169 research outputs found

    Bi-Objective Nonnegative Matrix Factorization: Linear Versus Kernel-Based Models

    Full text link
    Nonnegative matrix factorization (NMF) is a powerful class of feature extraction techniques that has been successfully applied in many fields, namely in signal and image processing. Current NMF techniques have been limited to a single-objective problem in either its linear or nonlinear kernel-based formulation. In this paper, we propose to revisit the NMF as a multi-objective problem, in particular a bi-objective one, where the objective functions defined in both input and feature spaces are taken into account. By taking the advantage of the sum-weighted method from the literature of multi-objective optimization, the proposed bi-objective NMF determines a set of nondominated, Pareto optimal, solutions instead of a single optimal decomposition. Moreover, the corresponding Pareto front is studied and approximated. Experimental results on unmixing real hyperspectral images confirm the efficiency of the proposed bi-objective NMF compared with the state-of-the-art methods

    Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches

    Get PDF
    Imaging spectrometers measure electromagnetic energy scattered in their instantaneous field view in hundreds or thousands of spectral channels with higher spectral resolution than multispectral cameras. Imaging spectrometers are therefore often referred to as hyperspectral cameras (HSCs). Higher spectral resolution enables material identification via spectroscopic analysis, which facilitates countless applications that require identifying materials in scenarios unsuitable for classical spectroscopic analysis. Due to low spatial resolution of HSCs, microscopic material mixing, and multiple scattering, spectra measured by HSCs are mixtures of spectra of materials in a scene. Thus, accurate estimation requires unmixing. Pixels are assumed to be mixtures of a few materials, called endmembers. Unmixing involves estimating all or some of: the number of endmembers, their spectral signatures, and their abundances at each pixel. Unmixing is a challenging, ill-posed inverse problem because of model inaccuracies, observation noise, environmental conditions, endmember variability, and data set size. Researchers have devised and investigated many models searching for robust, stable, tractable, and accurate unmixing algorithms. This paper presents an overview of unmixing methods from the time of Keshava and Mustard's unmixing tutorial [1] to the present. Mixing models are first discussed. Signal-subspace, geometrical, statistical, sparsity-based, and spatial-contextual unmixing algorithms are described. Mathematical problems and potential solutions are described. Algorithm characteristics are illustrated experimentally.Comment: This work has been accepted for publication in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensin

    Correntropy Maximization via ADMM - Application to Robust Hyperspectral Unmixing

    Full text link
    In hyperspectral images, some spectral bands suffer from low signal-to-noise ratio due to noisy acquisition and atmospheric effects, thus requiring robust techniques for the unmixing problem. This paper presents a robust supervised spectral unmixing approach for hyperspectral images. The robustness is achieved by writing the unmixing problem as the maximization of the correntropy criterion subject to the most commonly used constraints. Two unmixing problems are derived: the first problem considers the fully-constrained unmixing, with both the non-negativity and sum-to-one constraints, while the second one deals with the non-negativity and the sparsity-promoting of the abundances. The corresponding optimization problems are solved efficiently using an alternating direction method of multipliers (ADMM) approach. Experiments on synthetic and real hyperspectral images validate the performance of the proposed algorithms for different scenarios, demonstrating that the correntropy-based unmixing is robust to outlier bands.Comment: 23 page

    Bayesian Nonnegative Matrix Factorization with Volume Prior for Unmixing of Hyperspectral Images

    Get PDF
    In hyperspectral image analysis the objective is to unmix a set of acquired pixels into pure spectral signatures (endmembers) and corresponding fractional abundances. The Non-negative Matrix Factorization (NMF) methods have received a lot of attention for this unmixing process. Many of these NMF based unmixing algorithms are based on sparsity regularization encouraging pure spectral endmembers, but this is not optimal for certain applications, such as foods, where abundances are not sparse. The pixels will theoretically lie on a simplex and hence the endmembers can be estimated as the vertices of the smallest enclosing simplex. In this context we present a Bayesian framework employing a volume constraint for the NMF algorithm, where the posterior distribution is numerically sampled from using a Gibbs sampling procedure. We evaluate the method on synthetical and real hyperspectral data of wheat kernels. 1

    EndNet: Sparse AutoEncoder Network for Endmember Extraction and Hyperspectral Unmixing

    Get PDF
    Data acquired from multichannel sensors are a highly valuable asset to interpret the environment for a variety of remote sensing applications. However, low spatial resolution is a critical limitation for previous sensors, and the constituent materials of a scene can be mixed in different fractions due to their spatial interactions. Spectral unmixing is a technique that allows us to obtain the material spectral signatures and their fractions from hyperspectral data. In this paper, we propose a novel endmember extraction and hyperspectral unmixing scheme, so-called EndNet, that is based on a two-staged autoencoder network. This well-known structure is completely enhanced and restructured by introducing additional layers and a projection metric [i.e., spectral angle distance (SAD) instead of inner product] to achieve an optimum solution. Moreover, we present a novel loss function that is composed of a Kullback-Leibler divergence term with SAD similarity and additional penalty terms to improve the sparsity of the estimates. These modifications enable us to set the common properties of endmembers, such as nonlinearity and sparsity for autoencoder networks. Finally, due to the stochastic-gradient-based approach, the method is scalable for large-scale data and it can be accelerated on graphical processing units. To demonstrate the superiority of our proposed method, we conduct extensive experiments on several well-known data sets. The results confirm that the proposed method considerably improves the performance compared to the state-of-the-art techniques in the literature
    corecore