1,426 research outputs found

    BINet: Multi-perspective Business Process Anomaly Classification

    Full text link
    In this paper, we introduce BINet, a neural network architecture for real-time multi-perspective anomaly detection in business process event logs. BINet is designed to handle both the control flow and the data perspective of a business process. Additionally, we propose a set of heuristics for setting the threshold of an anomaly detection algorithm automatically. We demonstrate that BINet can be used to detect anomalies in event logs not only on a case level but also on event attribute level. Finally, we demonstrate that a simple set of rules can be used to utilize the output of BINet for anomaly classification. We compare BINet to eight other state-of-the-art anomaly detection algorithms and evaluate their performance on an elaborate data corpus of 29 synthetic and 15 real-life event logs. BINet outperforms all other methods both on the synthetic as well as on the real-life datasets

    Data mining based cyber-attack detection

    Get PDF

    LogBERT: Log Anomaly Detection via BERT

    Get PDF
    When systems break down, administrators usually check the produced logs to diagnose the failures. Nowadays, systems grow larger and more complicated. It is labor-intensive to manually detect abnormal behaviors in logs. Therefore, it is necessary to develop an automated anomaly detection on system logs. Automated anomaly detection not only identifies malicious patterns promptly but also requires no prior domain knowledge. Many existing log anomaly detection approaches apply natural language models such as Recurrent Neural Network (RNN) to log analysis since both are based on sequential data. The proposed model, LogBERT, a BERT-based neural network, can capture the contextual information in log sequences. LogBERT is trained on normal log data considering the scarcity of labeled abnormal data in reality. Intuitively, LogBERT learns normal patterns in training data and flags test data that are deviated from prediction as anomalies. We compare LogBERT with four traditional machine learning models and two deep learning models in terms of precision, recall, and F1 score on three public datasets, HDFS, BGL, and Thunderbird. Overall, LogBERT outperforms the state-of-art models for log anomaly detection

    Analyzing Business Process Anomalies Using Autoencoders

    Full text link
    Businesses are naturally interested in detecting anomalies in their internal processes, because these can be indicators for fraud and inefficiencies. Within the domain of business intelligence, classic anomaly detection is not very frequently researched. In this paper, we propose a method, using autoencoders, for detecting and analyzing anomalies occurring in the execution of a business process. Our method does not rely on any prior knowledge about the process and can be trained on a noisy dataset already containing the anomalies. We demonstrate its effectiveness by evaluating it on 700 different datasets and testing its performance against three state-of-the-art anomaly detection methods. This paper is an extension of our previous work from 2016 [30]. Compared to the original publication we have further refined the approach in terms of performance and conducted an elaborate evaluation on more sophisticated datasets including real-life event logs from the Business Process Intelligence Challenges of 2012 and 2017. In our experiments our approach reached an F1 score of 0.87, whereas the best unaltered state-of-the-art approach reached an F1 score of 0.72. Furthermore, our approach can be used to analyze the detected anomalies in terms of which event within one execution of the process causes the anomaly.Comment: 20 pages, 5 figure

    Analyzing Business Process Anomalies Using Autoencoders

    Full text link
    Businesses are naturally interested in detecting anomalies in their internal processes, because these can be indicators for fraud and inefficiencies. Within the domain of business intelligence, classic anomaly detection is not very frequently researched. In this paper, we propose a method, using autoencoders, for detecting and analyzing anomalies occurring in the execution of a business process. Our method does not rely on any prior knowledge about the process and can be trained on a noisy dataset already containing the anomalies. We demonstrate its effectiveness by evaluating it on 700 different datasets and testing its performance against three state-of-the-art anomaly detection methods. This paper is an extension of our previous work from 2016 [30]. Compared to the original publication we have further refined the approach in terms of performance and conducted an elaborate evaluation on more sophisticated datasets including real-life event logs from the Business Process Intelligence Challenges of 2012 and 2017. In our experiments our approach reached an F1 score of 0.87, whereas the best unaltered state-of-the-art approach reached an F1 score of 0.72. Furthermore, our approach can be used to analyze the detected anomalies in terms of which event within one execution of the process causes the anomaly.Comment: 20 pages, 5 figure

    A Machine Learning Enhanced Scheme for Intelligent Network Management

    Get PDF
    The versatile networking services bring about huge influence on daily living styles while the amount and diversity of services cause high complexity of network systems. The network scale and complexity grow with the increasing infrastructure apparatuses, networking function, networking slices, and underlying architecture evolution. The conventional way is manual administration to maintain the large and complex platform, which makes effective and insightful management troublesome. A feasible and promising scheme is to extract insightful information from largely produced network data. The goal of this thesis is to use learning-based algorithms inspired by machine learning communities to discover valuable knowledge from substantial network data, which directly promotes intelligent management and maintenance. In the thesis, the management and maintenance focus on two schemes: network anomalies detection and root causes localization; critical traffic resource control and optimization. Firstly, the abundant network data wrap up informative messages but its heterogeneity and perplexity make diagnosis challenging. For unstructured logs, abstract and formatted log templates are extracted to regulate log records. An in-depth analysis framework based on heterogeneous data is proposed in order to detect the occurrence of faults and anomalies. It employs representation learning methods to map unstructured data into numerical features, and fuses the extracted feature for network anomaly and fault detection. The representation learning makes use of word2vec-based embedding technologies for semantic expression. Next, the fault and anomaly detection solely unveils the occurrence of events while failing to figure out the root causes for useful administration so that the fault localization opens a gate to narrow down the source of systematic anomalies. The extracted features are formed as the anomaly degree coupled with an importance ranking method to highlight the locations of anomalies in network systems. Two types of ranking modes are instantiated by PageRank and operation errors for jointly highlighting latent issue of locations. Besides the fault and anomaly detection, network traffic engineering deals with network communication and computation resource to optimize data traffic transferring efficiency. Especially when network traffic are constrained with communication conditions, a pro-active path planning scheme is helpful for efficient traffic controlling actions. Then a learning-based traffic planning algorithm is proposed based on sequence-to-sequence model to discover hidden reasonable paths from abundant traffic history data over the Software Defined Network architecture. Finally, traffic engineering merely based on empirical data is likely to result in stale and sub-optimal solutions, even ending up with worse situations. A resilient mechanism is required to adapt network flows based on context into a dynamic environment. Thus, a reinforcement learning-based scheme is put forward for dynamic data forwarding considering network resource status, which explicitly presents a promising performance improvement. In the end, the proposed anomaly processing framework strengthens the analysis and diagnosis for network system administrators through synthesized fault detection and root cause localization. The learning-based traffic engineering stimulates networking flow management via experienced data and further shows a promising direction of flexible traffic adjustment for ever-changing environments

    Exploring anomalies in time

    Get PDF
    • …
    corecore