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ABSTRACT

LogBERT: Log Anomaly Detection via BERT

by

Haixuan Guo, Master of Science

Utah State University, 2021

Major Professor: Shuhan Yuan, Ph.D.
Department: Computer Science

System logs, which are usually produced by logging statements in source codes, play

an important role to diagnose anomalous behaviors caused by system blackouts, malicious

attacks, or performance degradation. Recently, due to the promising performance on com-

puter vision and natural language processing, deep learning models are widely used for

log anomaly detection. Most existing deep learning approaches adopt the recurrent neural

network (RNN) and its variants to capture the sequential pattern of log data. Owning

to the effectiveness of Bidirectional Encoder Representations from Transformers (BERT)

in modeling sequential data, we propose LogBERT, a BERT-based neural network for log

anomaly detection.

Specifically, LogBERT incorporates two self-supervised training tasks, Masked Log

Key Prediction (MLKP) and Volume of Hypersphere Minimization (VHM). The goal of

the MLKP task is to learn the contextual information in log sequences by predicting the

randomly masked log keys. The VHM task maps the representation of normal log sequences

in a hypersphere in which normal log sequences are concentrated around the center of the

hypersphere while abnormal log sequences are far away from the center. After training

on normal log sequences, LogBERT can detect abnormal log sequences that deviate from

normal patterns. Our experiments on HDFS, BGL, and Thunderbird datasets show that
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LogBERT can achieve better performance than the existing traditional machine learning

and deep learning approaches. An ablation study shows that using two self-supervised

training tasks in LogBERT is better than using solely one task.

(58 pages)
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PUBLIC ABSTRACT

LogBERT: Log Anomaly Detection via BERT

Haixuan Guo

When systems break down, administrators usually check the produced logs to diagnose

the failures. Nowadays, systems grow larger and more complicated. It is labor-intensive to

manually detect abnormal behaviors in logs. Therefore, it is necessary to develop an auto-

mated anomaly detection on system logs. Automated anomaly detection not only identifies

malicious patterns promptly but also requires no prior domain knowledge. Many existing

log anomaly detection approaches apply natural language models such as Recurrent Neural

Network (RNN) to log analysis since both are based on sequential data. The proposed

model, LogBERT, a BERT-based neural network, can capture the contextual information

in log sequences.

LogBERT is trained on normal log data considering the scarcity of labeled abnormal

data in reality. Intuitively, LogBERT learns normal patterns in training data and flags

test data that are deviated from prediction as anomalies. We compare LogBERT with four

traditional machine learning models and two deep learning models in terms of precision,

recall, and F1 score on three public datasets, HDFS, BGL, and Thunderbird. Overall,

LogBERT outperforms the state-of-art models for log anomaly detection.
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CHAPTER 1

Introduction

1.1 Overview and Motivation

1.1.1 Background

Anomaly detection is an important topic discussed across various research areas and

application domains. Anomalies are defined as data instances that stand out as being

dissimilar to all others [7]. Anomaly detection indicates the problem of discovering patterns

that do not comply to expected behaviors [1]. In literature, anomaly detection can also

be described as outlier detection, novelty detection, noise detection, deviation detection, or

exception mining [8].

Detecting anomalies is an imperative task for many security-critical environments. For

example, in a computer system, anomaly detection monitors system calls, event occurrence,

and network traffic to identify malicious activities or intrusions [9]. The key challenges in

intrusion detection are the huge volume of data and data arriving in a streaming fashion.

Another common anomaly in industries is fraud [10]. Fraud is considered a criminal act

in commercial organizations. The typical method for fraud detection is to maintain a pro-

file for each customer and monitor the profiles to detect any deviations. Fraud detection

requires intermediate intervene to prevent profit loss. The anomaly in medical and public

health domain is disease outbreak [11]. The detection techniques in this area aim to find

rare events in patients’ records such as medical images, which can provide early diagnoses

and treatments to prevent disease progression. In a social network, an anomaly refers to be-

havior patterns of users that differ from normal patterns. Abnormal users are recognized as

spammers, sexual predators, online fraudsters, fake users, or rumor-mongers [1]. Internet of

Things (IoT) is a network of devices that connects software, servers, and sensors. Anomaly
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detection in the IoT network detects faulty behaviors in those large-scale interconnected

devices. A major challenge in this domain is that heterogeneous devices are connected

mutually, which renders the system more complicated [12].

Human-based anomaly detection requires domain knowledge and is labor-intensive,

which is impractical nowadays as a large volume of data is continually produced. There-

fore, data-driven approaches are developed to automatically identify anomalies. Statistical

knowledge and information theory are first applied to design anomaly detection models. Ma-

chine learning algorithms including K Nearest Neighbor (KNN), decision tree, and Support

Vector Machine (SVM) provides an interpretable solution for anomaly detection problems.

The procedure for log anomaly detection using machine learning techniques often involves

log parsing, windowing, feature extraction, and detection modeling [3]. With the extensive

usage of deep learning techniques for real-world problems, deep neural networks such as

Long short-term memory (LSTM), Autoencoder, Convolutional Neural Network (CNN) are

employed to detect anomalies in specific domains.

The anomaly detection techniques depend on various factors, such as the nature of

input data, availability of labeled data, and the output of the anomaly detection model.

The nature of input data is the characteristic of data such as continuous and cate-

gorical. Considering the number of features, input data can be also classified as low or

high-dimensional data. The nature of input data primarily determines the application of

anomaly detection approaches. For example, in deep learning techniques, input data can

be extensively classified into sequential data involving voice, text, music, and time series,

or non-sequential data such as image [7]. The corresponding techniques for sequential data

are CNN and Recurrent Neural Network (RNN), and the applicable techniques for non-

sequential data are CNN and Autoencoder.

A label denotes whether a data instance is normal or abnormal. It is hard to obtain

anomalous labels since there are few abnormal events occurring in a real-life situation. Addi-

tionally, the nature of anomalies is dynamically evolving. Based on the extent of availability

of labels, anomaly detection techniques are classified into three modes: supervised anomaly
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detection, semi-supervised anomaly detection, and unsupervised anomaly detection.

Currently, there are two forms of output to report anomalies, namely anomaly scores

and binary labels. An anomaly score describes the degree to which an instance is considered

an anomaly. To identify anomalies, all data are ranked in descending order with respect to

anomaly scores, then a domain-specific threshold is defined by analysts. In some techniques,

a binary categorical label is assigned as normal or anomalous to each data instance.

Log anomaly detection is a crucial application for anomaly detection. System logs,

which record detailed run-time states and events during system execution, provide valu-

able sources for system anomaly detection. Logs consist of log messages (also commonly

called log entries) generated by logging statements (print, logging.info) in source code. Log

anomaly detection exploits log messages to detect anomalous behaviors in systems caused

by hardware failure, energy consumption, or the environment [13].

The commercial application of anomaly detection is booming over the years. According

to the Global Anomaly Detection Industry report, the global market of anomaly detection

in 2020 was estimated at 2.8 billion dollars and is projected to escalate to 7.8 billion by

2027 [14]. Various large-scale online services bring convenient life to millions or even billions

of users globally. Every second, user across the world rely on online systems for work, school,

and entertainment. It is essential for enterprises to provide reliable and secure systems for

users. Any incident that occurs in these systems will lead to unpredictable profit loss. To

prevent potential risks happened in systems, it is important to reveal abnormal behaviors

of systems timely. Timely anomaly detection helps system operators to pinpoint incidents

and revolve them promptly.

1.1.2 Types of Anomaly

Anomalies are also referred to as abnormalities, deviants, or outliers in the data mining

and statistical analysis [7]. Anomalies of logs exist not only in individual log entries but

also in log sequences encompassing a series of log entries. According to anomaly detection

reviews [1, 7], we define three types of anomalies: point anomalies, contextual anomalies,

and group anomalies.
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Fig. 1.1: Contextual anomaly in a temperature time series [1]

Fig. 1.2: Contextual anomaly in BGL log data

Point Anomalies

An instance is termed a point anomaly if the instance significantly deviates from the

distribution of the rest of data. In log anomaly detection, point anomalies are outliers of

parameters in log entries. For example, an anomalous log entry is “Created block blk -

8192956077351896648 of size 335544320 from /10.251.110.196”. The block size 335544320

exceeds a reasonable range for block size. This type of anomaly is easy to detect as it often

triggers programs to throw exceptions that can be discovered intermediately.

Contextual Anomalies

An instance is termed a contextual anomaly when its behavior is considered anomalous

in a specific context and normal in other contexts [15]. This type of anomaly is also known

as conditional anomalies. A data instance is defined as a contextual anomaly by considering

both contextual and behavioral attributes. Contextual attributes are normally spatial or

temporal features used to determine the context (neighborhood) of a data instance [15].

Behavior attributes, on the other hand, are non-contextual characteristics of data instances.
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Fig. 1.3: Group anomalies in BGL log data

Figure 1.1 shows an example of a contextual anomaly in a temperature time series. Note

that the temperature at time t2 is an anomaly, but the same temperature at time t1 is

normal. This is because a low temperature is normal during the winter, but unusual during

the summer. An example of contextual anomalies in BGL log data is illustrated in Figure

1.2. Note that “data storage interrupt” is treated as an anomaly in the middle of normal

operations such as “instruction address”.

Group Anomalies

Group anomalies also referred to as collective anomalies, appear as an anomalous group

regarding the entire data set. Data instances may not appear as abnormal individually, but

their presence together in a group is abnormal. Group anomalies in log data are log entries

in a sequence exhibiting unusual characteristics. Figure 1.3 shows an example of group

anomalies in BGL log data. Note that “data TLB error interrupt” is normal on its own,

but a collection of “data TLB error interrupt” logs consistently produced seem to be a

group anomaly.

1.1.3 Challenges

• Logs are mainly unstructured or semi-structured text data [16] that are hard for

machines to interpret. The format and syntax of log messages vary across different

software systems, making it challenging to adopt one universal technique to parse logs

into structured data.



6

• It is difficult to define a precise boundary to separate normal logs from anomalous logs.

The intrinsic characteristics of the boundary are dynamically evolving, which poses

challenges for both machine learning-based and deep learning-based algorithms [17].

• Log data are imbalanced, as the majority of log instances are normal. Therefore, it is

suboptimal to train a binary classifier for log anomaly detection [7].

• Log anomaly detection approaches should be conducted timely so that system opera-

tors or developers can intervene in ongoing attacks or system performance issues [18].

Applicable approaches for log anomaly detection are required to make decisions after

training on a small number of logs.

1.1.4 Motivation

The existing log anomaly detection approaches can resolve one or more challenges

mentioned above.

Currently, many traditional machine learning models are proposed for identifying anoma-

lous events from log messages. These approaches extract useful features from log messages

and adopt machine learning algorithms to analyze the log data. Due to the data imbal-

ance issue, it is infeasible to train a binary classifier to detect anomalous log sequences.

As a result, many unsupervised learning models, such as Principal Component Analysis

(PCA) [19], or one class classification models, such as one-class SVM [20, 21], are widely-

used to detect anomalies. However, traditional machine learning models, such as one-class

SVM, are hard to capture the temporal information of discrete log messages.

Recently, deep learning models, especially RNNs, are widely used for log anomaly

detection since they can model the sequential data [18, 22, 23]. However, there are still

some limitations of using RNN for modeling log data. First, although RNN can capture

the sequential information by the recurrence formula, it cannot make each log in a sequence

encoding the context information from both the left and right context. However, it is

crucial to observe the complete context information instead of only the information from

previous steps when detecting malicious attacks based on log messages. Second, RNN is
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trained by feeding log sequences one by one and cannot explicitly leverage the information

from other normal log sequences during training. Since normal log sequences usually share

similar patterns, if the model can observe all the information regarding normal sequences,

we expect the model can achieve better performance for log anomaly detection.

To tackle the existing limitations of RNN-based models, in this work, we propose

LogBERT, a self-supervised framework for log anomaly detection based on Bidirectional

Encoder Representations from Transformers (BERT). Inspired by the great success of BERT

in modeling sequential text data [6], we leverage BERT to capture patterns of normal

log sequences. By using the structure of BERT, we expect the contextual embedding of

each log entry can capture the information of whole log sequences. To achieve that, we

propose two self-supervised training tasks: 1) masked log key prediction, which aims to

correctly predict log keys in normal log sequences that are randomly masked; 2) volume of

hypersphere minimization, which aims to make the normal log sequences close to each other

in the embedding space. After training, we expect LogBERT encodes the information about

normal log sequences. We then derive a criterion to detect anomalous log sequences based

on LogBERT. Experimental results on three log datasets show that LogBERT achieves

the best performance on log anomaly detection by comparing with various state-of-the-art

baselines.

1.2 Contributions

The novelty of our research involves an optimized objective function and a novel model

design for log anomaly detection. Specifically, our contributions are:

• We propose a BERT-based framework that takes log key embedding and position

embedding as input and adopts a Transformer encoder to learn the contextual relations

in log sequences.

• We propose two self-supervised training tasks to capture patterns of normal log se-

quences, namely MLKP and VHM respectively. The MLKP task can accurately
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predict masked log keys in log sequences. The VHM task is used to minimize a

data-enclosing hypersphere.

• The proposed approach achieves the state-of-art performance on three log datasets in

contrast to baselines including several traditional machine learning models and two

state-of-the-art RNN-based models.

1.3 Thesis Organization

The thesis is organized as follows. In Chapter 2, we provide a comprehensive review

of prior work on log preprocessing and log anomaly detection models. Chapter 3 describes

preliminary concepts, including DeepLog, Transformer, and BERT. Chapter 4 demonstrates

the architecture of LogBERT as well as two training tasks. In Chapter 5, we present three

public log datasets applied in our experiments and demonstrate experiment results. In

Chapter 6, we summarize our findings and discuss future works.
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CHAPTER 2

Related Work

2.1 Log Preprocessing

Log preprocessing converts raw log entries into structured data such as vectors. This

process consists of log parsing and log sequence extraction.

Log Parsing

Log parsing is the first and crucial step to parse log messages into structured data for

the subsequent log analysis. Each raw log message can be divided into two parts: constant

and variable [24]. The constant part is a template with fixed texts that remain the same

in every log entry, while the variable part contains parameters that dynamically change in

every event occurrence. The constant part can be referred interchangeably as log key [18],

log template [22], or log event [25]. The objective of log parsing is to extract the constant

part and the variable part from log messages. As an example in Figure 2.1, log messages

are parsed into log keys, where the constant part remains unchanged and the variable part

is replaced with asterisks.

Fig. 2.1: Log messages in the BGL dataset and the corresponding log keys extracted by a
log parser. The message with red underscore indicates the detailed computational event.

The traditional way of log parsing is based on handcrafted regular expressions [26] to

match log keys and parameters in log messages. However, due to the massive amount of logs

and frequent evolution in log statements, it is time-consuming to parse logs with manual

rules. Since logs are generated from print statements in source code, some studies [27, 28]
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Fig. 2.2: Categories of log parsers [2]

have explored static methods to extract log keys from source code directly. The static

methods are invalid if the source code can not be accessed, especially when importing

third-party libraries.

In contrast to extensive manual efforts from rule-based and source code-based parsing,

data-driven approaches can automatically extract log keys by learning patterns from log

data. S. Nedelkoski et al. [2] summarize the characteristic of thirteen existing automated

log parsers and categorized those parsers into six categories based on the parsing strategies,

which are clustering, frequent pattern mining, evolutionary, log-structure heuristics, longest-

common sub-sequence, and neural. Clustering methods assume that log messages with close

string matching distances are in the same group. The clustering distance can be defined as

edit distance, the word length in log messages, and so on. The representative log parsers in

this category are LKE, LogSig, SHISO, LenMa, and LogMine [29–33]. The main assumption

for the frequent pattern mining category is that a message can be represented by a set of

frequent tokens across logs. The typical parsers in this category are SLCT, LFA, and

LogCluster [27,34,35]. The only member in the evolutionary category is MoLFI [36] which

searches all solutions to find the Pareto optimal set of log messages as the log event. Another

category uses the longest common subsequence algorithm to dynamically extract log keys

and group log messages. Spell [37] is the most representative technique in this category. The

parsers in log-structure heuristics methods are Drain, IPLoM, and AEL [38–40]. Those log

parsers exploit the properties of log structures. For example, Drain assumes message length

and the preceding tokens in log messages are important properties to produce distinguishing

log keys. Neural log parsing is a novel idea that trains a neural network to generate log

keys [2]. Figure 2.2 demonstrates all six categories and the corresponding approaches.
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Both Spell and Drain are highly efficient when processing a large volume of log data.

They can be deployed online to parse logs one by one instead of processing all after collecting

the entire log data [34, 36, 39, 40]. Due to the practical application of Spell and Drain, we

specifically introduce these two log parsers.

Spell. Streaming structured Parser for Event Logs using LCS (Spell) computes the

longest common substring (LCS) of new log entries to the existing log key candidates. If

the maximum of LCS is greater than a threshold, new entries are parsed to the log key

candidate with the maximum LCS.

Drain. Drain is a state-of-the-art online log parsing method that builds a parse tree

with fixed depth. The assumption of Drain is that log messages yielding the same log

event have the same text length and constant proceeding tokens. Before parsing, regular

expression scripts are written to remove common variables such as IP address, file path.

A parse tree starts with nodes that use log message length as node value. Following the

first layer, the parse tree grows by taking a fixed number of preceding tokens in log keys

as nodes. A leaf node in the parse tree is a log group that includes a log event and a list

of log IDs. When a new log entry reaches a leaf node in the tree, it calculates similarity

scores between the new entry and a log event in the group. If similarity scores are beyond

a threshold, then it adds the new log entry to the log group. Otherwise, it creates a new

log group for the log entry.

After obtaining log events through parsing, there are different ways to transform log

events into embedding vectors. Research in [3, 19,37,41,42] use one-hot encoding to trans-

form log events into numerical values which are later mapped into embedding vectors.

Research in [22, 25] represent log events with semantic embedding vectors that extract se-

mantic information in log messages. Nagappan et al. [27] propose to vectorize log events

with a normalized IDF-based weight and a contrast-based weight.

Log Sequence Extraction

Logs are produced in an unbounded streaming fashion, whereas anomaly detection

models only receive bounded inputs. Therefore, we divided streaming logs into sequences
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by windowing. Research in [3, 22, 25, 37] extract log sequences by one of three windowing

techniques, fixed window, sliding window, and session window.

Fixed Window. A fixed window assigns log keys into a window based on the times-

tamp when log keys occur. Window size t is time span or time duration, such as five minutes

or one hour. A log sequence is constituted by log keys that appear in the same window.

Log keys in a fixed window are non-overlapping, which implies that a log key exists in only

one window. For example, if a fixed window with a size of five minutes is specified, a new

window will start every five minutes.

Sliding Window. In addition to window size, a sliding window is determined by step

size that is the sliding distance of a window. For instance, hourly window sliding every five

minutes [3]. Step size is usually smaller than the window size. Hence, sliding windows can

be overlapping which means a log key occurs in more than one window.

Session Window. Apart from timestamp-based windowing, session window groups

log keys into different log sequences (also called log sessions) by identifiers. Identifiers are

used to distinguish different execution paths in the same workflow. For instance, in HDFS

logs, log sessions are identified by block id. Each session records a life cycle of a block

including allocation, replication, and deletion [3].

2.2 Traditional Machine Learning-based Approaches

2.2.1 Supervised Machine Learning

Conventional supervised approaches for log anomaly detection are mainly SVM, KNN,

and Decision Tree. Those approaches take log key count vectors as input and binary labels

as classification results.

SVM. SVM algorithm maps data instances in high dimension and constructs optimal

hyperplanes to separate different classes. The optimal hyperplane has the maximum margin

from the nearest points (also called support vectors) in various classes. In order to find

optimal hyperplanes, kernel functions are employed such as linear kernel, polynomial kernel,

and radial basis function kernel.
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Fig. 2.3: An example of a decision tree for log anomaly detection [3]

KNN. KNN algorithm adopts the “majority voting” strategy. Given an unlabeled

point p, the KNN algorithm selects k training points nearest to p. p is designated to the

class that contains the majority of k training points. A common metric to calculate the

distance between points is Euclidean distance. A drawback of using KNN in classification

problems is that KNN is sensitive to skewed data. When applying KNN to log anomaly

detection, normal logs tend to dominate the prediction of new samples. It is necessary to

take measures such as sampling to balance data distribution. [41] trained an SVM classifier

and a KNN classifier to diagnose system failures. The evaluation result shows KNN has

better performance than SVM.

Decision Tree. Decision tree algorithm builds a top-down tree structure using training

data. Each node is split into two branches by selecting the current best features. The best

feature produces high information gain compared with other features. The division of nodes

terminates when the information gain is 1, which indicates all samples in a node belong to

the same class. For log analysis, log keys are features for each node. An example about

building a decision tree with log data is illustrated in Figure 2.3. Chen et al. [42] utilize

decision trees for failure diagnoses. They select features from log repositories that record

software information and network requests.
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2.2.2 Unsupervised Machine Learning

Unlike supervised learning, unsupervised learning doesn’t require labels during training.

Hence, it is applicable to use unsupervised approaches to resolve real-world issues. For log

anomaly detection, common unsupervised approaches are PCA, clustering-based methods,

and so on.

PCA. PCA is commonly used for dimension reduction. Xu et al. [19] first apply PCA

to log anomaly detection. PCA projects training data to generate a normal space Sn and an

abnormal space Sa. Sn is constructed by the first k principal components. Sa is constructed

by the remaining (n− k) components, where n is the original components. Given an event

count vector y from a new log entry, its projection to Sa is denoted by ya = (1 − PP T )y,

where P is the first k principal components. If the project ya is larger than a threshold, we

consider the log entry as an anomaly.

Isolation Forest. The basic idea of the Isolation Forest algorithm is that anomalous

data instances tend to isolate from the rest of the data, compared to normal instances.

In order to isolate a data instance, the algorithm recursively divides data by randomly

selecting a feature and a valid split value for the feature. This partitioning is similar to

tree generation, therefore it is called Isolation Tree. In an Isolation Tree, the path length

of a data instance is defined as the length from the root to a leaf node. A data instance

having a shorter average path length is regarded as an anomaly. Isolation Forest consists

of an ensemble of Isolation Trees.

Invariants Mining. Invariants [43] in logs refers to the execution flow among normal

log sequences. A invariant presents a linear relationship among different log messages (log

keys) in a log sequence. The invariant is denoted as vector θ. Invariant mining discovers

the invariants in log message groups which describes a program execution path related to

the program variable. Then a matrix X is obtained from count vectors of log messages

in the same program variable. The matrix is decomposed by singular value decomposition

(SVD) to generate invariant space. The invariant space is a span of validated right-singular

vectors. Intuitively, an anomaly manifests different execution flow from the normal ones,



15

which violates the invariants in system executions.

LogCluster. LogCluster [44] employs two training phrases, knowledge base initializa-

tion phrase and online learning phrase, to generate clusters. Training data is divided into

two portions for the two phrases. In knowledge base initialization phrase, an event count

matrix is first computed from training log sequences, then weighted by Inverse Documen-

tary Frequency (IDF). After log vectorization, agglomerative clustering is used to group

normal and abnormal clusters respectively as knowledge base. The centroid for each cluster

is defined as its representation vector. The objective of online learning phrase is to adjust

clusters obtained from the first phrase. Given an event count vector from the remaining

training data, we compute the distances between the vector and representation vectors of

existing clusters. If the minimum distance is greater than a threshold, a new cluster is

created for this event count vector. Otherwise, the event count vector is added to the near-

est cluster and the representation vector for the cluster is updated. The two phrases map

training data into normal clusters and abnormal clusters separately. In the testing stage, a

new log sequence is classified as normal/abnormal if its nearest cluster is normal/abnormal.

OCSVM. One-Class SVM (OCSVM) is an extension of SVM algorithm for novelty

detection [45]. The OCSVM algorithm leverages normal data for training and maps training

data into a high-dimensional feature space via kernels. The algorithm separates training

data from the origin with the maximum margin hyperplane. For a new point, if it falls on

the side of the hyperplane close to training data, it is labeled as normal. Otherwise, it is

abnormal. The OCSVM can be considered as a special two-class SVM where training data

lies in the first class, and the origin is the only member in the second class [46]. OCSVM is

widely used for log anomaly detection [20,21] by only observing normal data.

2.3 Deep Learning-based Approaches

2.3.1 RNN-based Approaches

Logs are produced by programs executing in a logic flow, which is similar to text

generation in natural language processing (NLP). Inspired by the remarkable success of
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NLP research using RNN-based approaches, many scholars applied RNN and its variants

such as LSTM and Gated Recurrent Units (GRU) to log anomaly detection. LSTM is

widely used in log anomaly detection as it can resolve the issue of gradient vanishing in

a recurrent structure and keep long-term information in sequence. LSTM employs a cell

state to “memorize” relevant information throughout the sequences. Additionally, forget

gate, input gate, and output gate are designed in a LSTM unit to determine the relevance of

historical information to current inputs. Forget gate decides the information to be discarded

from previous hidden state and current input data. Input gate allows what information

passes to the current cell state. Output gate, combined with the new cell state, generates

the current hidden state as output.

LogAnomaly. Instead of using one-hot encoding to represent log keys, Meng et al [22]

propose template2vec to convert log keys into template vectors. The template2vec uses a

distributional lexical-contrast embedding model called dLCE [47] to generate vectors to

represent words in log keys. The intuition of template2vec is that new templates are minor

variants of existing templates. By merging new templates into existing templates with sim-

ilar semantics information, template2vec automatically generates template vectors for new

log templates. The log sequences are extracted by a sliding window. The underlying pat-

terns of log sequences incorporate sequential patterns and quantitative patterns. Sequential

patterns indicate the order and concurrence among log templates, while quantitative pat-

terns are count vectors of unique log keys in log sequences. Both patterns can be captured

by LSTM structures that are designed for sequential data.

RobustLog. The existing approaches are not robust to the instability of log data

due to the evolution of log statements and processing noises. To address this issue, Xu

et al. [25] proposed a new deep learning approach called RobustLog, which mapping the

log events into semantic vectors by tokenization, word embedding, and TF-IDF. It then

trains an attention-based bidirectional LSTM model to detect anomalies in log sequences.

RobustLog can not only eliminate the instability of logs by extracting semantic information

from log events, but also capture bidirectional sequential information in log sequences.



17

Fig. 2.4: Illustration of autoencoder model architecture [4].

2.3.2 AE-based Approaches

An autoencoder (AE) is an unsupervised neural network that learns the compressed

representation of input data and reconstructs original data using the representation. Figure

2.4 demonstrates the architecture of an autoencoder. An autoencoder is used to reduce data

dimensions by training the network to ignore noises. A typical autoencoder consists of three

parts: an encoder to compress high-dimensional input data into a low-dimensional repre-

sentation, a bottleneck layer that contains the representation of input data, and a decoder

to reconstruct inputs from representations. The objective function for an autoencoder is

to minimize the reconstruction (residual) error between the inputs and the outputs, which

can be denoted by loss = ‖x − x̂‖2, where x is the input data and x̂ is the reconstructed

data. When applied to anomaly detection, an autoencoder is solely trained on normal data

instances, thus leading to a high residual error when reproducing abnormal data [7]. A data

instance that produces a large reconstruction error is regarded as an outlier.

DAE-DBC. Deep autoencoders with density-based clustering (DAE-DBC) [48] is pro-

posed to detect novelties in various domains such as intrusion detection, fraud detection,

unusual event detection, disease condition detection etc. The proposed approach is com-

prised of two stages: dimension reduction and identification of novelties. In the first stage,

two autoencoder models are adopted to find an optimized error threshold and the represen-

tation of input data. The autoencoder model has two dense layers in the encoder part and

decoder part respectively. The first autoencoder is trained on all data including normal data
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and novelties. An initial threshold is determined based on the histogram of reconstruction

errors. The second autoencoder model is first trained by data close to the normal values.

Then a final threshold to separate normal and novelties is computed by using the same

thresholding technique to the reconstruction error from the second autoencoder model. Af-

ter that, all data are fed into the second autoencoder model to obtain the final reduced

representation and reconstruction error.

The novelty detection in the proposed approach applies density-based clustering to

group data instances using low-dimensional feature space from the final representation.

The idea of density-based clustering is that high-density regions can be separated from low-

density regions. DBSCAN [49], a simple and effective density-based clustering algorithm,

is used to find arbitrary shape data. DBSCAN requires two user-defined parameters, eps

which determine a maximum radius of the neighborhood, and minPts which determine a

minimum number of points in the eps of point [48].

After grouping all data points into different clusters via DBSCAN algorithm, the next

step is to find out which clusters are novelties. The error threshold obtained from the

second autoencoder model determines whether an instance is a novelty. If the majority of

data instances in a cluster exceeds the threshold, the entire cluster is considered a novelty.

DAE. Nolle et al. [50] propose a deep autoencoder (DAE) approach to detect and

analyze anomalies occurring during the execution of a business process. The method doesn’t

require prior knowledge of the business process and can train on noisy data containing

anomalies. The training data are event logs that record execution traces of the system

process and have no labels. The proposed method differentiates normal and anomalous

executions purely based on patterns in log data. Anomalies (noises) are injected into event

logs by randomly applying mutation to a fixed portion of execution traces. By adjusting

the ratio of anomalous traces in event logs, training sets with different noise levels can be

generated to test the autoencoder’s generalization ability. Each activity and user in an event

are individually encoded as an n-dimensional vector using one-hot encoding, where n is the

total number of unique activities or users in the event logs. The input vector is an event
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vector concatenating activity vectors and user vectors in the event. The target output

for an autoencoder is the original input. The autoencoder architecture adopts multiple

feed-forward neural network layers in the encoder part. To overcome overfitting in training

data, a special layer is added to distribute Gaussian noise over input vectors. DAE approach

assumes that autoencoder will reproduce abnormal executions with larger reconstruction

errors than the normal ones. As shown in Equation 2.1, a threshold τ to classifies log events

is defined by the mean reconstruction error over the training data, then scaled by a factor

α. An event is considered an anomaly when the reconstruction error of the event is beyond

τ .

τ =
α

n

n∑
i=i

ei (2.1)

2.3.3 CNN-based Approaches

CNN leverages kernels in convolutional layers to extract hidden features for both se-

quential data and image data. A convolution operation in CNN uses a weighted matrix

(also referred to as a kernel or a filter) to go over each pixel in an image. After aligning

the center of the kernel to a pixel in the image, a pixel-wise multiplication is performed

to calculate the weighted average of the neighborhood around the pixel. Then the pixel

is replaced with the weighted average. Convolutional layers learn both low and high-level

features from input data. CNN-based approaches for log anomaly detection are an on-going

research area [51–53].

Shallow CNN. Lu et al. [51] propose a CNN-based framework to detect anomalies

in system logs. The framework consists of a log key embedding layer, three convolutional

layers, a dropout layer, a max-pooling layer, and finally a binary classifier. The classifier

is composed of a fully connected layer and a softmax layer. The fully connected layer

concatenates outputs from convolutional layers. The softmax layer is used to compute the

distribution probability of results. This shallow CNN framework achieves higher and faster

detection accuracy on HDFS logs compared to Multilayer Perception (MLP) and LSTM

approaches.
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Deep CNN. A deep CNN model is developed by Ren et al. [52] for log classification.

The authors also propose a novel and effective log processing method which includes event

categories labeling, event redundancy filtering, and numeric semantic feature vector gener-

ation. After log processing, log events are transformed into semantic embedding vectors.

The vectors are then fed into a deep CNN model with five convolutional layers, three fully

connected layers, and a softmax layer. The feature map at each layer captures different

features from log sequences detected by the deep CNN model.



21

CHAPTER 3

Preliminary

3.1 DeepLog

DeepLog [18] adopts LSTM neural networks for online anomaly detection over system

logs. In DeepLog, a model is trained on normal log keys to learn underlying patterns of

normal execution paths. Anomalies are regarded as deviations from normal patterns learned

by the model. In addition to log key anomalies that occur in execution paths, sometimes

anomalies are shown as outliers in parameter values of log entries. DeepLog constructs an

LSTM model to detect parameter value anomalies for each log key. With the two anomaly

detection models, DeepLog is able to perform detection on session level as well as log entry

level. In the training stage, DeepLog only consists of normal log sequences.

3.1.1 Log Key Anomaly Detection Model

A log key anomaly detection model detects anomalies in execution paths. The total

number of distinct log keys in a program is constant. Let k = {k1, k2, ..., kn} be the set of

distinct log keys. Let mi denote the log key at position i in a log sequence. mi is highly

dependent on the most recent log keys that occur before mi. The intuition of the log key

detection model is that given a window w of h recent log keys, we want to predict if an

incoming log key mi is the next log key that follows the historical window w. The input

of the model is w = {mt−h, ...,mt−2,mt−1}. The output of the model is a conditional

probability distribution Pr[mt = ki|w] for each log key ki ∈ K (i = 1, 2, ..., n) as the next

log key. There are multiple log keys that can appear as mi and follows normal patterns.

Therefore, we select top g candidates from the output by sorting all log keys based on their

probabilities. If the incoming log key is in top g candidates, we treat the log key as normal;

otherwise, the log key is flagged as abnormal.
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3.1.2 Parameter Value Anomaly Detection Model

When a log key is detected as normal by a log key anomaly detection model, a further

inspection is performed on the parameter values in the log entry where the log key is ex-

tracted. Parameter values often reflect important metrics about systems. The parameter

value anomaly detection model can detect performance degradation such as “slow down” in

systems. In practice, a log entry stores different types of parameter values. The parameter

value anomaly detection model puts the parameter values in a vector and treats the pa-

rameter value vectors as multivariate time series, which can be trained on an LSTM neural

network. A parameter value model is similar to a log key model. However, instead of having

a log key at every time step, a parameter value model receives a parameter value vector as

the input and produces a real value vector as the prediction for the next value vector. In the

training process, mean squared error (MSE) is used to minimize the loss between predicted

vectors and the actual ones. Intuitively, the MSE between predictions and observations can

be modeled as Gaussian Distribution. If the MSE of an incoming vector falls outside of the

high confidence interval of the Gaussian Distribution, the vector is considered abnormal.

3.2 Transformer

RNN-based autoencoder models have proven their effectiveness in various sequence-

to-sequence tasks such as machine translation. Variants of RNN, such as LSTM [54] or

GRU [55], address the vanishing gradient issues, making RNN-based neural networks a

priority for sequential modeling.

In 2014, Ilya Sutskever et al. [56] applied encoder-decoder structure to machine transla-

tion. The encoder part is an LSTM model that encodes information from the input sequence

into a fixed-length vector, while the decoder part is another LSTM model that produces the

output sequence. However, since the length of input sequences is uncertain, it is hard for

the decoder to generate reasonable output sequences of arbitrary length. The problem was

solved by Bahdanau et al. [57] in 2016. They proposed an attention mechanism to focus on

the content of sentences.

Either encoder-decoder or attention mechanisms are based on RNN frameworks. The
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recurrence of RNN limits the computation efficiency as it takes a long time for data to

propagate. Therefore, some scholars decided to disperse recurrent structures. In 2017, the

Facebook AI team [58] adopted CNN in sequence-to-sequence learning by using convolution

kernels to extract the information of sequences. Although CNN-based approaches can be

used in parallel computing, it is constrained by the long-distance dependency in sequences.

In the same year, Google Brain published a paper [5], Attention is All You Need, where a

new network architecture called Transformer was proposed and based solely on attention

mechanisms.

The Transformer architecture (See Figure 3.1) uses encoder-decoder attention mecha-

nisms. It has six stacked identical layers on both the encoder side and decoder side. Each

layer contains two sublayers. The first sublayer is a multi-head self-attention layer and the

second sublayer is a position-wise feed-forward neural network. Moreover, each sublayer

is followed by a residual connection and layer normalization layer. The self-attention is

calculated as a scaled dot-product of query, key, and value. The multi-head attention lin-

early projects query, key, and value multiple times. In order to maintain the relative or

absolute positions of tokens in sequences, the Transformer adopts sine and cosine functions

as position encoding.

3.2.1 Self-attention

Self-attention uses attention mechanisms to infer the relations among tokens in a sen-

tence and learns the representation of the same sentence. In Transformer, self-attention is

implemented by scaled dot-product attention and multi-head attention.

Scaled Dot-Product Attention. Scaled dot-product attention computes the dot

products of query and key of dimension dk, then scales the dot products by 1√
dk

, and applies

a softmax function to gain the weights on value (See Equation 3.1). The query, key, and

value are calculated by multiplying the input vector by three matrices WQ,WK ,WV , which

can be denoted as Q = WQX, K = WKX, V = WVX, where X is the input vector. Dot-

product attention function was first proposed by Luong et al. [59] for machine translation. It

applied a softmax function on the dot product of the current hidden state ht and all source
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Fig. 3.1: The Transformer - model architecture [5]

states ĥs. The dot product attention is incorporated as the fundamental attention function

in the Transformer due to the swiftness and space-efficiency in practice. The scaling factor

of 1√
dk

can counterbalance the effect of a small gradient for softmax function caused by a

large dot product:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V. (3.1)

Multi-Head Attention. Multi-head attention multiplies the query, key and value

gained from input vectors by different and learned matrices to generate multiple sets of

query, key, and value. Each set of query, key, and value is fed into the scaled dot-product

attention function and returns output values, namely head. Then all heads are concatenated

as a matrix and projected to induce the final values. Multi-head attention expands the

model’s ability to attend information at different positions without increasing the total
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computational cost compared against single-head attention.

MultiHead(Q,K, V ) = Concat(head1, ..., headn)WO

headi = Attention(QWQ
i ,KW

K
i , V W

V
i ),

(3.2)

where WO, WQ
i , WK

i , W V
i are parameter matrices for projection.

3.2.2 Position-wise Feed-Forward Networks

After a self-attention layer, a fully connected feed-forward network (FFN) is applied to

each position of input sequences independently. The output from self-attention is fed to a

linear function followed by a RELU function, then projected with another linear function.

FFN(x) = max(0, xW1 + b1)W2 + b2 (3.3)

3.2.3 Residual Connection and Layer normalization

The output from each sub-layer in the encoder and decoder layers is modified by resid-

ual connection and layer normalization. Residual connection or residual learning [60] is

proposed to resolve increasing training errors and degradation of model performance in

deep convolution neural networks. Residual learning adds the input to the output of a neu-

ral network layer, as denoted by y = f(x)+x. Layer normalization [61] normalizes the input

values in a neural network layer using the mean and standard deviation of all input values

in the layer. This normalization accelerates the training time of neural networks, especially

of RNNs. By combining the two processing techniques, the output of each sublayer in the

Transformer can be represented as LayerNorm(x+ Sublayer(x))

3.2.4 Positional Encoding

In contrast to RNNs or CNNs that inherently take into account the order of tokens

in sequences, the Transformer structure doesn’t store the position information. To address

this issue, a position encoding is added to the input embedding at the entry of encoder and

decoder stacks. The position encoding in the Transformer (shown in Equation 3.4) adopts



26

Fig. 3.2: BERT input representation [6]

sinusoidal functions to encode position information in sequences as it can attend relative

positions effortlessly:

PEpos,2i = sin(pos/100002i/dmodel)

PEpos,2i+1 = cos(pos/100002i/dmodel).

(3.4)

3.3 BERT

BERT are state-of-the-art models for pre-trained language representations. The exist-

ing approaches for language representations such as ELMo, OpenAI GPT [62,63] are limited

by the unidirectional architectures. BERT, on the other hand, considers bidirectional rep-

resentations by performing a masked language model task and a next sentence prediction

task. By minimizing the combined objective function of two strategies, BERT is able to

pre-train language models based on the original transformer encoder architecture [5]. The

input to BERT is shown in Figure 3.2.

3.3.1 Masked LM (MLM) Task

Masked LM task attends the left and right contexts of input sequences by randomly

masking certain percentage of tokens in input sequences and predicting the masked tokens

based on unmasked ones. Before transforming tokens in log sequences into embedding

vectors, 15% of tokens are selected and replaced with a [MASK] token. In practice, the

[MASK] token doesn’t appear in the fine-tuning process. To mitigate this, when a token is

chosen to be masked, 80% of the time the token is replaced with [MASK] token, 10% of the

time it is replaced with a random token from the corpus, and 10% of the time it remains

the same. The BERT objective function only takes into account the prediction of masked
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tokens.

3.3.2 Next Sentence Prediction (NSP) Task

Next sentence prediction is designed for downstream tasks that require the under-

standing of sentence relationships such as Question Answering (QA) and Natural Language

Inference (NLI). In pre-training, next sentence prediction generates sentence pairs consist-

ing of two sentences, A and B from the corpus. Given the preceding sentence A, 50% of the

time B is the subsequent sentence after A, while 50% of the time B is a random sentence

from the corpus. In order to discriminate two sentences, a special token [SEP] is injected

to the end of each sentence. In addition, a [CLS] token is inserted at the beginning of an

input sample. The [CLS] representation can be fed to an output layer for classification.

After incorporating these special tokens in input sequence, a segment embedding is added

to a token embedding and a position embedding. The segment embedding implies to which

sentence each token belongs. The NSP task uses IsNext or NotNext label to determine if

there is a connection between a sentence pair. Therefore, the NSP loss function is treated

as a binary classification loss.
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CHAPTER 4

LogBERT

LogBERT is a deep learning neural network for log sequence anomaly detection based

on BERT. The primary purpose of LogBERT is to learn the contextual information in

log sequences. To do so, LogBERT trains two self-supervised tasks, namely Masked Log

Key Prediction (MLKP) and Volume of Hypersphere Minimization (VHM), to analyze log

sequences bidirectionally. MLKP task randomly replaces a fixed percentage of log keys

in a sequence with [MASK] token, then predicts the masked log keys using a probability

distribution. VHM task inserts a [DIST] token at the beginning of a log sequence and utilizes

the training result of the [DIST] token as the representation of the sequence in latent space.

The objective of VHM task is to minimize the volume of a hypersphere that encompasses

the representation of normal log sequences. Intuitively, normal instances densely gather

around the center of the hypersphere while abnormal instances are further away from the

center. The main structure of LogBERT is a transformer encoder that solely depends on

attention mechanisms. The input representation for the transformer encoder is the sum of

log key embedding vectors and position embedding vectors of log sequences. The output

of the transformer encoder is then fed to a fully connected neural network layer and a

softmax layer to generate a probability distribution for each log key in the log key set as

the prediction of a masked log key. This chapter goes over the details of LogBERT and its

implementation.

4.1 Architecture

Given a sequence of unstructured log messages, we aim to detect whether this sequence

is normal or anomalous. In order to represent log messages, following a widely used pre-

processing approach, we first extract log keys from log messages via a log parser. Then,

we can define a log sequence as a sequence of ordered log keys S = {k1, ..., kt, ..., kT },
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Fig. 4.1: The overview of LogBERT

where kt ∈ K indicates the log key in the t-th position, and K indicates a set of log keys

extracted from log messages. The goal of this task is to predict whether a new log sequence

S is anomalous based on a training dataset D = {Sj}Nj=1 that consists of only normal log

sequences. To achieve that, we propose an architecture, called LogBERT, to model the

normal sequences and further derive an anomaly detection criterion to identify anomalous

sequences. Figure 4.1 shows the whole framework of LogBERT.

4.2 Input Representation

Given a normal log sequence Sj , we first add a special token, [DIST], at the beginning

of Sj as the first log key. LogBERT then represents each log key kjt as an input repre-

sentation xj
t , where the representation xj

t is a summation of a log key embedding and a

position embedding. In this work, we randomly generate a matrix E ∈ R|K|∗d as the log

key embedding matrix, where d is the dimension of log key embedding, while the position

embeddings T ∈ RT∗d are generated by using the same sinusoid function to encode the

position information of log keys in a sequence [6]. Finally, the input representation of the

log key kt is defined as: xj
t = ekt + tkt .

4.3 Transformer Encoder

LogBERT adopts Transformer encoder to learn the contextual relations among log
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keys in a sequence. Transformer encoder consists of multiple transformer layers. Each

transformer layer includes a multi-head self-attention and a position-wise feed forward sub-

layer in which a residual connection is employed around each of two sub-layers, followed

by layer normalization [5]. The multi-head attention employs H parallel self-attentions to

jointly capture different aspect information at different positions over the input log sequence.

Formally, for the l-th head of the attention layer, the scaled dot-product self-attention is

defined as:

headl = Attention(XjWQ
l ,X

jWK
l ,X

jWV
l ), (4.1)

where Attention(Q,K,V) = softmax(QKT
√
dv

)V; Xj ∈ RT∗d is the input representation of

the log sequence; WQ
l , WK

l and WV
l are linear projection weights with dimensions Rd∗dv

for the l-th head. Each self-attention makes each key attend to all the log keys in an

input sequence and computes the hidden representation for each log key with an attention

distribution over the sequence.

The multi-head attention employs a parallel of self-attentions to jointly capture different

aspect information at different log keys. Formally, the multi-head attention concatenates

H parallel heads together as:

f(Xj) = Concat(head1, ..., headH)WO, (4.2)

where WO ∈ Rhdv∗do is a projection matrix.

Then, the position-wise feed forward sub-layer with a ReLU activation is applied to the

hidden representation of each activity separately. Finally, by combining the position-wise

feed forward sub-layer and multi-head attention, a transformer layer is defined as:

transformer layer(Xj) = FFN(f(X)) = ReLU(f(X)W1)W2, (4.3)

where W1 and W2 are trained projection matrices.

The Transformer encoder usually consists of multiple transformer layers. We denote

hj
t as the contextualized embedding vector of the log key kjt produced by the Transformer
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encoder, i.e., hj
t = Transformer(kjt ).

4.4 Objective Function

In order to train the LogBERT model, we propose two self-supervised training tasks

to capture the patterns of normal log sequences.

4.4.1 Task I: Masked Log Key Prediction (MLKP)

In order to capture the bidirectional information of log sequences, we train LogBERT to

predict the masked log keys in log sequences. In our scenario, LogBERT takes log sequences

with random masks as inputs, where we randomly replace a ratio of log keys in a sequence

with a specific [MASK] token. The training objective is to accurately predict the randomly

masked log keys. The purpose is to make LogBERT encode the prior knowledge of normal

log sequences.

To achieve that, we feed the contextualized embedding vector of the i-th [MASK] token

in the j-th log sequence hj
[MASKi]

to a softmax function, which will output a probability

distribution over the entire set of log keys K:

ŷj[MASKi]
= Softmax(WChj

[MASKi]
+ bC), (4.4)

where WC and bC are trainable parameters. Then, we adopt the cross entropy loss as the

objective function for masked log key prediction, which is defined as:

LMLKP = − 1

N

N∑
j=1

M∑
i=1

yj[MASKi]
log ŷj[MASKi]

, (4.5)

where yj[MASKi]
is the real log key for the i-th masked token, N is the total number of log

sequences, and M is the total number of masked tokens in the j-th log sequence. Since the

patterns of normal and anomalous log sequences are different, we expect once LogBERT is

able to correctly predict the masked log keys, it can distinguish the normal and anomalous

log sequences.
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4.4.2 Task II: Volume of Hypersphere Minimization (VHM)

Inspired by the Deep SVDD approach [64], where the objective is to minimize the

volume of a data-enclosing hypersphere, we propose a spherical objective function shown

in Equation 4.6. The motivation is that normal log sequences should be concentrated and

close to each other in the embedding space, while the anomalous log sequences are far to the

center of the sphere. We first derive the representations of normal log sequences and then

compute the center representation based on the mean operation. In particular, we consider

the embedding vector of the [DIST] token hj
DIST, which encodes the information of entire

log sequence based on the Transformer encoder, as the representation of a log sequence in

the embedding space. To make the representations of normal log sequences close to each

other, we further derive the center representation of normal log sequences c in the training

set by a mean operation, i.e., c = Mean(hj
DIST). Then, the objective function is to make

the representation of normal log sequence hj
DIST close to the center representation c:

LV HM =
1

N

N∑
j=1

||hj
DIST − c||2. (4.6)

By minimizing the Equation 4.6, we expect all the normal log sequences in the training

set are close to the center, while the anomalous log sequences have a larger distance to the

center. Meanwhile, another advantage of the spherical objective function is that by making

the sequence representations close to the center, the Transformer encoder can also leverage

the information from other log sequences via the center representation c since c encodes all

the information of normal log sequences. As a result, the model should be able to predict

the masked log keys with higher accuracy for normal log sequences because the normal log

sequences should share similar patterns.

Finally, the objective function for training LogBERT is defined as below:

L = LMLKP + αLV HM , (4.7)

where α is a hyper-parameter to balance two training tasks.
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4.5 Anomaly Detection

After training, we can deploy LogBERT for anomalous log sequence detection. Given

a testing log sequence, we first randomly replace some log keys with [MASK] tokens and

use the randomly-masked log sequence as an input to LogBERT. Since LogBERT is trained

on normal log sequences, it can achieve high prediction accuracy if the testing log sequence

is normal. Hence, we can derive the anomalous score of a log sequence based on the pre-

diction results on the [MASK] tokens. In particular, given a [MASK] token, the probability

distribution calculated based on Equation 4.4 indicates the likelihood of a log key appeared

in the position of the [MASK] token. Similar to the strategy in DeepLog [18], we build a

candidate set of normal log keys based on their likelihoods computed by ŷ[MASKi], and treat

a key as normal if it achieves the top g highest probability. In other words, if the observed

log key is not in the top-g candidate set, we consider the log key as an anomalous log key.

Then, when a log sequence consists of more than r anomalous log keys, we will label this

log sequence as anomalous. Both g and r are hyper-parameters and will be tuned based on

the validation set.
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CHAPTER 5

Experiment and Analysis

In this chapter, we start by introducing three public datasets (Chapter 5.1) and six

baselines (Chapter 5.2) adopted in the experiments. Then we explicates our experiment

setup in Chapter 5.3 and explore experimental results in Chapter 5.4. In our experiments,

we first compare the performance of proposed model on the three datasets with the perfor-

mances of baseline models in Chapter 5.4.1. We further conduct ablation study based on

two self-supervised training tasks in Chapter 5.4.2 . In Chapter 5.4.3, we present the visu-

alization on representations of log sequences. Finally, we analyze the sensitivity of models

with respect to different hyper-parameters in Chapter 5.4.4.

5.1 Datasets

Loghub [65] includes many public datasets collected from different resources for log

analysis. The existing labeled datasets includes HDFS, Hadoop, OpenStack, BGL, and

Thunderbird. We evaluate the proposed LogBERT on three datasets, HDFS, BGL, and

Thunderbird. Table 5.1 shows statistics of the datasets. For all datasets, we adopt around

5000 normal log sequences for training. The number in the brackets under the column “#

Log Keys” indicates the number of unique log keys in the training dataset.

Table 5.1: Statistics of evaluation datasets

Dataset # Log Messages # Anomalies # Log Keys # of Log Sequences in Test Dataset
Normal Anomalous

HDFS 11,172,157 284,818 46 (15) 553,366 10,647

BGL 4,747,963 348,460 334 (175) 10,045 2,630

Thunderbird-mini 20,000,000 758,562 1,165 (866) 71,155 45,385

5.1.1 HDFS

Hadoop Distributed File System (HDFS) [66]. HDFS dataset is generated by running
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Hadoop-based map-reduce jobs on Amazon EC2 nodes and manually labeled through hand-

crafted rules to identify anomalies. HDFS dataset consists of 11,172,157 log messages, of

which 284,818 are anomalous. For HDFS, we group log keys into log sequences based on

the block id in each log message. The average length of log sequences is 19.

5.1.2 BGL

BlueGene/L Supercomputer System (BGL) [67]. BGL dataset is collected from a Blue-

Gene/L supercomputer system at Lawrence Livermore National Labs (LLNL). Logs contain

alert and non-alert messages identified by alert category tags. The alert messages are con-

sidered as anomalous. BGL dataset consists of 4,747,963 log messages, of which 348,460

are anomalous. For BGL, we define a time sliding window as 5 minutes to generate log

sequences, where the average length is 562.

5.1.3 Thunderbird

Thunderbird [67] dataset is another large log dataset collected from a supercomputer

system. We select the first 20,000,000 log messages from the original Thunderbird dataset

to compose our dataset, of which 758,562 are anomalous. For Thunderbird, we also adopt

a time sliding window as 1 minute to generate log sequences, where the average length is

326.

5.2 Baselines

We compare our LogBERT model with the following baselines that are widely used for

log anomaly detection.

PCA. PCA builds counting matrix based on the frequency of log keys sequences and

then reduces the original counting matrix into a low dimensional space to detect anomalous

sequences.

One-Class SVM (OCSVM). One-Class SVM is a well-known one-class classification

model and widely used for log anomaly detection by only observing the normal data.
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Isolation Forest (iForest). Isolation forest is an unsupervised learning algorithm for

anomaly detection by representing features as tree structures.

LogCluster. LogCluster is a clustering based approach, where the anomalous log

sequences are detected by comparing with the existing clusters.

DeepLog. DeepLog is a state-of-the-art log anomaly detection approach. DeepLog

adopts recurrent neural network to capture patterns of normal log sequences and further

identifies the anomalous log sequences based on the performance of log key predictions.

LogAnomaly. LogAnomaly is a deep learning-based anomaly detection approach and

able to detect sequential and quantitative log anomalies

5.3 Experimental Setup

Regarding baselines, we leverage the package Loglizer [3] to evaluate PCA, OCSVM,

iForest as well as LogCluster for anomaly detection and adopt the open source deep learning-

based log analysis toolkit to evaluate DeepLog and LogAnomaly 1. For LogBERT, we

construct a Transformer encoder by using two Transformer layers. The dimensions for the

input representation and hidden vectors are 50 and 256, respectively. The hyper-parameters

in our model, including m the ratio of masked log keys for the MKLP task, r the number of

predicted anomalous log keys, and g the size of top-g candidate set for anomaly detection,

are tuned based on a small validation set. In our experiments, both training and detection

phases have the same ratio of masked log keys m. The code of our implementation are

available online 2.

5.4 Experimental Results

5.4.1 Log Anomaly Detection

Table 5.2 shows the results of LogBERT as well as baselines on three datasets. We

can notice that PCA, Isolation Forest, and OCSVM have poor performance on log anomaly

1https://github.com/donglee-afar/logdeep
2https://github.com/HelenGuohx/logbert
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detection. Although these methods could achieve extremely high precision or recall values,

they cannot balance the log anomaly detection on both precision and recall, which lead

to extremely low F1 scores. This could be because using the counting vector to represent

a log sequence leads to the loss of temporal information from log sequences. LogCluster,

which is designed for log anomaly detection, achieves better performance than the PCA,

Isolation Forest, and OCSVM. Meanwhile, two deep learning-based baselines, DeepLog and

LogAnomaly, significantly outperform the traditional approaches and achieve reasonable F1

scores on three datasets, which show the advantage to adopt deep learning models to capture

the patterns of log sequences. Moreover, our proposed LogBERT achieves the highest F1

scores on three datasets with large margins by comparing with all baselines. It indicates

that by using self-supervised training tasks, LogBERT can model the normal log sequences

and further identify anomalous sequences with high accuracy.

Table 5.2: Experimental results on HDFS, BGL, and Thunderbird datasets

Method HDFS BGL Thunderbird
Precision Recall F-1 score Precision Recall F-1 score Precision Recall F-1 score

PCA 5.89 100.00 11.12 9.07 98.23 16.61 37.35 100.00 54.39

iForest 53.60 69.41 60.49 99.70 18.11 30.65 34.45 1.68 3.20

OCSVM 2.54 100.00 4.95 1.06 12.24 1.96 18.89 39.11 25.48

LogCluster 99.26 37.08 53.99 95.46 64.01 76.63 98.28 42.78 59.61

DeepLog 88.44 69.49 77.34 89.74 82.78 86.12 87.34 99.61 93.08

LogAnomaly 94.15 40.47 56.19 73.12 76.09 74.08 86.72 99.63 92.73

LogBERT 87.02 78.10 82.32 89.40 92.32 90.83 96.75 96.52 96.64

5.4.2 Ablation Study

In order to further understand our proposed LogBERT, we conduct ablation experi-

ments on three log datasets. LogBERT is trained by two self-supervised tasks. We evaluate

the performance of LogBERT by only using one training task each time. When the model

is only trained by minimizing the volume of hypersphere, we identify anomalous log se-

quences by computing distances of the log sequence representations to the center of normal

log sequences c. If the distance is larger than a threshold, we consider a log sequence is

anomalous. Table 5.3 shows the experimental results. We can notice that when only using
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the task of masked log key prediction to train the model, we can still get very good per-

formance on log anomaly detection, which shows the effectiveness of training the model by

predicting masked log keys. We can also notice that even we do not train the LogBERT with

the task of the volume of hypersphere minimization, LogBERT achieves higher F1 scores

than DeepLog on all three datasets, which shows that compared with LSTM, Transformer

encoder are better at capturing the patterns of log sequences. Meanwhile, we can observe

that when only training the model for minimizing the volume of hypersphere, the perfor-

mance is poor. It indicates that only using distance as a measure to identify anomalous

log sequences cannot achieve good performance. However, combining two self-supervised

tasks to train LogBERT can achieve better performance than the models only trained by

one task. Especially, for the HDFS dataset, LogBERT gains a large margin in terms of

F1 score (82.32) compared with the model only trained by MLKP (78.09). For BGL and

Thunderbird, the improvement of LogBERT is not as significant as the model in HDFS.

This could be because the average length of log sequences in BGL (562) and Thunderbird

(326) datasets are much larger than the log sequences in HDFS (19). For longer sequences,

only predicting the masked log keys can capture the most important patterns of log se-

quences since there are many more mask tokens in longer sequences. On the other hand,

for short log sequences, we cannot have many masks tokens. As a result, the task of the

volume of hypersphere minimization can help to boost the performance. Hence, based on

Table 5.3, we can conclude that using two self-supervised tasks to train LogBERT always

leads to better performance, especially when the log sequences are relatively short.

Table 5.3: Performance of LogBERT based on one self-supervised training task

HDFS BGL Thunderbird
Precision Recall F-1 score Precision Recall F-1 score Precision Recall F-1 score

MLKP 77.54 78.65 78.09 93.16 86.46 89.69 97.07 95.90 96.48

VHM 2.43 39.17 4.58 71.04 43.84 54.22 56.58 43.87 49.42

Both 87.02 78.10 82.32 89.40 92.32 90.83 96.75 96.52 96.64

5.4.3 Visualization
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In order to visualize the log sequences, we adopt locally linear embedding (LLE) al-

gorithm [68] to map the log sequence representations into a two dimensional space, where

the hidden vector of [DIST] token hDIST is used as the representation of a log sequence.

We randomly select 1000 normal and 1000 anomalous sequences from the BGL dataset for

visualization. Figure 5.1 shows the visualization results of log sequences trained by Log-

BERT with and without the VHM task. We can notice that the normal log sequences group

together, while the anomalous log sequences spread out in the whole latent space. However,

without the VHM task (shown in Figure 5.1a), there are some overlaps between the normal

and anomalous log sequence. Meanwhile, as shown in Figure 5.1b, by incorporating the

VHM task, the normal and anomalous log sequences are clearly separated in the latent

space. Therefore, the visualization presents that the VHM task is effective in regulating the

model to split the normal and abnormal data in latent space.

(a) Trained without the VHM task (b) Trained by MLKP and VHM tasks

Fig. 5.1: Visualization of log sequences by using the representations of [DIST] tokens hDIST.
The blue dots indicate the normal log sequences, while the orange ‘x’ symbols indicate
anomalous log sequences.

5.4.4 Parameter Analysis

We also investigate the sensitivity of model performance by tuning various hyper-

parameters using BGL dataset.
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Performance against Different α Value

Figure 5.2a shows that the model performance is relatively stable by setting different

α values in the objective function. This is because, for the BGL dataset, the loss from the

masked log key prediction dominates the final loss value due to the log sequences. As a

result, the weight for the VHM task does not have much influence on the performance.

Performance against Increasing Ratios of Masked Log Keys

Figure 5.2b shows that increasing the ratios of masked log keys in the sequences from

0.1 to 0.5 can slightly increase the F1 scores while keeping increasing the ratios makes

the performance worse. This is because while the masked log keys crease in a reasonable

range, the model can capture more information about the sequence. However, if a sequence

contains too many masked log keys, it loses too much information for making the predictions.

Performance against Increasing Size of Candidates

Figure 5.2c shows that when increasing the size of the candidate set as normal log keys,

the precision for anomaly detection keeps increasing while the recall is reducing, which meet

our expectation. Hence, we need to find the appropriate size of the candidate set to balance

the precision and recall for the anomaly detection.

(a) Different α values (b) Different ratios of masks (c) Different g-candidates

Fig. 5.2: Parameter analysis on the BGL dataset.
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CHAPTER 6

Conclusion

Log anomaly detection is essential to protect online computer systems from malicious

attacks or malfunctions. In this thesis, we develop a novel deep learning model based on

BERT, LogBERT, to detect abnormal log sequences. We also evaluate the performance

of LogBERT on three datasets, HDFS, BGL, and Thunderbird in terms of precision, re-

call, and F1 score by comparing with the existing state-of-the-art approaches. Our findings

are four-fold. Firstly, deep learning approaches such as DeepLog and LogAnomaly outper-

form traditional machine learning approaches such as PCA, Isolation Forest, OCSVM, and

LogCluster. Among all models, LogBERT achieves the best performance on three pub-

lic datasets. Secondly, our ablation experiment on two self-supervised tasks (MLKP and

VHM) demonstrates that using two training tasks in LogBERT is better than using solely

one task. Especially, VHM task can help boost the detection ability when log sequences are

short. Thirdly, we visualize normal and abnormal log sequences by mapping the represen-

tations of DIST into a two-dimensional space. After comparing the visualization results of

log sequences trained by LogBERT with and without VHM task, we can observe that VHM

task is effective when separating normal and abnormal log sequences. Last but not least,

we conduct parameter analysis on BGL dataset by tuning different hyper-parameters. We

find out that α has a trivial impact on the performance of detection. Increasing ratios of

masked log keys can greatly improve detection accuracy but keep increasing the ratios can

hurt the model’s performance. The number of predicted candidates(Top-g candidates) has

a positive effect on the detection ability of LogBERT but the effectiveness mitigates if the

number of g candidates is too large.

In the future, we plan to further improve LogBERT in the following directions. In the

log prepossessing stage, log keys are represented by one-hot encoding. It assumes that all log

keys are independent mutually. It is worthwhile to discuss the similarity between different
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log keys. To do so, some researchers [22,25] transform log events into semantic vectors via

pre-trained word embedding. Moreover, LogBERT only takes log keys as input features of

log data, which are the constant part extracted from log messages. We may also take into

account the extra information in the variable part of log messages such as timestamp. Last

but not least, LogBERT is evaluated on public datasets for research purposes. It would be

interesting to deploy our model on software such as OpenStack to test its real-time detection

ability.
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