terms, which is usually called the ob-

servation reconstruction error (Salter et al., 2019). The observation reconstruction

error 𝜀𝑧 is defined as

𝜀𝑧 = 𝜙(𝑧) −𝜙𝑟 (𝑧). (4.31)

Note that equations (4.30) and (4.31) only give expressions for 𝜙𝑟 (𝑧) and 𝜀𝑧, but

they cannot be computed in general. In the following sections, we will show how

to use these expressions for history matching in feature space by transforming the

calculations with a kernel trick.

4.2.5 Kernel PCA and reconstruction

The simplest approach to history matching with kernel PCA would be to use

the kernel approach to emulation, but to perform the history matching in the

𝑚−dimensional output space where the observations live. This is the idea in stan-

dard basis history matching and calibration when wishing to avoid comparison

in the linear subspace (Salter et al., 2019; Wilkinson, 2010). This requires us to be

able to reconstruct an emulator predictions in the output space. A straightforward

approach for this is would be use an inverse mapping function, 𝜙−1 which can

4.2 Kernel methods 91

map the data back from feature space to the original space. However, without an

explicit expression of mapping function 𝜙, it is impossible to know the form of 𝜙−1

and so find the “pre-image” of 𝜙(𝑓 (x)).

Schölkopf et al. (1998a) propose a method without requiring 𝜙−1. Given the

expression of data, 𝜙(𝑓 (x)), in feature space, 𝜙(𝑓 (x)) ∈ F , a point in the original

simulator output space, 𝑓 (x) ∈M, is the pre-image of 𝜙(𝑓 (x)) if it satisfies

𝜙(𝑓 (x)) = 𝜙(𝑓 (x)),

where 𝜙(𝑓 (x)) is usually given by its reconstruction 𝜙𝑟 (𝑓 (x)). With any given

vector in feature space, the exact pre image may not always exist. So Schölkopf

et al. (1998a) define an approximate pre-image, 𝑓 (x), for 𝜙(𝑓 (x)) that satisfies

𝜙(𝑓 (x)) ≈ 𝜙(𝑓 (x)).

Mika et al. (1999) find the pre-image of 𝜙(𝑓 (x)) by minimising the squared

distance between 𝜙(𝑓 (x)) and 𝜙(𝑓 (x)), for any vector 𝑓 ∈M, such that

𝑓 (x) = arg min
𝑓 ∈M

∥ 𝜙(𝑓) −𝜙𝑟 (𝑓 (x)) ∥2 .

By replacing the terms that do not involve 𝜙(𝑓) with Ω in the calculation, we have

𝑓 (x) = arg min
𝑓 ∈M

(
𝑘 (𝑓 , 𝑓) −2𝜙(𝑓)𝑇𝜙𝑟 (𝑓 (x)) +Ω

)
. (4.32)

Substituting equation (4.21) into equation (4.32), we arrive an expression which is

written in terms that are known

𝑓 (x) = arg min
𝑓 ∈M

©­«𝑘 (𝑓 , 𝑓) −2
𝑟∑
𝑘=1

𝐶𝑘 (x)
𝑛∑
𝑗=1
𝛼̃𝑘 𝑗 𝑘 (𝑓 , 𝑓 (x𝑖)) +Ω

ª®¬ . (4.33)

Consequently, 𝑓 (x) can be obtained once the kernel function is specified for any

vector 𝑓 ∈M. In the original paper, Mika et al. (1999) use a fixed-point iterative

92 Kernel-based history matching for high-dimensional computer model output

algorithm. For a Gaussian kernel with the formula 𝑘 (𝑓 (x), 𝑓 (x′)) = exp(−𝛿 ∥ (𝑓 (x) −

𝑓 (x′)) ∥2) (and thus 𝑘 (𝑓 (x), 𝑓 (x)) is a constant for any 𝑓 (x)). We deduce from

equation (4.32) that we have to maximise 𝜙(𝑓)𝑇𝜙𝑟 (𝑓 (x)). Hence

𝑓 (x) = arg max
𝑓 ∈M

(
𝑛∑
𝑖=1
𝛾̃𝑖𝑘 (𝑓 , 𝑓 (x𝑖))

)
. (4.34)

where 𝛾̃𝑖 =
∑𝑟
𝑘=1𝐶𝑘 (x)𝛼𝑘𝑖. For a maximum, the gradient with respect to 𝑓 (x) is

zero:
𝑛∑
𝑖=1
𝛾̃𝑖 exp(−𝛿 ∥ (𝑓 (x) − 𝑓 (x𝑖)) ∥2) (𝑓 (x) − 𝑓 (x𝑖)) = 0.

This leads to a necessary condition for the maximum: 𝑓 (x) should satisfy

𝑓 (x) =
∑𝑛
𝑖=1 𝛾̃𝑖 exp(−𝛿 ∥ (𝑓 (x) − 𝑓 (x𝑖)) ∥2) 𝑓 (x𝑖)∑𝑛

𝑖=1 𝛾̃𝑖 exp(−𝛿 ∥ (𝑓 (x) − 𝑓 (x𝑖)) ∥2)
. (4.35)

As the kernel function is smooth, there is a neighbourhood of the extreme value

of equation (4.35) in which the denominator is not equal to zero. So that 𝑓 (x) can

also be computed iteratively by

𝑓 (x)𝑡+1 =

∑𝑛
𝑖=1 𝛾̃𝑖 exp(−𝛿 ∥ (𝑓 (x)𝑡 − 𝑓 (x𝑖)) ∥2) 𝑓 (x𝑖)∑𝑛

𝑖=1 𝛾̃𝑖 exp(−𝛿 ∥ (𝑓 (x)𝑡 − 𝑓 (x𝑖)) ∥2)
. (4.36)

Many other approaches have been also proposed to solve the pre-image prob-

lem. A non-iterative approach of calculating the distance constraint has been

proposed by Kwok and Tsang (2004). They propose a new method to constrain

the embedding of the pre-image based on distance constraints (this will be intro-

duced in Section 4.2.6), where the reconstruction of a new point is described by 𝑛

neighbours based on least-squares solutions following (Gower, 1968).

The pre-image approach addresses the reconstruction method by minimising

the squared distance between the mapped data in the feature space, which suggests

that a small squared distance in feature space indicates a small squared distance

in simulator output space. To figure out the relationship between a distance in

simulator output space and the corresponding distance in feature space, distance

4.2 Kernel methods 93

constraints are introduced. History matching using a pre-image approach and

distance constraints will be introduced in Section 4.3.

4.2.6 Distance constraints

For any two simulator outputs, 𝑓 (x) and 𝑓 (x′), in the simulator output space, we

denote their mapped data in feature space as 𝜙(𝑓 (x)) and 𝜙(𝑓 (x′)), the simulator

output space distance between these two vectors as 𝑑 𝑓 (x), 𝑓 (x′) , and the feature space

distance as 𝑑𝜙(𝑓 (x)),𝜙(𝑓 (x′)) . Without an explicit mapping function, any calculations

in feature space must rely on a kernel trick, so that we can only compute the

squared distance in feature space. We therefore give the relationships between the

squared simulator output space distance 𝑑2
𝑓 (x), 𝑓 (x′) and the squared feature space

distance 𝑑2
𝜙(𝑓 (x)),𝜙(𝑓 (x′)) for the different kernels.

We first consider RBF kernels, with a general form 𝑘 (𝑓 (x), 𝑓 (x′)) = 𝜁 (− ∥ (𝑓 (x) −

𝑓 (x′)) ∥2), where 𝜁 is a function which is typically invertible. Kwok and Tsang

(2004) present a simple relationship between squared simulator output space

distance 𝑑2
𝑓 (x), 𝑓 (x′) and squared feature space distance 𝑑2

𝜙(𝑓 (x)),𝜙(𝑓 (x′))

𝑑2
𝜙(𝑓 (x)),𝜙(𝑓 (x′)) =∥ 𝜙(𝑓 (x)) −𝜙(𝑓 (x

′)) ∥2

= 𝜙(𝑓 (x))𝑇𝜙(𝑓 (x)) +𝜙(𝑓 (x′))𝑇𝜙(𝑓 (x′)) −2𝜙(𝑓 (x))𝑇𝜙(𝑓 (x′))

= 𝑘 (𝑓 (x), 𝑓 (x)) + 𝑘 (𝑓 (x′), 𝑓 (x′)) −2𝜁 (− ∥ (𝑓 (x) − 𝑓 (x′)) ∥2)

= 𝑘 (𝑓 (x), 𝑓 (x)) + 𝑘 (𝑓 (x′), 𝑓 (x′)) −2𝜁
(
𝑑2
𝑓 (x), 𝑓 (x′)

)
.

(4.37)

Hence, the relationship between squared simulator output space distance 𝑑2
𝑓 (x), 𝑓 (x′)

and squared feature space distance 𝑑2
𝜙(𝑓 (x)),𝜙(𝑓 (x′)) can be expressed as

𝜁

(
𝑑2
𝑓 (x), 𝑓 (x′)

)
=

1
2

(
𝑘 (𝑓 (x), 𝑓 (x)) + 𝑘 (𝑓 (x′), 𝑓 (x′)) − 𝑑2

𝜙(𝑓 (x)),𝜙(𝑓 (x′))

)
. (4.38)

94 Kernel-based history matching for high-dimensional computer model output

For instance, with the squared exponential kernel, the function 𝜁 is given as an

exponential function,

𝑘 (𝑓 (x), 𝑓 (x′)) = exp
(
−𝜃 (𝑓 (x) − 𝑓 (x′))𝑇 (𝑓 (x) − 𝑓 (x′))

)
.

We then have the following relationship

𝑑2
𝑓 (x), 𝑓 (x′) = −1

𝜃
log

(
1
2

(
𝑘 (𝑓 (x), 𝑓 (x)) + 𝑘 (𝑓 (x′), 𝑓 (x′)) − 𝑑2

𝜙(𝑓 (x)),𝜙(𝑓 (x′))

))
.

In addition, for dot product kernels of the form 𝑘 (𝑓 (x), 𝑓 (x′)) = 𝜁 (𝑓 (x)𝑇 𝑓 (x′)),

there is a relationship between dot product, 𝜙(𝑓 (x))𝑇𝜙(𝑓 (x′)), in the feature space

and dot product, 𝑓 (x)𝑇 𝑓 (x′), in the model output space (Kwok and Tsang, 2004;

Williams, 2001),

𝑘 (𝑓 (x), 𝑓 (x′)) = 𝜙(𝑓 (x))𝑇𝜙(𝑓 (x′)) = 𝜁 (𝑓 (x)𝑇 𝑓 (x′)).

Note that 𝜁 is often a invertible function, for example, for a degree-𝑝 polynomial

kernels

𝑘 (𝑓 (x), 𝑓 (x′)) = (𝑓 (x)𝑇 𝑓 (x′) + 𝑐)𝑝,

where 𝑐 ⩾ 0 is a free parameter. When 𝑝 is odd, we have

𝑓 (x)𝑇 𝑓 (x′) = 𝑘 (𝑓 (x), 𝑓 (x′))
1
𝑝 − 𝑐 = 𝜙(𝑓 (x))𝑇𝜙(𝑓 (x′)

1
𝑝 − 𝑐.

Likewise, for the sigmoid kernel

𝑘 (𝑓 (x), 𝑓 (x′)) = tanh(𝛾 𝑓 (x)𝑇 𝑓 (x′) − 𝑐),

where 𝑐 and 𝛾 are free parameters. We then have

𝑓 (x)𝑇 𝑓 (x′) = tanh−1(𝑘 (𝑓 (x), 𝑓 (x′))) + 𝑐
𝛾

.

4.3 History matching in feature space 95

With the given 𝑓 (x)𝑇 𝑓 (x′) in these examples, the corresponding squared distance

in the original space, 𝑑2
𝑓 (x), 𝑓 (x′) can be computed by kernel functions.

Distance constraints have wide applications for kernel methods. As we de-

scribed, they are used to solve the pre-image problem (Kwok and Tsang, 2004).

Williams (2001) uses distance constraints for a metric multidimensional scaling al-

gorithm. We will use these relationships to quantify uncertainties in the calibration

process, details of which are given in Section 4.5.

4.3 History matching in feature space

Fig. 4.1 The relationship between metric spaces.

We introduced several metric spaces in the last section, and Figure 4.1 shows

the relationship between these spaces, where 𝑓 is the simulator function, and

𝜙 is the mapping function that maps the model outputs from M ⊂ R𝑚 into a

higher-dimension feature space, F ⊂ R𝐷 , determined by a kernel function.

Emulators and history matching are both traditionally performed on the simu-

lator output field (or a subspace of simulator output space). But, with kernel PCA,

we build emulators for the kernel PCA coefficients in a ‘feature coefficient space’

given the reconstructions 𝜙(𝑓 (x)) on the feature space. To achieve standard history

matching in the simulator output metric space with kernel PCA, we need to find

the pre-image for 𝜙(𝑓 (x)) for every parameter choice we used in the calibration

96 Kernel-based history matching for high-dimensional computer model output

process. However, there are two challenges. Firstly, pre-image approaches recon-

struct data with no uncertainty. Yet we have emulator uncertainty throughout

which must be accounted for. The second issue is that finding the pre-image

(which relies on nonlinear optimization) for massive data is inevitably expensive

and slow, which works against the initial computational motivation. These chal-

lenges makes traditional approaches to history matching in the simulator output

metric space with kernel PCA arguably infeasible.

Instead of finding an approximate pre-image for each 𝜙(𝑓 (x)), and comparing

it with the observation (with uncertainties accounted for), we perform history

matching in feature space, inspired by the pre-image reconstruction of kernel PCA

(Mika et al., 1999). The comparison between the pre-image and history matching

problems is shown in Figure 4.2. If we reverse the pre-image problem, then the

process is exactly what is required for history matching.

Fig. 4.2 The comparison between the pre-image and history matching.

Mika et al. (1999) address the pre-image problem by comparing 𝜙(𝑓 (x)) and

its mapped reconstruction in feature space. We perform a history matching on the

feature space with the same idea. The observation is mapped into feature space,

which can be used to compare with mapped simulator outputs 𝜙(𝑓 (x)). Given an

implausibility function in feature space, we can rule out input parameter settings,

x, which lead to 𝜙(𝑓 (x)) that are not consistent with the mapped observation 𝜙(𝑧).

To achieve this idea, we define a new implausibility in feature space.

4.3 History matching in feature space 97

4.3.1 Implausibility in feature space

The implausibility (introduced in Section 2.5), 𝐼 (x), is defined to measure the

distance between the simulator outputs and observations. We can write the

implausibility function as a distance,

𝐼 (x) = | |𝑧− 𝑓 (x) | | 𝑓 , (4.39)

where the | | · | | 𝑓 represents an appropriate measure that accounts for all sources of

uncertainties, a Mahalanobis-type function is a natural choice for | | · | | 𝑓 ,

𝐼 (x) = (𝑧− 𝑓 (x))𝑇 (Var [𝑧− 𝑓 (x)])−1 (𝑧− 𝑓 (x)). (4.40)

When we use the emulator predictions to represent the simulator outputs, the

implausibility can be written as

𝐼 (x) = | |𝑧−E [𝑓 (x)] | | 𝑓 . (4.41)

Using a Mahalanobis-type function for | | · | | 𝑓 , the implausibility can then be written

as

𝐼 (x) = (𝑧−E [𝑓 (x)])𝑇 (Var [𝑧−E [𝑓 (x)]])−1 (𝑧−E [𝑓 (x)]), (4.42)

where

Var [𝑧−E [𝑓 (x)]] = Var [𝑒] +Var [𝜂] +Var [𝑓 (x)] ,

and 𝑒 is the observation error and 𝜂 is the discrepancy. The implausibility 𝐼 (x) is

then used to rule out regions of input space that give model outputs that are ‘too

far’ from observations. In standard history matching, described in Section 2.5, for

simulator 𝑓 (·) and observation 𝑧, a lager value of implausibility 𝐼 (x) at any given

input x implies that, relative to the uncertainties, it is implausible that the output of

simulator at x, 𝑓 (x), is consistent with the observations. A threshold, 𝑇 , is chosen

to define the NROY space, such that any inputs of 𝐼 (x) > 𝑇 are implausible.

98 Kernel-based history matching for high-dimensional computer model output

Analogous to the standard implausibility in equation (4.39), we define the

implausibility as a distance in feature space,

I (x) = | |𝜙(𝑧) −𝜙(𝑓 (x)) | | 𝑓 , (4.43)

where 𝜙(𝑧) is the mapped observation, 𝜙(𝑓 (x)) is the mapped simulator output in

feature space and | | · | | 𝑓 represents an appropriate metric. The pre-image approach

addresses the reconstruction problem by minimising the distance between the

mapped output and its reconstruction. We perform a calibration on the feature

space with the same goal: the distance between mapped observation and out-

put is parallel to the implausibility function used for ruling out space in history

matching. However, unlike history matching, the pre-image approach does not

consider any uncertainties in the distance function. This suggests that the distance

between a mapped data and its mapped exact pre-image should be zero. His-

tory matching does not expect an exact match, due to the observation error and

discrepancy being included in the distance (Craig et al., 1996; Vernon et al., 2010;

Williamson et al., 2013). To make meaningful comparisons between simulator

outputs and observations in feature space, all of the sources of uncertainty need to

be addressed in history matching. Therefore, before determining an appropriate

measure for | | · | | 𝑓 , all sources of uncertainties need to be quantified first. Due to

the uncertainties naturally belonging in different spaces, we need to quantify all

sources of uncertainty in separate processes. We need to determine discrepancy

and observation errors in feature space first, then consider emulator uncertainty,

discrepancy and observation errors together in feature space history matching.

To determine discrepancy and observation errors in feature space history

matching, we have explored a number of potential approaches. According to

different uncertainty quantification approaches, we roughly divide feature space

history matching into three classes: history matching with projected uncertainties,

history matching with distance constraints, and kernel-based history matching.

The details of the potential approaches are introduced individually in the following

sections. The numerical examples given in Section 4.8 compare these approaches.

4.4 History matching with projected uncertainties 99

4.4 History matching with projected uncertainties

For researchers who are experienced with history matching, projecting observa-

tion error and discrepancy into feature space is the most natural approach to

consider. To perform history matching in feature space, we first propose to project

discrepancy and observation error into feature space. After that, we define an

implausibility using these projected uncertainties.

4.4.1 Projecting uncertainties into feature space

To project observation error and discrepancy into feature space, we recall the

statistical model from Section 2.5, which links the observation to simulator output

via

𝑧 = 𝑓 (x∗) + 𝑒 +𝜂,

where x∗ is the best input and where the observation error, 𝑒, and the discrepancy,

𝜂, are uncorrelated mean-zero terms, with positive definite variance matrices Σ𝑒

and Σ𝜂, e.g.

𝑒 ∼ 𝑁 (0, Σ𝑒), 𝜂 ∼ 𝑁 (0, Σ𝜂).

Similar to the projection of observations introduced in Section 4.2.4, we can com-

pute the projections of uncertainties in the coefficient space. We denote the mapped

observation error as 𝜙(𝑒), the mapped discrepancy as 𝜙(𝜂), and C(𝑒) and C(𝜂)

as their projections onto the basis W, where C(𝑒) and C(𝜂) are length 𝑛 vectors,

C(𝑒) = [𝐶1(𝑒), . . . , 𝐶𝑛 (𝑒)]𝑇 and C(𝜂) = [𝐶1(𝜂), . . . , 𝐶𝑛 (𝜂)]𝑇 . Following equation

(4.28), 𝐶𝑘 (𝑒) and 𝐶𝑘 (𝜂) are given as

𝐶𝑘 (𝑒) =𝑊𝑇
𝑘 𝜙(𝑒) = 𝛼̃

𝑇
𝑘 K̃𝑒, (4.44)

and

𝐶𝑘 (𝜂) =𝑊𝑇
𝑘 𝜙(𝜂) = 𝛼̃

𝑇
𝑘 K̃𝜂, (4.45)

100Kernel-based history matching for high-dimensional computer model output

where

K̃𝑒 = [𝑘̃ (𝑒, 𝑓 (𝑥1)), 𝑘̃ (𝑒, 𝑓 (𝑥2)), . . . , 𝑘̃ (𝑒, 𝑓 (𝑥𝑛))],

and

K̃𝜂 = [𝑘̃ (𝜂, 𝑓 (𝑥1)), 𝑘̃ (𝜂, 𝑓 (𝑥2)), . . . , 𝑘̃ (𝜂, 𝑓 (𝑥𝑛))] .

Given Σ𝑒 and Σ𝜂, we can sample 𝑒 and 𝜂 and then compute the sample projec-

tions C(𝑒) and C(𝜂) by equations (4.44) and (4.45). We can then use these samples

to obtain the expectation and variance of the sampling distribution for C(𝑒) and

C(𝜂). Expectations and variances in feature space can be written in terms of C𝑟 (𝑒).

To give the expression of the observation error in feature space, we have

E [𝜙(𝑒)] = W𝑟E [C𝑟 (𝑒)] +𝜙, (4.46)

and

Var [𝜙(𝑒)] = W𝑟Var [C𝑟 (𝑒)]W𝑟𝑇 . (4.47)

Note, we cannot compute these expressions (W𝑟 is unknown). For giving the

expression of the discrepancy in feature space, we have

E [𝜙(𝜂)] = W𝑟E [C𝑟 (𝜂)] +𝜙, (4.48)

and

Var [𝜙(𝜂)] = W𝑟Var [C𝑟 (𝜂)]W𝑟𝑇 . (4.49)

Given the projections of discrepancy, the projections of observation error, the

expression of the uncertainties in feature space, we want to calibrate using all avail-

able information. Standard history matching uses a Mahalanobis-type distance

for | | · | | 𝑓 , such as equations (4.40) and (4.42), to capture all sources of uncertainty.

However, without the explicit expression of mapping function 𝜙(·) or even knowl-

edge of it’s dimension, it is impossible to apply the same choice for | | · | | 𝑓 in feature

space. Instead, it is attractive to apply a low-dimensional basis approach to history

match for computer model with high-dimensional outputs (Salter and Williamson,

4.4 History matching with projected uncertainties 101

2019). Analogous to multivariate history matching using SVD/PCA basis pro-

jection methods, we define a ‘coefficient implausibility’ for history matching in

feature space.

4.4.2 Coefficient implausibility

Calibration of expensive computer models with high-dimensional output fields

can be performed with basis methods, including probabilistic calibration (Chang

et al., 2014, 2016; Higdon et al., 2008; Sexton et al., 2012) and history matching

(Salter and Williamson, 2019). For history matching with basis methods, we have

introduced the multivariate implausibility on coefficient space in Section 2.5.3, as:

I𝑐 (x) = (C𝑟 (z)−E [C𝑟 (x)])𝑇 (Var [C𝑟 (𝜂)] +Var [C𝑟 (𝑒)] +Var [C𝑟 (x)])−1 (C𝑟 (z)−E [C𝑟 (x)]).

(4.50)

Given emulators for the kernel PCA coefficients on basis W𝑟 , observation projec-

tions, C𝑟 (z) (by equation (4.28)), and the projections C(𝑒) and C(𝜂) (by equations

(4.44) and (4.45)), we can history match in the subspace defined by the basis W𝑟 ,

using the coefficient implausibility in equation (4.50).

Analogous to standard history matching with coefficient implausibility, large

values of I𝑐 (x), indicate that it is implausible that x = x∗. Using I𝑐 (x), ‘Not Ruled

Out Yet’ (NROY) space contains all not implausible x defined as

X𝑁𝑅𝑂𝑌 = {x ∈ X |I𝑐 (x) ≤ 𝑇}, (4.51)

for a threshold bound 𝑇 . All of the runs less than 𝑇 will be retained in the NROY

space, even if they are not good. Small values of I𝑐 (x) do not necessarily imply

good models, as small values can occur when the uncertainties are large. If the

implausibility is larger than 𝑇 , we can be sure that the model output is too far from

the observations and we can safely cut this parameter choice. To choose a suitable

threshold 𝑇 , we introduce the following methods.

102Kernel-based history matching for high-dimensional computer model output

4.4.3 Threshold 𝑇

In standard history matching, for setting up the cutoff threshold, the implausibility

I (x) in equation (4.42) can be compared with a Chi-squared distribution with 𝑙

degrees of freedom, where 𝑙 is the dimension of the model output (Vernon et al.,

2010). Then the threshold 𝑇 could be 95𝑡ℎ percentile or 99.5𝑡ℎ percentile of a

Chi-squared distribution with 𝑙 degrees of freedom. However, this approach for

setting the cutoff threshold is not available for our implausibility in equation (4.50),

since I𝑐 (x) does not follow a Chi-squared distribution with 𝑟 degrees of freedom

(the details are given in Section 4.4.4).

There are also a number of different ways to set the value of threshold 𝑇 .

For example, using a rule-of-thumb as in Salter et al. (2018), where ice sheet

simulations with an extent error of > 23% or 25% were discarded based on experts

judgement (the tolerance was chosen based on comparing computer model outputs

to observations, and judging which are acceptable).

Similarly, we can use expert judgement to set an appropriate cut-off value. This

idea is inspired by expert tuning which is quite common in the climate community

to adjust the model parameters manually (Bellprat et al., 2012; Mauritsen et al.,

2012). By performing expert tuning for the computer outputs of the ensemble 𝐹,

we have expert judgement that divides the ensemble members into acceptable runs,

𝐹𝐴, and unacceptable runs, 𝐹𝑈 , and the corresponding inputs are separated as

acceptable inputs, x𝐴, and unacceptable inputs, x𝑈 . The 𝐹𝐴 are selected by experts.

This can be done, for example, with a strict requirement, that the acceptable runs

are the members of the training data consistent with observations in the judgement

of the modeller. If no such runs or very few exist in the ensemble, the acceptable

runs could be set to be the “best” in the ensemble (where “best” is in the view of

the experts).

With the above classification of the ensemble members (𝐹𝐴, 𝐹𝑈), we can set

the threshold as the tolerance of the differences between simulator outputs and

observations. This is in keeping with a tolerance to error approach to discrepancy,

4.4 History matching with projected uncertainties 103

which considers the tolerance given by the experts as discrepancy for the purposes

of history matching (Couvreux et al., 2020; Williamson et al., 2017). The details of

the tolerance approach are introduced in Section 2.4.1.

However, the expert’s tolerance of the differences between simulator out-

puts and observation is not given directly. By using the implausibility func-

tion and experts classification information, an interval of possible tolerance val-

ues can be defined. Denote the minimum implausibility for the unacceptable

runs as min(Ic(xU)), and the maximum implausibility for the acceptable runs as

max(Ic(xA)), the interval can be written as:

[max(Ic(xA)),min(Ic(xU))] . (4.52)

Only if the threshold is bigger than the maximum implausibility for the acceptable

runs, can all of the acceptable runs be retained in NROY space, and only if the

threshold is smaller than the minimum implausibility for the unacceptable runs,

can all of the unacceptable runs be ruled out. But a range cannot be used as the

threshold, a precise value for 𝑇 is required. Due to the fact that the middle ground

between max(Ic(xA)) and min(Ic(xU)) is unknowable, and there might be a chance

that runs give implausibility within this range are acceptable, to avoid ruling out

any ‘good’ runs, we use the minimum implausibility for the unacceptable runs

min(Ic(xU)) as the threshold

𝑇 = min(Ic(xU)). (4.53)

The advantage to setting implausibility thresholds by equation (4.53) is that expert

judgement can be easily included into the automatic calibration process. In the

next chapter, other approaches for setting implausibility thresholds by using expert

judgement will be introduced.

104Kernel-based history matching for high-dimensional computer model output

4.4.4 Limitations

History matching in feature space (with the subspace defined by W𝑟) with a

kernel PCA basis can be achieved following the proposed implausibility in Section

4.4.2. However, there are two major issues with the methodology. Firstly, for

standard history matching with the SVD/PCA basis, we perform the calibration

on a subspace of the simulator output space, so that the model assumption (in

Section (4.4.1)) still holds on the subspace defined by the SVD/PCA basis. Denote

the SVD/PCA basis vector as W𝑃𝐶𝐴𝑟 , we have

W𝑇
𝑃𝐶𝐴𝑟

𝑧 = W𝑇
𝑃𝐶𝐴𝑟

𝑓 (x∗) +W𝑇
𝑃𝐶𝐴𝑟

𝑒 +W𝑇
𝑃𝐶𝐴𝑟

𝜂,

and this can be written as

C𝑃𝐶𝐴𝑟 (z) = C𝑃𝐶𝐴𝑟 (x∗) +C𝑃𝐶𝐴𝑟 (𝑒) +C𝑃𝐶𝐴𝑟 (𝜂). (4.54)

Under the model assumptions in equation (4.54), we have:

Var
[
C𝑃𝐶𝐴𝑟 (z) −E

[
C𝑃𝐶𝐴𝑟 (x)

]]
= Var

[
C𝑃𝐶𝐴𝑟 (𝜂)

]
+Var

[
C𝑃𝐶𝐴𝑟 (𝑒)

]
+Var

[
C𝑃𝐶𝐴𝑟 (x)

]
,

where C𝑃𝐶𝐴𝑟 = C𝑃𝐶𝐴𝑟 (z). However, all of these relationships do not hold with

nonlinear kernel based history matching. With a nonlinear mapping function, 𝜙(·),

the linear relationship in the statistical model does not hold in the feature space,

𝜙(𝑧) ≠ 𝜙(𝑓 (x∗)) +𝜙(𝑒) +𝜙(𝜂). (4.55)

𝜙(𝑒) is not the difference between the observation with the true value of the system

in feature space, and 𝜙(𝜂) cannot represent the difference between the simulator

output given at the ‘best’ setting, 𝜙(𝑓 (x∗)), and reality. If the model assumptions

do not exist on the feature space, how do we account for the implausibility in

the right way and use it for feature space history matching without biasing the

parameter inference?

4.5 History matching in feature space with distance constraints 105

Additionally, another problem is that we can only compute the distance be-

tween observation projections and emulator predictions on the coefficient space

rather than the feature space. Salter and Williamson (2019) present efficient calibra-

tion for high-dimensional computer model output using basis methods, but the

method cannot be applied without knowing the mapping function, 𝜙(·) and basis

vector W. While these two problems cannot be solved, we still can history match

with projected uncertainties, the results is shown in Section 4.8. To overcome these

two problems, one idea is to use distance constraints to account for discrepancy

and observation error. A new approach to do history matching in feature space is

presented in Section 4.5.

4.5 History matching in feature space with distance

constraints

4.5.1 Implausibility in feature space

The implausibility defined in equation (4.43) is written as a distance that measures

the difference between the simulator outputs and observations. To define a cal-

culable implausibility for history matching in feature space, we could adopt the

Euclidean norm for | |𝜙(𝑧) − 𝜙(𝑓 (x)) | | 𝑓 , which can be calculated using the kernel

trick, so that we do not need the explicit expression of the mapping function 𝜙(·).

However, using the Euclidean norm for the distance function raises an obvious

question: how should we account for the uncertainties (discrepancy, observation

error and emulator uncertainty)? In contrast with the fixed threshold used in

standard history matching, a proposed solution is to define the threshold as a

function of x that accounts for all sources of uncertainty. We propose to use dis-

tance constraints to set this threshold function and this proposition is developed

in Section 4.5.2.

106Kernel-based history matching for high-dimensional computer model output

Before setting the threshold function using distance constraint, the implau-

sibility function is required. Given the observation, 𝑧, and the expressions for

emulator predictions E [𝜙(𝑓 (x))] in equation (4.26), we define the implausibility

as the distance between the mapped observation and the emulator prediction:

I𝐷 (x) = (𝜙(𝑧) −E [𝜙(𝑓 (x))])𝑇 (𝜙(𝑧) −E [𝜙(𝑓 (x))]). (4.56)

Equation (4.56) can be efficiently calculated using a kernel trick, without requiring

the mapping function 𝜙(·), as

I𝐷 (x) = (𝜙(𝑧) −E [𝜙(𝑓 (x))])𝑇 (𝜙(𝑧) −E [𝜙(𝑓 (x))])

=
(
𝜙(𝑧) − (W𝑟E [C𝑟 (x)] +𝜙)

)𝑇 (
𝜙(𝑧) − (W𝑟E [C𝑟 (x)] +𝜙)

)
=

(
𝜙(𝑧) −𝜙−W𝑟E [C𝑟 (x)]

)𝑇 (
𝜙(𝑧) −𝜙−W𝑟E [C𝑟 (x)]

)
=

(
𝜙(𝑧) −W𝑟E [C𝑟 (x)]

)𝑇 (
𝜙(𝑧) −W𝑟E [C𝑟 (x)]

)
= 𝜙(𝑧)𝑇𝜙(𝑧) + (W𝑟E [C𝑟 (x)])𝑇 (W𝑟E [C𝑟 (x)]) −2𝜙(𝑧)𝑇 (W𝑟E [C𝑟 (x)])

= 𝑘̃ (𝑧, 𝑧) +
(
𝑟∑
𝑘=1
𝑊𝑘E [𝐶𝑘 (x)]

)𝑇 (
𝑟∑
𝑘=1
𝑊𝑘E [𝐶𝑘 (x)]

)
−2𝜙(𝑧)𝑇

(
𝑟∑
𝑘=1
𝑊𝑘E [𝐶𝑘 (x)]

)
= 𝑘̃ (𝑧, 𝑧) +

𝑟∑
𝑘=1

E [𝐶𝑘 (x)]𝑇𝑊𝑇
𝑘𝑊𝑘E [𝐶𝑘 (x)] −2𝜙(𝑧)𝑇

(
𝑟∑
𝑘=1

𝑛∑
𝑖=1
𝛼̃𝑘𝑖𝜙(𝑓 (𝑥𝑖))E [𝐶𝑘 (x)]

)
= 𝑘̃ (𝑧, 𝑧) +

𝑟∑
𝑘=1

E [𝐶𝑘 (x)]𝑇 E [𝐶𝑘 (x)] −2

(
𝑟∑
𝑘=1

𝑛∑
𝑖=1
𝛼̃𝑘𝑖𝜙(𝑧)𝑇𝜙(𝑓 (𝑥𝑖))E [𝐶𝑘 (x)]

)
= 𝑘̃ (𝑧, 𝑧) +E [C𝑟 (x)]𝑇 E [C𝑟 (x)] −2E [C𝑟 (x)]𝑇 AK̃𝑧,

(4.57)

where A is the matrix containing the first 𝑟 eigenvectors of the centred kernel

matrix, K̃, and

K̃𝑧 = [𝑘̃ (𝑧, 𝑓 (x1)), 𝑘̃ (𝑧, 𝑓 (x2)), . . . , 𝑘̃ (𝑧, 𝑓 (x𝑛))] .

The implausibility, I𝐷 (x), represents the difference between the observation and

the expectation of simulator output in feature space. In traditional history match-

ing, a large value of the implausibility (shown in equation (4.42)), relative to all

sources of uncertainty, at any input x implies that, the mapped simulator output

4.5 History matching in feature space with distance constraints 107

at x is very far from where we would expect it to be. However, all sources of

uncertainty are not considered in our new defined feature space implausibility,

I𝐷 (x). When the simulator output is ‘close to’ the observations (in terms of the

relevant uncertainties), the squared distance between the mapped observation

and the emulator prediction may not be small. We proposed to allow for this by

using a variable cutoff threshold 𝑇 (x).

4.5.2 Threshold function 𝑇 (x)

To define the threshold as a function of x to account for the uncertainties, we first

consider the expectation and variance of I𝐷 (x). However, its distribution is only

available through sampling, so thresholds based on quantiles of I𝐷 (x), as in Salter

and Williamson (2019) are not efficiently available. To find a form of threshold

function, we use the triangle inequality to prove that there is a upper bound, 𝐿 (x∗)

of the implausibility I𝐷 (x∗) at the best input x∗,

I𝐷 (x∗) =∥ 𝜙(𝑧) −E [𝜙(𝑓 (x∗))] ∥2

=∥ 𝜙(𝑧) −𝜙(𝑓 (x∗)) +𝜙(𝑓 (x∗)) −E [𝜙(𝑓 (x∗))] ∥2

≤∥ 𝜙(𝑧) −𝜙(𝑓 (x∗)) ∥2 + ∥ 𝜙(𝑓 (x∗)) −E [𝜙(𝑓 (x∗))] ∥2

= 𝐿 (x∗).

(4.58)

Thus, the upper bound, 𝐿 (x∗), is the sum of the 𝐿2 distance between the observa-

tion and the model output at the best input in feature space, ∥ 𝜙(𝑧) −𝜙(𝑓 (x∗)) ∥2,

and the 𝐿2 distance between the model output and it’s expectation in feature

space, ∥ 𝜙(𝑓 (x∗)) −E [𝜙(𝑓 (x∗))] ∥2. The idea is to set the x-dependent threshold

𝑇 (x) using the expectation and the variance of 𝐿 (x∗),

E [𝐿 (x∗)] = E
[
∥ 𝜙(𝑧) −𝜙(𝑓 (x∗)) ∥2] +E

[
∥ 𝜙(𝑓 (x∗)) −E [𝜙(𝑓 (x∗))] ∥2] ,

Var [𝐿 (x∗)] = Var
[
∥ 𝜙(𝑧) −𝜙(𝑓 (x∗)) ∥2] +Var

[
∥ 𝜙(𝑓 (x∗)) −E [𝜙(𝑓 (x∗))] ∥2] .

108Kernel-based history matching for high-dimensional computer model output

The discrepancy and observation error are accounted for in E
[
∥ 𝜙(𝑧) −𝜙(𝑓 (x∗)) ∥2]

and Var
[
∥ 𝜙(𝑧) −𝜙(𝑓 (x∗)) ∥2] , and the emulator uncertainties are accounted for

in E [∥ 𝜙(𝑓 (x∗)) −E [𝜙(𝑓 (x∗)) ∥]] and Var [∥ 𝜙(𝑓 (x∗)) −E [𝜙(𝑓 (x∗)) ∥]] (details for

computing these expectations and variances will be given in Section 4.5.4).

By letting the threshold for each input 𝑇 (x) (𝑇 (x) > 0) be

𝑇 (x) = E [𝐿 (x∗)] + 𝑡
√

Var [𝐿 (x∗)], (4.59)

the Chebyshev–Cantelli inequality (one-sided Chebyshev inequality) gives that

𝑃𝑟

(
𝐿 (x∗) −E [𝐿 (x∗)] > 𝑡

√
Var [𝐿 (x∗)]

)
≤ Var [𝐿 (x∗)]

Var [𝐿 (x∗)] + 𝑡2Var [𝐿 (x∗)]
,

⇒ 𝑃𝑟

(
𝐿 (x∗) > E [𝐿 (x∗)] + 𝑡

√
Var [𝐿 (x∗)]

)
≤ 1

1+ 𝑡2
,

⇒ 𝑃𝑟 (𝐿 (x∗) > 𝑇 (x)) ≤ 1
1+ 𝑡2

,

(4.60)

where the value of 𝑡 (𝑡 > 0) represents that for 𝐿 (x∗), at least 𝑡2

1+𝑡2 of it’s distribution’s

values are greater than 𝑡 standard deviations from the mean (Hazewinkel, 2001).

By setting 𝑡 = 3 for both equations (4.59) and (4.60), we have 𝑇 (x) = E [𝐿 (x∗)] +

3
√

Var [𝐿 (x∗)], and the probability that 𝐿 (x∗) smaller than 𝑇 (x) is bigger than 90%,

𝑃𝑟 (𝐿 (x∗) < 𝑇 (x)) ≥ 90%. (4.61)

Given equations (4.58) and (4.62), we have that the probability that I𝐷 (x∗)

smaller than 𝑇 (x) is bigger than 90%,

𝑃𝑟 (I𝐷 (x∗) < 𝑇 (x)) ≥ 90%. (4.62)

For any input x, if x = x∗, then the probability that it’s implausibility, I𝐷 (x), is

bigger than the threshold 𝑇 (x) does not exceed 10%. Hence, this choice of 𝑡 implies

that we view a value of the implausibility I𝐷 (x) bigger than threshold 𝑇 (x) as

indicating that it is implausible that x = x∗. In order to compute 𝑇 (x) via equation

4.5 History matching in feature space with distance constraints 109

(4.59), we require expectation and variance of 𝐿 (x∗) which will derive in the next

two subsections.

4.5.3 Accounting for uncertainties using distance constraints

Following the model assumption introduced in Section (4.4.1), the sum of the

errors in the simulator output space, 𝑒 + 𝜂 can be represented as the distance

between 𝑧 and 𝑓 (x∗),

𝑑𝑧, 𝑓 (x∗) = 𝑧− 𝑓 (x∗) = 𝑒 +𝜂.

We give the projection of the errors in the feature space as the distance between

𝜙(𝑧) and 𝜙(𝑓 (x∗)), 𝑑𝜙(𝑧),𝜙(𝑓 (x∗)) = 𝜙(𝑧) − 𝜙(𝑓 (x∗)). Recall the distance constraints

introduced in Section 4.2.6: for many commonly used kernel functions, there is

a relationship between the squared distance 𝑑2
𝜙(𝑧),𝜙(𝑓 (x∗)) and 𝑑2

𝑧, 𝑓 (x∗) (Kwok and

Tsang, 2004), where

𝑑2
𝜙(𝑧),𝜙(𝑓 (x∗)) =∥ 𝜙(𝑧) −𝜙(𝑓 (x

∗)) ∥2,

and

𝑑2
𝑧, 𝑓 (x∗) =∥ 𝑧− 𝑓 (x

∗) ∥2 .

Therefore, for certain commonly used kernels, we could compute the 𝐿2 norm of

the sum of uncertainties in feature space, 𝑑2
𝜙(𝑧),𝜙(𝑓 (x∗)) using 𝑑2

𝑧, 𝑓 (x∗) .

The distribution of 𝑒 and 𝜂 means that the distance 𝑧 − 𝑓 (x∗) has a Normal

distribution

𝑧− 𝑓 (x∗) ∼ 𝑁 (0, Σ𝑒 +Σ𝜂).

By using the Normal property, we can derive the expectation and variance for

the distribution of ∥ 𝜙(𝑧) − 𝜙(𝑓 (x∗)) ∥2. Note that the distribution for ∥ 𝜙(𝑧) −

𝜙(𝑓 (x∗)) ∥2 is different for different kernel functions. For instance, following

equation (4.37), with a generalised Gaussian kernel 𝑘 (𝑧, 𝑓 (x∗)) = exp(−𝜎 ∥ 𝑧 −

𝑓 (x∗) ∥2), the relationship between ∥ 𝜙(𝑧) −𝜙(𝑓 (x∗)) ∥2 and | |𝑧− 𝑓 (x∗) | |2 is

∥ 𝜙(𝑧) −𝜙(𝑓 (x∗)) ∥2= 2−2exp(−𝜎 ∥ 𝑧− 𝑓 (x∗) ∥2). (4.63)

110Kernel-based history matching for high-dimensional computer model output

We have the the expectation and variance (the full computation is given in Ap-

pendix A.3)

E
[
∥ 𝜙(𝑧) −𝜙(𝑓 (x∗)) ∥2] = 2−2

| (2𝜎I𝑚×𝑚 + (Σ𝑒 +Σ𝜂)−1)−1 | 1
2

|Σ𝑒 +Σ𝜂 |
1
2

,

Var
[
∥ 𝜙(𝑧) −𝜙(𝑓 (x∗)) ∥2] = 4

| (4𝜎I𝑚×𝑚 + (Σ𝑒 +Σ𝜂)−1)−1 | 1
2

|Σ𝑒 +Σ𝜂 |
1
2

−4

(
| (2𝜎I𝑚×𝑚 + (Σ𝑒 +Σ𝜂)−1)−1 | 1

2

|Σ𝑒 +Σ𝜂 |
1
2

)2

.

For specific RBF kernels such as the Gaussian kernel, we can compute the

expectation and variance of ∥ 𝜙(𝑧) −𝜙(𝑓 (x∗)) ∥2. But for other kernels, such as dot

kernels, we can only access the expectation and variance of ∥ 𝜙(𝑧) − 𝜙(𝑓 (x∗)) ∥2

by sampling. Using distance constraints, the discrepancy and observation error

can be accounted for in the feature space, to compute 𝑇 (x). We will introduce

treatment of the emulator uncertainty in the next section.

4.5.4 Emulator uncertainty

The other element of equation (4.58), ∥ 𝜙(𝑓 (x∗)) −E [𝜙(𝑓 (x∗))] ∥2, is the distance be-

tween the model outputs and the emulator predictions. This is the variance

of the emulator in feature space. We want to compute the expectation and

variance of ∥ 𝜙(𝑓 (x∗)) −E [𝜙(𝑓 (x∗))] ∥2. However, the expectation and the vari-

ance of 𝜙(𝑓 (x∗)) −E [𝜙(𝑓 (x∗))], shown in equations (4.26) and (4.27), includes

the unknown basis vector W𝑟 . To compute the expectation and variance for

∥ 𝜙(𝑓 (x∗)) −E [𝜙(𝑓 (x∗))] ∥2, we first write it as

∥ 𝜙(𝑓 (x∗)) −E [𝜙(𝑓 (x∗))] ∥2 =∥ 𝜙(𝑓 (x∗)) −W𝑟E [C𝑟 (x∗)] ∥2

=∥ 𝜙𝑟 (𝑓 (x∗)) −W𝑟E [C𝑟 (x∗)] ∥2 +||𝜀 𝑓 | |2,

=∥ W𝑟C𝑟 (x∗) −W𝑟E [C𝑟 (x∗)] ∥2 +||𝜀 𝑓 | |2,

=∥ C𝑟 (x∗) −E [C𝑟 (x∗)] ∥2 +||𝜀 𝑓 | |2,

(4.64)

4.5 History matching in feature space with distance constraints 111

where 𝜀 𝑓 is the reconstruction error of the model output accounting for the uncer-

tainty in the approximation,

| |𝜀 𝑓 | |2 = 𝑘̃ (𝑓 (x∗), 𝑓 (x∗)) − (W𝑟𝑇𝜙(𝑓 (x∗)))𝑇 (W𝑟𝑇𝜙(𝑓 (x∗))).

However, | |𝜀 𝑓 | |2 cannot be computed without known 𝑓 (x∗). A possible solution

here is to use 𝜙𝑟 (𝑓 (x∗)) as a approximation of 𝜙(𝑓 (x∗)), but ignoring | |𝜀 𝑓 | |2 could

give a threshold smaller than the actual value, and parameter space can be ruled

out wrongly. We use the reconstruction error of the training data to approximate

| |𝜀 𝑓 | |2,

| |𝜀 𝑓 | |2 ≃
1
𝑛

𝑛∑
𝑖=1

| |𝜙(𝑓 (x𝑖)) −𝜙𝑟 (𝑓 (x𝑖)) | |2,

= 𝑘̃ (𝑓 (x𝑖), 𝑓 (x𝑖)) +E [C𝑟 (x𝑖)]𝑇 E [C𝑟 (x𝑖)] −2E [C𝑟 (x𝑖)]𝑇 AK̃ 𝑓 (x𝑖) ,

(4.65)

where A is the matrix containing the first 𝑟 eigenvectors of the centred kernel

matrix, K̃, and

K̃ 𝑓 (x) = [𝑘̃ (𝑓 (x), 𝑓 (x1)), 𝑘̃ (𝑓 (x), 𝑓 (x2)), . . . , 𝑘̃ (𝑓 (x), 𝑓 (x𝑛))] .

The proof of equation (4.64) are given in Appendix A.2.

Thus, the expectation and variance of ∥ 𝜙(𝑓 (x∗)) −E [𝜙(𝑓 (x∗))] ∥2 can be com-

puted if we have the expectation and variance ∥ C𝑟 (x∗) −E [C𝑟 (x∗)] ∥2. C𝑟 (𝑥) is

given by Gaussian process emulators,

C𝑟 (x) −E [C𝑟 (x)] ∼ 𝑁 (0, Var [C𝑟 (x)]).

For univariate emulators built for each coefficient individually, Var [C𝑟 (𝑥)]) is a

diagonal 𝑟 × 𝑟 matrix. For each coefficient,

(𝐶𝑘 (x) −E [𝐶𝑘 (x)])2

Var [𝐶𝑘 (x)]
∼ 𝜒2

1 ,

⇒ (𝐶𝑘 (x) −E [𝐶𝑘 (x)])2 ∼ Var [𝐶𝑘 (x)] 𝜒2
1 ,

112Kernel-based history matching for high-dimensional computer model output

where 𝜒2
1 is the chi-squared distribution with 1 degree of freedom, and E

[
𝜒2

1
]
= 1

and Var
[
𝜒2

1
]
= 2. The expectation and variance of (𝐶𝑘 (x) −E [𝐶𝑘 (x)])2 are therefore

E
[
(𝐶𝑘 (x) −E [𝐶𝑘 (x)])2] = Var [𝐶𝑘 (x)] ,

and

Var
[
(𝐶𝑘 (x) −E [𝐶𝑘 (x)])2] = 2Var [𝐶𝑘 (x)]2 .

So that the expectation and variance of ∥ C𝑟 (x) −E [C𝑟 (x)] ∥2 are

E
[
∥ C𝑟 (x) −E [C𝑟 (x)] ∥2] = 𝑟∑

𝑘=1
Var [𝐶𝑘 (x)] , (4.66)

Var
[
∥ C𝑟 (x) −E [C𝑟 (x)] ∥2] = 2

(
𝑟∑
𝑘=1

Var [𝐶𝑘 (x)]
)2

. (4.67)

Hence, the threshold, 𝑇 (x), given in equation (4.59) (with t=3) can be computed

𝑇 (x) =
𝑟∑
𝑘=1

Var [𝐶𝑘 (x)] +E
[
∥ 𝜙(𝑧) −𝜙(𝑓 (x∗)) ∥2] + ||𝜀 𝑓 | |2

+3

√√√
2

(
𝑟∑
𝑘=1

Var [𝐶𝑘 (x)]
)2

+Var
[
∥ 𝜙(𝑧) −𝜙(𝑓 (x∗)) ∥2

]
.

(4.68)

We have well defined implausibility measure I𝐷 (x), the distance between

mapped observation and model output in feature space, and an x-dependent

threshold, 𝑇 (x), that accounts for all sources of uncertainty. If I𝐷 (x) is larger than

𝑇 (x) for some x, we are confident that the computer model output is not consistent

with the observation. The NROY space which contains all the remaining parameter

space is defined as

X𝑁𝑅𝑂𝑌 = {x ∈ X |I𝐷 (x) ≤ 𝑇 (x)}. (4.69)

However, as we discussed in Section 4.1, when the key features in the observa-

tions we want to replicate (e.g. a current like a gulf stream in an ocean model) exist

but in a different part of the output space, it’s hard to put the discrepancy on the

output space. In fact, the discrepancy may not belong to the output space, that’s

4.6 Kernel-based history matching 113

the reason the pattern can move and standard history matching failed. Therefore,

the discrepancy may need to be determined in the feature space, and the best way

to put it here is through the kernel function itself.

4.6 Kernel-based history matching

4.6.1 Capturing uncertainty through the kernel functions

Kernel functions can be seen as the transformation from simulator output space to

feature space, which carries all the information from the simulator output space to

feature space. Uncertainty in the simulator output space is part of that information

and so could be captured by the kernel. Kernel functions are sometimes also

known as similarity functions, as they represent the similarity between the mapped

data 𝜙(𝑓 (x)) and 𝜙(𝑓 (x′)) evaluated at two model outputs 𝑓 (x) and 𝑓 (x′). The

kernel function describes the spatial or temporal covariance in the model output

space, and the kernel matrix can quantify how similar or dissimilar different

members of the ensemble are. Hence, rather than projecting uncertainties onto

feature space via a kernel function as discussed in the last subsection, another

approach is to use the kernel to represent key uncertainties.

To quantify uncertainties through the kernel, the most important requirement

is that the observational and structural uncertainties must be captured. We extend

our kernel to included these uncertainties in the following way. We use an 𝑙 × 𝑙

weight matrix, Υ, to reflect judgements regarding what are key regions of output

space for matching observations and which are less important. For example, the

Gaussian kernel with weight matrix Υ becomes

𝑘 (𝑓 (x), 𝑓 (x′)) = exp(−(𝑓 (x) − 𝑓 (x′))𝑇Υ−1(𝑓 (x) − 𝑓 (x′)))/𝜎),

114Kernel-based history matching for high-dimensional computer model output

where 𝜎 is a vector of kernel parameter and the homogeneous linear kernel

becomes

𝑘 (𝑓 (x), 𝑓 (x′)) = 𝑓 (x)𝑇Υ−1 𝑓 (x′).

By setting Υ as the sum of the observation error and discrepancy variances, we

ensure that these key uncertainties translate into feature space so that in regions

of output space where we are most uncertain, the feature distance is smaller.

Any calibration within this feature space naturally then includes discrepancy and

observation error when looking at 𝐿2 distance in feature space. Fundamentally,

history matching looks to rule out models that are ’far’ from observation using a

distance metric that accounts for all sources of uncertainty. Placing observation

uncertainty and discrepancy into a kernel can be seen as a natural generalisation

of this idea. Note, whilst it is perhaps natural to place observation error and some

sources of discrepancy at Υ, other structural errors (related to shifting patterns)

cannot be captured like this. The kernel structural itself will account for these

types of discrepancy, and we will revist the notion of what discrepancy actually

means in kernel-based history matching in Chapter 5. Moreover, how to choose a

suitable kernel (kernel parameters), and how to specify the discrepancy variance

when it is not available, will be discussed in Chapter 5.

4.6.2 Implausibility for kernel-based history matching

The implausibility shown in equation (4.43), is defined to measure the distance

between observations and the simulator outputs at a given input in feature space,

I (x) = | |𝜙(𝑧) −𝜙(𝑓 (x)) | | 𝑓 ,

where 𝜙(𝑧) is the mapped observation, 𝜙(𝑓 (x)) is the mapped simulator output in

feature space and | | · | | 𝑓 represents an appropriate measure that accounts for all

sources of uncertainties.

4.6 Kernel-based history matching 115

By having uncertainties in the kernel functions, when emulators are not re-

quired to represent the model, we use Euclidean norm, giving

I𝐹0(x) = (𝜙(𝑧) −𝜙(𝑓 (x)))𝑇 (𝜙(𝑧) −𝜙(𝑓 (x)))

= 𝑘 (𝑧, 𝑧) + 𝑘 (𝑓 (x), 𝑓 (x)) −2𝑘 (𝑓 (x), 𝑧).
(4.70)

When the simulator output is ‘close to’ the observations (given all the uncertain-

ties on simulator output space), the values of 𝑘 (𝑧, 𝑧), 𝑘 (𝑓 (x), 𝑓 (x)) and 𝑘 (𝑓 (x), 𝑧)

should be similar, so that the expectation of the squared distance between the

mapped observation and the simulator output should be small.

When we require an emulator to evaluate E [𝜙(𝑓 (x))], we must embed em-

ulator uncertainty within the norm | | · | | 𝑓 . To achieve that, we investigate two

different ways of doing history matching in feature space with emulators (when

other uncertainties are embedded in the kernel). The first way we propose is to

define a new implausibility, I𝐹1(x), using the Euclidean distance between the ob-

servations and the expectation of reconstructed data in feature space, and setting

the threshold 𝑇 as a function of x that accounts for emulator uncertainty (this is

similar to our method in Section 4.5.1). The second idea is to define a new distance

function for implausibility, I𝐹2(x), which embeds emulator uncertainty within the

distance calculation. The following subsections detail these two approaches.

4.6.3 Implausibility I𝐹1(x): variable cut-off thresholds

Emulators are built for the coefficients on the first r kernel PCA basis vectors as

described in Section 4.2.3, with the emulator expectation for each of the 𝑟 basis

coefficients E [C𝑟 (x)], and the associated emulator variance matrix, Var [C𝑟 (x)].

We give the expressions for E [𝜙(𝑓 (x))] and Var [𝜙(𝑓 (x))] in terms of the coefficient

emulators in equations (4.26) and (4.27). If Var [C𝑟 (x)] = 0, we can use E [𝜙(𝑓 (x))]

instead of 𝜙(𝑓 (x)) in equation (4.70). The implausibility in feature space would

then be:

I𝐹1(x) = (𝜙(𝑧) −E [𝜙(𝑓 (x))])𝑇 (𝜙(𝑧) −E [𝜙(𝑓 (x))]). (4.71)

116Kernel-based history matching for high-dimensional computer model output

I𝐹1(x) has the same form as I𝐷 (x) in equation (4.57), so that

I𝐹1(x) = 𝑘̃ (𝑧, 𝑧) +E [C𝑟 (x)]𝑇 E [C𝑟 (x)] −2E [C𝑟 (x)]𝑇 AK̃𝑧 . (4.72)

However, even though the form of I𝐹1(x) and I𝐷 (x) is the same, the meaning

of these two implausibilities is different. In Section 4.5.1, we introduced I𝐷 (x)

as the distance between observations and emulator predictions in feature space

without considering any sources of uncertainty. However, the implausibility I𝐹1(x)

accounts for discrepancy and observation error by having these uncertainties in

the kernel. When there is no emulator uncertainty, large values of I𝐹1(x) indicate

that it is implausible that the output of the computer model at x is consistent with

𝜙(𝑧). However, emulator uncertainty is not ignorable in reality. In later waves of

history matching, the emulator variance will reduce, but will rarely reach zero. To

make kernel-based history matching meaningful with I𝐹1(x), we give a threshold

function dependent on the emulator variance below.

Threshold choice for kernel-based history matching with I𝐹1(x)

To set a cutoff threshold for I𝐹1(x), we adopt the same approach introduced in

Section 4.5.1. We define the threshold as a function of x, 𝑇 (x), to account for the

emulator uncertainty. Equation (4.58) shows that there is an upper bound, 𝐿 (x∗), of

I𝐷 (x∗) at the best input x∗. Similar to equation (4.58), we use the triangle inequality

to prove that there is a upper bound, 𝑄(x∗), of the implausibility I𝐹1(x∗) at the

best input x∗,

I𝐹1(x∗) =∥ 𝜙(𝑧) −E [𝜙(𝑓 (x∗))] ∥2

=∥ 𝜙(𝑧) −𝜙𝑟 (𝑓 (x∗)) +𝜙𝑟 (𝑓 (x∗)) −E [𝜙(𝑓 (x∗))] ∥2

≤∥ 𝜙(𝑧) −𝜙𝑟 (𝑓 (x∗)) ∥2 + ∥ 𝜙𝑟 (𝑓 (x∗)) −E [𝜙(𝑓 (x∗))] ∥2

=∥ 𝜙(𝑧) −𝜙𝑟 (𝑓 (x∗)) ∥2 + ∥ C𝑟 (x∗) −E [C𝑟 (x∗)] ∥2

≤ 𝑎+ ∥ C𝑟 (x∗) −E [C𝑟 (x∗)] ∥2

=𝑄(x∗),

(4.73)

4.6 Kernel-based history matching 117

where 𝑎 is an upper bound for ∥ 𝜙(𝑧) − 𝜙𝑟 (𝑓 (x∗)) ∥2. Note that unlike Section

4.5.1, ∥ 𝜙(𝑧) −𝜙𝑟 (𝑓 (x∗)) ∥2 is not used to account for discrepancy and observation

error. Instead of computing the expectation and variance of ∥ 𝜙(𝑧) −𝜙𝑟 (𝑓 (x∗)) ∥2,

we find an upper bound, 𝑎, of it. Following the threshold introduced in Section

4.4.3, we can use expert judgement to set 𝑎. For the ensemble 𝐹, we have the

acceptable runs, 𝐹𝐴, and unacceptable runs, 𝐹𝑈 , given by experts. To retain all of

the acceptable inputs, x𝐴, in the NROY space and rule out all of the unacceptable

runs input, x𝑈 , we have

𝑎 = min(∥ 𝜙(z) −𝜙r(f (xU)) ∥2). (4.74)

Other suggestions of the value of 𝑎 will be discussed in Chapter 5. Therefore, we

establish the upper bound 𝑄(x∗) for I𝐹1(x∗) at the best input,

𝑄(x∗) = min(IF1(xU))+ ∥ Cr(x∗) −E [Cr(x∗)] ∥2 . (4.75)

We use the same approach introduced in Section 4.5.1: set the x-dependent

threshold, 𝑇 (x), using the expectation of 𝑄(x∗) and variance of 𝑄(x∗),

𝑇 (x) = E [𝑄(x∗)] +3
√

Var [𝑄(x∗)] . (4.76)

Hence, all sources of uncertainty on the simulator output space are accounted for

in the implausibility, and the emulator uncertainty for each input, x, is used in the

threshold 𝑇 (x). The expectation and variance of ∥ C𝑟 (x) −E [C𝑟 (x)] ∥2 are given in

equations (4.66) and (4.67), where

E
[
∥ C𝑟 (x) −E [C𝑟 (x)] ∥2] = 𝑟∑

𝑘=1
Var [𝐶𝑘 (x)] , (4.77)

Var
[
∥ C𝑟 (x) −E [C𝑟 (x)] ∥2] = 2

(
𝑟∑
𝑘=1

Var [𝐶𝑘 (x)]
)2

. (4.78)

118Kernel-based history matching for high-dimensional computer model output

Hence, the threshold becomes

𝑇 (x) =
𝑟∑
𝑘=1

Var [𝐶𝑘 (x)] +3

√√√
2

(
𝑟∑
𝑘=1

Var [𝐶𝑘 (x)]
)2

+ 𝑎. (4.79)

As the variance of the emulator tends to 0, the distance between simulator

outputs and emulator predictions tends to zero, so that the threshold function

𝑇 (x) will be a constant:

𝑇 (x) = 𝑎 = min(∥ 𝜙(z) −𝜙r(f (xU)) ∥2) as Var [𝜙(f (x))] −→ 0.

4.6.4 Implausibility I𝐹2(x)

Instead of using the euclidean norm, we can define a new measure for the implau-

sibility in equation (4.80),

I𝐹2(x) =
(
𝜙(𝑧) −E [𝜙(𝑓 (x))]

)𝑇 (
1𝐷 +Var [𝜙(𝑓 (x))]

)−1 (
𝜙(𝑧) −E [𝜙(𝑓 (x))]

)
, (4.80)

where 𝜙(𝑧) and E [𝜙(𝑓 (x))] are vectors of length of 𝐷 (𝐷 is unknown), 1𝐷 is

the identity matrix of dimension 𝐷 ×𝐷 and Var [𝜙(𝑓 (x))] is the emulator’s 𝐷 ×

𝐷 covariance matrix in feature space. I𝐹2 represents the distance between the

observation and model output in feature space scaled by the emulator uncertainty.

The addition of the identity matrix 1𝐷 ensures that the implausibility tends to the

𝐿2 distance in feature space as the emulator uncertainty tends to zero, i.e.

I𝐹2(x) −→ I𝐹1(x) as Var [𝜙(𝑓 (x))] −→ 0.

Calculating implausibility I𝐹2(x)

Without knowing 𝐷 or the explicit form of mapping function 𝜙(·), we offer an

efficient way to compute I𝐹2(x). As in Section 4.4.2, we define the ‘coefficient

implausibility’, analogous to equation (4.80) in the subspace defined by the basis

4.6 Kernel-based history matching 119

vector, W𝑟 , as:

I𝐶2(x) =
(
C𝑟 (𝑧) −E [C𝑟 (x)]

)𝑇 (
Var [C𝑟 (x)] +1𝑟

)−1 (C𝑟 (𝑧) −E [C𝑟 (x)]
)
. (4.81)

Every term in equation (4.81) is known, so that we can compute the value of

I𝐶2(x) for any input x with emulator predictions. We show that the feature space

implausibility measure I𝐹2(x) can be written in terms of I𝐶2(x),

I𝐹2(x) = I𝐶2(x) + | |𝜀𝑧 | |2, (4.82)

where 𝜀𝑧 is the observation reconstruction error and

| |𝜀𝑧 | |2 = (𝜙(𝑧) −𝜙𝑟 (𝑧))𝑇 (𝜙(𝑧) −𝜙𝑟 (𝑧))

= 𝑘̃ (𝑧, 𝑧) +C𝑟 (x)𝑇C𝑟 (x) −2C𝑟 (x)𝑇AK̃𝑧 .

(4.83)

The proof is a generalisation of the work by Salter and Williamson (2019),

which relies on the well-known Woodbury formula (Higham, 2002; Woodbury

and Woodbury, 1950),

(𝐴+𝑈𝐶𝑉)−1 = 𝐴−1 − 𝐴−1𝑈
(
𝐶−1 +𝑉𝐴−1𝑈

)−1
𝑉𝐴−1,

for matrices A, U, C and V. Expanding I𝐹2(x),

I𝐹2(x) = (𝜙(𝑧) −W𝑟E [C𝑟 (x)])𝑇 (1𝐷 +W𝑟Var [C𝑟 (x)]W𝑟𝑇)−1(𝜙(𝑧) −W𝑟E [C𝑟 (x)])

= (𝜙(𝑧) −W𝑟E [C𝑟 (x)])𝑇
(
1−1
𝐷 −1−1

𝐷 W𝑟 (Var [C𝑟 (x)]−1 +W𝑟𝑇1−1
𝐷 W𝑟)−1W𝑟𝑇1−1

𝐷

)
(𝜙(𝑧) −W𝑟E [C𝑟 (x)])

= (𝜙(𝑧) −W𝑟E [C𝑟 (x)])𝑇
(
1𝐷 −W𝑟 (Var [C𝑟 (x)]−1 +W𝑟𝑇W𝑟)−1W𝑟𝑇

)
(𝜙(𝑧) −W𝑟E [C𝑟 (x)])

= (𝜙(𝑧) −W𝑟E [C𝑟 (x)])𝑇
(
1𝐷 −W𝑟 (Var [C𝑟 (x)]−1 +1𝑟)−1W𝑟𝑇

)
(𝜙(𝑧) −W𝑟E [C𝑟 (x)])

= (𝜙(𝑧) −W𝑟E [C𝑟 (x)])𝑇 (𝜙(𝑧) −W𝑟E [C𝑟 (x)])

− (𝜙(𝑧) −W𝑟E [C𝑟 (x)])𝑇
(
W𝑟 (Var [C𝑟 (x)]−1 +1𝑟)−1W𝑟𝑇

)
(𝜙(𝑧) −W𝑟E [C𝑟 (x)]).

120Kernel-based history matching for high-dimensional computer model output

Applying the Woodbury formula again to the term of (Var [C𝑟 (x)]−1 +1𝐷)−1, we

have:
(Var [C𝑟 (x)]−1 +1𝑟)−1 = 1−1

𝑟 −1−1
𝑟 (Var [C𝑟 (x)] +1−1

𝑟)−11−1
𝑟

= 1𝑟 − (Var [C𝑟 (x)] +1𝑟)−1.

Therefore,

I𝐹2(x) = (𝜙(𝑧) −W𝑟E [C𝑟 (x)])𝑇 (𝜙(𝑧) −W𝑟E [C𝑟 (x)])

− (𝜙(𝑧) −W𝑟E [C𝑟 (x)])𝑇
(
W𝑟 (1𝑟 − (Var [C𝑟 (x)] +1𝑟)−1)W𝑟𝑇

)
(𝜙(𝑧) −W𝑟E [C𝑟 (x)]).

= (𝜙(𝑧) −W𝑟E [C𝑟 (x)])𝑇 (𝜙(𝑧) −W𝑟E [C𝑟 (x)])

− (𝜙(𝑧) −W𝑟E [C𝑟 (x)])𝑇W𝑟W𝑟𝑇 (𝜙(𝑧) −W𝑟E [C𝑟 (x)])

+ (𝜙(𝑧) −W𝑟E [C𝑟 (x)])𝑇W𝑟 (Var [C𝑟 (x)] +1𝑟)−1W𝑟𝑇 (𝜙(𝑧) −W𝑟E [C𝑟 (x)]).

= (𝜙(𝑧) −W𝑟E [C𝑟 (x)])𝑇 (𝜙(𝑧) −W𝑟E [C𝑟 (x)])

− (W𝑟𝑇𝜙(𝑧) −W𝑟𝑇W𝑟E [C𝑟 (x)])𝑇 (W𝑟𝑇𝜙(𝑧) −W𝑟𝑇W𝑟E [C𝑟 (x)])

+ (W𝑟𝑇𝜙(𝑧) −W𝑟𝑇W𝑟E [C𝑟 (x)])𝑇 (Var [C𝑟 (x)] +1𝑟)−1(W𝑟𝑇𝜙(𝑧) −W𝑟𝑇W𝑟E [C𝑟 (x)]).

= (𝜙(𝑧) −W𝑟E [C𝑟 (x)])𝑇 (𝜙(𝑧) −W𝑟E [C𝑟 (x)])

− (C𝑟 (𝑧) −E [C𝑟 (x)])𝑇 (C𝑟 (𝑧) −E [C𝑟 (x)]),

+ (C𝑟 (𝑧) −E [C𝑟 (x)])𝑇 (Var [C𝑟 (x)] +1𝑟)−1(C𝑟 (𝑧) −E [C𝑟 (x)]).

For the first two terms, we have

(𝜙(𝑧)−W𝑟E [C𝑟 (x)])𝑇 (𝜙(𝑧)−W𝑟E [C𝑟 (x)])− (C𝑟 (𝑧)−E [C𝑟 (x)])𝑇 (C𝑟 (𝑧)−E [C𝑟 (x)]) = | |𝜀𝑧 | |2.

(4.84)

The details of the proof of equation (4.84) is given in Appendix A.4. The last term is

the coefficient implausibility, I𝐶2(x), which we defined in equation (4.81). Hence,

we have proved that

I𝐹2(x) = I𝐶2(x) + | |𝜀𝑧 | |2.

With the calculable I𝐶2(x) in equation (4.81) and | |𝜀𝑧 | |2 in equation (4.83), we

can now efficiently calculate the implausibility in feature space, I𝐹2(x), without

requiring the explicit form of the mapping function.

4.7 Refocusing 121

Threshold choice for kernel-based history matching with I𝐹2(x)

We define the threshold for I𝐹2(x) using ‘leave one out’ diagnostics. For each

ensemble member, ‘leave one out’ diagnostics remove one run from the ensemble,

and an emulator is then built using the remaining data (𝑛−1), and the removed

run is predicted by this emulator. This procedure is repeated for all runs, so that

‘leave one out’ diagnostics will build 𝑛 emulators, and each emulator gives the

predictive mean E [C𝑟 (x𝑖)] with variance Var [C𝑟 (x𝑖)] for the 𝑖-th removed run,

where 𝑖 = 1, . . . , 𝑛.

Our expert judgement divides the ensemble into acceptable runs and unaccept-

able runs as discussed in Section 4.4.3 and 4.6.3. Suppose there are 𝑞 acceptable

runs. In the calibration, we want to set a threshold that can keep all of the 𝑞

acceptable, x𝐴, in the NROY space and rule out of all the unacceptable inputs,

x𝑈 . To achieve this we define the threshold 𝑇 ′ for I𝐹2(x) following the judgement

given in Section 4.4.3, as

𝑇 ′ = min(I𝐹2(x𝑈𝑗)). (4.85)

For each x 𝑗 , we compute the implausibility I𝐹2(x 𝑗) using E
[
C𝑟 (x 𝑗)

]
and Var

[
C𝑟 (x 𝑗)

]
evaluated by leaving out x 𝑗 . By setting the threshold 𝑇 ′ though equation (4.85),

we could account for both the emulator variance and expert judgement in the

calibration.

4.7 Refocusing

Refocusing for standard history matching has been introduced previously in Sec-

tion 2.5.1. History matching in feature space should also be performed waves. For

history matching in feature space with distance constraints (in Section 4.5), the

process is the same as for standard history matching. But for history matching

with projecting uncertainties into feature space (in Section 4.4) and kernel-based

history matching (in Section 4.6), we require expert judgement for each wave. This

suggests the following multi-wave process. First, we choose an initial ensemble

122Kernel-based history matching for high-dimensional computer model output

design, X1 = (x1, . . . ,x𝑛) ∈ X , where X is the 𝑝-dimensional simulator input space.

Let 𝑓 represent the complex computer model, and then the set of simulator en-

semble runs at the initial design, F1 = (𝑓 (x1), . . . , 𝑓 (x𝑛)) ∈ M, where M is the

𝑚-dimensional simulator output space. By comparing the ensemble, F1, with

the observation directly, experts will give the calibration judgements about the

simulator runs, which can be easily translated into information on which runs

are and are not deemed acceptable for this wave only. X1 is then separated into

“acceptable” and “unacceptable” runs, X𝐴
1 and X𝑈

1 . After this judgement is ob-

tained, we apply the feature space history matching in a higher 𝐷-dimensional

feature space F ⊂ R𝐷 , using either I𝐷 (x), I𝐹1(x) or I𝐹2(x), with the threshold

value/function chosen via equations (4.53), (4.79) or (4.85) to define NROY space,

X 1. For instance, using I𝐹1(x), the NROY space is defined as:

X𝑁𝑅𝑂𝑌 = {x ∈ X |I𝐹1(x) ≤ 𝑇 (x)},

where 𝑇 (x) is given in equation (4.79).

Refocusing involves iterating this process multiple times. In general, at wave

k, a new ensemble design, X𝑘 , is generated from X 𝑘−1. The NROY space for wave

𝑘 with the implausibility I𝐹1(x) is defined as

X 𝑘 = {x ∈ X 𝑘−1 |I𝐹1(x) ≤ 𝑇𝑘 (x)},

where 𝑇𝑘 (x) is defined in equation (4.79), but based on expert judgement for all of

the training data until wave 𝑘 .

It is important to note that the expert judgement step is applied for each wave,

which might give a different threshold value/function for each wave. For instance,

in the first wave, the design for a limited number of ensemble members may

not contain many perfect runs, and the experts might have a large tolerance

for the difference between the observation and ensemble runs (they may not

be sure the model can get very close to observations). As more ‘good’ runs

are found, the tolerance might be reduced in later waves, and so the threshold

4.8 Numerical study 123

value/function (𝑇 , 𝑇 ′ or 𝑇 (x)) would be reduced. In addition, 𝑇 ′ and 𝑇 (x) for

kernel-based history matching are also affected by the emulator uncertainty. As

later waves are reached, the density of runs increases and the emulator uncertainty

is reduced. For I𝐹1(x) and I𝐹2(x), when the emulator uncertainty tends towards

zero, we have I𝐹2(x) −→ I𝐹1(x) and 𝑇 (x) −→ 𝑇 ′.

For a stopping rule to determine how many waves the kernel-based history

matching performs, we following the standard history matching stopping criteria.

The details are discussed in Section 2.5.1.

4.8 Numerical study

To illustrate the performance of history matching in feature space, we design an

idealised toy example. The toy example is built to imitate a situation where PCA

approaches break down, where (for example) resolution-dependent currents or

signals may move around the output space, but it is more important that they

exist in approximately the right place. Therefore, we construct a toy model which

gives roughly two kinds of model outputs. The first kind of model output contains

no key features of the observation; this kind of output could be constructed by

random errors. For another portion of the model outputs, the key features exist,

but in various locations in the model output space. This imitates a situation where,

for some parameter settings a key emergent process is not activated, and for others

it is active but perhaps not in exactly the same place as its real world counterpart

due to the inherent limitations of the model.

We build our toy example with 5 input parameters x1,x2, . . . , x5. The param-

eter space X is [−1,1]5 and the example gives a 10× 10 spatial output. The full

definition of the toy model is given in Appendix C.1.

The observation 𝑧 is obtained by running the toy example at x𝑧 with an ob-

servation error added. x𝑧 is chosen as x𝑧 = (0.2,0.2,0.3,0.4,0.3), and the value of

the observation error is sampled from the distribution of the observation error

124Kernel-based history matching for high-dimensional computer model output

Fig. 4.3 The observations, 𝑧, for the toy function.

𝑒, 𝑁 (0, Σ𝑒). To define Σ𝑒, we use a squared exponential correlation function as

defined in equation (2.5), details given in Appendix C.1. The observation, 𝑧, is

shown in Figure 4.3, the main feature of the observation is the purple/blue signal

in the middle.

We sample 50 parameter settings, X, using a Latin Hypercube from the 5-

dimensional parameter space, X , giving an ensemble, F, with dimension 100×50.

We plot the 50 ensemble members in order from the 1st run to the 50th in Figure

C.1. As the constructor for the toy example, we could be viewed as the experts. As

such, we define the model outputs with any part of the purple signal as acceptable

runs: the acceptable runs 𝐹𝐴 are the ensemble members 2, 9, 15, 18, 21, 22, 29,

36, 37, 38, 40, 43, 44 and 46. For some runs like ensemble member 5, which only

contain a small part of the key pattern, we treat that part of the pattern as a noisy

signal and these runs are deemed unacceptable.

In order to investigate the drawbacks of the standard history matching using

PCA, a comparison between kernel-based history matching with standard history

matching will presented. The limitation of standard history matching is presented

in Section 4.8.2. Moreover, a comparison is given to illustrate the benefits and

drawbacks of our approaches is given in Section 4.8.3. We first introduce the true

NROY space for the toy example.

4.8 Numerical study 125

Fig. 4.4 Left: The true NROY density plots (upper triangle) and minimum implau-
sibility plots (lower triangle). Right:Standard history matching X ∗

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
.

4.8.1 True NROY space

True NROY space is used to identify whether the model actually reproduces the

observations, and is also used to judge the accuracy of the results of history match-

ing. We have presented an approach to find true NROY space for the numerical

examples in Chapter 3, by calculating the implausibility for each output directly,

with no emulator variance. However, the true NROY space defined in this way

cannot be used as a reference for different calibration methods, with implausibility

measurements defined in different spaces and with different functions. We will

show this in Section 4.8.2. Moreover, the full definition of the true NROY space for

our method will be introduced in Section 5.3).

We define the true NROY space here using the structure of the toy example

directly. We use 10000 runs sampled by a LHC design to represent the initial

parameter space X . We set the outputs with the key signal as “acceptable” runs,

and the model outputs with no signal as unacceptable. Hence, the true NROY is

constructed with all of the acceptable runs in these 10000 runs. We plot the target

NROY space in the left panel of Figure 4.4 as a reference. True NROY is 14.34% of

the original space.

126Kernel-based history matching for high-dimensional computer model output

4.8.2 The limitation of standard history matching

To illustrate the limitation of standard history matching clearly, we can apply

standard history matching (or PCA-based standard history matching) for the toy

example, and compare the NROY space generated by standard history matching

with true NROY space to show the difference. However, the emulator uncertainties

may influence the produced NROY space. To make a fair comparison, we find

“true” NROY space of standard history matching for the toy example following

the definition given in Chapter 3. We define the “true” NROY space for standard

history matching, X ∗
𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑

, as the NROY space found by the computer model

directly (without an emulator),

X ∗
𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 = {x ∈ X : (𝑧− 𝑓 (x))𝑇 (Σ𝑒 +Σ𝜂)−1(𝑧− 𝑓 (x)) ≤ 𝑇}, (4.86)

where Σ𝑒 is the observation error (already given with the observation) and Σ𝜂 is the

discrepancy. However, with the randomly moving signal, it’s hard to specify the

discrepancy on the output space. We set Σ𝜂 = Σ𝑒 here, to make a fair comparison,

the definition for Σ𝜂 and Σ𝑒 will be used in our methods as well. More discussion

of Σ𝜂 will be given later.

For multivariate history matching, the threshold 𝑇 is generally set as 99.5% of a

Chi-squared distribution with 𝑙 degrees of freedom (Vernon et al., 2010). However,

we find that such a threshold would nearly rule out all of the input space (we

will discuss why later). To retain the same size (14.34%) of true NROY space,

we achieve that by changing the threshold 𝑇 . Standard history matching “true”

NROY space can then be produced, X ∗
𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑

is plotted in Figure 4.4 (right). By

comparing standard history matching X ∗
𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑

with true NROY density plots, we

can see two opposing trends. The input space which has the highest density in the

true NROY plot (Figure 4.4 (right)) have the lowest value of density in the plots

for standard history matching NROY space (Figure 4.4 (left)).

The main reason for this is that the location of the key pattern in the ensemble is

different with the observation. For model runs which identify the key pattern, but

4.8 Numerical study 127

not in the same location as in observations, the distance in different locations will

be counted twice, leading to a large implausibility. For model runs which do not

have any patterns, and are relatively constant everywhere, the difference between

the observation and the model output is because of the existence of the key pattern,

and it will be only counted once, leading to a smaller implausibility than that of

the good runs. These parameter choices with small values of implausibility are,

in fact, those which need to be ruled out. This explains why, when we set the

threshold based on the Chi-squared distribution, there are no parameter settings

that were retained in the NROY space. The toy model shows that these types of

simulators cannot be satisfactorily calibrated based on distance in the output field

space. The issue is that we are using the wrong distance metric for comparing

computer model runs to observations.

4.8.3 History matching in feature space

Three possible ways to perform history matching with kernel methods were pre-

sented in Sections 4.4, 4.5 and 4.6. For the third approach, kernel-based history

matching, two possible ways to define an implausibility measurement are intro-

duced. To make this comparison easier to follow and as a recap, we will call

history matching with projected uncertainties (Section 4.4), using the coefficient

implausibility

I𝑐 (x) = (C𝑟 (z)−E [C𝑟 (x)])𝑇 (Var [C𝑟 (𝜂)] +Var [C𝑟 (𝑒)] +Var [C𝑟 (x)])−1 (C𝑟 (z)−E [C𝑟 (x)]),

as “method 1”. History matching with distance constraint (Section 4.5), using

implausibility I𝐷 (x) = (𝜙(𝑧) −E [𝜙(𝑓 (x))])𝑇 (𝜙(𝑧) −E [𝜙(𝑓 (x))]), is called “method

2”. Kernel-based history matching is called “method 3” when it we use the implau-

sibility I𝐹1(x) = (𝜙(𝑧) −E [𝜙(𝑓 (x))])𝑇 (𝜙(𝑧) −E [𝜙(𝑓 (x))]), (note, I𝐷 (x) and I𝐹1(x)

are different due to the different kernel, as detailed in Section 4.6.3), and “method

4” when I𝐹2(x) = (𝜙(𝑧) −E [𝜙(𝑓 (x))])𝑇 (1𝐷 +Var [𝜙(𝑓 (x))])−1(𝜙(𝑧) −E [𝜙(𝑓 (x))]) is

used.

128Kernel-based history matching for high-dimensional computer model output

To perform history matching in feature space, a kernel function is required. Up

until now, we have not established a general rule as to which kernel should be

used. Kernel selection will be introduced in Chapter 5. For this toy example, we

use a Gaussian RBF kernel. For method 1 and method 2, we use

𝑘1(𝑓 (x), 𝑓 (x′)) = exp(−𝜎(𝑓 (x) − 𝑓 (x′))𝑇 (𝑓 (x) − 𝑓 (x′)),

and for method 3 and method 4, we use

𝑘2(𝑓 (x), 𝑓 (x′)) = exp(−𝜎(𝑓 (x) − 𝑓 (x′))𝑇 (Σ𝑒 +Σ𝜂)−1(𝑓 (x) − 𝑓 (x′))),

where Σ𝑒 is the observation error variance matrix, Σ𝜂 is the discrepancy variance

matrix, the specification for these two variances are same as before. For both

kernels, we set 𝜎 = 0.002 (see chapter 5 for setting kernel parameters).

Given these kernel choices, we calculate the ensemble projections by applying

the kernel PCA algorithm. For 𝑘1(𝑓 (x), 𝑓 (x′)), the algorithm suggests that 16 basis

vectors are required to explain 95% of the ensemble variability. However, as we

discussed in Section 4.2.3, no more than 5 basis vectors are adopted ((Higdon et al.,

2008)). For 𝑘2(𝑓 (x), 𝑓 (x′)), only 4 basis vectors are required to explain 90% of the

ensemble variability. We use the Bayesian Treed Gaussian Process method with

the R package tgp to build the emulators for the coefficients (Gramacy and Lee,

2012) (emulation diagnostics for the toy model are provided in Appendix C.1).

The data are hard to predict because of the discontinuous nature of the simulator,

which give large uncertainties for both kernel emulators. To test which kernel

function interprets the key feature better, we perform history matching.

Using the emulator predictions (given in Appendix C.1), we perform history

matching in feature space with our four approaches. The NROY space for four

methods are plotted in Figure 4.5. To clearly show the difference of the NROY

spaces, we list the results in Table 4.1. For method 1 and method 2, with the

same kernel and emulation, the retained volume of NROY space and retained

true NROY are different. In general, these two methods work for the toy model,

4.8 Numerical study 129

NROY volume Retained true NROY
Method 1 45.36% 92.31%
Method 2 50.34% 99.11%
Method 3 43.72% 100%
Method 4 41.81% 100%

Table 4.1 History matching results of four methods.

Implausibility Fixed vs variable threshold
Where ‘discrepancy
and observation
error’ defined

Where ‘emulator
uncertainty ’
accounted for

Method 1
I𝑐 (x) = (C𝑟 (z) −E [C𝑟 (x)])𝑇
(Var [C𝑟 (𝜂)] +Var [C𝑟 (𝑒)] +Var [C𝑟 (x)])−1

(C𝑟 (z) −E [C𝑟 (x)])
Fixed threshold Implausibility Implausibility

Method 2 I𝐷 (x) = | |𝜙(𝑧) −E [𝜙(𝑓 (x))] | |2 Variable threshold Threshold Threshold
Method 3 I𝐹1(x) = | |𝜙(𝑧) −E [𝜙(𝑓 (x))] | |2 Variable threshold Kernel function Threshold

Method 4
I𝐹2(x) = (𝜙(𝑧) −E [𝜙(𝑓 (x))])𝑇
(1𝐷 +Var [𝜙(𝑓 (x))])−1

(𝜙(𝑧) −E [𝜙(𝑓 (x))])
Fixed threshold Kernel function Implausibility

Table 4.2 Comparison between four methods.

however, there is still around 8% true NROY ruled out for method 1. This is an

example of limitation of method 1 that was discussed in Section 4.4.4: perform

history matching on the coefficient space with the projected discrepancy and

observation error might be biased.

To compare these four approaches, we list the difference in Table 4.2. The

implausibility for method 2, I𝐷 (x), has the same expression as the implausibility

for methods 3, I𝐹1(x), but the implied meaning is different due to the different

kernel. The results show that method 3 ruled out more space than method 2 with

all of the true NROY space retained. For the NROY plots for method 3 and method

4, we can see there is an area with smaller minimum implausibility than the other

NROY spaces that is consistent with true NROY space (Figure 4.4). The plots for

method 3 and 4 are most similar in 2D pattern to true NROY.

For method 3 and method 4, as discussed, when the emulator uncertainty

vanishes, the expression for I𝐹1(x) is the same as the expression for I𝐹2(x), and

the threshold 𝑇 and threshold function 𝑇 (x) will also be the same. Hence, without

considering emulator uncertainties, kernel-based history matching with I𝐹1(x)

and I𝐹2(x) will give the same NROY space. In other words, the difference between

I𝐹1(x) and I𝐹2(x) is entirely caused by the differences in how we use the emulator

130Kernel-based history matching for high-dimensional computer model output

Fig. 4.5 Top left: Method 1 NROY space calculated by implausibility I𝑐 (x). Top right:
Method 2 NROY space calculated by implausibility I𝐷 (x). Bottom left: Method 3
NROY space calculated by implausibility I𝐹1(x). Bottom right: Method 4 NROY
space calculated by implausibility I𝐹2(x).

4.9 Discussion 131

uncertainties. In this toy example, there is no big difference between method 3

and method 4.

For the first 2 methods, discrepancy is required to be defined first in the output

space, and we then project it onto feature space. In fact, the discrepancy may not

belong to the output space, that’s the reason the pattern can move and standard

history matching failed. The performance of history matching in feature space

can be better once we set the discrepancy in feature space through the kernel, and

this can be achieved by method 3 and method 4 (kernel-based history matching)

only. Therefore, we suggest that kernel-based history matching is the best way

to perform history matching in feature space. In the following chapters, we will

refer it as KHM. In Chapter 5, we explore further development for KHM. We

address the key question of how to select kernels, specify discrepancy and to

choose implausibility thresholds. Refocusing of KHM will be demonstrated in the

numerical study in Chapter 5.

4.9 Discussion

In this chapter, we enhanced history matching using machine learning approaches.

A kernel-based history matching method is proposed to perform history matching

in feature space. The idea of kernel-based history matching is based on the pre-

image reconstruction of kernel PCA. We define the implausibility as the distance

between the mapped observation and the mapped model outputs in feature space,

so that we can search model output space for key features which are consistent

with observations in the feature space.

We demonstrated the accuracy of kernel-based history matching in compar-

ison to standard history matching based on PCA. By applying standard history

matching to a toy example, we showed the limitations of current calibration

methods: standard history matching cannot calibrate a computer model with high-

dimensional output that contains moving patterns. To overcome this limitation,

132Kernel-based history matching for high-dimensional computer model output

we introduced four different approaches to define the implausibility in feature

space with all sources of uncertainty accounted for in different ways. By trialing

our proposed methods on the toy example using a comparison study, we showed

that kernel-based history matching in feature space can effectively cut parameter

space whilst ensuring the true NROY space is preserved.

Unlike standard history matching, where discrepancy and observation error

are accounted for in the implausibility function, kernel-based history matching

captures all of the judgements in the model output space though the kernel. By

projecting the model output and observations with this kernel, model output (with

moving patterns) can be compared with the observations in the feature space. In

this chapter, we claimed that placing observation uncertainty and discrepancy into

a kernel is a natural generalisation of standard history matching. However, as we

found in the numerical example, it’s hard to define the discrepancy on the output

space when the location of the signal is unfixed. How to define the discrepancy,

and what discrepancy actually means in kernel-based history matching will be

discussed in Chapter 5.

Given an ensemble, we typically do not know which kernel may work best. For

a linear kernel, kernel PCA is exactly equivalent to PCA, and feature space would

be the same as the model output space. It is crucial that we choose a suitable kernel

for each individual application. To avoid choosing a wrong kernel, an automatic

procedure for kernel optimization is proposed in the Chapter 5.

Chapter 5

Optimal kernel selection in

kernel-based history matching

5.1 Introduction

The performance of kernel methods (e.g. support vector machine, kernel ridge

regression and kernel PCA) relies on the choice of the kernel and its parameters

(Alam and Fukumizu, 2014; Debnath and Takahashi, 2004; Kim et al., 2006). For

kernel-based history matching (KHM), the kernel function can be seen as a measure

of similarity for model outputs, and provides a bridge from the model output

space to a feature space, where models can be compared with data, as described

in Chapter 4. The choice of the kernel and its parameters will affect whether

non-linear features in the initial data are extracted and can be evaluated. It is

therefore important and necessary to construct a suitable kernel for specific data

features. The toy example in the last chapter shows that contradictory results

can be produced by performing history matching in different feature spaces (the

simulator output space is equivalent to a feature space determined by a linear

kernel, and was compared to a feature space determined by a Gaussian kernel).

Hence, as with other kernel based methodologies, the efficiency of KHM is highly

sensitive to the selection of the kernel.

134 Optimal kernel selection in kernel-based history matching

To investigate suitable kernels and their parameters for history matching, we

start by examining optimisation-based methods for kernel selection within the

machine learning literature. The general approach for kernel selection is cross-

validation (e.g., a bandwidth of a Gaussian RBF kernel for SVM (Chang et al.,

2005)), with a learning objective function. The idea behind cross-validation is

to separate the data into training data and test data, use the training data to

run the algorithm, and test the data to check the performance (Camps-Valls et al.,

2004). In choosing the hyperparameters of kernel PCA, Alam and Fukumizu (2014)

proposed an approach based on cross-validation for comparing reconstruction

errors of pre-images of kernel PCA. The pre-image of a feature vector, 𝑓 , is defined

by an approximate inverse image of the feature map, 𝜙(𝑓 (x)) (where 𝜙(𝑓 (x)) is

usually given by its reconstruction 𝜙(𝑓 (x)) = 𝜙𝑟 (𝑓 (x)), details are explained in

Section 4.2.5). The reconstruction error of pre-images for 𝑓 (x), is defined as,

𝜖𝑟𝑒 =∥ 𝜙(𝑓) −𝜙𝑟 (𝑓 (x)) ∥2 . (5.1)

By minimising 𝜖𝑟𝑒, the parameters in a kernel and the number of kernel principal

components can be determined. However, a drawback of these cross-validation

approaches is that they are not directly applicable for kernel PCA: the objective

function given in equation (5.1) is on feature space which is determined by the

kernel, thus the cross-validation errors are not comparable for different kernels.

For instance, the maximum value of 𝜖𝑟𝑒 is 1 for the Gaussian kernel. However, the

maximum value for polynomial kernels and linear kernels can be significantly

larger. These kernel functions properties imply that the Gaussian kernel would be

more likely to produce a smaller value 𝜖𝑟𝑒 than other kernels.

Other existing investigations into the selection of the kernel function are limited

to the improvement of the existing common kernels introduced in Section 4.2.1

(Amari and Wu, 1999; Ayat et al., 2005; Vicente et al., 2017). This causes the

limitation we discussed above: performance evaluations are not comparable for

different kernels. In response to this, Smits and Jordaan (2002) developed a novel

method of constructing a kernel function. A mixture kernel is used for improving

5.1 Introduction 135

SVM regression and can be expressed as:

𝑘 (𝑓 (x), 𝑓 (x′)) =
𝑚∑
𝑖=1
𝜔𝑖𝑘𝑖 (𝑓 (x), 𝑓 (x′)), (5.2)

where 𝜔𝑖 is an optimal mixing coefficient and 𝑘𝑖 (𝑓 (x), 𝑓 (x′)) are kernel functions.

Shi et al. (2009) propose an optimised kernel PCA for fault detection based on

mixture kernels. In this chapter, we define a specific mixture kernel: a combination

of a non-linear kernel and a linear kernel for history matching. The observation

error and discrepancy (where known) are included in the new defined kernel

function (details will be given in Section 5.2.2). By changing the mixing coefficient,

𝜔, we can achieve standard history matching with KHM. Thus, our mixture kernel

will ensure that KHM is a generalisation of standard history matching.

Before implementing history matching, all of the unknown kernel parameters

must be optimised. To find the optimal parameters, a performance evaluation to

assess the accuracy and efficiency of the calibration results is required. There are

no existing performance evaluations for history matching yet. We therefore inves-

tigate the use of expert judgement (the labelling of acceptable and unacceptable

members of our training set, as detailed in Section 4.4.3) and the newly defined

implausibility in feature space to optimise the parameters of our mixture kernel

function.

Our cost function trades off two measurements: accuracy and efficiency. Accu-

racy aims to retain all of the acceptable runs and efficiency aims to rule out all of

the unacceptable runs when carrying out history matching with the chosen kernel.

By combining these two measurements into a score, we can optimise our chosen

kernel for history matching. The implausibility cutoff threshold for kernel based

history matching is a main factor in determining performance. For standard his-

tory matching, the cutoff threshold can be set as a static value based on the 3 sigma

rule, or the quantiles of a Chi-squared distribution (for example). However, unlike

with standard history matching, the value of the cutoff threshold for KHM must

be influenced by the kernel function because kernel choices impact implausibility

136 Optimal kernel selection in kernel-based history matching

magnitudes. Therefore, we set the threshold as a function of the kernel, and an

optimisation cutoff is given for the kernel in our optimisation algorithm.

This chapter is structured as follows: In Section 5.2, we introduce our mixture

kernel. Specifically, in Section 5.2.3 we demonstrate that standard history matching

can be achieved by KHM with a linear kernel. In Section 5.3, we introduce an

optimisation algorithm for kernel selection. In Section 5.4 and Section 5.5, we

apply the KHM method to two numerical examples. Section 5.6 concludes with a

discussion.

5.2 A mixture kernel for kernel PCA

5.2.1 Kernel properties

Before constructing a mixture kernel that combines the linear kernel with a non-

linear kernel, we will first formally introduce the properties associated with ker-

nels. A kernel function must be symmetric, 𝑘 (x,x′) = 𝑘 (x′,x), and strictly non

negative: 𝑘 (x,x′) ≥ 0. Kernel functions must also satisfy the Cauchy-Schwartz

inequality, 𝑘 (x,x′) ≤
√
𝑘 (x,x)𝑘 (x′,x′) (Genton, 2001).

Since kernels are positive semi-definite functions, we can construct new kernel

functions from existing kernels. For example, the linear combination of two kernel

functions 𝑘1 and 𝑘2 is also a kernel:

𝑘 (𝑥, 𝑥′) = 𝑎1𝑘1(𝑥, 𝑥′) + 𝑎2𝑘2(𝑥, 𝑥′), (5.3)

where 𝑎1 and 𝑎2 are two positive constants.

5.2.2 The structure of the mixture kernel

This study uses the structure of the mixture kernel introduced by Smits and

Jordaan (2002), which is constructed following equation (5.3). We define the

5.2 A mixture kernel for kernel PCA 137

mixture kernel, 𝑘 (𝑓 (x), 𝑓 (x′)), as a combination of two kernels, 𝑘1(𝑓 (x), 𝑓 (x′)) and

𝑘2(𝑓 (x), 𝑓 (x′), via

𝑘 (𝑓 (x), 𝑓 (x′)) = 𝜔𝑘1(𝑓 (x), 𝑓 (x′)) + (1−𝜔)𝑘2(𝑓 (x), 𝑓 (x′)), (5.4)

where 𝜔 ∈ [0,1] is a weight parameter. To maintain the ability to use both linear

and non-linear kernels, we combine a linear kernel with a user-specified non-linear

kernel. We set 𝑘1(𝑓 (x), 𝑓 (x′)) as a linear kernel,

𝑘1(𝑓 (x), 𝑓 (x′)) = 𝑓 (x)𝑇Υ−1 𝑓 (x′),

where Υ is a 𝑙 × 𝑙 weight matrix. We also include a 𝑙 × 𝑙 uncertainty matrices,

Υ′ in the nonlinear kernel, 𝑘2(𝑓 (x), 𝑓 (x′)). For example, one possible choice is a

Gaussian kernel,

𝑘2(𝑓 (x), 𝑓 (x′)) = exp
(
− 1
𝜎

(
𝑓 (x) − 𝑓 (x′)

)𝑇
Υ′−1 (𝑓 (x) − 𝑓 (x′))) ,

where 𝜎 is the Gaussian kernel parameter. For standard history matching, the

usual choice for the uncertainty matrix is

Υ = Σ𝑒 +Σ𝜂,

where Σ𝑒 is the observation error variance matrix and Σ𝜂 is the discrepancy vari-

ance (original introduced by Salter et al. (2019)). We adopt this assumption for

Υ, and we will show that standard history matching can be achieved by KHM

when the linear kernel is picked with this assumption in the next section. For

computationally reasons, we use the same assumption for Υ′ here

Υ′ = Υ = Σ𝑒 +Σ𝜂 .

However, this assumption might not be the best in terms of finding the best low-

dimensional embedding of the output. It would be useful to consider in the future

138 Optimal kernel selection in kernel-based history matching

to provide different uncertainty matrices for Υ′ for different nonlinear kernels

which might lead to useful approaches.

It is often the case that the discrepancy variance is not well understood by

the modellers, and needs to be modelled (we presented some discrepancy mod-

els in Chapter 2). Salter et al. (2019) model the discrepancy as a multivariate

Gaussian process with mean zero for a simulator with high dimensional output,

with unknown hyper-parameters that determine the covariance matrix. In some

applications, e.g. the moving pattern situation introduced in the last chapter,

the difference between computer model and reality (on the output space) is not

meaningful, and there is no model discrepancy (under the usual HM definition).

This renders Σ𝜂 as an unknown term in the kernel that allows for distance between

model output and reality in feature space. Υ is then the sum of observation error

variance Σ𝑒 and the unknown term Σ𝜂. We will fit the unknown kernel parameters

(including Σ𝜂) in the optimization algorithm using our training data and expert

classification.

Note that, as discussed in Section 4.6.1, by quantifying uncertainties through

our kernel, what we mean by the distance between model output and observations

is represented by the kernel. Specifically, a model run being ‘close’ to the data or

‘far away’ (so that it might be ruled out) is a judgement captured in the kernel,

unlike in accounts of standard history matching, where these judgements appear

in the implausibility. Note also that when 𝜔 = 1, Σ𝜂 will correspond to what we

normally think of as model discrepancy, and KHM will produce the same results

as standard history matching (we demonstrate this in Section 5.2.3).

5.2.3 Achieving standard history matching with KHM

A feature space which normally lies in a higher dimensional space than that of the

original output space is determined by a kernel function. For the linear kernel,

𝑘 (𝑓 (x′), 𝑓 (x)) = 𝑓 (x)𝑇 𝑓 (x), the feature space is equivalent to the original space,

5.2 A mixture kernel for kernel PCA 139

and kernel PCA is exactly equivalent to standard PCA. The explicit formulation of

the map function 𝜙(·) is 𝜙(𝑓 (𝑥)) = 𝑓 (𝑥).

The relationship between kernel PCA and standard PCA suggests that standard

history matching can be achieved by KHM. We adopt the form of our mixture

kernel defined in equation (5.4), and set the weight parameter, 𝜔 = 1, the kernel

function is then

𝑘 (𝑓 (x), 𝑓 (x′)) = 𝑓 (x)𝑇Υ−1 𝑓 (x′),

Note that, Υ is symmetric and can be decomposed as Υ = 𝑄𝑇𝐻𝑄, where 𝑄 is

an orthogonal matrix, and 𝐻 is a diagonal matrix with the eigenvalues of Υ as

its diagonal elements. Hence, Υ−1 can be written as Υ−1 = 𝑄𝑇𝐻−1𝑄. Further, by

writing 𝑃 =𝑄𝑇𝐻−1/2, we have Υ−1 = 𝑃𝑃𝑇 . The linear kernel is then

𝑘 (𝑓 (x), 𝑓 (x′)) = 𝜙(𝑓 (x))𝑇𝜙(𝑓 (x) ′) = 𝑓 (x)𝑇𝑃𝑃𝑇 𝑓 (x′).

Since we are using the linear kernel for kernel PCA, the feature space is equivalent

to the model output space, and the dimension of mapped data, 𝐷, is the same as

the dimension of model output 𝑙. The explicit formulation of the map function in

this case is:

𝜙(𝑓 (x)) = 𝑃𝑇 𝑓 (x).

Therefore, performing kernel PCA on the original dataset F = (𝑓 (x1), . . . , 𝑓 (x𝑛)) is

equivalent to performing PCA with the 𝑙×𝑛 matrix of mapped ensemble members

Φ = (𝜙(𝑓 (x1)), . . . , 𝜙(𝑓 (x𝑛)) = (𝑃𝑇 𝑓 (x1), . . . , 𝑃𝑇 𝑓 (x𝑛)). The mapped ensemble

mean, 𝜙, given by averaging across the rows of Φ, could be expressed as the

original ensemble mean 𝑢, with

𝜙 = 𝑃𝑇𝑢.

Given the centred mapped ensemble Φ̃, the PCA/SVD basis, W, can be calculated

via

Φ̃𝑇 = 𝐸𝐵W𝑇 ,

140 Optimal kernel selection in kernel-based history matching

where 𝐸 is a 𝑛× 𝑛 orthonormal matrix, W is a 𝐷 ×𝐷 orthonormal matrix, and

𝐵 is a 𝑛×𝐷 matrix with non-zero elements only along the main diagonal. W is

truncated after the first 𝑟 vectors, giving the truncated basis, W𝑟 = (𝑊1, . . . , 𝑊𝑟).

The projection of a mapped output 𝜙(𝑓 (x)) = 𝑃𝑇 𝑓 (x) onto W𝑟 is given by

C𝑟 (x) = (W𝑟𝑇W𝑟)−1W𝑟𝑇 (𝜙(𝑓 (x)) −𝜙), (5.5)

where C𝑟 (x) = [𝐶1(x), . . . , 𝐶𝑟 (x)]𝑇 , and this projection is exactly the same as the

projections for PCA-based history matching given in Salter and Williamson (2019):

C𝑟 (x) = (W𝑇
𝑃𝐶𝐴𝑟

𝑃𝑃𝑇W𝑃𝐶𝐴𝑟)−1W𝑇
𝑃𝐶𝐴𝑟

𝑃(𝜙(𝑓 (x)) −𝜙)

= (W𝑇
𝑃𝐶𝐴𝑟

𝑃𝑃𝑇W𝑃𝐶𝐴𝑟)−1W𝑇
𝑃𝐶𝐴𝑟

𝑃𝑃𝑇 (𝑓 (x) −𝑢)

= (W𝑇
𝑃𝐶𝐴𝑟

Υ−1W𝑃𝐶𝐴𝑟)−1W𝑇
𝑃𝐶𝐴𝑟

Υ−1(𝑓 (x) −𝑢),

(5.6)

where W𝑃𝐶𝐴 is the PCA basis, W𝑃𝐶𝐴𝑟 is the truncated basis, and 𝑃𝑇W𝑃𝐶𝐴 =W. This

is because W𝑃𝐶𝐴 is defined using the original model outputs from the ensemble,

𝐹𝑇 = 𝐸′𝐵′W𝑇
𝑃𝐶𝐴.

Here, 𝐸′ is a 𝑛×𝑛 orthonormal matrix, W𝑃𝐶𝐴 is an 𝑙 × 𝑙 orthonormal matrix, and

𝐵′ is an 𝑛× 𝑙 matrix with non-zero elements only along the main diagonal. By the

properties of the singular value decomposition, and as 𝜙(𝑓 (x)) = 𝑃𝑇 𝑓 (x), we have

that W = 𝑃𝑇W𝑇
𝑃𝐶𝐴.

To test whether KHM is the same as standard history matching based on the

proposed kernel function, we compare the implausibility functions. When there is

no emulator, the implausibility for standard history matching, I (x), is defined as

the Mahalanobis distance between the observations and the computer model:

I (x) = (𝑧− 𝑓 (x))𝑇 (Σ𝑒 +Σ𝜂)−1(𝑧− 𝑓 (x)).

5.2 A mixture kernel for kernel PCA 141

For the same input x, the implausibility for KHM, I𝐹0(x), is defined as the eu-

clidean distance between the observations and the computer model:

I𝐹0(x) = (𝜙(𝑧) −𝜙(𝑓 (x)))𝑇 (𝜙(𝑧) −𝜙(𝑓 (x))) ,

which can be written as:

I𝐹0(x) = (𝑃𝑇 𝑧−𝑃𝑇 𝑓 (x))𝑇 (𝑃𝑇 𝑧−𝑃𝑇 𝑓 (x))

= (𝑧− 𝑓 (x))𝑇𝑃𝑃𝑇 (𝑧− 𝑓 (x))

= (𝑧− 𝑓 (x))𝑇Υ−1(𝑧− 𝑓 (x))

= (𝑧− 𝑓 (x))𝑇 (Σ𝑒 +Σ𝜂)−1(𝑧− 𝑓 (x)).

(5.7)

Hence, the implausibility for kernel PCA-based history matching and PCA history

matching is the same.

When the emulators are required and built for the coefficients on the first r

basis vectors, C𝑟 (x) = [𝐶1(x), . . . , 𝐶𝑟 (x)]𝑇 ,

𝐶𝑘 (x) ∼ GP (𝑚𝑘 (x), 𝜎2
𝑘 𝑐𝑘 (x,x)), 𝑘 = 1, . . . , 𝑟, (5.8)

with the emulator expectation for each of the 𝑟 basis vectors given by E [C𝑟 (x)] =

[E [𝐶1(x)] , . . . , E [𝐶𝑟 (x)]]𝑇 , and the associated emulator variance matrix: Var [C𝑟 (x)] =

diag[Var [𝐶1(x)] , . . . , Var [𝐶𝑟 (x)]]. Note that the coefficients are same for PCA-

based history matching and kernel PCA-based history matching. Thus, we retrieve

the expectation and variance of 𝑓 (x) via:

E [𝑓 (x)] = W𝑃𝐶𝐴𝑟 E [C𝑟 (x)] +𝑢, Var [𝑓 (x)] = W𝑃𝐶𝐴𝑟 Var [C𝑟 (x)]W𝑇
𝑃𝐶𝐴𝑟

, (5.9)

and the expectation and variance of 𝜙(𝑓 (x)) via:

E [𝜙(𝑓 (x))] = W𝑟E [C𝑟 (x)] +𝜙, Var [𝜙(𝑓 (x))] = W𝑟Var [C𝑟 (x)]W𝑟𝑇 . (5.10)

142 Optimal kernel selection in kernel-based history matching

Since W = 𝑃𝑇W𝑇
𝑃𝐶𝐴 and 𝜙 = 𝑃𝑇𝑢, we then can write the relationship between

E [𝑓 (x)] and E [𝜙(𝑓 (x))]: E [𝜙(𝑓 (x))] = 𝑃𝑇E [𝑓 (x)], and the relationship between

Var [𝑓 (x)] and Var [𝜙(𝑓 (x))]: Var [𝜙(𝑓 (x))] = 𝑃Var [𝑓 (x)] 𝑃𝑇 . Based on these rela-

tionships, we prove that the implausibility for standard history matching is the

same the implausibility for KHM, we have:

I (x) = I𝐹0(x), (5.11)

where

I (x) =
(
𝑧−E [𝑓 (x)]

)𝑇 (
Σ𝑒 +Σ𝜂 +Var [𝑓 (x)]

)−1 (
𝑧−E [𝑓 (x)]

)
,

and

I𝐹2(x) =
(
𝜙(𝑧) −E [𝜙(𝑓 (x))]

)𝑇 (1𝐷 +Var [𝜙(𝑓 (x))]
)−1 (

𝜙(𝑧) −E [𝜙(𝑓 (x)]
)
.

A full proof of this result is given in Appendix A.5.

When the implausibility threshold is set as with the PCA choice, KHM will

have the same NROY space as standard history matching. As such, KHM is a

generalised version of standard history matching, and simulator output space is

one possible choice of feature space we can perform history matching in.

5.3 Fitting the kernel parameters

Our mixture kernel function combines a nonlinear kernel with a linear kernel.

To perform history matching, we must estimate the unknown parameters in this

mixture kernel. We denote all of the unknown parameters in the mixture kernel

as K𝑝𝑎𝑟 , including a weight parameter, 𝜔 ∈ [0,1], nonlinear kernel parameters 𝜅,

(e.g. 𝜎, when a Gaussian kernel is applied), and unknown parameters, 𝜙𝜂, used to

specify Σ𝜂. We have K𝑝𝑎𝑟 = (𝜔, 𝜅, 𝜙𝜂).

5.3 Fitting the kernel parameters 143

We define the kernel parameter selection problem as

K∗
𝑝𝑎𝑟 = argmax

K𝑝𝑎𝑟

P (K𝑝𝑎𝑟), (5.12)

where K∗
𝑝𝑎𝑟 is a set of optimal kernel parameter values, and P (·) is a performance

evaluation function to be introduced in the following section.

5.3.1 Evaluation of history matching performance

History matching attempts to identify the parts of the input parameter space

that are likely to result in mismatches between computer outputs and observa-

tions. Given an implausibility function, I (x), and a cutoff threshold, 𝑇 , an NROY

space X𝑁𝑅𝑂𝑌 can be defined. Comparing the difference between X𝑁𝑅𝑂𝑌 and “true”

NROY space, is the most obvious measure for history matching performance eval-

uation. In Chapter 3, we have defined the “true” NROY space, X ∗, for standard

history matching, which is the NROY space found by the computer model directly

(without an emulator):

X ∗ =

{
𝑥 ∈ X :

|𝑧− 𝑓 (𝑥) |√
Var [𝑒] +Var [𝜂]

≤ 𝑇
}
, (5.13)

where 𝑇 = 3. In order to evaluate standard history matching performance, we

use X ∗ to compare with the NROY space found using an emulator. Following

equation (5.13), we have X ∗ for KHM

X ∗(K𝑝𝑎𝑟) = {x ∈ X : I𝐹0(x) ≤ 𝑇}, (5.14)

where I𝐹0(x) = | |𝜙(𝑧) − 𝜙(𝑓 (x)) | |2 (given in equation 4.70). Given the mixture

kernel defined in equation (5.4), the NROY space found by the computer model

directly, X ∗(K𝑝𝑎𝑟), depends on kernel choices, K𝑝𝑎𝑟 . In order to define true NROY

for KHM, a “best” kernel is required. We assume there is a modeller’s (expert’s)

kernel (the mixture kernel with parameters, K𝐸
𝑝𝑎𝑟) that produces a modeller’s

NROY space. By setting this modeller’s kernel as the “best” kernel, the modeller’s

144 Optimal kernel selection in kernel-based history matching

NROY space can be seen as the true NROY space,

X ∗
𝐾𝐻𝑀 = X ∗(K𝐸

𝑝𝑎𝑟).

Note that, we do not know K𝐸
𝑝𝑎𝑟 , and the true NROY space, X ∗

𝐾𝐻𝑀
, cannot be

assessed directly. We would not expect the modeller to have judgement about

K𝐸
𝑝𝑎𝑟 , but about X ∗

𝐾𝐻𝑀
as a result of an understanding best captured through K𝐸

𝑝𝑎𝑟 .

To learn the true NROY space, we label the training data based on the informa-

tion given by experts. The ensemble members, 𝑓 (x), are labelled either as accept-

able runs 𝐹𝐴 or unacceptable runs 𝐹𝑈 , with corresponding acceptable/unaccept-

able inputs x𝐴/x𝑈 (details are introduced in Section 4.4.3). Suppose there are 𝑝 ac-

ceptable runs, so that the acceptable inputs set can be denoted as X𝐴 = {x𝐴1 , . . . ,x
𝐴
𝑝 },

and the unacceptable inputs as X𝑈 = {x𝑈1 , . . . ,x
𝑈
𝑛−𝑝}. These acceptable/unacceptable

runs provide prior knowledge relating to which patterns are important and can be

seen as partial information on true NROY, X ∗
𝐾𝐻𝑀

. With the “best” kernel, all of the

acceptable runs should be retained in the NROY space, and all of the unacceptable

runs should be ruled out (other situations accounting for human error will be

discussed in Chapter 6). We treat the acceptable runs as X 𝐴, the aim of kernel

optimization is then to find the kernel that represents X 𝐴 as well as possible for

KHM.

In order to assess the performance of KHM with a given set of parameters,

K𝑝𝑎𝑟 , we compare X 𝐴 with the produced NROY space X𝑁𝑅𝑂𝑌 (K𝑝𝑎𝑟), where

X𝑁𝑅𝑂𝑌 (K𝑝𝑎𝑟) = {x ∈ X : | | (𝜙(𝑧) −W𝑟C𝑟 (x) | |2 ≤ 𝑇}, (5.15)

and W𝑟 is a vector of the first 𝑟 Kernel PCA basis vectors under K𝑝𝑎𝑟 . Unlike using

I𝐹0(x) in equation (5.14), the implausibility function used in equation (5.15) is the

distance between mapped observation, 𝜙(𝑧), and model output reconstruction,

W𝑟C𝑟 (x). This enables us to fit Gaussian process emulators for the coefficients.

Note that, by using equation (5.15) to access performance, we ensure that the

chosen subspace defined by W𝑟 can extract the key signal that we are calibrating

5.3 Fitting the kernel parameters 145

for. To facilitate the comparison between X ∗
𝐾𝐻𝑀

and X𝑁𝑅𝑂𝑌 (K𝑝𝑎𝑟), two indicators

are proposed to measure the accuracy and efficiency of KHM. We define these two

indicators separately.

Accuracy

Given 𝑝 acceptable runs, X𝐴, and the produced NROY space, X𝑁𝑅𝑂𝑌 (K𝑝𝑎𝑟), we

can compute the number of cases when an acceptable input x𝐴 is retained in

X𝑁𝑅𝑂𝑌 (K𝑝𝑎𝑟),

𝑁𝐴 (K𝑝𝑎𝑟) =
∑

x∈X𝐴

111
(
I (x) ≤ 𝑇

)
, (5.16)

where 111 is the indicator function and 0 ≤ 𝑁𝐴 (K𝑝𝑎𝑟) ≤ 𝑝. Given the value of

𝑁𝐴 (K𝑝𝑎𝑟), we define the accuracy of KHM as a function of K𝑝𝑎𝑟 that computes the

proportion of acceptable runs to be retained in X𝑁𝑅𝑂𝑌 (K𝑝𝑎𝑟),

A(K𝑝𝑎𝑟) =
1
𝑝
𝑁𝐴 (K𝑝𝑎𝑟) (5.17)

and A(K𝑝𝑎𝑟) ∈ [0,1]. The optimal situation for accuracy, A(K𝑝𝑎𝑟) = 1, can be

reached when all of the acceptable runs, x𝐴 ∈ X𝐴, are retained in the NROY space,

| | (𝜙(𝑧) −W𝑟C𝑟 (x𝐴) | |2 ≤ 𝑇 . However, the optimal situation for accuracy does not

necessarily represent the optimal situation for history matching. For instance,

A(K𝑝𝑎𝑟) = 1 can be reached with a large cutoff 𝑇 that can ensure that no space

would be ruled out at all. Hence, although a high level of accuracy guarantees

that acceptable runs are retained in the NROY space, it is also important to rule

out most of the unacceptable runs. We introduce another measure to assess the

efficiency of history matching.

Efficiency

To test efficiency, we usually compute the volume of X𝑁𝑅𝑂𝑌 (K𝑝𝑎𝑟), to establish

how much space has been removed. However, this does not mean the smaller

size of NROY the better. Ideally NROY space is as close as possible to the true

146 Optimal kernel selection in kernel-based history matching

NROY space. We define efficiency as a measure that tells us the proportion of

unacceptable runs that history matching diagnoses as being acceptable. Denote

the number of cases when unacceptable input, x𝑈 , is incorrectly retained in the

produced NROY as 𝑁𝑈 ,

𝑁𝑈 (K𝑝𝑎𝑟) =
∑

x∈X𝑈

111
(
I (x) ≤ 𝑇

)
, (5.18)

We define the efficiency of a kernel as

E (K𝑝𝑎𝑟) =
𝑁𝐴 (K𝑝𝑎𝑟)

𝑁𝐴 (K𝑝𝑎𝑟) +𝑁𝑈 (K𝑝𝑎𝑟)
. (5.19)

The optimal situation for efficiency, E (K𝑝𝑎𝑟) = 1, can be reached when all of the

unacceptable runs can be ruled out, I (x𝑈)) > 𝑇 for x𝑈 ∈ X𝑈 . Noted, with a smaller

cutoff than any implausibility value, E (K𝑝𝑎𝑟) is undefined. To avoid this situation,

we require that 𝑇 ≥ minx∈X(I (x𝑈)).

A successful calibration requires that all of the acceptable runs, x𝐴, are retained

in NROY space. History matching is, thus, seen as successful if a high number of

parameter choices for unacceptable runs, x𝑈 , can be ruled out. By combining the

accuracy measure and efficiency measure, our performance evaluation for history

matching is:

P (K𝑝𝑎𝑟) = 𝛼A(K𝑝𝑎𝑟) + (1−𝛼)E (K𝑝𝑎𝑟), (5.20)

where 𝛼 is an influence factor, which compromises between A(K𝑝𝑎𝑟) and E (K𝑝𝑎𝑟).

In early waves of KHM, it is more important to keep all of the good runs. Thus, it is

advisable to use a large value for 𝛼, e.g. 𝛼 = 0.8. The optimal situation, P (K𝑝𝑎𝑟) = 1,

can be achieved when the kernel based-history matching satisfies

max
x𝐴∈X𝐴

(I (x𝐴)) ≤ 𝑇 < min
x𝑈∈X𝑈

(I (x𝑈)). (5.21)

In this optimal situation, the produced NROY space, X𝑁𝑅𝑂𝑌 (K𝑝𝑎𝑟), contains all of

the acceptable runs and rules out all of the unacceptable runs.

5.3 Fitting the kernel parameters 147

5.3.2 Cutoff threshold: 𝑇

Ideally, we want the threshold, 𝑇 , to be a clear ‘boundary’ between the acceptable

and unacceptable runs, but determining where this ‘boundary’ lies will be impossi-

ble without an explicit mapping function. In Section 4.4.3, we set the value of 𝑇 to

depend on the kernel, because kernel choices impact the magnitude of the implau-

sibility. We could use min(I (x𝑈)) for x𝑈 ∈ X𝑈 as one possible choice for threshold

𝑇 . However, setting 𝑇 = min(I (x𝑈)) will not be suitable when equation (5.21) does

not hold. In the same way as the example given in the last chapter, with a poor

kernel function, unacceptable runs could be much closer to observations than the

acceptable runs. Moreover, the optimal situation will never materialise if there

exists any human error in the expert judgement (discussion and an illustration of

this is given in the next chapter).

To help selection of a kernel that will be suitable, we determine the choice

for the cutoff threshold within the kernel selection algorithm. Given the mixture

kernel, we define the threshold as a function of K𝑝𝑎𝑟 , 𝑇 (K𝑝𝑎𝑟). The performance

evaluation P (·) is then defined as a function of 𝑇 (K𝑝𝑎𝑟) and K𝑝𝑎𝑟 . The optimisation

of the threshold with given K𝑝𝑎𝑟 can then be defined as

𝑇∗(K𝑝𝑎𝑟) = argmax
𝑇

{P (𝑇 (K𝑝𝑎𝑟), K𝑝𝑎𝑟)}. (5.22)

Note that, with finite training data, the value of optimised threshold 𝑇∗(K𝑝𝑎𝑟) is

not unique. For example, given a suitable K𝑝𝑎𝑟 , any value of 𝑇∗(K𝑝𝑎𝑟) in the range

of [max(I (x𝐴)),min(I (x𝑈))] gives P (𝑇 (K𝑝𝑎𝑟),K𝑝𝑎𝑟) = 1. However, with different

values of threshold between [max(I (x𝐴)) and min(I (x𝑈))], the produced NROY

spaces are different. To avoid ruling out any true NROY space, we keep the largest

NROY space satisfying equation (5.22), establishing our optimal threshold as

𝑇∗∗(K𝑝𝑎𝑟) = max
{
𝑇∗ : 𝑇∗ = argmax

𝑇

{
P

(
𝑇 (K𝑝𝑎𝑟), K𝑝𝑎𝑟

)}}
. (5.23)

148 Optimal kernel selection in kernel-based history matching

The optimal threshold, 𝑇∗∗(K𝑝𝑎𝑟), can be directly used for the implausibility

measure introduced in equation (5.15) only. However, for the implausibilities

introduced in Chapter 4 that involve emulators (equations (4.71) and (4.80)), the

emulator variance also needs to be considered in the threshold. We first consider

the threshold, 𝑇 (x), for implausibility

I𝐹1(x) =∥ 𝜙(𝑧) −E [𝜙(𝑓 (x))] ∥2 .

In Section 4.6.3, we derived a threshold for I𝐹1(x):

𝑇 (x) =
𝑟∑
𝑘=1

Var [𝐶𝑘 (x)] +3

√√√
2

(
𝑟∑
𝑘=1

Var [𝐶𝑘 (x)]
)2

+ 𝑎,

where 𝑎 is the maximum value for ∥ 𝜙(𝑧) − 𝜙(𝑓 (x∗)) ∥2. Instead of assuming

𝑎 = min(∥ 𝜙(z) − 𝜙r(f (xU)) ∥2) as in Section 4.6.3, here we set 𝑎 as 𝑇∗∗(K𝑝𝑎𝑟). The

optimal threshold for I𝐹1(x) is then

𝑇∗(x) =
𝑟∑
𝑘=1

Var [𝐶𝑘 (x)] +3

√√√
2

(
𝑟∑
𝑘=1

Var [𝐶𝑘 (x)]
)2

+𝑇∗∗(K𝑝𝑎𝑟).

Note that, as the variance of the emulator tends to 0, Var [𝜙(𝑓 (x))] −→ 0, 𝑇∗(x) −→

𝑇∗∗(K𝑝𝑎𝑟).

For implausibility

I𝐹2(x) = (𝜙(𝑧) −E [𝜙(𝑓 (x))])𝑇 (1𝐷 +Var [𝜙(𝑓 (x))])−1(𝜙(𝑧) −E [𝜙(𝑓 (x))]),

a possible threshold, 𝑇 ′ is defined in Section 4.6.4 using ‘leave one out’ diagnostics,

𝑇 ′ = min(I𝐹2(x𝑈𝑗)). We define the optimisation of the threshold with given K𝑝𝑎𝑟 for

I𝐹2(x) as

𝑇
′∗∗ = max

{
𝑇

′∗ : 𝑇
′∗ = argmax

𝑇 ′

{
P′ (𝑇 ′,K𝑝𝑎𝑟

)}}
, (5.24)

where P′(·) is the performance evaluation function for KHM with I𝐹2(x):

P′(𝑇 ′,K𝑝𝑎𝑟) = 𝛼A′(K𝑝𝑎𝑟) + (1−𝛼)E′(K𝑝𝑎𝑟),

5.3 Fitting the kernel parameters 149

where A′(K𝑝𝑎𝑟) and E′(K𝑝𝑎𝑟) are defined in equations (5.17) and (5.19), but 𝑁𝐴 (K𝑝𝑎𝑟)

and 𝑁𝑈 (K𝑝𝑎𝑟) are computed with I𝐹2(x):

𝑁𝐴 (K𝑝𝑎𝑟) =
∑

x∈X𝐴

111
(
I𝐹2(x)) ≤ 𝑇

)
,

and

𝑁𝑈 (K𝑝𝑎𝑟) =
∑

x∈X𝑈

111
(
I𝐹2(x)) ≤ 𝑇

)
.

Details for computing I𝐹2(x) for all x ∈ X𝐴∪X𝑈 using ‘leave one out’ validation

predictions for the training data are given in Section 4.6.4. Note that, as the

variance of the emulator tends to 0, Var [𝜙(𝑓 (x))] −→ 0, 𝑇
′∗∗ −→ 𝑇∗∗(K𝑝𝑎𝑟) and

P′ (𝑇 ′(K𝑝𝑎𝑟),K𝑝𝑎𝑟

)
−→ P

(
𝑇 ′(K𝑝𝑎𝑟),K𝑝𝑎𝑟

)
.

5.3.3 Kernel selection procedure

Given the mixture kernel in equation (5.4), we present our procedure for select-

ing an optimal kernel and a cutoff value for KHM with the objective function

P (K𝑝𝑎𝑟 ,𝑇). In order to find K∗
𝑝𝑎𝑟 , we use simulated annealing to optimise the

objective function (Van Laarhoven and Aarts, 1987), though any procedure may

be used.

Step 1: Perform kernel PCA for training data using the mixture kernel function with

the given parameter setting K𝑝𝑎𝑟 .

Step 2: Calculate the implausibility for all of the ensemble members through

I (x𝑖) = | | (𝜙(𝑧) −W𝑟C𝑟 (x𝑖) | |2, 𝑖 = 1, . . . , 𝑛.

Step 3: Set the optimal cutoff threshold for given K𝑝𝑎𝑟 as

𝑇∗∗(K𝑝𝑎𝑟) = max
{
𝑇∗ : 𝑇∗ = argmax

𝑇

{
P

(
𝑇 (K𝑝𝑎𝑟),K𝑝𝑎𝑟

)}}
.

150 Optimal kernel selection in kernel-based history matching

Fig. 5.1 The vectors 𝐵1, 𝐵2, . . . , 𝐵6 used to defined the toy example.

Step 4: Calculate the performance evaluation for given K𝑝𝑎𝑟 and 𝑇∗∗(K𝑝𝑎𝑟)

P (𝑇∗∗(K𝑝𝑎𝑟),K𝑝𝑎𝑟) = 𝛼A(𝑇∗∗(K𝑝𝑎𝑟),K𝑝𝑎𝑟) + (1−𝛼)E (𝑇∗∗(K𝑝𝑎𝑟),K𝑝𝑎𝑟).

For every perturbation of K𝑝𝑎𝑟 , first we must find 𝑇∗∗(K𝑝𝑎𝑟), which is done

by step 1 to step 3 in our algorithms, then we evaluate P (𝑇∗∗(K𝑝𝑎𝑟)) in step 4.

To optimise K∗
𝑝𝑎𝑟 we use simulated annealing to optimise the objective function

P (𝑇∗∗(K𝑝𝑎𝑟)). Because simulated annealing is a time-consuming algorithm, in

practice we set a maximum time or a maximum performance evaluation, 𝑀P , we

are willing to accept as a stopping criterion.

5.4 Numerical study 1

We apply the proposed KHM to a toy example, 𝑓 (x), with six input parameters,

𝑥1, . . . , 𝑥6, on [−1,1]6. The toy function is defined as

𝑓 (x) = 𝑓 (𝑥1, . . . , 𝑥6) = 4𝜋𝑁 ((𝑥5 + 𝑥6), 1.3, 0.3) (𝐵3 +𝐵1)

+1.5(𝑥2
1𝐵6 + 𝑥1𝑥3𝐵4 + sin(𝑥4)𝐵2) + 𝑥2𝐵5 + 𝑒𝑛,

where 𝜋𝑁 ((𝑥5 + 𝑥6), 1.3, 0.3) denotes the density function of the Normal distribu-

tion with mean 1.3 and variance 0.3, 𝑒𝑛 gives a general background of the output

that samples from a Normal distribution mean 15 (to ensure the output is positive)

5.4 Numerical study 1 151

and variance 0.05, independently for each box in a 10×10 grid, and 𝐵1, 𝐵2, . . . , 𝐵6

are six vectors which are specified over the grid, as shown in Figure 5.1. With a

given input parameter, x, an output field 𝑓 (x) is given by combining the vectors

𝐵1, 𝐵2, . . . , 𝐵6. The most important of these, 𝐵1 and 𝐵3, contain the key pattern

(the main pattern in the observation), and the toy model function shows that 𝑥5

and 𝑥6 in combination control the 𝐵1 and 𝐵3 vectors.

The observation, 𝑧 = 𝑓 (x𝑧) + 𝑒, where x𝑧 = (0.1, 0.01, 0.1, −0.1, 1, 0.3) and

𝑒 ∼ 𝑁 (0, Σ𝑒). To define Σ𝑒, we use a squared exponential correlation function

(equation (2.5)). Denoting the spatial coordinates of the 10×10 grid as 𝑠 (including

horizontal coordinates and vertical coordinates), and setting the correlation length

parameter between two inputs for each input dimension as 1, we then have the

correlation between two inputs, 𝑠 and 𝑠′, as

𝑐(𝑠, 𝑠′) = exp

{
−1

2

2∑
𝑐=1

(𝑠𝑐 − 𝑠′𝑐)2

}
. (5.25)

Hence the 𝑖, 𝑗 𝑡ℎ entry of Σ𝑒 is computed by the correlation function between input

𝑠𝑖 and 𝑠 𝑗 , 𝑐(𝑠𝑖, 𝑠 𝑗). The observation, 𝑧, is shown in the left panel of Figure 5.2. The

main feature of the observation is the red and blue signal in the middle, other than

which there are no clear patterns. The existence of the key pattern is much more

important to us than the location of the key pattern in this idealised example.

A Latin hypercube sample of size 60 is taken from the 6-dimensional parameter

space, x ∈ X , giving an ensemble F with dimension 100× 60. We plot the mean

output field of this ensemble in the right panel of Figure 5.2, and the 60 ensemble

outputs in Figure 5.3. For these ensemble runs, only a few of them have the key

pattern (in the same location as the observation), and we define the runs that

contain the key pattern as the “acceptable runs” for the purpose of KHM. The

acceptable runs, 𝑓 (x𝐴), are the ensemble members 31, 52, 44, 33, 45, 19, and 60,

about 10% size of the initial ensemble.

152 Optimal kernel selection in kernel-based history matching

Fig. 5.2 Left: the observations, z, for the toy function. Right: the mean of the
ensemble F.

5.4.1 Kernel selection for the toy function

Based on the selected acceptable runs, we use the algorithm above to select a

kernel for KHM. We specify

𝑘 (𝑓 (x), 𝑓 (x′)) =𝜔 𝑓 (x)𝑇Υ−1 𝑓 (x′) + (1−𝜔) exp(−(𝑓 (x) − 𝑓 (x′))𝑇Υ−1(𝑓 (x) − 𝑓 (x′))/𝜎),

(5.26)

where 𝜔 is a weight parameter, 𝜔 ∈ [0,1], 𝜎 is a Gaussian kernel parameter, and Υ

is a 𝑙 × 𝑙 positive defined weighted matrix, where Υ = Σ𝑒 +Σ𝜂. Σ𝑒 is already given

with the observation, without any unknown parameters. We specify the term Σ𝜂

following Salter et al. (2019), Σ𝜂 = 𝑐(𝑠, 𝑠′), where 𝑐(𝑠, 𝑠′) is given in equation (5.25)

(details are given in Section 2.4.1). Instead of setting the value for the unknown

correlation length parameters 𝛿1 and 𝛿2, before calibration, we estimate these two

parameters though our kernel selection algorithm. So K𝑝𝑎𝑟 = (𝜔,𝛿1, 𝛿2,𝜎), and we

use the kernel selection algorithm.

By setting the influence factor, 𝛼 = 0.8, for the performance evaluation func-

tion, P (·) (equation 5.20), our optimization algorithm suggests that the optimal

situation, P (K𝑝𝑎𝑟) = 1, can be achieved when 𝑇∗∗(K𝑝𝑎𝑟) = min(I (x)𝑈), 𝛿1 = 𝛿2 = 1

and 𝜔 = 1 (since the weight of the Gaussian kernel is zero, the choice of Gaussian

5.4 Numerical study 1 153

Fig. 5.3 The 60 ensemble members for wave 1.

154 Optimal kernel selection in kernel-based history matching

kernel parameters is irrelevant). The optimal kernel function for the toy example

is

𝑘 (𝑓 (x), 𝑓 (x′)) = 𝑓 (x)𝑇 (Σ𝑒 +Σ𝜂)−1 𝑓 (x′).

KHM with the above kernel represents standard PCA-based history matching (

Salter et al. (2019)), which implies that Σ𝜂 corresponds to the discrepancy variance.

It is not surprising that we find that the linear kernel is the optimal choice for

this example. We built the toy function as a linear combination of six vectors,

𝐵1, . . . , 𝐵6, the location of the key pattern is fixed, and the parameters are re-

sponsible for the strength of key pattern. So that the PCA-based standard history

matching should work well.

We showed in Section 5.2.3 that the implausibility for KHM,

I𝐹2(x) = (𝜙(𝑧) −E [𝜙(𝑓 (x))])𝑇 (1𝐷 +Var [𝜙(𝑓 (x))])−1(𝜙(𝑧) −E [𝜙(𝑓 (x))]),

is same as the implausibility function for standard history matching. In addition

to I𝐹2(x), we presented another implausibility measure for KHM in Section 4.6.3:

I𝐹1(x) = (𝜙(𝑧) −E [𝜙(𝑓 (x))])𝑇 (𝜙(𝑧) −E [𝜙(𝑓 (x))]).

We continue the example with these two implausibilities to demonstrate the

performance of KHM.

5.4.2 KHM for the toy example

Given the optimal kernel function, we calculate the ensemble projections by

applying the Kernel PCA algorithm. Our algorithm suggests that only 3 basis

vectors are required, and these 3 basis vectors explain 96.99326% of the ensemble

variability. The projected ensemble can be written as C = (C𝑟 (x1), . . . , C𝑟 (x𝑛))

for n design points X = (x1, . . . , x𝑛)𝑇 , where 𝑛 = 60, and the dimension of C is

3×60. We construct a univariate Gaussian process emulator for each basis vector

separately. The validation plots for these GP emulators are given in Figure 5.4, and

5.4 Numerical study 1 155

Fig. 5.4 Leave-one-out cross-validation plots for the emulators for the coefficients
on the first three basis vectors.

are presented from top to bottom for the first three basis vectors. As before, black

points and error bars are from the emulator posterior mean and two standard

deviation prediction intervals. The true function values are in green if they lie

within the two standard deviation prediction intervals, or red otherwise. We

can see there are no failures for any of the three emulators. The emulator for

the coefficient on the first basis vector has large uncertainties with some input

parameter areas, because of nonstationarity.

A LHC of size 10000 is sampled to represent the initial parameter space X ,

at which we compute the implausibility function. As the toy function is able

to run at any parameter setting, we first compute the true NROY space, X ∗, to

evaluate KHM performance. Given the linear kernel and model outputs, we have

X ∗ following the definition of true NROY space given in equation (5.14):

X ∗ = {x ∈ X : (𝑧− 𝑓 (x))𝑇 (Σ𝑒 +Σ𝜂)−1(𝑧− 𝑓 (x)) ≤ 𝑇},

156 Optimal kernel selection in kernel-based history matching

Fig. 5.5 True NROY space.

where 𝑇 is set as 99.5𝑡ℎ percentile of a Chi-squared distribution with 100 degrees of

freedom. The threshold used here following standard history matching approach,

to demonstrate our claim: KHM’s performance is the same as standard history

matching with our linear kernel function. True NROY space is plotted in Figure

5.5, and the size of the X ∗ is 8.37% of the original input space.

We first perform KHM with I𝐹1(x), the first wave NROY space for the toy

model is,

X𝐼1 = {x ∈ X : I𝐹1(x) ≤ 𝑇∗(x)},

where 𝑇∗(x) is introduced in Section 5.3.2. NROY space, X𝐼1, is illustrated in the

left panel of Figure 5.6. We plot the NROY density plots (upper triangle) and

“minimum implausibility” plots (lower triangle) for each pair of parameters. Note

that, as the threshold 𝑇∗(x) is unfixed, the “minimum implausibility” is computed

as I𝐹1(x)/𝑇∗(x). To make a comparison with KHM with I𝐹2(x), we demonstrate

the example with I𝐹2(x) as well. The produced NROY space for first wave is

X𝐼2 = {x ∈ X : I𝐹2(x) ≤ 𝑇
′∗∗},

5.5 Numerical study 2 157

Fig. 5.6 Left: Wave 1 NROY space by performing KHM with I𝐹1(x). Right: Wave 1
NROY space by performing KHM with I𝐹2(x).

and it is illustrated in the right panel of Figure 5.6. The results of X𝐼2 and X𝐼1 are

given in Table 5.1. From both NROY density plots, we observe a similar strong

relationship between two parameters x6 and x5, which indicates the importance of

these two parameters for calibration. Moreover, both NROY density plots show

that the parameter that been most strongly been constrained is x6. The results

show that the produced NROY space, X𝐼1 and X𝐼2, are similar. I𝐹1(x) retained a

little bit more NROY space than I𝐹2(x) but 100% of the true NROY is retained in

X𝐼1. More discussion about the comparison of these two implausibilities will be

given after numerical example 2. Moreover, because the emulator for the first basis

vector has large uncertainties, the true NROY space is not immediately identified

in the first wave. We take refocusing steps: two more waves are performed in

Appendix C.2.

NROY volume Retained true NROY
X𝐼1 24.31% 100%
X𝐼2 21.34% 96.21%

Table 5.1 A comparison study between I𝐹1(x) and I𝐹2(x).

158 Optimal kernel selection in kernel-based history matching

Fig. 5.7 The 60 ensemble members for wave 1.

5.5 Numerical study 2 159

5.5 Numerical study 2

In this section, we build a new toy example to demonstrate KHM. The toy function

for this numerical study is the same as the toy function of the previous example,

but we modify the vectors 𝐵1 and 𝐵3. In the first numerical example, we fixed the

key pattern in vectors 𝐵1 and 𝐵3 to an unchangeable location. To test whether KHM

can search for values of model parameters that lead to models containing the key

pattern, no-matter where it is located, we change the toy model to be stochastic,

so that it can produce different outputs under the same model conditions. In

effect, the location of the key pattern in vectors 𝐵1 and 𝐵3 is produced randomly.

Therefore, for the model outputs, the existence of the key pattern is deterministic,

but the location of the key pattern is generated randomly. This toy example is not

unrealistic and this situation could be happen in climate models. For example, the

structure of currents or clouds might have some random components.

The observation error, Σ𝑒, and Σ𝜂 is taken to be the same as the previous exam-

ple. For Σ𝜂, the unknown parameters 𝛿1 and 𝛿2 need to be estimated through our

kernel selection algorithm. Further, we use the same design, x ∈ X , as numerical

study 1, and we plot the 60 ensemble outputs, F, in Figure 5.7. By comparison

with Figure 5.3, we can see the key pattern exists in the same ensemble members,

but the location of the key pattern is different. For this experiment, the existence

of the key pattern is much more important than the location of the key pattern, so

the choice of acceptable runs is same as the previous example. Hence, all of the

settings of this numerical example are the same as the first, other than the location

of the key patterns in the vectors 𝐵1 and 𝐵3. As we are only looking for the input

space containing the key pattern in the observations, the true NROY space of

example 2 should be the same as for the previous example, which is plotted in

Figure 5.5.

The same method for selecting a kernel is used as previously (Section 5.4). We

use the same mixture kernel function as numerical study 1, given in equation

(5.26). Note that, We specify Σ𝑒 and Σ𝜂 following the previous example. We denote

160 Optimal kernel selection in kernel-based history matching

all of the unknown parameters in the mixture kernel as K𝑝𝑎𝑟 , including a weight

parameter, 𝜔 ∈ [0,1], Gaussian kernel parameters, 𝜎, and 𝛿1, 𝛿2 used to specify Σ𝜂.

We have K𝑝𝑎𝑟 = (𝜔,𝜎, 𝛿1, 𝛿2). By applying our optimisation algorithm, we find that

the optimal weight parameter is 𝜔 = 0.00017, 𝛿1 = 0.216717259, 𝛿2 = 0.004824966,

and the optimal Gaussian kernel parameter is 𝜎 = 0.01997. The estimated value of

𝜔 is extremely small, largely due to the fact that the maximum value for the linear

kernel is 30452.42, whilst the maximum value for the Gaussian kernel is 1. Given

these parameters, the mixture kernel function for the toy example can be specified:

𝑘 (𝑓 (x), 𝑓 (x′)) =𝜔 𝑓 (x)𝑇Υ−1 𝑓 (x′) + (1−𝜔) exp(−(𝑓 (x) − 𝑓 (x′))𝑇Υ−1(𝑓 (x) − 𝑓 (x′))/𝜎).

In contrast to the first example, the linear kernel is not appropriate for this example

because of the moving pattern. Once a linear kernel is adopted, the KHM (equal

to standard history matching) will give a wrong NROY space. This situation was

demonstrated in Chapter 4.

5.5.1 Wave 1

With the selected kernel function, we calculate the ensemble projections, C =

(C𝑟 (x1), . . . , C𝑟 (x𝑛)) (the dimension of C is 5×60), by applying the Kernel PCA

algorithm. As we introduced before, the location of the pattern is random, the

kernel projects these patterns into a feature space where only the presence of

the pattern is important, and the KPCA coefficients should be near deterministic

when projecting from this space. But when 𝜔 = 1, then the projections, C would be

stochastic, and C is getting more and more stochastic as 𝜔 approaches 1. For this

example, 𝜔 is extremely small, so we treat the C′𝑠 as deterministic and construct

univariate Gaussian process emulators for each basis vector. Leave one out diag-

nostics are plotted in Figure 5.8. We sample a LHC of size 10000 to represent the

initial parameter space X . To continue the comparison of KHM with I𝐹1(x) and

I𝐹2(x), we perform KHM with both implausibilities. The two NROY spaces are

found following these two implausibilities, and are plotted in in Figure 5.9. The

5.5 Numerical study 2 161

Fig. 5.8 Wave 1 Leave-one-out cross-validation plots for the emulators for the
coefficients on the first 5 basis vectors.

162 Optimal kernel selection in kernel-based history matching

Fig. 5.9 Left: Wave 1 NROY space by performing KHM with I𝐹1(x). Right: Wave 1
NROY space by performing KHM with I𝐹2(x).

results are shown in Table 5.2. The produced NROY space for both implausibilities

are similar (with the same emulators): large amounts of parameter space were

ruled out with most of the true NROY retained.

5.5.2 Refocusing: wave 2

For consistency with the ensemble for the first wave, the new ensemble for wave

2 is designed to have 60 members. Using this new ensemble and its selected

acceptable runs, we can perform kernel selection, emulation and KHM. KHM is

most powerful when refocusing steps are taken with different forms of optimal

mixture kernel. As later waves are reached, we are able to run the new ensemble

in the reduced NROY space, and the number of acceptable runs will increase.

Using the expert’s judgement in later waves will allow us to produce a better

kernel function and more precise threshold value/function. However, if expert

judgement is not available in later waves, the optimal kernel function found in

wave 1 can also be used to represent the expert’s judgement. In this example, we

select the best 19 runs as the acceptable runs and use this judgement in the kernel

selection algorithm.

Given the new ensemble and the acceptable runs, we perform KHM for wave

2. The optimization algorithm suggests that using our mixture kernel with 𝜔 =

5.5 Numerical study 2 163

NROY volume Retained true NROY
I𝐹1(x): Wave 1 23.36% 99.19%
I𝐹1(x): Wave 2 20.42% 97.02%
I𝐹2(x): Wave 1 25.78% 99.14%
I𝐹2(x): Wave 2 17.78% 96.21%

Table 5.2 KHM results for numerical example 2.

Fig. 5.10 Left: Wave 2 NROY space by performing KHM with I𝐹1(x). Right: Wave
2 NROY space by performing KHM with I𝐹2(x).

0.00731, 𝜎 = 0.00014. In this example, our optimization method suggested two

different kernel functions for the two waves. By performing KHM with I𝐹1(x)

and I𝐹2(x), we find NROY spaces that are close to true NROY (plotted in Figure

5.10). By performing KHM with I𝐹1(x) in wave 2, we find an NROY space that

is 20.42% of the initial parameter space. Performing wave 2 does not reduce the

wave 1 NROY space significantly because the emulator uncertainties for both

waves are quite large, giving a large threshold value. KHM with I𝐹2(x) gives a

smaller NROY space but only 96.21% of the true NROY space is retained.

As discussed previously, when the emulator uncertainty vanishes, the expres-

sion for I𝐹1(x) is the same as the expression for I𝐹2(x), and the threshold will

also be the same. Hence, without considering emulator uncertainties, KHM with

I𝐹1(x) and I𝐹2(x) will give the same NROY space. In other words, the difference

between I𝐹1(x) and I𝐹2(x) is entirely caused by the differences in how we handle

emulator uncertainties. For the previous example and this example, KHM with

164 Optimal kernel selection in kernel-based history matching

I𝐹1(x) always gives a similar result as KHM with I𝐹2(x) but with more true NROY

space are retained. We believe that the bias of KHM with I𝐹2(x) here is caused by

the threshold. As introduced in Section 5.3.2, the computation of the threshold

for I𝐹2(x) is based on the emulator variances of the training data (leave one out

emulators used for emulator diagnostics). When the emulator variance for the

training data (given by leave-one out emulator diagnostics) is smaller than the

emulator variance for the testing data, a low value of threshold 𝑇
′∗∗(K𝑝𝑎𝑟) could

be given, which would rule out of more space than it’s supposed to. Overall,

we would suggest that I𝐹1(x) and I𝐹2(x) can both be used for KHM when the

emulator’s predication is good in general, without particularly large uncertainties.

Otherwise, using I𝐹1(x) for KHM is more conservative and more robust. Our

detecting approach and the Local Voronoi Tessellation method in Chapter 3 can

also be used for a robust approach to KHM that ensures the true NROY is safely

retained.

5.6 Discussion

In this chapter, we introduced an automatic procedure for selecting the optimal

mixture kernel for KHM. We developed a mixture kernel function, which opens up

to the possibility for different feature spaces to be determined by different kernel

parameters. In Section 5.2.3, we proved that KHM can achieve standard history

matching with a linear kernel, and the projections of the model outputs are the

same as the approach given in Salter and Williamson (2019); Salter et al. (2019).

KHM with the mixture kernel function is then a generalised version of traditional

history matching.

To determine the unknown kernel parameters in the mixture kernel function,

we introduced an optimisation algorithm which can give the optimal mixture

kernel for different applications. We developed an optimisation procedure based

on expert judgement. KHM can calibrate to the features that the expert wants

to see, which gives a good mix of statistical approaches and expert knowledge.

5.6 Discussion 165

Moreover, the optimisation function not only selects the kernel function, but also

the optimal threshold that gives the highest performance evaluation.

In our numerical studies, we built two simple and easily illustrated examples

to show how the optimisation algorithm works. Numerical example 1 shows that

the algorithm will suggest that a linear kernel is the best choice when standard

history matching works (from wave 1 to wave 3). By slightly modifying numerical

example 1, we built numerical example 2, which shows that with a suitable kernel,

KHM can be used to improve the standard history matching results when key

features in the observations we want to replicate exist but in different parts of the

output space.

Many possible extensions could be introduced to the presented approach. We

use wave 1 ensemble as the training data in the numerical examples to select a

suitable kernel function. However, overfitting can happen when we only have

a small number of runs. It would be useful to consider in future to evaluate the

method out-of-sample.

During our simulation study, we demonstrate that KHM with both I𝐹1(x) and

I𝐹2(x) have proved successful in 100-dimensional numerical studies. To test our

methods with higher-dimensional output, we apply our method to the climate

model LMDZ in the next chapter.

Chapter 6

Kernel-based history matching for

climate models

6.1 Introduction

Climate models attempt to solve the Navier–Stokes equations on a rotating sphere

to simulate the evolution of the Earth’s climate Gettelman and Rood (2016). These

models vary in their complexity, starting from simple radiative heat transfer

models up to global climate models. Hundreds of parameters can be introduced to

construct climate models, controlling the behaviour of the atmosphere, oceans and

a variety of other processes (Hourdin et al., 2017; Williamson et al., 2017). Before

using climate models to produce climate predictions of the future, a parameter

calibration (the climate modelling community refers to calibration as ‘tuning’) step

needs to be considered. Tuning is a necessary process that attempts to give values

of the model parameters that allows the model to give the best representation of

key observations so that we can trust its predictions (Hourdin et al., 2017).

History matching has been applied for many climate models with univariate

model output. For example, Couvreux et al. (2020); Hourdin et al. (2020) ap-

ply standard history matching to calibrate climate models, aiming to improve

and tune boundary-layer cloud parameterisations. By comparing the Single-

168 Kernel-based history matching for climate models

Column convection Model used in the global climate model with explicit 3D

high-resolution Large Eddy Simulations, the free parameters were calibrated and

the model performance was enhanced. More commonly, climate model outputs

are high dimensional, spatio-temporal fields. History matching can be applied to

this type of tuning problem to calibrate the free parameters in the climate model

via a low dimensional basis representation (Salter et al., 2019). For example, Chang

et al. (2014, 2016) adopt PCA based calibration to an ice sheet model that has

high-dimensional binary spatial outputs.

As we claimed in Chapter 4, standard (PCA based) history matching can fail

with high-dimensional model output which is not well approximated by a linear

subspace, as we often find in climate models. For example, when considering

the simulation of clouds in a single column convection scheme, the features of

the evolution of a cloud are more important than the time at which they occur.

Climate modellers view a 2D image of relative humidity in column height and

time, viewing a cloud as realistic based on its pattern properties, without, for

example, being concerned about when during the simulation, cloud formation

occurs (e.g. Figure 6.1). We apply KHM to the boundary layer clouds of the French

climate model, IPSL-CM, for a spatio-temporal output. To perform KHM on this

climate model and to elicit the modeller’s calibration target features, we design

a new interactive R Shiny app to provide an elicitation platform for the expert

classification our methodology requires.

This chapter is organised as follows. In Section 6.2, we describe the boundary

layer cloud model, the rationale for using it in the climate community , and the

data we will use for its calibration. In Section 6.3, we present our R Shiny app

and its use by an expert at ISPL. In section 6.4, we perform KHM for the cloud

model. In Section 6.5, we perform the second and third wave of KHM for this

application. The chapter ends with a conclusion in Section 6.7.

6.2 Tuning the boundary layer clouds 169

6.2 Tuning the boundary layer clouds

Clouds from the bottom of stable boundary layers are called boundary layer clouds.

They play an important role in the water cycle, atmospheric energy cycle and

global surface temperatures (Bony and Dufresne, 2005). Boundary-layer clouds

are much smaller than a grid cell of the climate model, so that their effect on

the larger components of the model is accounted for by a parameterization: a

mathematical model that represents the physical process (Holtslag et al., 2013;

Nam et al., 2012). Each parameterization relies on a set of free parameters used to

simulate the effect of the boundary-layer clouds, and therefore, tuning these free

parameters is crucial to capturing and improving systematic biases in the global

climate model (Hourdin et al., 2006, 2017).

The general approaches to tuning free parameters either follows so called

traditional global model tuning or process-based tuning. Global model tuning

considers a specific climate model performance metric in the tuning process, such

as the temperature. However, Hourdin et al. (2017) state that global model tun-

ing could lead to over-fitting or over tuning and that the good performance of a

specific climate model according to global metrics can be achieved via compen-

sating errors. To overcome these issues, Hourdin et al. (2017) suggest adopting

process-based tuning at the first stage in model calibration. Process-based tuning

uses process-oriented metrics for calibration, such as compositing cloud or pre-

cipitation characteristics by dynamical regimes (Bony and Dufresne, 2005). These

process-oriented metrics can help relieve large-scale biases in specific subgrid-scale

processes of the climate model (Hourdin et al., 2017). The calibration results of

process-based tuning will be used for global climate model tuning.

The process-based tuning in the HIGH-TUNE project is based on comparison

between single-column versions of the global model (SCM) with explicit 3D

high-resolution Large Eddy simulations (LES) of the same boundary layer clouds

(Brown et al., 2002; Hourdin et al., 2017). LES are mathematical simulations for

turbulence used in clouds dynamics, to derive and evaluate the conceptual models

170 Kernel-based history matching for climate models

at the root of the boundary layer and shallow cloud parameterizations (Guichard

and Couvreux, 2017; Neggers et al., 2009). In fact, LES has been extensively used

for evaluating the parameterizations of different cloud properties within many

cloud regimes (Couvreux et al., 2005; Hourdin et al., 2002; Rio and Hourdin, 2008).

SCMs are single-column models, where a single column is extracted from a 3D

climate model, and can be run with the same boundary conditions as an LES

simulation (Couvreux et al., 2020; Hourdin et al., 2020). The modellers from the

HIGH-TUNE project are interested to find a subset of the input parameters of

the boundary layer cloud parameterization scheme that gives SCM output close

to LES. In particular, for LES and SCM, there is a selection of cases for different

types of boundary-layer clouds such as continental and oceanic cumulus clouds.

For this chapter, we consider ‘SANDU’, which is the composite stratocumulus to

cumulus transition cases introduced by Sandu and Stevens (2011). In particular,

the simulation outputs for our work are generated from the SANDU/REF case.

The SANDU/REF simulation accounts for the increase in sea surface temperatures

and reproduces the main features of observed sea surface temperatures in the

boundary condition (Sandu and Stevens, 2011).

6.2.1 Simulation outputs

To apply KHM for the spatial–temporal fields output of the SCM, we run the SCM

model with the SANDU/REF case and perturb 5 cloud parameters chosen by the

modellers. The model parameters to be tuned are identified as thermals fact

epsilon, thermals ed dz, cld lc lsc, rad chaud1 and z0min, and the

possible range of values were determined by the project. In our analysis we have

mapped the parameters onto [−1,1]5 for fitting emulators and calibration. For

the SANDU/REF case, the SCM model response is the cloud fraction from a

compact stratocumulus layer to more broken fields of cumulus over 72 hours. The

considered case corresponds to the reference simulation, LES, that is performed

on a super computer with standard horizontal and vertical resolution. This LES

reference is shown in Figure 6.1, which shows the time series of the hourly averages

6.2 Tuning the boundary layer clouds 171

Fig. 6.1 LES reference for SANDU/REF case: time series of the hourly averages of
the cloud fraction profiles.

of the cloud fraction profiles at different heights in the model. In this figure, the x

axis reflects the time evolution of the cloud fraction (the time scale of the transition),

which continues for 72 hours. The vertical axis is the height (meters) above ground

level, and the obvious pattern (red and blue curve) is the clouds fraction (values

are from 0 to 1). We will refer to this LES reference as the “observation” in the

following experiments.

To perform KHM, we use the classical design of computer experiments, a

Latin Hypercube (LHC), to generate the SCM ensembles. We start by generating

a 3-extended LHC of size 30 following Williamson (2015). The 90-member LHC

composed of 3, 30-member LHCs, where each additional LHC ensures that the

composite design is orthogonal and fills the space in each extension phase. With

all of the generated designs, we evaluate the SCM simulators to give the ensemble

for wave 1. The 90 SCM runs are plotted in Figure 6.2. Each plot shows the hourly

averages of the cloud fraction profiles during 72 hours of SCM simulation. The

bottom axis, vertical axis and the colour patterns are the same as Figure 6.1. As

in Chapters 4 and 5, we calibrate the high dimensional output fields via KHM in

a feature space, and hence selecting a suitable kernel function is important. To

apply the optimization kernel selection method of Chapter 5, we require expert

172 Kernel-based history matching for climate models

Fig. 6.2 Some wave 1 ensemble runs from SCM simulators: the ensemble outputs
are plotted ordinarily from the 1st run to the 30th, the full ensemble that contains
the rest 60 runs are plotted in the appendix. For each plot, it shows the hourly
averages of the cloud fraction profiles during 72 hours of SCM simulation.

6.3 Expert judgement 173

judgement to guide us to understand the important features of these LES clouds

that should be captured by the SCM.

6.3 Expert judgement

In the HIGH-TUNE project, Couvreux et al. (2020); Hourdin et al. (2020) have

applied standard history matching to improve the representation of boundary-

layer clouds, but with scalar metrics at given times or averages over a given

period. However the complex metrics in the model output, such as the time

series or spatial fields can also be important for climate model tuning. For this

application, our collaborators from the HIGH-TUNE project have already tried to

reduce the dimensions of the outputs, using standard history matching with PCA

(Salter et al., 2019). The project’s inability to do this via standard methods inspired

our work on KHM.

To perform KHM on the climate model output and to consider the modeller’s

judgement in the calibration process, we create a Shiny APP. We invite the senior

model expert (within the IPSL development team), Dr. Frederic Hourdin, to

use our app. Our app and Dr. Frederic Hourdin’s choices are introduced in the

following.

6.3.1 The Shiny app

Shiny is an R package that enables user to build interactive web apps in R. The

purpose of using the app is to guide our experts in classifying fields (cloud patterns

shown in Figure 6.2) as acceptable matches to the LES reference or not. There

are three pages in the app, page 1 shows the observation or target field and the

ensemble member figures, page 2 is the selection page where the experts can

choose their acceptable runs, and page 3 is used to do a final check and save the

selections. Full details of the App are given in Appendix B. We use this app to

obtain expert judgement for each wave.

174 Kernel-based history matching for climate models

6.3.2 The expert’s selection for wave 1

The cloud pattern is much more complex than the toy model introduced before,

and we can likely expect human error to increase in the real application. To

determine the degree of human error in the optimization algorithm, we ask Dr.

Hourdin to make selections twice for the wave 1 ensemble runs, at different times,

with the ensemble members plotted in a different order in the Shiny app. Initially,

Dr. Hourdin selected 12 runs as acceptable, but in the second time, he had a

different choice, where only 10 runs are selected as acceptable. During these two

experiments, there are 8 acceptable runs are chosen in both sessions, 4 runs are

only chosen as acceptable in the first session and 2 acceptable runs are only chosen

in the second session. The result shows that either the expert’s true NROY is

different at different days and at different times, or that if true NROY exists and is

fixed for an expert, during a time limited exercise they are only able to identify

members of it with error. This indicates that it may be hard to reach the maximum

value of the performance evaluation in our kernel-optimization algorithm. Hence,

it is important to set the influence factor in the performance evaluation function

(in Section 6.4.1), which can balance accuracy and efficiency. Details will be given

when we apply the kernel optimization algorithm. We discuss the issue of the

expert’s “true NROY” further in the discussion section.

In total, we take all chosen 14 acceptable runs, combining all of the selections

made over the 2 sessions (Figure 6.3). The cloud patterns in the acceptable runs

are not exactly the same as the observation. To clearly demonstrate this, we plot

a cloud fraction for a later hour (time=68) of the simulation with the spread of

the ensemble of simulations used for wave 1 in the left panel of Figure 6.4. The

wave 1 ensemble is presented in grey, green lines represent the acceptable runs

selected by the experts and the reference LES in thick red. The altitude of the SCM

runs are generally lower than the observation, and there are some runs which

do not contain the cloud pattern. By comparing the green lines with the whole

ensemble, we can observe that the patterns of the clouds are all contained in the

acceptable runs, even though the patterns do not occur at the same altitude as

6.4 Kernel-based history matching 175

Fig. 6.3 The acceptable runs by expert’s selection.

the observation. Moreover, to show the difference between the expert judgement

and a pure distance-based judgement, we plot the first 14 ‘best’ runs that are

closest to the observation on the simulator output space (only observation error is

considered in this distance, discrepancy is not given) in the right panel of Figure

6.4. The blue lines represents these 14 ‘best’ runs, which all have almost no cloud

fraction for the later hour. The plot again shows that the model outputs without

the key pattern would be seen as the best (when we use the wrong distance). We

now use the 14 acceptable runs selected here to perform KHM.

6.4 Kernel-based history matching

6.4.1 Kernel selection

Kernel selection is a necessary step in our approach. To select a suitable kernel

function for the climate model, we apply the optimization kernel selection algo-

rithm presented in Chapter 5, with the selected acceptable runs shown in Figure

6.3. To select the kernel function, we first must specify our kernel presented in

176 Kernel-based history matching for climate models

Fig. 6.4 The cloud fraction for the later hour (time=68) of the simulation with the
spread of the ensemble of simulations used for wave 1. The wave 1 ensemble is
presented in grey, green lines represent the acceptable runs selected by the experts,
blue lines represent the first 14 ‘best’ runs that are close to the observation in model
output space, and the reference LES in thick red.

Chapter 5. We use the mixture kernel

𝑘 (𝑓 (x), 𝑓 (x′)) =𝜔 𝑓 (x)𝑇Υ−1 𝑓 (x′)+ (1−𝜔)𝑔 exp(−(𝑓 (x)− 𝑓 (x′))𝑇Υ−1(𝑓 (x)− 𝑓 (x′))/𝜎),

(6.1)

where 𝜔 is a weight parameter, 𝜔 ∈ [0,1], 𝜎 is a Gaussian kernel parameter, Υ is a

𝑙 × 𝑙 positive definite weight matrix defined as the sum of the observation error

(LES reference error) variance ,Σ𝑒, and another variance term, Σ𝜂, Υ=Σ𝑒+Σ𝜂, where

𝑒 ∼ 𝑁 (0, Σ𝑒), and 𝑔 is scale parameter, the value of 𝑔 is given as the maximum

value of the linear kernel of the training data to make the maximum value of both

linear kernel and nonlinear kernel (the maximum value of Gaussian kernel is 1) are

similar. Note again that Σ𝜂 is not the discrepancy variance as defined by Kennedy

and O’Hagan (2001), but it becomes discrepancy variance when 𝑤 = 1. In this

example, we follow the definition given by modellers, set Σ𝑒 as a diagonal matrix,

and compute the variance of these 2 LES runs as the main diagonal entries of Σ𝑒.

Because the inverse of the 3600×3600 matrix, Υ, are required by each iteration of

our optimization procedure, which is a time-consuming calculation, following the

setting of Σ𝑒 given by modellers, we also set Σ𝜂 as a diagonal matrix to reduce the

expensive computational cost in this example. However, if the computation time

6.4 Kernel-based history matching 177

is accepted in the real application, the Gaussian covariance function would always

be suggested to offer a more flexible structure for Σ𝜂. We also perform the first

wave with different sets of Σ𝜂 in Appendix C.5, a similar NROY space is produced

by KHM even with different settings of the kernel function.

The performance evaluation function is

P (K𝑝𝑎𝑟) = 𝛼A(K𝑝𝑎𝑟) + (1−𝛼)E (K𝑝𝑎𝑟), (6.2)

where A(K𝑝𝑎𝑟) and E (K𝑝𝑎𝑟) were defined in equation (5.17) and (5.19). We set

the goal for the first wave to retain all of the expert’s choices, and the arbitrary

influence factor is set as 𝛼 = 0.8. Note that 𝛼 can be a very sensitive choice, further

discussion will be given in Section 6.7. The optimization algorithm finds that 𝜔 =

0.92622 is the best choice for the weight parameter, 𝜎 = 0.00366 for Gaussian kernel

parameter, 𝑔 = 103928.3, and the cutoff threshold is suggested as 𝑇 = 2353.828.

Moreover, though the value of 𝜔 is quite large, this does not mean that the optimal

kernel tends to a linear kernel. In fact, due to the large 𝑔, the nonlinear kernel

dominates.

Given this kernel function, we calculate the ensemble projections by applying

the kernel PCA algorithm. The projected ensemble for 90 design points, X =

(x1, . . . , x𝑛)𝑇 , can be written as C(X) = (C𝑟 (x1), . . . , C𝑟 (x𝑛)), where the dimension

of C(X) is 5×90. Given the ensemble of the 5-dimensional input parameter space,

and the coefficient projection for each x for each output in feature space, C𝑖 (x), we

build five univariate Gaussian process emulators for the first five basis vectors.

Leave-one-out cross-validation plots are shown in Figure 6.5. The black dots

and error bars show predictions together with 2 standard deviations from the

leave-one-out emulator, whilst the green dots are true model output coefficient

projections. From Figure 6.5, we can see there are no missed predictions, implying

that the emulators are good representations of the metric of interest.

Through the kernel optimization, the variability explained by the first few basis

vectors is not as important as for PCA-based history matching. In standard history

178 Kernel-based history matching for climate models

Fig. 6.5 Leave-one-out cross-validation plots: wave 1 Gaussian process emulators
for C(X).

6.4 Kernel-based history matching 179

matching, a high value of the variability explained is required to ensure that we

do not lose the signal in calibration. But for KHM, we first project the model

output into feature space, and the kernel selection algorithm is performed based

on the distance between the mapped observation, 𝜙(𝑧) and the reconstruction of

the model output on feature space, W5E [C5(x)], which ensures that the chosen

subspace defined by W5 can extract the key signal that we are calibrating for (see

Section 5.3). Therefore, the kernel selection algorithm has already done a good

separation of NROY and not NROY on the first few coefficients, and the signal

experts want to calibrate is then built into the optimal kernel.

6.4.2 NROY space

We use KHM with I𝐹1(x) to rule out of regions of parameter space. The NROY

space is

X1 = {x ∈ X |I𝐹1(x) ≤ 𝑇 (x)}, (6.3)

where

I𝐹1(x) =
(
𝜙(𝑧) −E [𝜙(𝑓 (x))]

)𝑇 (
𝜙(𝑧) −E [𝜙(𝑓 (x))]

)
, (6.4)

and

𝑇 (x) =
5∑
𝑘=1

Var [𝐶𝑘 (x)] +3

√√√√
2

(5∑
𝑘=1

Var [𝐶𝑘 (x)]
)2

+2353.828,

as presented in Section 5.4.2. The wave 1 NROY density plots and the mini-

mum implausibility plots for each pair of parameters is shown in Figure 6.6.

From the density plots, we observe a strong relationship between two parameters

thermals fact epsilon and thermals ed dz, which indicates the impor-

tance of these two parameters for calibration. The minimum implausibility (lower

triangle) plots show a similar orientation to the density plots (upper triangle). Red

regions in this plot indicate the parameter setting is ruled out.

By performing a single wave, we have managed to cut out the initial parameter

space X and achieved an NROY space X 1 of size 43.01% of X . The relationship

between input parameters depicted in the parameter plots can not be judged

180 Kernel-based history matching for climate models

Fig. 6.6 Upper triangle: wave 1 NROY density plots for each pair of parameters.
Lower triangle: minimum implausibility plots for each pair of parameters.

6.5 Refocusing 181

directly with the true NROY space in the real application, but all of the expert’s

acceptable runs are consistent with the wave 1 NROY space.

6.5 Refocusing

In Section 4.7, we have described KHM refocusing, within the last wave NROY

space, a new ensemble is run and the procedure is repeated.

6.5.1 Wave 2 ensemble

To perform a second wave, a new ensemble is required. For consistency with

the first wave ensemble, we select 90 members for the new ensemble. The new

ensemble design, X2, is randomly generated from wave 1 NROY space X 1,

X2 = (x2,1, . . . , x2,90)𝑇 ∈ X 1,

and then running the SCM at the design to generate

F2 = (𝑓 (x2,1), . . . , 𝑓 (x2,90)).

The new ensemble members are presented in Appendix C.5, and we plot the

cloud fraction for the later hour (time=68) of the simulation with the spread of the

ensemble of simulations used for the different waves in Figure 6.7. By comparing

Figure 6.7 with Figure 6.4, we can see that the ensemble for wave 2 is closer to the

acceptable runs in wave 1. Although there are still some runs with no patterns,

the simulator does perform better in the NROY space as compared to the initial

parameter space, which indicates that the NROY space, X 1, is closer to the true

NROY space.

As we discussed in Section 4.7, the expert’s selection criteria might be different

in later waves. In the initial wave, the simulator is run within the whole parameter

182 Kernel-based history matching for climate models

Fig. 6.7 The cloud fraction for the later hour (time=68) of the simulation with the
spread of the ensemble of simulations used for the different waves indicated in
different colours. The wave 1 ensemble is presented in grey, the wave 2 ensemble
is presented in yellow, wave 1 acceptable runs are in green and the reference LES
in thick red.

space, and we might expect all of the runs in wave 1 not to look good enough, so

that the acceptable runs in wave 1 might be unacceptable when the probability

of containing good runs becoming higher in later waves. To perform the kernel

optimization algorithm, we asked Dr. Hourdin to select the new acceptable runs

for wave 2. By using our R shiny app, we have 9 acceptable runs for wave 2, which

are plotted in Figure 6.8. Note that, in this wave, we did not asked the experts to

select twice, but the human error is still likely to be present in there.

Using the new ensemble, F2, and the acceptable runs we can perform KHM

for wave 2. In standard history matching, the wave 1 training data retained in

the wave 1 NROY space are added to the wave 2 ensemble to improve emulation

performance (see Salter et al. (2019)). Following this suggestion, we add the

acceptable runs from the previous wave into wave 2 to help to find a good kernel

and build a good emulator. However, because the expert did not classify the wave

1 runs, the wave 1 acceptable runs are no longer seen as acceptable in wave 2. To

6.5 Refocusing 183

Fig. 6.8 The acceptable runs by expert’s selection for wave 2.

use wave 1 acceptable runs, we include these runs into the first two steps of kernel

selection procedure (given in Section 5.3.3), but only use the wave 2 training data

to perform step 2 and 3 where the expert judgement is required.

6.5.2 Wave 2 NROY space

To select a suitable kernel function for wave 2, we apply the kernel selection

algorithm used in wave 1. The algorithm finds 𝑔 = 10412.98, 𝜔 = 0.321491060, 𝜎 =

0.002003871 and the cutoff threshold without emulator uncertainty is suggested

as 𝑇 = 1415.613. The wave 2 optimization results are very different from the wave

1 results due to the big difference between wave 1 and wave 2 training data, as we

presented in Figure 6.7.

The major aim of the kernel selection is to find a kernel that can classify the

expert acceptable runs and expert unacceptable runs of each wave. In wave 1, all

of the signal from model outputs were considered in the wave 1 kernel selection

algorithm, but there are many discarded signals that were ruled out in wave 1,

and they do not need to be considered in the following wave. Moreover, with

the improvement of the model outputs from wave 1 to 2, the expert’s standard

for ‘acceptable runs’ might be stricter. With different training data, potentially

different signals and an altered objective function, under normal circumstances,

the kernel function should be different between waves. Note that, a special case

184 Kernel-based history matching for climate models

Fig. 6.9 Upper triangle: wave 2 NROY density plots for each pair of parameters.
Lower triangle: minimum implausibility plots for each pair of parameters.

was introduced in Appendix C.2, when the model output space is the best choice

for feature space (standard history matching is suitable), the linear kernel was

always suggested as the optimal kernel function through 3 waves.

Given the ensemble of the 5-dimensional input parameter space and the opti-

mal kernel function, we calculate the ensemble projections, C𝑟 (x). We build five

univariate Gaussian process emulators for the first five basis vectors. Leave-one-

out cross-validation plots are shown in Figure C.20. We use KHM with I𝐹1(x) in

equation (6.4) to rule out of regions of parameter space.

The wave 2 NROY density plots and the minimum implausibility plots for

each pair of parameters, is shown in Figure 6.9. From the density plots, the

strong relationship between two parameters thermals fact epsilon and

thermals ed dz is similar to that seen in the wave 1 NROY density plots.

Starting from the wave 1 NROY space consisting of 43.01% of initial parameter

6.5 Refocusing 185

Fig. 6.10 The cloud fraction for the later hour (time=68) of the simulation with the
spread of the ensemble of simulations used for the different waves indicated in
different colours. The wave 1 ensemble is presented in grey, the wave 2 ensemble
is presented in blue, wave 3 ensemble is presented in yellow, and the reference
LES in thick red.

space X , 56.99% of the space is ruled out here. The NROY space after wave 2

contains 28.40% of the initial parameter space X , and around half of Wave 1’s

NROY space, X 1.

6.5.3 Wave 3 NROY space

Given the new ensemble (plotted in Appendix C.5), a new wave of KHM can be

performed. We plot the cloud fraction for the later hour (time=68) of the simulation

with the spread of the ensemble of simulations used for the different waves in

Figure 6.10. The wave 2 ensemble is presented in blue and the wave 3 ensemble

is presented in yellow. By comparing the wave 3 training data with the reference

LES, we can see that the wave 3 simulator performs better than wave 2. Most runs

with no pattern were ruled out in wave 2.

186 Kernel-based history matching for climate models

Fig. 6.11 Upper triangle: wave 3 NROY density plots for each pair of parameters.
Lower triangle: minimum implausibility plots for each pair of parameters.

6.6 Discussion 187

As in previous waves, given the expert’s selection, we perform KHM with

a specified kernel function determined by the kernel selection algorithm. The

requirements for the kernel selection algorithm are consistent with wave 2, and

we find that 𝑔 = 10412.98, 𝜔 = 0.321491060, 𝜎 = 0.002003871 and 𝑇 = 1415.613 is

suggested by the algorithm. Using our emulators, and the implausibility bounds,

an NROY space for wave 3 can be defined. We plot the NROY density plots for

each pair of parameters in Figure 6.11. Performing wave 3 does not provide us with

a significant reduction in NROY space: the NROY space after wave 3 is 23.99% of

the original parameter space. The strong relationship between thermals fact

epsilon and thermals ed dz still exists.

6.6 Discussion

In this chapter, we demonstrated that our method scales to important real-world

examples. We applied KHM to the French climate model, IPSL-CM, with large

output fields that are typically seen in climate model calibration. We presented an

interactive app to perform the expert’s selection of acceptable runs. The application

introduces complexity not considered in our toy example: clouds fractions have

various patterns, the expert’s selections are incoherent across the three waves,

and the expert judgement are different for the same training data on different

days. This brings up an important question for our method: what does the true

NROY space mean for KHM? In Chapter 5, we defined the true NROY space as

the expert’s NROY space, but in this application, the same expert has made two

classifications for our wave 1 ensemble members.

To complement the definition of true NROY space for KHM, the philosophy

behind our approach needs to be discussed. Seen from our practical situation, we

have asked Dr. Hourdin to make selections twice for wave 1, at different times

(different days), with the ensemble members plotted in a different order in the

Shiny app, and his acceptable set different between exercises. He selected 8 runs

in both sessions as acceptable runs, 4 runs are only chosen as acceptable in the

188 Kernel-based history matching for climate models

first session and 2 acceptable runs are only chosen in the second session. Based on

reality, if true NROY exists and is fixed for expert, an obvious question needs to

be answered: how could the expert be wrong when the true NROY space belongs

to the expert?

There are several possible explanations for this question. The first possibility is

that the expert was wrong, the expert does have a true NROY, but there is some

“error” in their selections. This “human error” could be using our new app, within

a time limited exercise the expert is only able to identify members their NROY with

error. Also as we introduced, during the two sessions, the order of the ensemble

runs were different. Since there are 90 runs, the expert need to do 90 comparisons

and it is easy to get tired for later runs, leading to error. Moreover, the error can

be caused by psychological reasons. How a person approaches the testing being

performed is highly important to the results, and differences in accuracy can be

caused by differences in model. Overall, we do not think these kinds of errors can

be eliminated, but they might be reduced by improving the design of the app.

Another possible explanation is that the expert’s true NROY space could be

different at different days and at different times. This phenomenon is common

in the psychology field and also in life: people’s opinion can change as time goes

by. For the same wave, there are many plausible mechanisms for these evolving

opinions, e.g prior experience, with the tool leads the classification to become

more accounted, or something may have occurred to the expert believes session

leading them to value/penalise certain features in a different way. We believe this

could be the reason why expert’s selections are incoherent across the three waves.

As we claimed before, the expert might have a strict requirement for acceptable

runs in later waves when more of the “good” runs appear, but a loose requirement

might be used in the initial wave when no “good” runs or very few exist in the

ensemble. In fact, this is a strength of the multi wave history matching approach.

There is no exact standard definition of “acceptable”, it is a subjective judgement.

The aim of our methodology is to find an NROY space that is close to the expert’s

6.7 Conclusion 189

NROY, and we believe that our method delivers this. The question raised above

are important and would be an interesting area of future works.

6.7 Conclusion

By performing KHM with the French climate model, we show that our method

can be applied in important practical problem. It can be seen that our method

approaches the experts true NROY space by comparing the last wave ensemble

with acceptable runs selected at the beginning. If it were possible, dividing the

available runs into more waves may have provided better results.

Some important questions remain open. The first one is about the expert’s

judgement and true NROY space, as discussed in the last section. With the different

acceptable runs for the same training data, the value of the influence factor, 𝛼, is

important to the kernel optimization algorithm. KHM performance is sensitive

to 𝛼, with a big value of 𝛼, the accuracy of KHM will be more important than

efficiency. In the application, we set the goal to retain all of the expert’s choices

in the NROY space, an arbitrary choice, 𝛼 = 0.8, was adopted. However, our

choice may not be optimal. Keeping all of the expert’s acceptable runs in NROY

space may not be best when we know there are errors in the expert’s classification.

Moreover, we find that a high value (bigger than 0.9) of the objective function,

P (K𝑝𝑎𝑟 ,𝑇) can be reached when we set a super small 𝛼 (e.g 𝛼 = 0.05). The kernel

can pass the selection step by retaining only parts of acceptable runs in such a

situation. However, we did not find this situation with a reasonable choice, such

as 0.7 and 0.8. Besides 𝛼, there are many other sensitive parameters in the selection

step, such as the number of the basis, 𝑟, the maximum time, and the maximum

performance evaluation we are willing to accept as a stopping criterion. More

investigation and comparison of these parameters would be worth studying in

further work. In future, we plan to update the interaction app by considering the

subjective assessment error and adding more visual control. In particular, we find

that our optimization algorithm is not efficient enough, taking a long time in the

190 Kernel-based history matching for climate models

climate model application, meaning that we should prioritise developing a more

efficiently optimised kernel selection algorithm.

Chapter 7

Conclusion

In this thesis, we identify a range of previously unexplored flaws relating to

standard history matching for calibrating computer models. These flaws can

lead to biased parameter inference and we hence developed methods to robustify

history matching in order to overcome these limitations.

The limitations we have addressed were identified through collaboration with

HIGH-TUNE project. The first limitation of standard history matching was ad-

dressed in Chapter 3. We observed the inadequacy of history matching for re-

taining good parameter choices in the NROY space, when the emulator does not

simulate the target NROY space accurately enough. This can happen even if the

emulator passes standard diagnostic checks on the whole parameter space. There

was no existing diagnostic to indicate whether this situation could be occurring.

We developed a two-step approach; a detect step is introduced based on standard

diagnostics. We then presented a robust history matching method to identify the

region where the emulator is failing, but is close to the target NROY space and

isolate it so that the rest of the input space can be calibrated by history matching

with an emulator as normal, without the need for bespoke analysis. This last

point is important to users such as HIGH-TUNE project, where many emulators

are fit automatically by the modellers themselves, and bespoke emulators are

not feasible without statistician involvement. We demonstrated the accuracy of

our approach using two illustrative examples and through the output of climate

192 Conclusion

models from HIGH-TUNE. When comparing our method with standard history

matching, we find that our method can detect the limitation in the cases efficiently

and the NROY space found by our method is more accurate than standard history

matching.

In Chapter 4, we identify a further limitation of standard history matching

for tuning computer models with high-dimensional output. We demonstrated

that if the position of the key signal/current is not fixed in the model output

space, then standard history matching (PCA-based history matching) is not able

to calibrate these features, which then leads to incorrect parameter inferences. To

overcome this limitation, we introduced kernel methods into history matching. A

kernel function is adopted to project the model output into a higher-dimensional

feature space, where the features that the modeller wants to calibrate can be

compared to the reality, even if the locations of the feature are not fixed in output

space. To perform history matching in a feature space, uncertainties that belong

to model output space (observation error and model structural error) need to be

accounted for. We introduced three different models to project uncertainties into

the feature space. By trialing our proposed methods on a toy example using a

comparison study, we argued that kernel-based history matching (KHM) is the

most natural and most credible way to perform history matching in a feature

space, as uncertainties are quantified through the kernel. Unlike standard history

matching where the judgement of a model run being ‘close’ to the data or ‘far

away’ is part of the implausibility function, KHM captures these judgements in

the kernel, and only the emulator variance is computed in our new defined feature

space implausibility function (or the cut-off threshold function).

In Chapter 5, we developed an automatic kernel optimization procedure for

KHM to provide tailored kernels for different applications. We introduced a mix-

ture kernel function, as the combination of a linear kernel and a non-linear kernel.

Some unknown parameters are introduced in this mixture kernel, e.g. the influence

factor. A suitable kernel can be determined by optimising these parameters. In par-

ticular, we use a weight matrix in the mixture kernel to carry uncertainties, which

193

is set as the sum of observation error variance and an unknown term, Σ𝜂. Giving

a potential model for Σ𝜂 (we used the Gaussian covariance function), unknown

parameters within it can be optimised away with the other kernel parameters

through our kernel optimization procedure for any given application. In Section

5.3, we introduced a new history matching performance evaluation function as

the objective function for our kernel optimization procedure. History matching

accuracy and efficiency were considered in this objective function, and a weight

factor, 𝛼, is introduced to provide a compromise between accuracy and efficiency.

In our optimization algorithm, we use the judgement of the expert/modeller to

evaluate KHM’s performance, which allows the modeller to provide their feed-

back on the key features that determine whether model is close or not. When the

performance evaluation function is maximised, KHM would provide the expert’s

exact (true) NROY space (without simulation outputs). Hence, the aim of kernel

optimization is to enable KHM to produce the same NROY space as the expert’s

NROY, to as close a degree as possible.

Combining the methods that were introduced in Chapter 4 and Chapter 5, we

now have a complete calibration method. KHM is a generalisation of standard

history matching that reduces the simulator’s input space by identifying and

discarding input space that is unlikely to provide good model outputs relative

to the expectations of an expert. History matching for spatial–temporal fields

considers the distance between model outputs in their own space. The generalised

approach is to define this distance via a bespoke kernel-based inner product. This

inner product represents the dot product in a feature space so effectively KHM is

projecting outputs and data into this space for comparison. The generalisation to

history matching is to compare output with data in the most relevant space and to

have the expert help with defining that space, for example, we achieve that with

the kernel selection algorithm.

Standard history matching considers implausibility to be the distance between

model outputs of a model at x and observations, with all sources of uncertainties

accounted for (discrepancy variance, observation error variance and emulation

194 Conclusion

uncertainty). Our generalised approach put the uncertainties that belong to model

output space into the kernel function, model outputs and data are scaled by these

uncertainties through the kernel projection. We defined the implausibility for

KHM as the 𝐿2 distance between mapped model outputs and mapped observa-

tions in feature space. As the emulators are constructed in feature coefficient space

to represent the mapped model outputs, we explored two interpretations of the im-

plausibility with the coefficient emulator prediction: I𝐹1(x) = (𝜙(𝑧) −E [𝜙(𝑓 (x))]),

and I𝐹2(x) = (𝜙(𝑧) −E [𝜙(𝑓 (x))])𝑇 (1𝐷 +Var [𝜙(𝑓 (x))])−1(𝜙(𝑧) −E [𝜙(𝑓 (x))]). In par-

ticular, KHM with I𝐹1(x) uses a different approach to standard history matching

that defines the implausibility relative to emulator uncertainty with a fixed thresh-

old for cutting space. We defined the implausibility, I𝐹1(x), as the difference

between emulator prediction and observations without the emulator uncertainty,

and the threshold for I𝐹1(x), as a function of x, 𝑇 (x), that accounts for the emulator

uncertainty. For the second approach, we defined a new notion of distance for

implausibility, the difference between the emulator prediction and the observa-

tions is scaled by the emulator uncertainty. Because there are no obvious statistical

properties for I𝐹2(x), the threshold cannot be set via a statistical heuristic as with

standard history matching (e.g. the 3-sigma rule). We choose the threshold 𝑇

as a level of implausibility that considers what “too far” means based on expert

judgement. We demonstrate the efficiency of both methods.

Standard history matching attempts to identify target NROY space based on a

best input assumption, the model output at the best input, x∗, with the observation

error, 𝑒, and model discrepancy, 𝜂, is consistent with the real-world observation, 𝑧.

Particularly, 𝜂 is a judgement of how different the model outputs are allowed to be

from each other in the model output space, which represents the elements which

experts want to see in the model outputs. If the belief of model structural error is

given, then the discrepancy can be specified, as a ‘weighting’ on different grid cells

of the model output space. However, the difference between the computer model

and reality is not meaningful in certain applications, e.g. the moving patterns.

Therefore, KHM does not make a best input assumption, instead, it tries to find

195

the regions of input space that corresponding to the model expert’s acceptable

matches given an uncertainty specification. The true NROY for KHM, a region of

good parameter settings, is defined as the modeller’s NROY space. The beliefs

about model discrepancy (or tolerance to it) are encoded in the expert’s judgement.

When the linear kernel is selected in our kernel optimization procedure with the

given expert’s judgement, we showed that Σ𝜂 will correspond to what we normally

think of as model discrepancy variance, following the definition given by Kennedy

and O’Hagan (2001) and KHM would be the same as standard history matching

in this special case. Otherwise, Σ𝜂 is only a part of the weight matrix in the kernel.

We claim that the difference between model outputs and the real world processes

are only comparable in a feature space.

There are several possible extensions to the methodology we have developed.

Firstly, the choice of basis vectors in the current KHM is based on a requirement

that the ensemble variance is well-explained by the basis vectors. This method

was commonly used for PCA based approaches; a high value of the explained

variability ensures that we do not lose the signal in calibration. However, our

optimization algorithm ensures that the chosen subspace, defined by the selected

basis vectors, can extract the key signal for which we are calibrating, so that the

variability explained by the basis vectors is no longer as important in KHM. More-

over, for the kernel PCA based method, the explained variability is computed for

the mapped ensemble in the feature space, rather than the initial ensemble. A

significant number of basis vectors could be required to achieve a high percent-

age of the explained variability in the mapped ensemble. While we follow the

suggestion given by Higdon et al. (2008), to not take more than 5 basis vectors in

practice, due to the fact that accurate emulation for later coefficients is difficult to

achieve, this suggestion is not necessarily the most effective method. A possible

extension to the research is to consider emulation performance as a factor in the

kernel selection algorithm. The optimization algorithm would then guarantee, not

only calibration performance, but also accurate emulation.

196 Conclusion

In Chapter 6, we applied KHM to IPSL-CM, a French climate model with a

large spatio-temporal output. We developed a new R Shiny app to collect the

expert’s judgements, so that our kernel selection algorithm could be applied to

these judgements. We then performed three iterations of KHM for this climate

model. The results show that our method identifies the expert’s true NROY space

by comparing the last wave ensemble with the acceptable runs selected at the

beginning. However, there are two unexpected problems which occurred in this

application. First, unlike the numerical examples, the cloud fraction element was

more complex, which introduced ‘human error’ into the expert judgement. We

have provided a detailed discussion on Section 6.6, as to how a significant human

error in the expert judgement can mislead our kernel optimization algorithm. A

possible solution is to increase the visual control in the R Shiny app to enhance

the expert’s experience and to improve the users’ interaction. As discussed in

Chapter 6, we believe the level of this human error can be reduced, however it

may remain non-negligible, meaning that estimating the value of the error is also

important. This can be achieved by improving our experimental design, adding a

quantitative step for human error. For example, we could randomly select 20% to

40% of runs that are considered twice in the same expert selection session. This

would enable possible human error to be estimated by the selection results for

these runs. A suitable experiment of design can be developed to increase the rigor,

predictability, and efficiency of our app development process.

Once the human error can be captured, the setting of the influence factor of the

KHM performance evaluation, 𝛼, could also be developed. In the application, an

arbitrary choice, 𝛼 = 0.8, was adopted to give more weight to the accuracy of KHM,

rather than efficiency. However, there is no evidence that our choice is sufficient.

If the value of human error in the expert judgement can be estimated, we could

use it to compute the maximum possible value for the accuracy function. A more

plausible 𝛼 can then be determined.

This climate model is part of our collaboration with the HIGH-TUNE project.

Our collaboration involves providing methods to both emulate and history match

197

to a large number of process-based metrics, rapidly and automatically, so that the

modellers can use the tools independently. However, the current optimization

algorithm is not efficient enough, taking a long period of time in the climate model

application due to the high-dimensional (3600 dimensional) computation. For

each iteration of the optimization algorithm, an inverse of a 3600×3600 matrix is

computed, which is time-consuming. We currently do not have solutions to solve

this high dimensional matrix inverse problem, however it is a worthwhile area of

research to be explored in the future. In addition to this, KHM works similarly to

standard history matching, apart from the kernel optimization step. Given a high

value of the performance evaluation, selecting a suitable kernel also costs the most

computational time. The kernel selection step usually takes hours (1-2 hours for

numerical examples, 3-6 hours for the climate model) to find an appropriate kernel

function. The actual application takes longer than the numerical studies because of

the higher-dimensional outputs. From our experience, simulated annealing is time

costing. There are a number of optimization algorithms that could be explored to

reduce the computation time in the future, such as the sparrow search algorithm

(SSA) (Xue and Shen, 2020).

Overall, I have explored only a selection of areas relating to the current cal-

ibration approach, and I believe there remains an extensive field of available

potential research. For example, within this thesis, we only identified flaws with

the standard history matching, however these limitations could also exist for the

Bayesian calibration, and applying the Bayesian calibration on feature spaces

could be a further direction of study. The success of our applications assures me

that our proposed method provides a way to robustly and automatically calibrate

computer models.

References

MILTON Abramowitz. l. a. stegun, 1972: Handbook of mathematical functions.

National Bureau of Standards Applied Mathematics Series, 55:589–626, 1985.

Md Ashad Alam and Kenji Fukumizu. Hyperparameter selection in kernel princi-

pal component analysis. 2014.

Shun-ichi Amari and Si Wu. Improving support vector machine classifiers by

modifying kernel functions. Neural Networks, 12(6):783–789, 1999.

Ioannis Andrianakis and Peter G Challenor. The effect of the nugget on gaussian

process emulators of computer models. Computational Statistics & Data Analysis,

56(12):4215–4228, 2012.

Ioannis Andrianakis, Ian R Vernon, Nicky McCreesh, Trevelyan J McKinley,

Jeremy E , Rebecca N Nsubuga, Michael Goldstein, and Richard G White.

Bayesian history matching of complex infectious disease models using emula-

tion: a tutorial and a case study on hiv in uganda. PLoS computational biology, 11

(1):e1003968, 2015.

Ioannis Andrianakis, Nicky McCreesh, Ian Vernon, Trevelyan J McKinley, Jeremy E

Oakley, Rebecca N Nsubuga, Michael Goldstein, and Richard G White. Efficient

history matching of a high dimensional individual-based hiv transmission

model. SIAM/ASA Journal on Uncertainty Quantification, 5(1):694–719, 2017.

Bruce Ankenman, Barry L Nelson, and Jeremy Staum. Stochastic kriging for

simulation metamodeling. Operations research, 58(2):371–382, 2010.

200 References

Nachman Aronszajn. Theory of reproducing kernels. Transactions of the American

mathematical society, 68(3):337–404, 1950.

Michael J Asher, Barry FW Croke, Anthony J Jakeman, and Luk JM Peeters. A

review of surrogate models and their application to groundwater modeling.

Water Resources Research, 51(8):5957–5973, 2015.

Nedjem-Eddine Ayat, Mohamed Cheriet, and Ching Y Suen. Automatic model

selection for the optimization of svm kernels. Pattern Recognition, 38(10):1733–

1745, 2005.

Kenneth D Bailey. Typologies and taxonomies: An introduction to classification tech-

niques. Number 102. Sage, 1994.

Leonardo S Bastos and Anthony O’Hagan. Diagnostics for gaussian process

emulators. Technometrics, 51(4):425–438, 2009.

MJ Bayarri, JO Berger, John Cafeo, G Garcia-Donato, F Liu, J Palomo,

RJ Parthasarathy, R Paulo, Jerry Sacks, D Walsh, et al. Computer model valida-

tion with functional output. The Annals of Statistics, 35(5):1874–1906, 2007.

Omar Bellprat, Sven Kotlarski, Daniel Lüthi, and Christoph Schär. Objective cali-

bration of regional climate models. Journal of Geophysical Research: Atmospheres,

117(D23), 2012.

Christopher M Bishop. Pattern recognition and machine learning. springer, 2006.

Sandrine Bony and Jean-Louis Dufresne. Marine boundary layer clouds at the

heart of tropical cloud feedback uncertainties in climate models. Geophysical

Research Letters, 32(20), 2005.

Richard G Bower, I Vernon, Michael Goldstein, AJ Benson, Cedric G Lacey, Carl-

ton M Baugh, Shaun Cole, and CS Frenk. The parameter space of galaxy

formation. Monthly Notices of the Royal Astronomical Society, 407(4):2017–2045,

2010.

References 201

AR Brown, RT Cederwall, A Chlond, PG Duynkerke, J-C Golaz, M Khairoutdinov,

DC Lewellen, AP Lock, MK MacVean, C-H Moeng, et al. Large-eddy simulation

of the diurnal cycle of shallow cumulus convection over land. Quarterly Journal

of the Royal Meteorological Society: A journal of the atmospheric sciences, applied

meteorology and physical oceanography, 128(582):1075–1093, 2002.

Jennỳ Brynjarsdóttir and Anthony O’Hagan. Learning about physical parameters:

The importance of model discrepancy. Inverse problems, 30(11):114007, 2014.

Christopher JC Burges. A tutorial on support vector machines for pattern recogni-

tion. Data mining and knowledge discovery, 2(2):121–167, 1998.

Gustavo Camps-Valls, Luis Gómez-Chova, Javier Calpe-Maravilla, José David

Martín-Guerrero, Emilio Soria-Olivas, Luis Alonso-Chordá, and José Moreno.

Robust support vector method for hyperspectral data classification and knowl-

edge discovery. IEEE Transactions on Geoscience and Remote sensing, 42(7):1530–

1542, 2004.

George Casella and Roger L Berger. Statistical inference, volume 2. Duxbury Pacific

Grove, CA, 2002.

Qun Chang, Qingcai Chen, and Xiaolong Wang. Scaling gaussian rbf kernel width

to improve svm classification. In 2005 International Conference on Neural Networks

and Brain, volume 1, pages 19–22. IEEE, 2005.

Won Chang, Murali Haran, Roman Olson, Klaus Keller, et al. Fast dimension-

reduced climate model calibration and the effect of data aggregation. The Annals

of Applied Statistics, 8(2):649–673, 2014.

Won Chang, Murali Haran, Patrick Applegate, and David Pollard. Calibrating

an ice sheet model using high-dimensional binary spatial data. Journal of the

American Statistical Association, 111(513):57–72, 2016.

Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer.

Smote: synthetic minority over-sampling technique. Journal of artificial intelli-

gence research, 16:321–357, 2002.

202 References

Harold Trevor Clifford, William Stephenson, H Clifford, and W Stephenson. An

introduction to numerical classification, volume 240. Academic Press New York,

1975.

Stefano Conti and Anthony O’Hagan. Bayesian emulation of complex multi-

output and dynamic computer models. Journal of statistical planning and inference,

140(3):640–651, 2010.

Stefano Conti, John Paul Gosling, Jeremy E Oakley, and Anthony O’Hagan. Gaus-

sian process emulation of dynamic computer codes. Biometrika, 96(3):663–676,

2009.

F Couvreux, F Guichard, J-L Redelsperger, C Kiemle, V Masson, J-P Lafore, and

Cyrille Flamant. Water-vapour variability within a convective boundary-layer

assessed by large-eddy simulations and ihop_2002 observations. Quarterly

Journal of the Royal Meteorological Society: A journal of the atmospheric sciences,

applied meteorology and physical oceanography, 131(611):2665–2693, 2005.

Fleur Couvreux, Frédéric Hourdin, Daniel Williamson, Romain Roehrig, Victoria

Volodina, Najda Villefranque, Catherine Rio, Olivier Audouin, James Salter, Eric

Bazile1, Florent Brient, Florence Favot, Rachel Honnert, Marie-Pierre Lefebvre,

Jean-Baptiste Madeleine, Quentin Rodier, and Wenzhe Xu. Process-based cli-

mate model development harnessing machine learning: I. a calibration tool for

parameterization improvement. Earth and Space Science Open Archive, 2020. URL

https://doi.org/10.1002/essoar.10503597.1.

Peter S Craig, Michael Goldstein, Allan H Seheult, and James A Smith. Pressure

matching for hydrocarbon reservoirs: a case study in the use of bayes linear

strategies for large computer experiments. In Case studies in Bayesian statistics,

pages 37–93. Springer, 1997.

PS Craig, Michael Goldstein, AH Seheult, and JA Smith. Bayes linear strategies

for matching hydrocarbon reservoir history. Bayesian statistics, 5:69–95, 1996.

https://doi.org/10.1002/essoar.10503597.1

References 203

Jonathan A Cumming and Michael Goldstein. Bayes linear uncertainty analysis

for oil reservoirs based on multiscale computer experiments. O’Hagan, West,

AM (eds.) The Oxford Handbook of Applied Bayesian Analysis, pages 241–270, 2010.

Carla Currin, Toby Mitchell, Max Morris, and Don Ylvisaker. Bayesian prediction

of deterministic functions, with applications to the design and analysis of com-

puter experiments. Journal of the American Statistical Association, 86(416):953–963,

1991.

Rameswar Debnath and Haruhisa Takahashi. Kernel selection for the support

vector machine. IEICE transactions on information and systems, 87(12):2903–2904,

2004.

Richard O Duda, Peter E Hart, and David G Stork. Pattern classification. John Wiley

& Sons, 2012.

Neil R Edwards, David Cameron, and Jonathan Rougier. Precalibrating an inter-

mediate complexity climate model. Climate dynamics, 37(7-8):1469–1482, 2011.

Paul N Edwards. Representing the global atmosphere: Computer models, data,

and knowledge about climate change. Changing the atmosphere: Expert knowledge

and environmental governance, 31:33, 2001.

Jean Gallier. Notes on convex sets, polytopes, polyhedra, combinatorial topology,

voronoi diagrams and delaunay triangulations. arXiv preprint arXiv:0805.0292,

2008.

Peter Vincent Gehler. Kernel learning approaches for image classification. PhD thesis,

Citeseer, 2009.

Marc G Genton. Classes of kernels for machine learning: a statistics perspective.

Journal of machine learning research, 2(Dec):299–312, 2001.

Andrew Gettelman and Richard B Rood. Demystifying climate models: a users guide

to earth system models. Springer Nature, 2016.

204 References

Rupert M Gladstone, Victoria Lee, Jonathan Rougier, Antony J Payne, Hartmut

Hellmer, Anne Le Brocq, Andrew Shepherd, Tamsin L Edwards, Jonathan

Gregory, and Stephen L Cornford. Calibrated prediction of pine island glacier

retreat during the 21st and 22nd centuries with a coupled flowline model. Earth

and Planetary Science Letters, 333:191–199, 2012.

Michael Goldstein and Jonathan Rougier. Probabilistic formulations for transfer-

ring inferences from mathematical models to physical systems. SIAM journal on

scientific computing, 26(2):467–487, 2004.

Michael Goldstein and Jonathan Rougier. Reified bayesian modelling and inference

for physical systems. Journal of Statistical Planning and Inference, 139(3):1221–1239,

2009.

John C Gower. Adding a point to vector diagrams in multivariate analysis.

Biometrika, 55(3):582–585, 1968.

Robert B Gramacy and Herbert KH Lee. Cases for the nugget in modeling com-

puter experiments. Statistics and Computing, 22(3):713–722, 2012.

Robert B Gramacy, Derek Bingham, James Paul Holloway, Michael J Grosskopf,

Carolyn C Kuranz, Erica Rutter, Matt Trantham, R Paul Drake, et al. Calibrating

a large computer experiment simulating radiative shock hydrodynamics. The

Annals of Applied Statistics, 9(3):1141–1168, 2015.

Mengyang Gu, James O Berger, et al. Parallel partial gaussian process emulation

for computer models with massive output. The Annals of Applied Statistics, 10(3):

1317–1347, 2016.

Mengyang Gu, Jesus Palomo, and James O Berger. Robustgasp: Robust gaussian

stochastic process emulation in r. arXiv preprint arXiv:1801.01874, 2018.

Françoise Guichard and Fleur Couvreux. A short review of numerical cloud-

resolving models. Tellus A: Dynamic Meteorology and Oceanography, 69(1):1373578,

2017.

References 205

Gang Han, Thomas J Santner, and Jeremy J Rawlinson. Simultaneous determina-

tion of tuning and calibration parameters for computer experiments. Technomet-

rics, 51(4):464–474, 2009.

RG Haylock and A O’Hagan. On inference for outputs of computationally expen-

sive algorithms with uncertainty on the inputs. Bayesian statistics, 5:629–637,

1996.

Michiel Hazewinkel. Chebyshev inequality in probability theory. In Encyclopedia

of mathematics. Springer New York, NY, 2001.

Dave Higdon, Marc Kennedy, James C Cavendish, John A Cafeo, and Robert D

Ryne. Combining field data and computer simulations for calibration and

prediction. SIAM Journal on Scientific Computing, 26(2):448–466, 2004.

Dave Higdon, James Gattiker, Brian Williams, and Maria Rightley. Computer

model calibration using high-dimensional output. Journal of the American Statis-

tical Association, 103(482):570–583, 2008.

Nicholas J Higham. Accuracy and stability of numerical algorithms, volume 80. Siam,

2002.

Richard G Hills and Timothy G Trucano. Statistical validation of engineering and

scientific models: Background. Sandia National Laboratories, Albuquerque, NM,

Report No. SAND99-1256, 1999.

Heiko Hoffmann. Kernel pca for novelty detection. Pattern recognition, 40(3):

863–874, 2007.

Thomas Hofmann, Bernhard Schölkopf, and Alexander J Smola. Kernel methods

in machine learning. The annals of statistics, pages 1171–1220, 2008.

AAM Holtslag, Gunilla Svensson, P Baas, S Basu, B Beare, ACM Beljaars,

FC Bosveld, J Cuxart, Jenny Lindvall, GJ Steeneveld, et al. Stable atmospheric

boundary layers and diurnal cycles: challenges for weather and climate models.

Bulletin of the American Meteorological Society, 94(11):1691–1706, 2013.

206 References

David W Hosmer Jr, Stanley Lemeshow, and Rodney X Sturdivant. Applied logistic

regression, volume 398. John Wiley & Sons, 2013.

Frédéric Hourdin, Fleur Couvreux, and Laurent Menut. Parameterization of the

dry convective boundary layer based on a mass flux representation of thermals.

Journal of the atmospheric sciences, 59(6):1105–1123, 2002.

Frédéric Hourdin, Ionela Musat, Sandrine Bony, Pascale Braconnot, Francis Co-

dron, Jean-Louis Dufresne, Laurent Fairhead, Marie-Angèle Filiberti, Pierre

Friedlingstein, Jean-Yves Grandpeix, et al. The lmdz4 general circulation model:

climate performance and sensitivity to parametrized physics with emphasis on

tropical convection. Climate Dynamics, 27(7-8):787–813, 2006.

Frédéric Hourdin, Thorsten Mauritsen, Andrew Gettelman, Jean-Christophe Go-

laz, Venkatramani Balaji, Qingyun Duan, Doris Folini, Duoying Ji, Daniel Klocke,

Yun Qian, et al. The art and science of climate model tuning. Bulletin of the

American Meteorological Society, 98(3):589–602, 2017.

Frédéric Hourdin, Daniel Williamson, Catherine Rio, Fleur Couvreux, Najda Ville-

franque Romain Roehrig, Ionela Musat, F.Binta Diallo Laurent Fairhead, and

Victoria Volodina. Process-based climate model development harnessing 2 ma-

chine learning: Ii. model calibration from single 3 column to global. 2020. URL

https://www.lmd.jussieu.fr/~hourdin/TMP/ITUNE/ItuneII.pdf.

Chih-Wei Hsu, Chih-Chung Chang, Chih-Jen Lin, et al. A practical guide to

support vector classification. 2003.

Thorsten Joachims. Learning to classify text using support vector machines, volume

668. Springer Science & Business Media, 2002.

Ian Jolliffe. Principal component analysis. Springer, 2011.

Cari G Kaufman, Derek Bingham, Salman Habib, Katrin Heitmann, Joshua A

Frieman, et al. Efficient emulators of computer experiments using compactly

supported correlation functions, with an application to cosmology. The Annals

of Applied Statistics, 5(4):2470–2492, 2011.

https://www.lmd.jussieu.fr/~hourdin/TMP/ITUNE/ItuneII.pdf

References 207

Marc C Kennedy and Anthony O’Hagan. Predicting the output from a complex

computer code when fast approximations are available. Biometrika, 87(1):1–13,

2000.

Marc C Kennedy and Anthony O’Hagan. Bayesian calibration of computer models.

Journal of the Royal Statistical Society: Series B (Statistical Methodology), 63(3):425–

464, 2001.

Seung-Jean Kim, Alessandro Magnani, and Stephen Boyd. Optimal kernel selec-

tion in kernel fisher discriminant analysis. In Proceedings of the 23rd international

conference on Machine learning, pages 465–472, 2006.

Steven W Kirkpatrick. Development and validation of high fidelity vehicle crash

simulation models. Technical report, SAE Technical Paper, 2000.

David G Kleinbaum, K Dietz, M Gail, Mitchel Klein, and Mitchell Klein. Logistic

regression. Springer, 2002.

JT-Y Kwok and IW-H Tsang. The pre-image problem in kernel methods. IEEE

transactions on neural networks, 15(6):1517–1525, 2004.

Gert RG Lanckriet, Nello Cristianini, Peter Bartlett, Laurent El Ghaoui, and

Michael I Jordan. Learning the kernel matrix with semidefinite programming.

Journal of Machine learning research, 5(Jan):27–72, 2004.

LA Lee, KS Carslaw, KJ Pringle, and GW Mann. Mapping the uncertainty in global

ccn using emulation. Atmospheric Chemistry and Physics, 12(20):9739–9751, 2012.

LA Lee, KJ Pringle, CL Reddington, GW Mann, P Stier, DV Spracklen, JR Pierce,

and KS Carslaw. The magnitude and causes of uncertainty in global model

simulations of cloud condensation nuclei. Atmospheric Chemistry & Physics

Discussions, 13(3), 2013.

Simon Lehuger, Benoit Gabrielle, Marcel Van Oijen, David Makowski, J-C Germon,

Thierry Morvan, and Catherine Hénault. Bayesian calibration of the nitrous

208 References

oxide emission module of an agro-ecosystem model. Agriculture, Ecosystems &

Environment, 133(3-4):208–222, 2009.

Fei Liu, Mike West, et al. A dynamic modelling strategy for bayesian computer

model emulation. Bayesian Analysis, 4(2):393–411, 2009.

Xiang Ma and Nicholas Zabaras. Kernel principal component analysis for stochas-

tic input model generation. Journal of Computational Physics, 230(19):7311–7331,

2011.

Thorsten Mauritsen, Bjorn Stevens, Erich Roeckner, Traute Crueger, Monika Esch,

Marco Giorgetta, Helmuth Haak, Johann Jungclaus, Daniel Klocke, Daniela

Matei, et al. Tuning the climate of a global model. Journal of advances in modeling

Earth systems, 4(3), 2012.

DJ McNeall, Peter G Challenor, JR Gattiker, and EJ Stone. The potential of an

observational data set for calibration of a computationally expensive computer

model. 2013.

Erik HW Meijering, Karel J Zuiderveld, and Max A Viergever. Image reconstruc-

tion by convolution with symmetrical piecewise nth-order polynomial kernels.

IEEE transactions on image processing, 8(2):192–201, 1999.

Scott Menard. Applied logistic regression analysis, volume 106. Sage, 2002.

James Mercer. Xvi. functions of positive and negative type, and their connection

the theory of integral equations. Philosophical transactions of the royal society

of London. Series A, containing papers of a mathematical or physical character, 209

(441-458):415–446, 1909.

Sebastian Mika, Bernhard Schölkopf, Alex J Smola, Klaus-Robert Müller, Matthias

Scholz, and Gunnar Rätsch. Kernel pca and de-noising in feature spaces. In

Advances in neural information processing systems, pages 536–542, 1999.

References 209

Hossein Mohammadi, Peter Challenor, and Marc Goodfellow. Emulating dynamic

non-linear simulators using gaussian processes. Computational Statistics & Data

Analysis, 139:178–196, 2019.

Max D Morris and Toby J Mitchell. Exploratory designs for computational experi-

ments. Journal of statistical planning and inference, 43(3):381–402, 1995.

Owen J Murphy. Nearest neighbor pattern classification perceptrons. Proceedings

of the IEEE, 78(10):1595–1598, 1990.

Christine Nam, Sandrine Bony, J-L Dufresne, and H Chepfer. The ‘too few, too

bright’tropical low-cloud problem in cmip5 models. Geophysical Research Letters,

39(21), 2012.

Radford M Neal. Monte carlo implementation of gaussian process models for

bayesian regression and classification. arXiv preprint physics/9701026, 1997.

Roel AJ Neggers, Martin Köhler, and Anton CM Beljaars. A dual mass flux

framework for boundary layer convection. part i: Transport. Journal of the

Atmospheric Sciences, 66(6):1465–1487, 2009.

Douglas Nychka, Christopher Wikle, and J Andrew Royle. Multiresolution models

for nonstationary spatial covariance functions. Statistical Modelling, 2(4):315–331,

2002.

Jeremy Oakley and Anthony O’Hagan. Bayesian inference for the uncertainty

distribution of computer model outputs. Biometrika, 89(4):769–784, 2002.

Jeremy E Oakley and Anthony O’Hagan. Probabilistic sensitivity analysis of

complex models: a bayesian approach. Journal of the Royal Statistical Society:

Series B (Statistical Methodology), 66(3):751–769, 2004.

Antony M Overstall and David C Woods. Multivariate emulation of computer

simulators: model selection and diagnostics with application to a humanitarian

relief model. Journal of the Royal Statistical Society: Series C (Applied Statistics), 65

(4):483–505, 2016.

210 References

Anthony O’Hagan. Bayesian analysis of computer code outputs: A tutorial.

Reliability Engineering & System Safety, 91(10-11):1290–1300, 2006.

TN Palmer, FJ Doblas-Reyes, R Hagedorn, and A Weisheimer. Probabilistic pre-

diction of climate using multi-model ensembles: from basics to applications.

Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1463):1991–

1998, 2005.

Abani K Patra, Andrew C Bauer, CC Nichita, E Bruce Pitman, Michael F Sheridan,

M Bursik, Byron Rupp, A Webber, AJ Stinton, LM Namikawa, et al. Parallel

adaptive numerical simulation of dry avalanches over natural terrain. Journal of

Volcanology and Geothermal Research, 139(1-2):1–21, 2005.

Matthew Plumlee. Bayesian calibration of inexact computer models. Journal of the

American Statistical Association, 112(519):1274–1285, 2017.

Friedrich Pukelsheim. The three sigma rule. The American Statistician, 48(2):88–91,

1994.

Carl Edward Rasmussen. Gaussian processes in machine learning. In Summer

School on Machine Learning, pages 63–71. Springer, 2003.

Carl Edward Rasmussen and Christopher KI Williams. Gaussian processes for

machine learning, volume 1. MIT press Cambridge, 2006.

Catherine Rio and Frédéric Hourdin. A thermal plume model for the convective

boundary layer: Representation of cumulus clouds. Journal of the atmospheric

sciences, 65(2):407–425, 2008.

Luiz Felippe S Rodrigues, Ian Vernon, and Richard G Bower. Constraints on

galaxy formation models from the galaxy stellar mass function and its evolution.

Monthly Notices of the Royal Astronomical Society, 466(2):2418–2435, 2017.

Jonathan Rougier. Probabilistic inference for future climate using an ensemble of

climate model evaluations. Climatic Change, 81(3-4):247–264, 2007.

References 211

Jonathan Rougier. Efficient emulators for multivariate deterministic functions.

Journal of Computational and Graphical Statistics, 17(4):827–843, 2008.

Jonathan Rougier, David MH Sexton, James M Murphy, and David Stainforth.

Analyzing the climate sensitivity of the hadsm3 climate model using ensembles

from different but related experiments. Journal of Climate, 22(13):3540–3557, 2009.

Olivier Roustant, David Ginsbourger, and Yves Deville. Dicekriging, diceoptim:

Two r packages for the analysis of computer experiments by kriging-based

metamodeling and optimization. 2012.

Jerome Sacks, William J Welch, Toby J Mitchell, and Henry P Wynn. Design and

analysis of computer experiments. Statistical science, pages 409–423, 1989.

Andrea Saltelli, Karen Chan, M Scott, et al. Sensitivity analysis. probability and

statistics series. John and Wiley & Sons, New York, 2000.

Andrea Saltelli, Marco Ratto, Stefano Tarantola, and Francesca Campolongo. Sen-

sitivity analysis for chemical models. Chemical reviews, 105(7):2811–2828, 2005.

James M Salter and Daniel Williamson. A comparison of statistical emulation

methodologies for multi-wave calibration of environmental models. Environ-

metrics, 27(8):507–523, 2016.

James M Salter and Daniel B Williamson. Efficient calibration for high-dimensional

computer model output using basis methods. arXiv preprint arXiv:1906.05758,

2019.

James M Salter, Daniel B Williamson, Lauren J Gregoire, and Tamsin L Edwards.

Quantifying spatio-temporal boundary condition uncertainty for the north

american deglaciation. arXiv preprint arXiv:1808.09322, 2018.

James M Salter, Daniel B Williamson, John Scinocca, and Viatcheslav Kharin. Un-

certainty quantification for spatio-temporal computer models with calibration-

optimal bases. arXiv preprint arXiv:1801.08184, 2019.

212 References

Irina Sandu and Bjorn Stevens. On the factors modulating the stratocumulus to

cumulus transitions. Journal of the Atmospheric Sciences, 68(9):1865–1881, 2011.

Thomas J Santner, Brian J Williams, William Notz, and Brain J Williams. The design

and analysis of computer experiments, volume 1. Springer, 2003.

Bernhard Scholkopf and Alexander J Smola. Learning with kernels: support vector

machines, regularization, optimization, and beyond. MIT press, 2001.

Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller. Kernel principal

component analysis. In International Conference on Artificial Neural Networks,

pages 583–588. Springer, 1997.

Bernhard Schölkopf, Sebastian Mika, Alex Smola, Gunnar Rätsch, and Klaus-

Robert Müller. Kernel pca pattern reconstruction via approximate pre-images.

In International Conference on Artificial Neural Networks, pages 147–152. Springer,

1998a.

Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller. Nonlinear

component analysis as a kernel eigenvalue problem. Neural computation, 10(5):

1299–1319, 1998b.

Bernhard Schölkopf, Alexander J Smola, Francis Bach, et al. Learning with kernels:

support vector machines, regularization, optimization, and beyond. MIT press, 2002.

David MH Sexton, James M Murphy, Mat Collins, and Mark J Webb. Multivari-

ate probabilistic projections using imperfect climate models part i: outline of

methodology. Climate dynamics, 38(11-12):2513–2542, 2012.

John Shawe-Taylor, Nello Cristianini, et al. Kernel methods for pattern analysis.

Cambridge university press, 2004.

Huaitao Shi, Jianchang Liu, and Yingwei Zhang. An optimized kernel principal

component analysis algorithm for fault detection. IFAC Proceedings Volumes, 42

(8):846–851, 2009.

References 213

Ralph C Smith. Uncertainty quantification: theory, implementation, and applications,

volume 12. Siam, 2013.

Guido F Smits and Elizabeth M Jordaan. Improved svm regression using mixtures

of kernels. In Proceedings of the 2002 International Joint Conference on Neural

Networks. IJCNN’02 (Cat. No. 02CH37290), volume 3, pages 2785–2790. IEEE,

2002.

Rosanna Soentpiet et al. Advances in kernel methods: support vector learning. MIT

press, 1999.

César R Souza. Kernel functions for machine learning applications. Creative

Commons Attribution-Noncommercial-Share Alike, 3:29, 2010.

Ron Sun et al. Cognition and multi-agent interaction: From cognitive modeling to social

simulation. Cambridge University Press, 2006.

Karl E Taylor, Ronald J Stouffer, and Gerald A Meehl. An overview of cmip5

and the experiment design. Bulletin of the American Meteorological Society, 93(4):

485–498, 2012.

Claudia Tebaldi and Reto Knutti. The use of the multi-model ensemble in proba-

bilistic climate projections. Philosophical Transactions of the Royal Society of London

A: Mathematical, Physical and Engineering Sciences, 365(1857):2053–2075, 2007.

Rui Tuo and CF Wu. A theoretical framework for calibration in computer models:

parametrization, estimation and convergence properties. SIAM/ASA Journal on

Uncertainty Quantification, 4(1):767–795, 2016.

Rui Tuo, CF Jeff Wu, et al. Efficient calibration for imperfect computer models.

The Annals of Statistics, 43(6):2331–2352, 2015.

Tony Van Gestel, JAK Suykens, Bart De Moor, and Joos Vandewalle. Automatic

relevance determination for least squares support vector machine regression. In

IJCNN’01. International Joint Conference on Neural Networks. Proceedings (Cat. No.

01CH37222), volume 4, pages 2416–2421. IEEE, 2001.

214 References

Peter JM Van Laarhoven and Emile HL Aarts. Simulated annealing. In Simulated

annealing: Theory and applications, pages 7–15. Springer, 1987.

Ian Vernon, Michael Goldstein, Richard G Bower, et al. Galaxy formation: a

bayesian uncertainty analysis. Bayesian analysis, 5(4):619–669, 2010.

Tomas F Yago Vicente, Minh Hoai, and Dimitris Samaras. Leave-one-out kernel

optimization for shadow detection and removal. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 40(3):682–695, 2017.

Aurore Voldoire, E Sanchez-Gomez, D Salas y Mélia, B Decharme, Christophe

Cassou, S Sénési, Sophie Valcke, I Beau, A Alias, M Chevallier, et al. The cnrm-

cm5. 1 global climate model: description and basic evaluation. Climate Dynamics,

40(9-10):2091–2121, 2013.

Victoria Volodina and Daniel Williamson. Diagnostics-driven nonstationary emu-

lators using kernel mixtures. SIAM/ASA Journal on Uncertainty Quantification, 8

(1):1–26, 2020.

Tinghua Wang, Houkuan Huang, Shengfeng Tian, and Jianfeng Xu. Feature

selection for svm via optimization of kernel polarization with gaussian ard

kernels. Expert Systems with Applications, 37(9):6663–6668, 2010.

Richard D Wilkinson. Bayesian calibration of expensive multivariate computer

experiments, 2010.

Christopher KI Williams. On a connection between kernel pca and metric multi-

dimensional scaling. In Advances in neural information processing systems, pages

675–681, 2001.

Daniel Williamson. Exploratory ensemble designs for environmental models using

k-extended latin hypercubes. Environmetrics, 26(4):268–283, 2015.

Daniel Williamson and Adam T Blaker. Evolving bayesian emulators for structured

chaotic time series, with application to large climate models. SIAM/ASA Journal

on Uncertainty Quantification, 2(1):1–28, 2014.

References 215

Daniel Williamson, Michael Goldstein, and Adam Blaker. Fast linked analyses for

scenario-based hierarchies. Journal of the Royal Statistical Society: Series C (Applied

Statistics), 61(5):665–691, 2012.

Daniel Williamson, Michael Goldstein, Lesley Allison, Adam Blaker, Peter Chal-

lenor, Laura Jackson, and Kuniko Yamazaki. History matching for exploring

and reducing climate model parameter space using observations and a large

perturbed physics ensemble. Climate dynamics, 41(7-8):1703–1729, 2013.

Daniel Williamson, Adam T Blaker, Charlotte Hampton, and James Salter. Identi-

fying and removing structural biases in climate models with history matching.

Climate dynamics, 45(5-6):1299–1324, 2015.

Daniel B Williamson, Adam T Blaker, and Bablu Sinha. Tuning without over-

tuning: parametric uncertainty quantification for the nemo ocean model. Geosci-

entific Model Development, 10(4):1789, 2017.

Svante Wold, Kim Esbensen, and Paul Geladi. Principal component analysis.

Chemometrics and intelligent laboratory systems, 2(1-3):37–52, 1987.

Max A Woodbury and M Woodbury. Inverting modified matrices. 1950.

WW Xing, V Triantafyllidis, AA Shah, PB Nair, and Nicholas Zabaras. Manifold

learning for the emulation of spatial fields from computational models. Journal

of Computational Physics, 326:666–690, 2016.

Ying Xiong, Wei Chen, Daniel Apley, and Xuru Ding. A non-stationary covariance-

based kriging method for metamodelling in engineering design. International

Journal for Numerical Methods in Engineering, 71(6):733–756, 2007.

Wenzhe Xu, Daniel Williamson, and Peter Challenor. Local voronoi tessellations

for robust multi-wave calibration of computer models. International Journal for

Uncertainty Quantification, 2021.

216 References

Jiankai Xue and Bo Shen. A novel swarm intelligence optimization approach:

sparrow search algorithm. Systems Science & Control Engineering, 8(1):22–34,

2020.

Ru Zhang, Chunfang Devon Lin, and Pritam Ranjan. A sequential design ap-

proach for calibrating a dynamic population growth model. arXiv preprint

arXiv:1811.00153, 2018.

Mark H Zweig and Gregory Campbell. Receiver-operating characteristic (roc)

plots: a fundamental evaluation tool in clinical medicine. Clinical chemistry, 39

(4):561–577, 1993.

Appendix A

Mathematical proofs for Chapter 4

A.1 Proof of Equation (4.15)

By replacing W with on𝑊𝑘 (𝐷 ×1) equation (4.13) (only consider one eigenvector),

and multiplying 𝜙(𝑓 (x 𝑗))𝑇 (1×𝐷) on both side of equation (4.13), we have that

𝜙(𝑓 (x 𝑗))𝐺𝑊𝑘 = 𝜆𝜙(𝑓 (x 𝑗))𝑊𝑘 , (A.1)

for all 𝑗 = 1 . . . 𝑛.

The left side can be computed as:

L = 𝜙(𝑓 (x 𝑗))𝑇𝐺𝑊𝑘

= 𝜙(𝑓 (x 𝑗))𝑇
1
𝑛

𝑛∑
𝑖=1
𝜙(𝑓 (x𝑖))𝜙(𝑓 (x𝑖))𝑇

𝑛∑
𝑙=1
𝛼𝑘𝑙𝜙(𝑓 (x𝑙))

=
1
𝑛

𝑛∑
𝑖=1

𝑛∑
𝑙=1
𝛼𝑘𝑙𝜙(𝑓 (x 𝑗))𝑇𝜙(𝑓 (x𝑖))𝜙(𝑓 (x𝑖))𝑇𝜙(𝑓 (x𝑙))

=
1
𝑛

𝑛∑
𝑖=1

𝑛∑
𝑙=1
𝛼𝑘𝑙 𝑘̃ (𝑓 (x 𝑗), 𝑓 (x𝑖)) 𝑘̃ (𝑓 (x𝑖), 𝑓 (x𝑙))

=
1
𝑛
(K̃2

𝛼𝑘) 𝑗 ,

218 Mathematical proofs for Chapter 4

and the right side is

R = 𝜙(𝑓 (x 𝑗))𝑇𝜆𝑘𝑊𝑘

= 𝜆𝑘

𝑛∑
𝑖=1
𝛼𝑘𝑖𝜙(𝑓 (x 𝑗))𝑇𝜙(𝑓 (x𝑖))

= 𝜆𝑘

𝑛∑
𝑖=1
𝛼𝑘𝑖 𝑘̃ (𝑓 (x 𝑗), 𝑓 (x𝑖))

= 𝜆𝑘 (K̃𝛼𝑘) 𝑗 .

Therefore, we have that
1
𝑛
(K̃2

𝛼𝑘) 𝑗 = 𝜆𝑘 (K̃𝛼𝑘) 𝑗 ,

which holds for any 𝑗 = 1, . . . , 𝑛. The eigenvalue problem is then equivalent to

1
𝑛

K̃2
𝛼𝑘 = 𝜆𝑘K̃𝛼𝑘 ,

⇔ K̃𝛼𝑘 = 𝑛𝜆𝑘𝛼𝑘 ,

⇔ K̃𝛼𝑘 = 𝜆𝑘𝛼𝑘 .

(A.2)

Equation (A.2) shows that 𝛼𝑘 is an eigenvector of K̃, such that the eigenvectors𝑊

of covariance matrix 𝐺 can be represented by the eigenvectors of K̃. Also, given

the eigenvalues 𝜆̃ of K̃, the eigenvalues 𝜆 of covariance matrix 𝐺 are 𝜆̃ = 𝑛𝜆.

A.2 Proof of Equation (4.64)

| |C𝑟 (x∗) −E [C𝑟 (x∗)] | |2 can be written as:

| |C𝑟 (x∗) −E [C𝑟 (x∗)] | |2 = (C𝑟 (x∗) −E [C𝑟 (x∗)])𝑇 (C𝑟 (x∗) −E [C𝑟 (x∗)])

= (W𝑟𝑇𝜙(x∗) −E [C𝑟 (x∗)])𝑇 (W𝑟𝑇𝜙(x∗) −E [C𝑟 (x∗)])

= (W𝑟𝑇𝜙(x∗) −E [C𝑟 (x∗)])𝑇W𝑟𝑇W𝑟 (W𝑟𝑇𝜙(x∗) −E [C𝑟 (x∗)])

= (W𝑟W𝑟𝑇𝜙(x∗) −W𝑟E [C𝑟 (x∗)])𝑇 (W𝑟W𝑟𝑇𝜙(x∗) −W𝑟E [C𝑟 (x∗)])

= (𝜙𝑟 (x∗) −E
[
𝜙𝑟 (𝑓 (x∗))

]
)𝑇 (𝜙𝑟 (x∗) −E

[
𝜙𝑟 (𝑓 (x∗))

]
)

= (𝜙𝑟 (x∗) −E [𝜙𝑟 (𝑓 (x∗))])𝑇 (𝜙𝑟 (x∗) −E [𝜙𝑟 (𝑓 (x∗))]).
(A.3)

A.2 Proof of Equation (4.64) 219

To proof the equation (4.64), we compute the difference between | |C𝑟 (x∗)−E [C𝑟 (x∗)] | |2

and ∥ 𝜙(𝑓 (x∗)) −E [𝜙(𝑓 (x∗))] ∥2:

∥𝜙(𝑓 (x∗)) −E [𝜙(𝑓 (x∗))] ∥2 −||C𝑟 (x∗) −E [C𝑟 (x∗)] | |2

= (𝜙(𝑓 (x∗)) −E [𝜙𝑟 (𝑓 (x))])𝑇 (𝜙(𝑓 (x∗)) −E [𝜙𝑟 (𝑓 (x))])−

(𝜙𝑟 (𝑓 (x∗)) −E [𝜙𝑟 (𝑓 (x))])𝑇 (𝜙𝑟 (𝑓 (x∗)) −E [𝜙𝑟 (𝑓 (x))])

= 𝑘̃ (𝑓 (x∗), 𝑓 (x∗)) +E [C𝑟 (x∗)]𝑇 E [C𝑟 (x∗)] −2E [C𝑟 (x∗)]𝑇 AK̃ 𝑓 (x∗)−(
(W𝑟𝑇𝜙(𝑓 (x∗)))𝑇 (W𝑟𝑇𝜙(𝑓 (x∗))) +E [C𝑟 (x∗)]𝑇 E [C𝑟 (x∗)] −2E [C𝑟 (x∗)]𝑇 (W𝑟𝑇𝜙(𝑓 (x∗)))

)
= 𝑘̃ (𝑓 (x∗), 𝑓 (x∗)) −2E [C𝑟 (x∗)]𝑇 AK̃ 𝑓 (x∗) −

(
(W𝑟𝑇𝜙(𝑓 (x∗)))𝑇 (W𝑟𝑇𝜙(𝑓 (x∗))) −2E [C𝑟 (x∗)]𝑇 AK̃

)
= 𝑘̃ (𝑓 (x∗), 𝑓 (x∗)) − (W𝑟𝑇𝜙(𝑓 (x∗)))𝑇 (W𝑟𝑇𝜙(𝑓 (x∗)))

= | |𝜀 𝑓 | |2,
(A.4)

where 𝜀 𝑓 is the reconstruction error of model output and | |.| |2 is the euclidean

distance function. We show that 𝜙(𝑓 (x∗)) −E [𝜙(𝑓 (x∗))] ∥2 can be calculated from

| |C𝑟 (x∗) −E [C𝑟 (x∗)] | |2 and | |𝜀 𝑓 | |2,

| |𝜙(𝑓 (x∗)) −E [𝜙(𝑓 (x∗))] | |2 = | |C𝑟 (x∗) −E [C𝑟 (x∗)] | |2 + ||𝜀 𝑓 | |2.

220 Mathematical proofs for Chapter 4

A.3 The expectation and variance of 𝑑2
𝜙(𝑧),𝜙(𝑓 (𝑥∗))

To make the mathematics clear, let Δ = 𝑧− 𝑓 (𝑥∗), Δ is then a vector with length 𝑚.

The expectation of 𝑑2
𝜙(𝑧),𝜙(𝑓 (𝑥∗)) is

E
[
𝑑2
𝜙(𝑧),𝜙(𝑓 (𝑥∗))

]
= 2−2E

[
exp(−𝜎 ∥ Δ ∥2)

]
= 2−2

∫ ∞

−∞
exp(−𝜎Δ𝑇Δ)𝑝(Δ)𝑑Δ

= 2−2
1

(2𝜋) 𝑛
2 |Σ𝑒 +Σ𝜂 |

1
2

∫ ∞

−∞
exp(−𝜎Δ𝑇Δ)𝑒𝑥𝑝(−1

2
Δ𝑇 (Σ𝑒 +Σ𝜂)−1Δ)𝑑Δ

= 2−2
1

(2𝜋) 𝑛
2 |Σ𝑒 +Σ𝜂 |

1
2

∫ ∞

−∞
exp(−1

2
Δ𝑇 (2𝜎I𝑚×𝑚 + (Σ𝑒 +Σ𝜂)−1)Δ)𝑑Δ

= 2−2
(2𝜋) 𝑛

2 | (2𝜎I𝑚×𝑚 + (Σ𝑒 +Σ𝜂)−1)−1 | 1
2

(2𝜋) 𝑛
2 |Σ𝑒 +Σ𝜂 |

1
2

×∫ ∞

−∞

1
(2𝜋) 𝑛

2 | (2𝜎I𝑚×𝑚 + (Σ𝑒 +Σ𝜂)−1)−1 | 1
2

exp(−1
2
Δ𝑇 (2𝜎I𝑚×𝑚 + (Σ𝑒 +Σ𝜂)−1)Δ)𝑑Δ

= 2−2
| (2𝜎I𝑚×𝑚 + (Σ𝑒 +Σ𝜂)−1)−1 | 1

2

|Σ𝑒 +Σ𝜂 |
1
2

,

where I𝑚×𝑚 is the 𝑚×𝑚 identity matrix. The variance of 𝑑2
𝜙(𝑧),𝜙(𝑓 (𝑥∗)) is

Var
[
𝑑2
𝜙(𝑧),𝜙(𝑓 (𝑥∗))

]
= E

[
(𝑑2
𝜙(𝑧),𝜙(𝑓 (𝑥∗)))

2
]
−E

[
𝑑2
𝜙(𝑧),𝜙(𝑓 (𝑥∗))

]2

= E
[
(2−2exp(−𝜎 ∥ Δ ∥2))2] −E

[
2−2exp(−𝜎 ∥ Δ ∥2)

]2

= E
[
4+4(exp(−𝜎 ∥ Δ ∥2))2 −8exp(−𝜎 ∥ Δ ∥2)

]
−

(
2−E

[
2exp(−𝜎 ∥ Δ ∥2)

])2

= 4+E
[
4(exp(−𝜎 ∥ Δ ∥2))2] −8E

[
exp(−𝜎 ∥ Δ ∥2)

]
−(

4+E
[
2exp(−𝜎 ∥ Δ ∥2)

]2 −8E
[
2exp(−𝜎 ∥ Δ ∥2)

])
= 4E

[
(exp(−𝜎 ∥ Δ ∥2))2] −E

[
2exp(−𝜎 ∥ Δ ∥2)

]2

= 4
| (4𝜎I𝑚×𝑚 + (Σ𝑒 +Σ𝜂)−1)−1 | 1

2

|Σ𝑒 +Σ𝜂 |
1
2

−4

(
| (2𝜎I𝑚×𝑚 + (Σ𝑒 +Σ𝜂)−1)−1 | 1

2

|Σ𝑒 +Σ𝜂 |
1
2

)2

.

A.4 Proof of Equation (4.84) 221

A.4 Proof of Equation (4.84)

To prove equation (4.84), we first compute | |C𝑟 (𝑧) −E [C𝑟 (x)] | |2,

| |C𝑟 (𝑧) −E [C𝑟 (x)] | |2 = (C𝑟 (𝑧) −E [C𝑟 (x)])𝑇 (C𝑟 (𝑧) −E [C𝑟 (x)])

= (W𝑟𝑇𝜙(𝑧) −E [C𝑟 (x)])𝑇 (W𝑟𝑇𝜙(𝑧) −E [C𝑟 (x)])

= (W𝑟𝑇𝜙(𝑧) −E [C𝑟 (x)])𝑇W𝑟𝑇W𝑟 (W𝑟𝑇𝜙(𝑧) −E [C𝑟 (x)])

= (W𝑟W𝑟𝑇𝜙(𝑧) −W𝑟E [C𝑟 (x)])𝑇 (W𝑟W𝑟𝑇𝜙(𝑧) −W𝑟E [C𝑟 (x)])

= (𝜙𝑟 (𝑧) −E
[
𝜙𝑟 (𝑓 (x))

]
)𝑇 (𝜙𝑟 (𝑧) −E

[
𝜙𝑟 (𝑓 (x))

]
)

= (𝜙𝑟 (𝑧) −E [𝜙𝑟 (𝑓 (x))])𝑇 (𝜙𝑟 (𝑧) −E [𝜙𝑟 (𝑓 (x))]).
(A.5)

We compute the difference between | |𝜙(𝑧)−E [𝜙𝑟 (𝑓 (x))] | |2 and | |C𝑟 (𝑧)−E [C𝑟 (x)] | |2:

| |𝜙(𝑧) −E [𝜙𝑟 (𝑓 (x))] | |2 − ||C𝑟 (𝑧) −E [C𝑟 (x)] | |2

= (𝜙(𝑧) −E [𝜙𝑟 (𝑓 (x))])𝑇 (𝜙(𝑧) −E [𝜙𝑟 (𝑓 (x))]) − (𝜙𝑟 (𝑧) −E [𝜙𝑟 (𝑓 (x))])𝑇 (𝜙𝑟 (𝑧) −E [𝜙𝑟 (𝑓 (x))])

= 𝑘̃ (𝑧, 𝑧) +E [C𝑟 (x)]𝑇 E [C𝑟 (x)] −2E [C𝑟 (x)]𝑇 AK̃𝑧−(
(W𝑟𝑇𝜙(𝑧))𝑇 (W𝑟𝑇𝜙(𝑧)) +E [C𝑟 (x)]𝑇 E [C𝑟 (x)] −2E [C𝑟 (x)]𝑇 (W𝑟𝑇𝜙(𝑧))

)
= 𝑘̃ (𝑧, 𝑧) −2E [C𝑟 (x)]𝑇 AK̃𝑧 −

(
(W𝑟𝑇𝜙(𝑧))𝑇 (W𝑟𝑇𝜙(𝑧)) −2E [C𝑟 (x)]𝑇 AK̃

)
= 𝑘̃ (𝑧, 𝑧) − (W𝑟𝑇𝜙(𝑧))𝑇 (W𝑟𝑇𝜙(𝑧))

= | |𝜀𝑧 | |2,
(A.6)

where 𝜀𝑧 is the observation reconstruction error and | |.| |2 is the euclidean distance

function. We show that I𝐹1(x) can be calculated from I𝐶1(x), where

I𝐹1(x) = I𝐶1(x) + | |𝜀𝑧 | |2.

222 Mathematical proofs for Chapter 4

A.5 Proof of Equation (5.11)

Given W as 𝑃𝑇W𝑇
𝑃𝐶𝐴, E [𝜙(𝑓 (x))] = 𝑃𝑇E [𝑓 (x)], and Var [𝜙(𝑓 (x))] = 𝑃Var [𝑓 (x)] 𝑃𝑇 ,

we can write the implausibility I𝐹0(x) as

I𝐹0(x) = (𝜙(𝑧) −E [𝜙(𝑓 (x))])𝑇 (1𝐷 +Var [𝜙(𝑓 (x))])−1 (𝜙(𝑧) −E [𝜙(𝑓 (x)])

= (𝑃𝑇 𝑧−𝑃𝑇E [𝑓 (x)])𝑇 (1𝐷 +𝑃Var [𝑓 (x)] 𝑃𝑇)−1(𝑃𝑇 𝑧−𝑃𝑇E [𝑓 (x)])

= (𝑧−E [𝑓 (x)])𝑇𝑃(1𝐷 +𝑃Var [𝑓 (x)] 𝑃𝑇)−1𝑃𝑇 (𝑧−E [𝑓 (x)]).

(A.7)

To expand I𝐹0(x), we apply the Woodbury formula to (1𝐷 +𝑃Var [𝑓 (x)] 𝑃𝑇)−1,

so that:

(1𝐷 +𝑃Var [𝑓 (x)] 𝑃𝑇)−1 = 1𝐷 −𝑃𝑇 (Var [𝑓 (x)])−1 +𝑃𝑃𝑇)−1𝑃

= 1𝐷 −𝑃𝑇
(
(𝑃𝑃𝑇)−1 − (𝑃𝑃𝑇)−1

(
Var [𝑓 (x)] + (𝑃𝑃𝑇)−1

)−1
(𝑃𝑃𝑇)−1

)
𝑃.

(A.8)

Therefore, I𝐹0(x) can be written as:

I𝐹0(x)

= (𝑧−E [𝑓 (x)])𝑇𝑃
(
1𝐷 −𝑃𝑇

(
(𝑃𝑃𝑇)−1 − (𝑃𝑃𝑇)−1

(
Var [𝑓 (x)] + (𝑃𝑃𝑇)−1

)−1
(𝑃𝑃𝑇)−1

)
𝑃

)
𝑃𝑇 (𝑧−E [𝑓 (x)])

= (𝑧−E [𝑓 (x)])𝑇
(
𝑃𝑃𝑇 −𝑃𝑃𝑇

(
(𝑃𝑃𝑇)−1 − (𝑃𝑃𝑇)−1

(
Var [𝑓 (x)] + (𝑃𝑃𝑇)−1

)−1
(𝑃𝑃𝑇)−1

)
𝑃𝑃𝑇

)
(𝑧−E [𝑓 (x)])

= (𝑧−E [𝑓 (x)])𝑇
(
Υ−1 −Υ−1

(
Υ−Υ (Var [𝑓 (x)] +Υ)−1Υ

)
Υ−1

)
(𝑧−E [𝑓 (x)])

= (𝑧−E [𝑓 (x)])𝑇
(
Υ−1 −Υ−1ΥΥ−1 −Υ−1Υ (Var [𝑓 (x)] +Υ)−1ΥΥ−1

)
(𝑧−E [𝑓 (x)])

= (𝑧−E [𝑓 (x)])𝑇
(
Υ−1 −Υ−1 − (Var [𝑓 (x)] +Υ)−1

)
(𝑧−E [𝑓 (x)])

= (𝑧−E [𝑓 (x)])𝑇 (Var [𝑓 (x)] +Υ)−1 (𝑧−E [𝑓 (x)]).
(A.9)

Hence, we prove that

I (x) = I𝐹0(x).

Appendix B

R Shiny

R Shiny app is created for the LMDZ model calibration, aiming to consider the

modeller’s information in the calibration process. In this appendix, we present the

contents of the app. For interaction purpose, experts will use the app to look at

the model output and accept or reject. Hence, the Shiny app we created includes

three pages, page 1 shows the observed field and 90 ensemble member plots, page

2 is the selection page where the experts need to choose their acceptable runs, and

page 3 is used to do a final check and save the experts selection.

Fig. B.1 Page 1: Overall of the ensemble.

224 R Shiny

The first page of our app is presented in figure B.1. On the top of this page,

there are three buttons with page numbers that can be used to switch the pages.

Under the brief overview, the observation is fist presented, and the 90 model runs

are plotted (the full page 1 is too long, we only paste part of it here, the rest can be

seen by using the app). By looking at all ensemble members on page 1, experts

can get an idea of which runs look best before moving to the accept reject page.

Fig. B.2 Page 2: Selection page.

The page 2 is presented in figure B.2. On the right panel, the left figure shows

the observation, and the right figure shows the ensemble member (from the first

one to ninetieth). Once the experts click the acceptable/unacceptable button on

the left panel, then ensemble member will change to the next one. The “Jump”,

“Back” and “Next” buttons could be used when the experts want to correct their

decisions. The app will only save their final decision.

The page 3 is presented in figure B.3 to show all of the experts selections that

made in page 2. The selection will be saved by clicking the ‘save your selection’

button. If the experts are not sure about their selection, they can go back to page 2

and type the unsure ensemble member, then they can easily compare the observed

field with this ensemble member and correct the choice.

225

Fig. B.3 Page 3: Final check and save the data.

After all the steps introduced above, a csv file called ‘Acceptable.csv’ will be

automatically generated. This csv file will save expert’s acceptable runs as 1,

expert’s unacceptable runs as 2 and 0 means experts did not make any selection

for this ensemble member.

Appendix C

Addition remarks for examples

This appendix gives additional information for toy models and applications used

to illustrate methodology throughout Chapter 4, Chapter 5 and Chapter 6.

C.1 Chapter 4 toy model

The spatial toy function that was introduced in Chapter 4, giving output over a

10×10 field, with 5 input parameters each taking values in [−1,1], is defined as

𝑓 (x) = Signal(x) + 𝑒, where 𝑒 is the error that generates from a Normal distribution

mean 0 (to ensure the output is positive) and variance 0.05, independently for each

box in a 10×10 grid, and Signal(x) is the cross marks pattern specified over the grid.

Whether the signal, Signal(x), exist depends on parameters, x, 14+ 8𝑥1 + 3𝑥2 + 𝑥3

controls the location on the horizontal axis, and 3𝑥4 +5𝑥5 +8 controls the location

on the vertical axis. Only if these two coordinate values are less than 10, model

outputs contains the key pattern. We sample 50 parameter settings, X, using a

Latin Hyper cube from the 5-dimensional parameter space X , giving an ensemble,

F, with dimension 100×50. We plot the ensemble, F (100×50), from the 1st run to

the 50th in Figure C.1.

228 Addition remarks for examples

Fig. C.1 The ensemble plots for Chapter 6 toy model.

C.1 Chapter 4 toy model 229

C.1.1 Emulator diagnostic

Before using an emulator with other approaches, diagnostics must be used to

validate and assess the adequacy of a Gaussian process emulator for representing

the simulator. We perform ‘leave one out’ validation on the training data to assess

the fit of emulators. For the following leave one out diagnostic plots, each plot

represents one left-out emulator predicted, black points and error bar are from the

emulator posterior mean and two standard deviation prediction intervals. The

true function values are in blue if they lie within two standard deviation prediction

intervals, or red otherwise.

Fig. C.2 Leave-one-out cross-validation plots for the emulators for the coefficients
on the first 5 basis vectors.

230 Addition remarks for examples

C.2 Refocusing of Chapter 5 numerical example 1

We continue the refocusing steps for the first numerical example introduced in

Chapter 5. To perform a second wave, a new ensemble is required. For consistency

with the first wave ensemble, we select 60 members for the new ensemble. The

new ensemble design, X2, is randomly generated from X 1. The new ensemble

members are presented in Figure C.3. By comparison with the ensemble members

from the first wave, we can see that more than half of the ensemble members do

contain the key patterns, which indicates that the NROY space X 1 is closer to true

NROY space. Hence, more acceptable runs are selected in wave 2. As well as

using the new ensemble, the acceptable runs in the fist wave ensemble are also

used to build emulators.

We now follow the same methodology as in the first wave, where the best 16

members are selected as the acceptable runs, and our kernel optimising algorithm

is applied to select a kernel function. As before, the linear kernel is selected as

the best kernel function, but only first two basis vectors are required to reach

95% of the ensemble variability. We calculate the projections for the ensemble of

model runs with the selected kernel, and fit Gaussian process emulators to the

coefficients for each of the first two basis vectors. The validation plots for each

of the GP emulator is given in Figure C.4. Given the acceptable runs and the

emulators for the coefficients, we perform the second wave of KHM. The density

plot and minimum implausibility plots of the second wave NROY space are shown

in Figure C.6. We also perform a third wave, following the same procedures. Wave

3 ensemble members are presented in Figure C.7, the validation plots for each

of the GP emulator is given in Figure C.5 and wave 3 NROY space are shown in

Figure C.6.

The NROY space after wave 2, X 2, contains 13.28% of the initial parameter

space X , and more than half of X 1 is ruled out in the second wave. Performing

wave 3 does not reduce X 2 significantly, which contains 8.84% of the initial param-

eter space. In the first wave, only parameter x6 had clear visual signs of having

C.2 Refocusing of Chapter 5 numerical example 1 231

Fig. C.3 The 60 ensemble members for wave 2.

232 Addition remarks for examples

Fig. C.4 Wave 2 Leave-one-out cross-validation plots for the emulators for the
coefficients on the first two basis vectors.

Fig. C.5 Wave 3 Leave-one-out cross-validation plots for the emulators for the
coefficients on the first three basis vectors.

Fig. C.6 Left: Wave 3 NROY space. Right: Wave 3 NROY space.

C.2 Refocusing of Chapter 5 numerical example 1 233

Fig. C.7 The 60 ensemble members for wave 3.

234 Addition remarks for examples

been constrained. In Wave 3, we find a similar reduction of the true NROY space

for x5. The NROY space after wave 3 cuts us down to the positive corner of values

of x5 and x6, which has the same structure as true NROY space. In total, 96.25% of

the true NROY are retained in the final NROY space. The performance of KHM

shows that our kernel optimization method works with this numerical example,

and it suggests that using the linear kernel when the standard history matching is

suitable for the application (from wave 1 to wave 3). But that does not means that

the linear kernel is always the best choice for all the applications, in order to prove

the feasibility of KHM and kernel optimization methods, we also gives another

applied instance in Section 5.5.

C.3 Chapter 5 numerical example 2

For KHM the numerical example 2 in Section 5.5, we fitted two waves of Gaussian

process emulators. Wave 2 ensemble members are presented in Figure C.8, and

the validation plots for wave 2 GP emulators is given in Figure C.8.

Fig. C.8 Wave 2 Leave-one-out cross-validation plots for the emulators for the
coefficients on the first five basis vectors.

C.3 Chapter 5 numerical example 2 235

Fig. C.9 The 60 ensemble members for wave 2.

236 Addition remarks for examples

C.4 Chapter 5: loading vector plots

We illustrate KHM to Chapter 5 numerical studies. In the first example, our

optimization algorithm suggests that the optimal situation, P (K𝑝𝑎𝑟) = 1, can be

achieved when 𝑇∗∗(K𝑝𝑎𝑟) = min(I (x)𝑈), 𝛿1 = 𝛿2 = 1 and 𝜔 = 1 (since the weight of

the Gaussian kernel is zero, the choice of Gaussian kernel parameters is irrelevant).

The optimal kernel function for the toy example is

𝑘 (𝑓 (x), 𝑓 (x′)) = 𝑓 (x)𝑇 (Σ𝑒 +Σ𝜂)−1 𝑓 (x′).

KHM with the above kernel represents standard PCA-based history matching (

Salter et al. (2019)). It is usual when doing PCA to plot the loading vectors. We

plot the loading vectors for the first example with the selected kernel in Figure

C.11. To make a comparison between kernel PCA and standard PCA, we also

plot PCA loading vectors using the same data in Figure C.11. The structure of

these two plots are the same, but the directions are different due to the different

transfer of the data. In these plots, the black dots are unacceptable runs, and the

green points are acceptable runs. Given the same components, standard history

matching and KHM would give the same results.

To show the kernel PCA components with mixture kernel, we also plot the

kernel PCA loading plots for numerical study 2. The wave 1 kernel PCA loading

plot is shown in Figure C.12, and the wave 2 kernel PCA loading plot is shown in

Figure C.12. With the difference ensemble, these two waves give different plots.

However, we could see that the components of the acceptable runs are pretty

similar in these two plots, except three outliers in wave 2.

C.4 Chapter 5: loading vector plots 237

Fig. C.10 Plot of the first three kernel principal component (PC) loading vectors.

Fig. C.11 Plot of the first three principal component (PC) loading vectors.

238 Addition remarks for examples

Fig. C.12 Plot of the first 5 principal component (PC) loading vectors in wave 1.

Fig. C.13 Plot of the first 5 principal component (PC) loading vectors in wave 2.

C.5 Boundary-layer cloud Model 239

C.5 Boundary-layer cloud Model

C.5.1 Wave 1

We perform KHM for the climate model with a different set for Σ𝜂. The mixture

kernel used here is same as Chapter 6

𝑘 (𝑓 (x), 𝑓 (x′)) =𝜔 𝑓 (x)𝑇Υ−1 𝑓 (x′)+ (1−𝜔)𝑔 exp(−(𝑓 (x)− 𝑓 (x′))𝑇Υ−1(𝑓 (x)− 𝑓 (x′)))/𝜎),

(C.1)

where 𝜔 is a weight parameter, 𝜔 ∈ [0,1], 𝜎 is a Gaussian kernel parameter, 𝑔 is

scale parameter, and Υ is a 𝑙 × 𝑙 positive definite weight matrix defined as the sum

of the observation error (LES reference error) variance ,Σ𝑒, and another variance

term, Σ𝜂, Υ = Σ𝑒 +Σ𝜂, where 𝑒 ∼ 𝑁 (0,Σ𝑒) and Σ𝑒 is given in Chapter 6. We set

Σ𝜂 as the Gaussian covariance function, with two unknown correction length

parameters. We follow the same performance evaluation function in Section 6.4.1,

the arbitrary influence factor is set as 𝛼 = 0.8. The optimization algorithm finds that

𝜔 = 0.08011 is the best choice for the weight parameter, 𝜎 = 0.4898 for Gaussian

kernel parameter, 𝑔 = 428.6988, the two correction length parameters in Σ𝜂 are

suggested as 0.3943 and 0.2550. Given the same training data and same expert

judgement, our algorithm suggest two different kernels because of the different

initial setting of the kernel structure. This interesting results show that there

is plenty of scope for potential kernel structure, more complex mixture kernel

function can be developed in the future.

Given this kernel function, we calculate the ensemble projections by applying

the kernel PCA algorithm. Given the ensemble of the 5-dimensional input parame-

ter space, and the coefficient projection for each x for each output in feature space,

C𝑖 (x), we build five univariate Gaussian process emulators for the first five basis

vectors. Leave-one-out cross-validation plots are shown in Figure C.15. We use

KHM with I𝐹1(x) to rule out of regions of parameter space. The wave 1 NROY

density plots and the minimum implausibility plots for each pair of parameters

is shown in Figure C.16. We achieve an NROY space X 1 of size 56.78% of X .

240 Addition remarks for examples

Fig. C.14 Wave 1 Ensemble runs from SCM simulators: the ensemble outputs are
plotted ordinarily from the 1st run to the 90th. For each plot, it shows the hourly
averages of the cloud fraction profiles during 72 hours of SCM simulation.

C.5 Boundary-layer cloud Model 241

Fig. C.15 Leave-one-out cross-validation plots: wave 1 Gaussian process emulators
for C(X).

Fig. C.16 Upper triangle: wave 1 NROY density plots for each pair of parameters.
Lower triangle: minimum implausibility plots for each pair of parameters.

242 Addition remarks for examples

Fig. C.17 The acceptable runs by expert’s selection for wave 3.

By comparing X 1 with the NROY space shown in Figure 6.6, we can observe a

similar structure of NROY density plot, which indicates that KHM would produce

a similar NROY space (near true NROY) once the selected kernel returns a high

score of the performance evaluation function.

C.5.2 Refocusing: wave 2 & wave 3

In wave 2 and wave 3 we have selected new runs for KHM. The new ensemble

design, X2 and X3 are presented in Figure C.18 and C.19, wave 3 experts selection

is presented in Figure ??, and the Gaussian process validation plots for wave 2

and wave 3 GP emulators are given in FigureC.20 and C.21.

C.5 Boundary-layer cloud Model 243

Fig. C.18 Wave 1 Ensemble runs from SCM simulators: the ensemble outputs are
plotted ordinarily from the 1st run to the 90th. For each plot, it shows the hourly
averages of the cloud fraction profiles during 72 hours of SCM simulation.

244 Addition remarks for examples

Fig. C.19 Wave 2 Ensemble runs from SCM simulators.

C.5 Boundary-layer cloud Model 245

Fig. C.20 Wave 2 Leave-one-out cross-validation plots for the emulators for the
coefficients on the first five basis vectors.

Fig. C.21 Wave 3 Leave-one-out cross-validation plots for the emulators for the
coefficients on the first five basis vectors.

	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Thesis Outline

	2 Background
	2.1 Computer experiments and simulators
	2.2 Uncertainty Quantification
	2.3 Emulation
	2.3.1 Gaussian process emulation
	2.3.2 Covariance function (Kernel)
	2.3.3 The nugget parameter
	2.3.4 Fitting a Gaussian process Emulator
	2.3.5 Multivariate emulation
	2.3.6 Diagnostics for Gaussian process emulators

	2.4 Calibration
	2.4.1 Discrepancy

	2.5 History matching
	2.5.1 Refocusing
	2.5.2 Implausibility in Many Dimensions
	2.5.3 Multivariate history matching using basis projection methods

	3 Local Voronoi tessellations for robust multi-wave calibration of computer models
	3.1 Introduction
	3.2 Detection
	3.3 Finding XD
	3.3.1 Failed classification methods
	3.3.2 Local Voronoi Tessellation
	3.3.3 Local augmentation

	3.4 Robust history matching
	3.5 Numerical examples
	3.5.1 The 1-dimensional function
	3.5.2 A 5-dimensional function

	3.6 Application: process-based tuning of climate models
	3.7 Discussion

	4 Kernel-based history matching for high-dimensional computer model output
	4.1 Introduction
	4.2 Kernel methods
	4.2.1 Kernels
	4.2.2 Kernel principal component analysis for emulation
	4.2.3 Gaussian process emulators: Basis method with kernel PCA
	4.2.4 Observation in feature space
	4.2.5 Kernel PCA and reconstruction
	4.2.6 Distance constraints

	4.3 History matching in feature space
	4.3.1 Implausibility in feature space

	4.4 History matching with projected uncertainties
	4.4.1 Projecting uncertainties into feature space
	4.4.2 Coefficient implausibility
	4.4.3 Threshold T
	4.4.4 Limitations

	4.5 History matching in feature space with distance constraints
	4.5.1 Implausibility in feature space
	4.5.2 Threshold function T(x)
	4.5.3 Accounting for uncertainties using distance constraints
	4.5.4 Emulator uncertainty

	4.6 Kernel-based history matching
	4.6.1 Capturing uncertainty through the kernel functions
	4.6.2 Implausibility for kernel-based history matching
	4.6.3 Implausibility IF1(x): variable cut-off thresholds
	4.6.4 Implausibility IF2(x)

	4.7 Refocusing
	4.8 Numerical study
	4.8.1 True NROY space
	4.8.2 The limitation of standard history matching
	4.8.3 History matching in feature space

	4.9 Discussion

	5 Optimal kernel selection in kernel-based history matching
	5.1 Introduction
	5.2 A mixture kernel for kernel PCA
	5.2.1 Kernel properties
	5.2.2 The structure of the mixture kernel
	5.2.3 Achieving standard history matching with KHM

	5.3 Fitting the kernel parameters
	5.3.1 Evaluation of history matching performance
	5.3.2 Cutoff threshold: T
	5.3.3 Kernel selection procedure

	5.4 Numerical study 1
	5.4.1 Kernel selection for the toy function
	5.4.2 KHM for the toy example

	5.5 Numerical study 2
	5.5.1 Wave 1
	5.5.2 Refocusing: wave 2

	5.6 Discussion

	6 Kernel-based history matching for climate models
	6.1 Introduction
	6.2 Tuning the boundary layer clouds
	6.2.1 Simulation outputs

	6.3 Expert judgement
	6.3.1 The Shiny app
	6.3.2 The expert's selection for wave 1

	6.4 Kernel-based history matching
	6.4.1 Kernel selection
	6.4.2 NROY space

	6.5 Refocusing
	6.5.1 Wave 2 ensemble
	6.5.2 Wave 2 NROY space
	6.5.3 Wave 3 NROY space

	6.6 Discussion
	6.7 Conclusion

	7 Conclusion
	References
	Appendix A Mathematical proofs for Chapter 4
	A.1 Proof of Equation (4.15)
	A.2 Proof of Equation (4.64)
	A.3 The expectation and variance of d(z),(f(x*))2
	A.4 Proof of Equation (4.84)
	A.5 Proof of Equation (5.11)

	Appendix B R Shiny
	Appendix C Addition remarks for examples
	C.1 Chapter 4 toy model
	C.1.1 Emulator diagnostic

	C.2 Refocusing of Chapter 5 numerical example 1
	C.3 Chapter 5 numerical example 2
	C.4 Chapter 5: loading vector plots
	C.5 Boundary-layer cloud Model
	C.5.1 Wave 1
	C.5.2 Refocusing: wave 2 & wave 3

