647,385 research outputs found

    Pervasive and mobile computing

    Get PDF
    The Pervasive and Mobile Computing Journal (PMC) is a professional, peer-reviewed journal that publishes high-quality scientific articles (both theory and practice) covering all aspects of pervasive computing and communications

    A Journal for the Astronomical Computing Community?

    Full text link
    One of the Birds of a Feather (BoF) discussion sessions at ADASS XX considered whether a new journal is needed to serve the astronomical computing community. In this paper we discuss the nature and requirements of that community, outline the analysis that led us to propose this as a topic for a BoF, and review the discussion from the BoF session itself. We also present the results from a survey designed to assess the suitability of astronomical computing papers of different kinds for publication in a range of existing astronomical and scientific computing journals. The discussion in the BoF session was somewhat inconclusive, and it seems likely that this topic will be debated again at a future ADASS or in a similar forum.Comment: 4 pages, no figures; to appear in proceedings of ADASS X

    An asymptotic preserving method for linear systems of balance laws based on Galerkin's method

    Full text link
    We apply the concept of Asymptotic Preserving (AP) schemes to the linearized p-system and discretize the resulting elliptic equation using standard continuous Finite Elements instead of Finite Differences. The fully discrete method is analyzed with respect to consistency, and we compare it numerically with more traditional methods such as Implicit Euler's method. Numerical results indicate that the AP method is indeed superior to more traditional methods.Comment: Journal of Scientific Computing, 201

    A parallel Heap-Cell Method for Eikonal equations

    Full text link
    Numerous applications of Eikonal equations prompted the development of many efficient numerical algorithms. The Heap-Cell Method (HCM) is a recent serial two-scale technique that has been shown to have advantages over other serial state-of-the-art solvers for a wide range of problems. This paper presents a parallelization of HCM for a shared memory architecture. The numerical experiments in R3R^3 show that the parallel HCM exhibits good algorithmic behavior and scales well, resulting in a very fast and practical solver. We further explore the influence on performance and scaling of data precision, early termination criteria, and the hardware architecture. A shorter version of this manuscript (omitting these more detailed tests) has been submitted to SIAM Journal on Scientific Computing in 2012.Comment: (a minor update to address the reviewers' comments) 31 pages; 15 figures; this is an expanded version of a paper accepted by SIAM Journal on Scientific Computin

    Design and optimization of a portable LQCD Monte Carlo code using OpenACC

    Full text link
    The present panorama of HPC architectures is extremely heterogeneous, ranging from traditional multi-core CPU processors, supporting a wide class of applications but delivering moderate computing performance, to many-core GPUs, exploiting aggressive data-parallelism and delivering higher performances for streaming computing applications. In this scenario, code portability (and performance portability) become necessary for easy maintainability of applications; this is very relevant in scientific computing where code changes are very frequent, making it tedious and prone to error to keep different code versions aligned. In this work we present the design and optimization of a state-of-the-art production-level LQCD Monte Carlo application, using the directive-based OpenACC programming model. OpenACC abstracts parallel programming to a descriptive level, relieving programmers from specifying how codes should be mapped onto the target architecture. We describe the implementation of a code fully written in OpenACC, and show that we are able to target several different architectures, including state-of-the-art traditional CPUs and GPUs, with the same code. We also measure performance, evaluating the computing efficiency of our OpenACC code on several architectures, comparing with GPU-specific implementations and showing that a good level of performance-portability can be reached.Comment: 26 pages, 2 png figures, preprint of an article submitted for consideration in International Journal of Modern Physics
    • …
    corecore