
IMPLEMENTATION AND SCALABILITY ANALYSIS OF
BALANCING DOMAIN DECOMPOSITION METHODS ∗

SANTIAGO BADIA†‡ , ALBERTO F. MARTÍN†‡ , AND JAVIER PRINCIPE†‡

Abstract. In this paper we present a detailed description of a high-performance distributed-
memory implementation of balancing domain decomposition preconditioning techniques. This cover-
age provides a pool of implementation hints and considerations that can be very useful for scientists
that are willing to tackle large-scale distributed-memory machines using these methods. On the
other hand, the paper includes a comprehensive performance and scalability study of the resulting
codes when they are applied for the solution of the Poisson problem on a large-scale multicore-based
distributed-memory machine with up to 4096 cores. Well-known theoretical results guarantee the
optimality (algorithmic scalability) of these preconditioning techniques for weak scaling scenarios, as
they are able to keep the condition number of the preconditioned operator bounded by a constant
with fixed load per core and increasing number of cores. The experimental study presented in the
paper complements this mathematical analysis and answers how far can these methods go in the
number of cores and the scale of the problem to still be within reasonable ranges of efficiency on cur-
rent distributed-memory machines. Besides, for those scenarios where poor scalability is expected,
the study precisely identifies, quantifies and justifies which are the main sources of inefficiency.

Key words. Domain decomposition, parallelization, scalability, coarse-grid correction, balanc-
ing domain decomposition, BNN, BDDC

AMS subject classifications. 65N55, 65F08, 65N30, 65Y05, 65Y20

1. Introduction. Scientific phenomena governed by partial differential equa-
tions (PDEs) can range from solid mechanics to fluid mechanics and electrodynamics,
including any of the possible couplings. The solution of these equations can be ap-
proximated with the aid of computers by a discretization (and possibly linearization)
and the subsequent numerical solution of the resulting sparse set of linear equations.
This work is concerned with the fast solution of the Poisson problem discretized by
the finite element (FE) method. Although the Poisson problem is the simplest model
problem for, e.g., fluid flow simulation, it is still very useful as a building block for
the “physics-based” preconditioning of very complex scientific applications governed
by coupled systems of PDEs [1].

The ever increasing demand of reality in the simulation of the complex scien-
tific and engineering three-dimensional (3D) problems faced nowadays ends up with
the solution of very large and sparse linear systems with several hundreds and even
thousands of millions of equations/unknowns. The solution of these systems in a
moderate time requires the vast amount of computational resources provided by cur-
rent multicore-based distributed-memory machines. It is therefore essential to design
parallel algorithms able to take profit of their underlying architecture.

∗This work has been funded by the European Research Council under the FP7 Programme Ideas
through the Starting Grant No. 258443 - COMFUS: Computational Methods for Fusion Technol-
ogy. A. F. Mart́ın was also partially funded by the UPC postdoctoral grants under the programme
“BKC5-Atracció i Fidelització de talent al BKC”. The authors thankfully acknowledge the computer
resources, technical expertise and assistance provided by the Red Española de Supercomputación
and the Juelich Supercomputing Centre in the exploitation of the HPC for Fusion (HPC-FF) under
the EFDA HPC Implementing Agreement (EFDA (08) 39/4.1).
†Centre Internacional de Mètodes Numèrics a l’Enginyeria (CIMNE), Parc

Mediterrani de la Tecnologia, UPC, Esteve Terradas 5, 08860 Castelldefels, Spain
({sbadia,amartin,principe}@cimne.upc.edu).
‡Universitat Politècnica de Catalunya, Jordi Girona 1-3, Edifici C1, 08034 Barcelona, Spain.

1

2 S. BADIA, A. F. MARTÍN AND J. PRINCIPE

Non-overlapping domain decomposition (DD) methods (also referred as iterative
sub-structuring or Schur complement methods) provide a natural framework for the
development of fast parallel solvers tailored for distributed-memory machines, as they
have by construction the desirable design principle of maximizing local computations
while minimizing interprocessor communication. One-level DD preconditioners, such
as the Neumann-Neumann preconditioner, are highly parallel as they only require the
solution of local problems and communication among neighboring subdomains, but
unfortunately they do not posses optimality properties. Consequently, e.g., in a weak
scaling scenario, where the number of processors is increased while keeping the load
per processor constant, more a more computational resources are wasted because
extra iterations are required to converge. Two-level DD preconditioners combine
local and global terms acting in an additive or in a multiplicative fashion in order to
achieve quasi-optimal condition number bounds (in the sense discussed in the next
paragraph). The global term couples all the subdomains and involves the solution
of a “small” (relative to the original linear system) coarse-grid problem. Besides, its
size has typically only a linear dependence with the number of processors. However,
only a small amount of parallelism can be exploited for the solution of this coarse-grid
problem, which results in increasing parallel overheads (i.e., loss of efficiency) with
the number of processors.

In this work we focus on two-level DD methods of balancing type, namely the Bal-
ancing Neumann-Neumann [27] (BNN) and Balancing DD by Constraints [9] (BDDC)
methods; other two-level DD preconditioners are found in the FETI family [10, 11],
although they are not explored here. These methods are quasi-optimal (algorith-
mically scalable) with a poly-logarithmic expression of the condition number of the
preconditioned system κ = 1 + log2(Hh), where h and H are, respectively, the mesh

and subdomain characteristic sizes, (Hh)d is the size of the local problems and d is the

space dimension. Consequently, in weak scaling scenarios (i.e., Hh fixed), the number
of iterations of the preconditioned conjugate gradient (PCG) solver is (asymptotically)
independent of the number of processors.

Even though the mathematical theory of these methods is well established, there
is a surprising lack of scientific works on the design/implementation issues to be
considered for the efficient exploitation of distributed-memory machines. And even
more surprising is the lack of comprehensive performance and scalability analysis on
large-scale distributed-memory machines. This situation is in contrast to multigrid
methods, see e.g., [3,26]. We believe that the ability of balancing DD (BDD) methods
to exploit large-scale distributed-memory machines is the most cited feature but their
least examined one. To the best of our knowledge only few studies focus on these
aspects for this particular family of algorithms [7, 18, 19, 43], none of which with the
degree of detail and up to the scale that are considered here. Given this lack, the
contribution of this paper to the state-of-the-art is twofold. On the one hand, we
present a comprehensive coverage of design/implementation issues provided by the
experience we have acquired by implementing them from scratch in our FE/numerical
linear algebra library which results in part from preliminary scalability studies. This
coverage is intended to provide scientists with some hints and issues that have to take
into account if they want to tackle large-scale problems efficiently on distributed-
memory machines. On the other hand, we present a comprehensive weak scalability
study of this implementation on a distributed-memory machine with up to 4096 cores.
The main objective of this study is to identify and quantify sources of overhead in our
current implementation (mainly the impact of the coarse-grid solver) and determine

SCALABILITY ANALYSIS OF BALANCING DD 3

to what degree they are weakly scalable, i.e., how far can these methods go in the
number of cores and the scale of the problem to still be within reasonable ranges of
efficiency.

The article is organized as follows. In Section 2 we present the basic ideas un-
derlying BDD preconditioners. For theoretical aspects of the algorithms we refer the
reader to the vast literature devoted to DD methods; see, e.g, [41] and references
therein. Our high-performance distributed-memory implementation of these methods
is described in Section 3, and Section 4 presents the aforementioned scalability study.
Finally, some concluding remarks are enumerated in Section 5.

2. Overview of BDD methods. This section describes non-overlapping DD
methods of balancing type. Section 2.1 covers the general framework of these meth-
ods. In Section 2.2, the Neumann-Neumann (NN) preconditioner [17,30] is presented.
Although this preconditioner is not algorithmically scalable (as it does not include
a coarse-grid correction), it is the basis for the more sophisticated BNN precondi-
tioner [27], which is covered in Section 2.3. Finally, the widely used BDDC [9] pre-
conditioning technique is described in Section 2.4.

2.1. General framework. As model problem, let us consider the Poisson prob-

lem on a domain Ω ⊂ Rd
, with homogeneous Dirichlet boundary conditions on ∂Ω,

where d = 2, 3 is the number of space dimensions. We also consider a uniform FE
partition (mesh) T = {Ki : i = 1, . . . , nelm} of Ω with characteristic size h. We are
interested in solving the set of linear equations

Ax = b,(2.1)

which arises from the Galerkin FE discretization of the continuous problem corre-
sponding to T .

Further, we consider a uniform non-overlapping partition of Ω into subdomains
{Ωi : i = 1, . . . , nsbd} with characteristic size H and a partition of the global mesh T
into local meshes {Ti : i = 1, . . . , nsbd} such that Ti is a conforming mesh of Ωi. The
interface of Ωi is defined as Γi = ∂Ωi \ ∂Ω and the whole interface (skeleton) of the
domain decomposition is Γ =

⋃nsbd

i=1 Γi. The set of nodes of T that belong to Γ (resp.
Γi) is denoted by Γh (resp. Γih). This partition of the domain into non-overlapping
subdomains induces the following block reordered structure of (2.1):[

AII AIΓ
AΓI AΓΓ

] [
xI
xΓ

]
=

[
bI
bΓ

]
,(2.2)

where xΓ contains the unknowns corresponding to the nodes in Γh and xI the remain-
ing ones, associated with subdomain interiors. Besides, AII presents a block diagonal
structure (and therefore very amenable to parallelization), i.e.,

AII = diag
(
A1
II , A

2
II , . . . , A

nsbd

II

)
,

where AiII is the local matrix which represents the coupling of internal unknowns at
subdomain i. Eliminating xI from (2.2) (exactly as in the static condensation of inter-
nal nodes of high order FEs), this linear system is reduced to the Schur complement
problem

SxΓ = g, where S = AΓΓ −AΓIA
−1
II AIΓ, and g = bΓ −A−1

II bI .(2.3)

4 S. BADIA, A. F. MARTÍN AND J. PRINCIPE

Let us denote the cardinality of Γh and Γih by n̂ and ni respectively. The vector

space of interface nodal values in Γh is denoted by V̂ ; clearly, V̂ is equivalent to Rn̂
.

We also define the local space Vi of interface nodal values on Γih, which is equivalent

to Rni .1 Clearly, the Schur complement matrix S : V̂ × V̂ → R. System (2.3) can
be written as the assembly (sum) of local Schur complement matrices and right hand
side vectors as

S =

nsbd∑
i=1

RtiSiRi, g =

nsbd∑
i=1

Rtigi,(2.4)

where Ri : V̂ → Vi is the restriction operator and Rti its transpose. The former

applied to a vector y ∈ V̂ gives the vector of local values yi = Riy ∈ Vi, while the
latter applied to a local vector gives a global vector (filled with zeros for nodes not
belonging to subdomain i). The local Schur complement Si and local right hand side
vector gi are defined as:

Si = AiΓΓ −AiΓI(AiII)−1AiIΓ, gi = biΓ − (AiII)
−1biI .(2.5)

The number of subdomains sharing the node with identifier p is denoted by n (p).
We will also make use of the global set of replicated local nodes Πnsbd

i=1 Γih, i.e., p
is replicated n(p) times, and the corresponding product space V = Πnsbd

i=1 Vi. By
definition, the cardinality of this space is nγ =

∑nsbd

i=1 ni, which is equivalent to Rnγ .2

Any vector s ∈ V is univocally defined by local values {si : i = 1, . . . , nsbd} due to

the product space definition. It is possible to obtain an averaged global vector z ∈ V̂
from s as

z =

nsbd∑
i=1

Iisi,(2.6)

where Ii = RtiWi : Vi → V̂ is the injection operator, and Wi is a diagonal weighting
matrix such that

y =

nsbd∑
i=1

IiRiy, for any y ∈ V̂ .(2.7)

Wi can be defined as (Wi)pp = 1/n (p), p = 1, . . . , ni, although more elaborated
expressions must be considered for discontinuous physical properties [41].

We can readily check that nsbd = H−d; assuming a one-to-one mapping between
subdomains and processors, we will denote the number of processors P = nsbd. The
size of the global problem (2.1) is denoted by N = h−d. The condition number of

the global matrix A is O(N
2
d) whereas that of the Schur complement S is O(N

1
dP

1
d)

[41]. It is well known that the number of iterations required by the PCG Krylov
solver is O (

√
κ), where κ is the condition number of the preconditioned operator [32].

Therefore, the estimated number of PCG iterations is O(N
1
d) and O(N

1
2dP

1
2d) when

1The spaces V̂ and Vi can also be understood in a functional setting as the global and local
spaces of discrete harmonic functions (see [6]).

2In a functional setting, functions in V̂ are uni-valued on Γ. On the contrary, since every node
p in Γh is replicated n(p) times in Π

nsbd
i=1 Γi, functions in V can take different values at different

subdomains. As in [41], ·̂ is used to denote uni-valued functions on Γ.

SCALABILITY ANALYSIS OF BALANCING DD 5

it is applied to (2.1) and (2.3), respectively. Although the number of PCG iterations
is certainly cut down by the re-statement of the problem on the interface by the DD
approach (since N � P for practical ranges of application), there is a lot of margin
for improvement via preconditioning. In the rest of this section, we present some
non-overlapping DD preconditioners for the Schur complement matrix S such that
the resulting condition numbers become (almost) independent of N and P .

2.2. Neumann-Neumann preconditioner. We can readily observe that a lo-
cal contribution to the Schur complement Si is a singular matrix for every floating
subdomain i, i.e., ∂Ω∩∂Ωi = ∅ with ker(Si) = {1i} (the space of constant functions).

We denote the pseudo-inverse of the local Schur complement Si as S†i . The Neumann-
Neumann (NN) preconditioner is an additive Schwarz preconditioner built from local
pseudo-inverses as

B−1
NN =

nsbd∑
i=1

IiS
†
i I
t
i .

For non-floating subdomains S†i = S−1
i whereas for floating ones S†i applied to a

vector r ∈ ker (Si)
⊥

gives the unique solution of the singular problem Six = r such

that x ∈ ker(Si)
⊥ (see [38]). When r /∈ ker (Si)

⊥
, the problem Six = r does not

have a solution and S†i r only minimizes ‖r − Six‖. The following condition number
estimate (cf. [41])

κ
(
B−1

NNS
)
≤ CP 2

d

[
1 +

1

d2
log2

(
N

P

)]
,(2.8)

gives O(P
1
d) number of PCG iterations for weak scaling analysis.

2.3. Balancing Neumann-Neumann preconditioning. The NN precondi-
tioner was enhanced in [27] by introducing a coarse-grid solver, the so-called balanc-

ing, designed to satisfy Iti r ∈ ker (Si)
⊥

on each subdomain and to provide a global
communication mechanism among subdomains. This condition is equivalent to

0 = ϕtiI
t
i r = (Iiϕi)

t
r, for any ϕi ∈ ker (Si) ,

i.e., making the residual orthogonal to the injection Ii of functions ϕi ∈ ker (Si) to V̂ .
We introduce the coarse space

H0 = span{φi : i = 1, . . . , nsbd} ⊆ V̂ ,

where φi = Iiϕi; H0 is readily represented by Rnsbd vectors. The coarse-grid precon-
ditioner can be written as

B−1
C = I0S

−1
0 It0,

where I0 : H0 → V̂ is the injection defined as I0γ =
∑nsbd

i=1 φiγi (i.e., the columns of
I0 are the basis functions φi), and S0 = It0SI0 is the coarse-grid space operator.

The coarse-grid balancing preconditioner is combined with the Neumann-Neumann
one in a multiplicative fashion, leading to the BNN preconditioner. In order to pre-
serve symmetry, this combination results in the following (naive) form of the BNN
preconditioner:

B−1
BNN = B−1

C + (I −B−1
C S)B−1

NN(I − SB−1
C).

6 S. BADIA, A. F. MARTÍN AND J. PRINCIPE

It can be further shown [40] that if the initial residual in the PCG algorithm is
balanced, i.e.,

r∗ = (I − SB−1
C)r,

then the preconditioner can be rewritten as

B−1
BNN = B−1

C + (I −B−1
C S)B−1

NN.

An important observation is that the BNN preconditioner is more efficiently imple-
mented as:

B−1
BNN = B−1

C

(
I − SB−1

NN

)
+B−1

NN,

as it was originally proposed in [27]. This equivalent expression results in a three-step
application, (1) z = B−1

NNr; (2) t = B−1
C (r − Sz); (3) update z := z+ t. Let us remark

that in this case the application of the BNN preconditioner only requires to solve
one coarse-grid problem. A modified implementation of the algorithm that leads to
a spare of one Dirichlet solve per PCG iteration has recently been proposed in [2].3

The condition number estimate (cf. [27])

κ
(
B−1

BNNS
)
≤ C

[
1 +

1

d2
log2

(
N

P

)]
,(2.9)

results in a constant number of PCG iterations for weak scaling analysis.

2.4. Balancing DD by constraints preconditioner. The BDDC precondi-
tioner also presents a two-level structure where local fine-grid and global coarse-grid
corrections are combined. However, in contrast to the BNN preconditioner, the com-
bination is additive and the coarse problem is not a Galerkin projection. The con-
struction of the BDDC preconditioner is based on a topological classification of the
nodes on the interface as corners, or members of edges or faces.

We denote by N (p) the index set of subdomains that share node p, i.e., N (p) ={
i : p ∈ Γih

}
, with cardinality already defined in Section 2.1 as n(p). We can construct

the set G = {Ga : a = 1, . . . , ncts}, where every object Ga is a maximal subset of
nodes in Γh with identical index set, i.e., N(p) = N(q) for any p, q ∈ Ga, denoted as
N(Ga).4 Now, we can consider a topological classification of the objects as follows:
Ga is a face if |N(Ga)| = 2 and |Ga| > 1, an edge if |N(Ga)| > 2 and |Ga| > 1 and
a corner if |Ga| = 1; this definition corresponds to a 3D space but can readily be
restricted to 2D. Grouping together the objects of the same type, we obtain the set
of faces F = {Fa, a = 1, . . . , nF }, the sets of edges E = {Ea, a = 1, . . . , nE} and
the set of corners C = {Ca, a = 1, . . . , nC}; clearly ncts = nF + nE + nC . We can
consider the restriction of all these sets to a given subdomain i as follows: we define
Gi = {Ga ∈ G : i ∈ N(Ga)} and nicts = |Gi| denotes the number of constraints on
subdomain i; analogously for (Fi, niF), (Ei, niE) and (Ci, niC).

The local, fine-grid preconditioner in the BDDC method is defined as

B−1
F =

nsbd∑
i=1

Ii(S
c
i)
−1Iti ,

3It is based on the observation that SI0v0 for v0 ∈ H0 can readily be obtained as a linear combi-
nation of Sφi quantities, that have already been computed when assembling S0 at the preconditioner
set-up. This observation, combined with a slight modification of the PCG recurrence described in
[2], spares one Schur complement-vector product per PCG iteration.

4This definition of {Ga : a = 1, . . . , ncts} generates a unique partition of Γh.

SCALABILITY ANALYSIS OF BALANCING DD 7

where (Sci)
−1 is a “constrained” inverse of the local Schur complement Si. The ap-

plication of (Sci)
−1 to a vector r involves the solution of the following (constrained)

linear system [
Si Cti
Ci 0

] [
(Sci)

−1r
λ

]
=

[
r
0

]
,

where Ci ∈ Rn
i
cts×ni is the matrix of constraints. Denoting by li(a) the local number-

ing of Ga ∈ Gi at subdomain i, the li(a) row of Ci (a constraint) is defined as

(Ci)li(a)p =

{
1 if p ∈ Ga
0 otherwise

,(2.10)

followed by a further scaling to have all rows with unit 1-norm. With such a definition,
the product z = Ciy, with z ∈ Rnicts and y ∈ Rni , gives a vector y whose component
yli(a) is related to object Ga. If Ga is a corner this component take the value of z in
this corner, i.e., yli(a) = zli(a); if Ga is a face (edge), it takes the mean value of z on

the face (edge), i.e., zli(a) = |Ga|−1∑
j∈Ga yj . The three most common variants of

the BDDC method, here referred as BDDC(c), BDDC(ce) and BDDC(cef), are based
on only corner constraints, corner and edge constraints, and corner, edge and face
constraints, respectively.

The coarse space H0 ⊆ V is defined as

H0 = span{φa : a = 1, . . . , ncts},
where every coarse function φa is associated with coarse object Ga. Coarse functions
are constructed as the tensor product of local values, i.e., φa = {φai , i = 1, . . . , nsbd} ∈
V . If i ∈ N(Ga), φai is obtained as the solution of[

Si Cti
Ci 0

] [
φai
λ

]
=

[
0

eli(a)

]
,

where eb denotes the b column of the identity matrix; φai = 0 otherwise. Note that by

its definition the coarse space is non-conforming, i.e., H0 6⊂ V̂ . The coarse-grid space
basis functions define the mapping I0 : H0 → V̂ as

I0γ =

ncts∑
a=1

nsbd∑
i=1

Iiφ
a
i γa,(2.11)

and the coarse space operator as

(S0)ab =

nsbd∑
i=1

Rtiφ
a
i Siφ

b
iRi.(2.12)

The final preconditioner can be written as an additive combination of a coarse and a
fine-grid contribution

B−1
BDDC = B−1

C +B−1
F .

where B−1
C = I0S

−1
0 It0 as in the BNN method. The condition number estimate (cf.

[28])

κ
(
B−1

BDDCS
)
≤ C

[
1 +

1

d2
log2

(
N

P

)]
,

results in a constant number of PCG iterations (neglecting the logarithmic factor) in
the following situations. For the 2D Poisson problem, BDDC(c) already achieves this
bound, but for the 3D Poisson problem, at least BDDC(ce) is required [6].

8 S. BADIA, A. F. MARTÍN AND J. PRINCIPE

3. Parallel implementation. In this section we describe in detail a parallel
distributed-memory implementation of DD methods of balancing type, namely the
BNN and BDDC methods. This implementation inherits the two-level structure of
the preconditioners subject of study. On the first level, the subdomains resulting
from the non-overlapping partition of the global mesh are mapped to the MPI tasks,
with a one-to-one mapping among subdomains, MPI tasks and computational cores
of the underlying distributed-memory computer. On this level, all data structures
required for the (preconditioned) iterative solution of the interface problem (2.3) are
distributed among MPI tasks conformally with the underlying non-overlapping par-
tition, and both computation and message-passing among MPI tasks are inherently
of local nature, therefore, highly parallel. On the second level, the one corresponding
to the global coupling among subdomains, the coarse-grid problem is assembled and
solved serially on one processor (or all processors in the communicator) and therefore
no parallelism is exploited at all.

For the sake of efficiency and portability, our implementation relies on several
standard computational kernels provided by the dense/sparse BLAS and LAPACK,
and highly efficient cache-aware vendor implementations of these kernels in order to
achieve high flop rates on the computational core level (such as Intel MKL or IBM
ESSL for Intel and IBM PPC multicore CPUs, respectively). Besides, through proper
interfaces to third party libraries (e.g., PARDISO [36,37]), the local Dirichlet (Schur
complement-vector product) and Neumann (fine-grid correction) problems, as well
as the global coarse-grid problem, are solved via cutting-edge sparse direct solvers.
These solvers typically follow a super-nodal/multi-frontal approach for the efficient
exploitation of the core cache subsystem thorough the level 3 BLAS [8]. The use of
sparse direct methods is mandatory in the current setting as the iterative solution
of (2.3) requires the Schur complement-vector to be computed exactly.5 Besides,
sparse direct solvers are highly robust numerically and very successful in the efficient
exploitation of the cache hierarchy. The former factor is very helpful for the validation
of computer implementations, while the latter one is becoming more important given
the poor (main memory) bandwidth scalability in current/future multi-core/many-
core CPUs.

The implementation is (essentially) split into two main phases. The first phase
sets up the Schur complement and preconditioner before starting the iterations. This
phase is in turn divided into a symbolic phase, where the geometrical information
is computed beforehand (e.g., the sparsity pattern of a sparse Cholesky triangular
factor), and a numerical phase, where the actual numerical computations take place.
The second phase is the actual iterative solution of (2.3). Special attention will be
paid to the application of the Schur complement and preconditioner to a vector. The
rest of the section is structured as follows. Section 3.1 presents the data distribution
and the general setting for a distributed-memory implementation of the PCG method.
Section 3.2 and 3.4 discuss the implementation of the computation and communication
kernels required by the fine-grid preconditioning level, respectively, while Section 3.3
and Section 3.5 focus on those required by the coarse-grid preconditioning level.

5BDD methods can certainly be reformulated as preconditioners for the global linear system (2.1).
This enables approximate solvers (e.g., AMG [35,39,42]) to be used in conjunction with BDD meth-
ods. Although this approach relaxes the arithmetic/memory demands of sparse direct solvers (par-
ticularly in 3D), it would result in a new source of difficulties (e.g., robustness/complexity trade-off
evaluation, parameter tuning, load unbalancing issues, poor flop rates) that deserve further research.

SCALABILITY ANALYSIS OF BALANCING DD 9

3.1. Data distribution and basic building blocks. Algorithm 1 depicts the
BDD-PCG iterative solver applied to the interface problem (2.3).6 In a distributed-

memory implementation of this algorithm, all vectors y ∈ V̂ and the Schur comple-
ment S ∈ V̂ ⊗ V̂ are partitioned and distributed among MPI tasks conformally with
the underlying non-overlapping partition of the global interface. For those vectors
y ∈ V̂ in Algorithm 1 which are naturally expressed as the assembly (sum) of subdo-
main contributions (in particular r, Ap, g), it is convenient (for reasons made clear
below) that each MPI task keeps on its local address space partially summed contri-
butions, e.g., gi to g in (2.4). The same idea is applied to the interface block-matrix
AΓΓ, where every processor stores local contributions AiΓΓ which, together with the
corresponding local arrays (AiII , A

i
IΓ, A

i
ΓI), form partially summed contributions Si to

S in (2.4), as defined in (2.5). Our implementation does not compute/store explicitly
Si on each MPI task. Instead, the application of S to a vector is computed implicitly
following the approach described below.7

On the other hand, for the rest of vectors y ∈ V̂ in Algorithm 2.3 (in particular,
x, z, p), it is convenient that each MPI task keeps local fully summed (i.e., assembled)
entries yi, such that yi = Riy. Finally, any vector in the product space v ∈ V is
naturally distributed in such a way that each MPI task stores one local component
vi ∈ Vi of v. Vectors v ∈ V are not explicitly present in Algorithm 1, but as the
result of intermediate steps during the application of the preconditioner. Following
this approach, Algorithm 1 is therefore implemented in a subdomain-by-subdomain
form, in the same way as in element-by-element techniques [12].

Algorithm 1: Preconditioned Conjugate Gradient algorithm

BDD PCG (Input: (S,BBDD, g, x0), Output: x)

1: r0 := g − Sx0

2: z0 := B−1
BDDr0 (see Algorithms 2 and 3)

3: p0 := z0

4: for j = 0, 1, . . . , till convergence do
5: αj := (rj , zj)/(Spj , pj)
6: xj+1 := xj + αjpj
7: rj+1 := rj − αjSpj
8: zj+1 := B−1

BDDrj+1 (see Algorithms 2 and 3)
9: βj := (rj+1, zj+1)/(rj , zj)

10: pj+1 := zj+1 + βjpj
11: end for

We next enumerate the basic building blocks of Algorithm 1, highlighting imple-
mentation details in our distributed-memory codes:

Task 1. Vector updates in lines 6, 7 and 10. No communications are required.
Each MPI task performs a local update using local data structures.

Task 2. Computation of inner products in lines 5 and 9. The computation of

6For the BNN method, we assume that the initial value x0 is such that r0 is balanced (see [27]).
7An explicit assembly of Si is required for some DD preconditioners (see e.g. [16]). Besides, this

approach allows one to exploit the dense level 2 BLAS for the Schur complement-vector product,
which can only compensate the expensive set-up of Si for non-scalable preconditioners with high
iteration counts.

10 S. BADIA, A. F. MARTÍN AND J. PRINCIPE

Algorithm 2: z := B−1
BNNr

1: zF := B−1
NNr

2: r := r − Sz
3: zC := B−1

C r
4: z := zF + zC

Algorithm 3: z := B−1
BDDCr

1: zF := B−1
F r

2: zC := B−1
C r

3: z := zF + zC

the inner product ztr is particularly simple as

ztr = zt
nsbd∑
i=1

Rtiri =

nsbd∑
i=1

(Riz)
t
ri =

nsbd∑
i=1

ztiri.

After the computation of local inner products ztiri, a global sum reduction operation
(MPI Reduce) is required to assemble the result on all MPI tasks.

Task 3. Application of the Schur complement operator in line 5. No communi-
cations are required. Each MPI task performs a local product gi = Siyi. This local
operation results in a vector g such that each MPI task keeps local partially summed
contributions, i.e.:

g = Sy =

nsbd∑
i=1

RtiSiRiy =

nsbd∑
i=1

RtiSiyi =

nsbd∑
i=1

Rtigi.(3.1)

During Schur complement set-up, AiII is extracted from Ai and the sparse Cholesky
factorization of AiII is computed. The product Siyi is computed following a three-step
algorithm: (1) compute t = −AiIΓyi;(2) solve AiIIu = t; (3) gi = AiΓΓyi + AiΓIu. A
sparse backward/forward substitution is required for step (2), and one and two sparse
matrix-vector products for steps (1) and (3), respectively. These sparse matrix-vector
products are performed using a standard (sparse) level 2 BLAS kernel.

Task 4. The application of the preconditioner in lines 2 and 8 as shown in
Algorithms 2 and 3 for the BNN and BDDC preconditioners, respectively. Here is
where the two-level structure of both preconditioners is exposed. In the case of the
BNN method, there is an additional residual update; see line 2 in Algorithm 2. The
Schur complement-vector in this update is performed as in (3.1).

The first step in the application of the preconditioner is the computation of the
fine-grid correction zF (see line 1 in Algorithms 2 and 3). For both methods, the fine-
grid preconditioner is applied to a global vector r (a residual) which is distributed in
such a way that each MPI task keeps local partially summed contributions. In both
the application of B−1

NN and B−1
F , the following computation has to be performed first:

Iti r = Iti

nsbd∑
j=1

Rtjrj ,(3.2)

which requires to obtain fully summed entries of r at each MPI task, followed by
the application of the weighting matrix. The former fully summed assembly of r
involves communication among nearest neighbors. The efficient implementation of
this communication kernel is described in Section 3.4. The latter application of the
weighting matrix is highly parallel as it can be applied locally on each MPI task. After
the solution of local fine-grid problems (see Section 3.2), we obtain si = S†i I

t
i r and

SCALABILITY ANALYSIS OF BALANCING DD 11

si = (Sci)
−1Iti r for the BNN and BDDC methods, respectively, which define a global

element of the product space sF ∈ V . Finally, it is transformed to a continuous zF ∈ V̂
as in (2.6). This operation also involves communication among nearest neighbors, as
described in Section 3.4.

The second step in the application of the preconditioner is the computation of
the coarse-grid correction zC (see lines 3 and 2 in Algorithms 2 and 3, respectively).
The coarse-grid preconditioner is also applied to a residual r which is distributed
in such a way that each MPI task stores partially summed contributions. For both
preconditioners the first step is a projection onto the coarse space. For the BNN
method it reads as:

(It0r)i = (φi)tr =
(
φi
)t ∑
j∈N(i)

Rtjrj =
∑

j∈N(i)

(
Rjφ

i
)t
rj ,(3.3)

where abusing the notation of Section 2.3, N(i) is the set of subdomains neighboring
subdomain i (included itself). For the BDDC method, since the coarse-grid space
is non-conforming (see (2.11)), we compute (It0r)a =

∑
i∈N(a)(φ

a
i)tIti r, where the

computation of Iti r is reused from the fine-grid component (see (3.2)). The solution
of the global problem γ = S−1

0 It0r ∈ H0 is then injected into the fine-grid space.

For the BNN method, since H0 ⊂ V̂ and zC = I0γ =
∑nsbd

i=1 φiγi, we can compute
locally (zC)i = RizC =

∑
j∈N(i)Riφ

jγj . In the case of the BDDC method, we first

compute the local components
∑
a∈Gi φ

a
i γa of sC ∈ V which has to be transformed

to a continuous zC ∈ V̂ as described above with zF. Note that as both the fine-
grid and coarse-grid correction lead to sF ∈ V and sC ∈ V , respectively, we can
actually compute s = sF + sC in line 3 of Algorithm 3, to finally obtain z from s
as in (2.6). In other words, the above communication required to transform sF ∈ V
to a continuous zF ∈ V̂ can be postponed until the the coarse-grid and fine-grid
corrections are combined. The distributed-memory implementation of It0r and I0γ
requires global communications as described in Section 3.5. Besides, they require the
coarse-grid basis functions which are obtained as the solution of local problems as
described in Section 3.3. The assembly and solution of the coarse-grid problem is also
described in Section 3.3.

As it is apparent from the description of Algorithm 1, the distributed-memory
implementation of BDDC and BNN methods has only subtle differences, so that a
common implementation framework for both has been used.

3.2. Fine-grid preconditioning level. This section describes the computa-
tions to be performed in the fine-grid preconditioning level of the BNN (Section 3.2.1)
and BDDC (Section 3.2.2) preconditioners. Special emphasis is put on the identifica-
tion of the (dense/sparse) standard computational kernels and techniques that lead
to an efficient implementation of the algorithms subject of study.

3.2.1. BNN. The implementation of the BNN fine-grid preconditioning level
must take care of the efficient computation of si = S†i I

t
i r. Recall from Section 2.3

that, when the subdomain is non-floating, S†i I
t
i r = S−1

i Iti r. This is (most) efficiently
computed as the solution of the following linear system:[

AiII AiIΓ
AiΓI AiΓΓ

] [
t
si

]
=

[
0
Iti r

]
.(3.4)

12 S. BADIA, A. F. MARTÍN AND J. PRINCIPE

On the other hand, when the subdomain is floating (i.e., Si is singular), then S†i I
t
i r

is computed as the solution of the following (constrained) local system: AiII AiIΓ 0
AiΓI AiΓΓ 1i

0 1ti 0

 t
si
λ

 =

 0
Iti r
0

 ,(3.5)

where λ ∈ R is the Lagrange multiplier, with λ = 0 as Iti r ∈ ker (Si)
⊥

= span (1i)
⊥

by construction of the BNN coarse-grid space (see Section 2.3). We stress that the
constrained linear system (3.5) is symmetric indefinite but non-singular. Although λ
is known in advance, the elimination of the third equation in (3.5) leads to a singular
problem, therefore unsolvable by sparse direct solvers (this is indeed one of the main
drawbacks of some BNN implementations).

The solution of (3.4) and (3.5) requires, during preconditioner set-up, the compu-
tation of a sparse direct factorization of their corresponding coefficient matrix, while
the application of the preconditioner requires a sparse backward/forward substitution
to finally obtain si. The algorithms for the direct solution of symmetric indefinite
linear systems (e.g., (3.5)) are typically more expensive than those required for sym-
metric definite ones (e.g., (3.4)).8 An alternative approach (also implemented in our
codes) that we recommend to deal with floating subdomains is the one presented in
[2]. Essentially, it is based on the observation that (3.5) can be transformed into an
equivalent positive definite (PD) system by simply fixing judiciously (in particular by
analyzing the kernel of Si) picked degrees of freedom; for the Laplacian problem it
simply reduces to fix one arbitrary degree of freedom. We refer the reader to [2] for a
detailed explanation and comparison of both approaches for elasticity and Laplacian
problems.

3.2.2. BDDC. The BDDC fine-grid preconditioning level is responsible for the
computation of the product si = (Sci)

−1
Iti r. This is obtained as the solution of the

following constrained linear system: AiII AiIΓ 0
AiΓI AiΓΓ Cti

0 Ci 0

 t
si
λ

 =

 0
Iti r
0

 .(3.6)

There are two solution approaches for this symmetric indefinite (but non-singular)
linear system. The first one is to tackle (3.6) directly using a sparse direct solver
for symmetric indefinite linear systems. In such a case, a sparse direct factorization
of the coefficient matrix is computed for the set-up of the preconditioner, while a
sparse backward/forward substitution is required to compute si during preconditioner
application. The second approach, originally presented in [9], exploits the particular
structure of Ci to enable the exploitation of symmetric definite problems for the
solution of (3.6). In the rest of this section we discuss this second approach and its
efficient implementation.

Let us consider a reordering of (3.6) in such a way that FE equations/unknowns
related to corners (C) are numbered first, followed by the rest (R) of nodes, ordered as

8For example, PARDISO is based on the sparse Cholesky factorization without pivoting for
symmetric positive definite problems, while for symmetric indefinite problems, it uses a more ex-
pensive sparse LDLT factorization which, for numerical stability purposes, combines static (prior-
to-factorization) pivoting via symmetric weighted matchings and classical Bunch-Kaufman dynamic
(during factorization) pivoting only applied inside the supernodes [36,37].

SCALABILITY ANALYSIS OF BALANCING DD 13

internal nodes first, followed by nodes members of faces and nodes members of edges.
Further, rows and columns of Ci related to nodes in Ci are labeled first, followed by
those of Fi and Ei. Let us also assume that the local ordering of corners is conformal
with that of the rows of Ci corresponding to corner constraints. Then we obtain the
following block reordered (constrained) linear system:

AiCC (AiRC)t I 0
AiRC AiRR 0 (CiR)t

I 0 0 0
0 CiR 0 0

xiC
xiR
λiC
λiR

 =

biC
biR
0
0

 ,(3.7)

where

AiRR =

 AiII AiIF AiIE
AiFI AiFF AiFE
AiEI AiEF AiEE

 , CiR =

[
0 CiF 0
0 0 CiE

]
,

and λiC and λiR are the Lagrange multipliers associated to corner constraints and the
rest of constraints, respectively. The particular block structure of Ci is easily derived
from its definition in (2.10). Although the permutation matrix which leads to (3.7)

from (3.6), and its inverse, have been omitted for simplicity, note that
(
biC biR

)t
is

obtained from (0 Iti r)
t

and (t si)
t

from
(
xiC xiR

)t
after the application of the former

and the latter permutations, respectively. In our implementation, both permutations
are explicitly computed (and stored as usual in permutation arrays) as they are used
for the extraction of those blocks of (3.7) which are required for its solution (see
below).

The solution of (3.7) is computed as follows. From the third and second block
equations of (3.7) we have that xiC = 0 and

xiR = (AiRR)−1biR − (AiRR)−1(CiR)tλiR,(3.8)

respectively, where AiRR is a large, sparse, symmetric positive definite matrix. If
the first two block equations are eliminated from (3.7), Lagrange multipliers λiR are
obtained as the solution of the following system:

CiR(AiRR)−1(CiR)tλiR = −(CiR)t(AiRR)−1biR,(3.9)

where CiR(AiRR)−1(CiR)t, the Schur complement matrix associated to λiR, is a small,
dense, symmetric positive definite matrix (of size nFi + nCi). During preconditioner
set-up, the following four tasks are performed: (1) compute the sparse Cholesky
factorization of AiRR; (2) compute (AiRR)−1(CiR)t by means of a kernel which al-
lows the exploitation of the level 3 BLAS during the (blocked) sparse backward/for-
ward substitution, and store the result in a dense work array for later use; (3) com-
pute CiR(AiRR)−1(CiR)t (reusing (AiRR)−1(CiR)t from step (2)); (4) compute a dense
Cholesky factorization of CiR(AiRR)−1(CiR)t using the corresponding LAPACK ker-
nel. We stress that (CiR)t is stored in dense storage mode as required by the ker-
nel exploited in step (2). However, CiR is not stored. Instead, it is more effi-
cient to implement the matrix-vector (and matrix-matrix) multiplication using a
subroutine which generates its entries “on the fly” to save storage and that only
operates with the non-zero entries of CiR to save floating-point calculations. On
the other hand, during the preconditioner application, the following tasks are per-
formed: (1) solve AiRRt

i
R = bRi by sparse backward/forward substitution; (2) com-

pute wiR = CiRt
i
R; (3) solve CiR(AiRR)−1(CiR)tλiR = −wiR using the corresponding

14 S. BADIA, A. F. MARTÍN AND J. PRINCIPE

level 2 BLAS kernel for the triangular solution of dense linear systems; (4) solve
AiRRx

i
R = tRi − (AiRR)−1(CiR)tλiR by sparse backward/forward substitution. The

computation of the right hand side in step (4) requires a former level 2 BLAS dense
matrix-vector product. The dense work array setup during preconditioner construc-
tion for the storage of (AiRR)−1(CiR)t is reused for this product.

3.3. Coarse-grid preconditioning level. In this section we focus on the im-
plementation details of the second level in the two-level structure of the BNN and
BDDC preconditioners, namely the coarse-grid preconditioning level. Duties on this
level include: (1) the computation of coarse-grid space basis functions during precondi-
tioner set-up; (2) the computation of the contribution of each subdomain to the coarse-
grid coefficient matrix S0 and coarse-grid residual, during preconditioner set-up and
application, respectively; (3) the assembly, Cholesky factorization of S0 and solution
of the coarse-grid system during preconditioner set-up and application, respectively.
Although there are several implementation approaches for (3) in a distributed-memory
code (e.g., in parallel on all or a subset of processors in the global communicator),
we turn our attention into a MPI implementation that solves the coarse-grid problem
serially. Apart from the evaluation of the scalability of this solution, another purpose
of this paper is to determine whether it is more efficient to assemble/factorize/solve
the coarse-grid problem on one processor, and then distribute the solution over the
rest of processors, or to assemble/factorize/solve an identical problem on all proces-
sors, where no global communication is required afterwards. The solution on one
or all processors decision depends on the extra synchronization and communication
overhead incurred by the global collectives required to implement each option. Sec-
tion 3.5 presents these collectives and evaluates their performance and scalability on
a large-scale distributed-memory machine, and Section 4 studies the weak scalability
of the coarse-grid preconditioning level, paying special attention to the one or all pro-
cessors decision. The rest of the current section describes in detail implementation
considerations of this preconditioning level.

We denote by Φi the matrix whose columns are the local coarse basis functions.
In the case of the BNN method they are Riφ

j for j ∈ N(i). In the case of the BDDC
method they are φai for a ∈ Gi (see Section 2.4). In the case of the BDDC method, the
computation of Φi involves the solution of the following (constrained) sparse linear
system with several right hand sides: AiII AiIΓ 0

AiΓI AiΓΓ Cti
0 Ci 0

 βi
Φi
Λi

 =

 0
0
I

 ,(3.10)

where φai , i.e., the a-column of Φi, is the restriction of a (corner, edge, or face) con-

straint basis function to subdomain i, βji is the discrete harmonic extension of φji , λ
j
i

is the vector of Lagrange multipliers, and I is the identity matrix of size nicts. The
solution of (3.10) reuses the data structures which are computed during the set-up of
the fine-grid preconditioner; see Section 3.2.2. Any of the two approaches described
for the solution of (3.6) can be used for (3.10). However, the efficient computation
of (3.10) is carried out with dense level 3 BLAS (e.g., the solution of a dense trian-
gular linear system with several right hand sides) and sparse kernels which allow the
exploitation of the level 3 BLAS during the (blocked) sparse backward/forward sub-
stitution. Besides, given the identity matrix on the right hand side of (3.10) (instead
of a zero matrix as in (3.6)), ARC has also to be extracted from (3.7) during precon-
ditioner set-up and stored as a dense matrix (as it becomes the input of a kernel for

SCALABILITY ANALYSIS OF BALANCING DD 15

the solution of triangular systems with several right hand sides).

Coarse-grid preconditioning level duties also include the computation of the con-
tribution of each subdomain to the coarse-grid coefficient matrix S0 and coarse-grid
residual. The sparse matrix S0 can be obtained as the assembly (sum) of subdo-
main contributions

∑nsbd

i=1 (Φi)
tSiΦi as in (2.12). In the case of the BNN method, the

computation of SiΦi is split (as in (3.1)) into two steps: (1) solve AiIIβi = −AiIΓΦi;
(2) SiΦi = AiΓIβi + AiΓΓΦi. Step (1) is efficiently computed with a kernel for the
sparse direct solution of linear systems with several right hand sides, i.e., a kernel
which allows the exploitation of the level 3 BLAS during the (blocked) sparse back-
ward/forward substitution. Step (2) requires a pair of sparse-dense matrix-matrix
multiplications, which are efficiently computed using the corresponding kernel in the
(sparse) level 3 BLAS. In case of the BDDC method, the computation of SiΦi comes
almost for free as SiΦi = −CTi Λi (see (3.10)). Once SiΦi is computed, the computa-
tion of ΦtiSiΦi just requires a further dense matrix-matrix multiplication, which for
portability and efficiency, is performed using the corresponding kernel in the level 3
BLAS. On the other hand, the computation of the contribution of subdomain i to the
coarse-grid residual during preconditioner application, i.e., Φtiri, is most conveniently
carried out with a level 2 BLAS matrix-vector multiplication.

Finally, the coarse-grid preconditioning level is responsible for the assembly, the
Cholesky factorization of S0 and the solution of the coarse-grid system during pre-
conditioner set-up and application, respectively. For convenience, we split the presen-
tation into these two phases.

Coarse preconditioner set-up. In a first symbolic phase, the adjacency graph
of the sparse coarse-grid coefficient matrix S0 is built on one or all processors. Two
steps are required: (a) the computation of a global ordering of coarse-grid nodes
(objects for BDDC and subdomains for BNN); (b) the computation of the global
(although sparse) coupling among coarse-grid nodes. Step (a) is naive in the case
of the BNN method, as this ordering already coincides with the global ordering of
the subdomains. However, in the case of the BDDC method, its construction requires
that one or all processors gather all the coarse-grid nodes each MPI task has identified
on its local interface. The labeling of coarse-grid nodes is greatly simplified in our
implementation by the fact that coarse-grid nodes are extracted from communication
objects on the local interface (see Section 3.4 and Figure 3.1), which are already
labeled with a global identifier. Step (b) depends on the support of coarse basis
functions on Γ. In the case of the BDDC method, the support of these functions is such
that a given coarse-grid node is coupled with all the coarse-grid nodes identified on the
subdomains that surround the node. Therefore, it is sufficient that the processor(s) in
charge of S0 gather, per each subdomain, the list of subdomains that surround each
coarse-grid node. In case of the BNN method, the support of basis functions is such
that two coarse-nodes are coupled if they are neighbors or neighbors of neighbors.
Therefore, to determine the sparsity pattern of S0, it is sufficient to gather, per each
subdomain, its list of neighboring subdomains. This global data structure is referred
on the literature as subdomain graph or partition graph (see, e.g., [31, 33, 34]). In a
second numerical phase, the matrix S0 is both assembled and then factorized on one or
all processors. In order to do so, processor(s) in charge of S0 gather subdomain local
contributions ΦtiSiΦi, and then assemble them into S0. The correspondence among
the entries of each subdomain elemental matrix and S0 for this assembly process is
given by the global ordering (pre)computed on step (a).

Coarse preconditioner application. The processor(s) responsible for the

16 S. BADIA, A. F. MARTÍN AND J. PRINCIPE

coarse-grid problem solution first gather subdomain local contributions (see (3.3)
and then assemble them to build the coarse-grid residual. The backward/forward
substitution with the Cholesky factor of S0 provides the preconditioned coarse-grid
residual, which is then distributed among all processors only in case one processor is
responsible for the solution of the coarse-grid residual.

3.4. Local nearest neighbor exchange communications. A basic commu-
nication kernel to be implemented in non-overlapping DD preconditioners is the one
that given a distributed vector stored in partially summed form returns after com-
munication the same distributed vector stored in fully summed form, see 2.6 and 3.2
. In contrast to global dense collectives such as all-to-all, gather or scatter, this col-
lective communication is highly sparse as it only requires communication among (a
moderate number of) nearest neighbors. For example, for structured meshes, each
part has only 8 and 26 neighbors in 2D and 3D, respectively. An implementation of
this kernel requires a representation of the local interface of each subdomain in terms
of communication objects. Communication objects embrace all the nodes of the mesh
interface that are shared by the same subdomains. Each mesh point residing on the
interface is assigned an owner subdomain. The rest of subdomains sharing this mesh
point automatically become non-owners. See Figure 3.1 for a graphical representa-
tion of these concepts. In a first data exchange among nearest neighbors, non-owner
subdomains send their local contributions to the owner subdomain, while the owner
subdomain is in charge for data accumulation and update to obtain fully summed
entries. This is illustrated in Figure 3.1 (a). For example, subdomains 2, 3 and 4 send

x̃
(2)
21 , x̃

(3)
21 and x̃

(4)
21 , respectively, while subdomain 1 receives and accumulates them to

obtain x
(1)
21 . Then, in a second data exchange, owners send copies of its fully summed

entries to the non-owner sides, which just copy them into their local data structures.
This exchange phase is illustrated in Figure 3.1 (b). The strategy based on owner and
non-owner subdomains of mesh interface points is also covered in [34].

...

... ...

x̃
(1)
1 x̃

(1)
3x̃

(1)
2 x̃

(1)
4 x̃

(1)
5

x̃
(1)
6

x̃
(1)
7

x̃
(1)
8

x̃
(1)
9

x̃
(1)
10

x̃
(1)
21

x̃
(2)
6

x̃
(2)
7

x̃
(2)
8

x̃
(2)
9

x̃
(2)
10

x̃
(2)
21

x̃
(2)
16 x̃

(2)
17 x̃

(2)
18 x̃

(2)
19 x̃

(2)
20

...

......

...

...

...

...

......

Ω1 Ω2

Ω3 Ω4

x̃
(3)
1 x̃

(3)
2 x̃

(3)
3 x̃

(3)
4 x̃

(3)
5 x̃

(3)
21

x̃
(3)
11

x̃
(3)
12

x̃
(3)
13

x̃
(3)
14

x̃
(3)
15

x̃
(4)
11

x̃
(4)
12

x̃
(4)
13

x̃
(4)
14

x̃
(4)
15

x̃
(4)
21 x̃

(4)
16 x̃

(4)
17 x̃

(4)
18 x̃

(4)
19 x̃

(4)
20

...

... ...

x̃
(1)
1 x̃

(1)
3x̃

(1)
2 x

(1)
4 x

(1)
5

x̃
(1)
6

x̃
(1)
7

x̃
(1)
8

x
(1)
9

x
(1)
10

x
(1)
21

x
(2)
6

x
(2)
7

x
(2)
8

x̃
(2)
9

x̃
(2)
10

x̃
(2)
21

x̃
(2)
16 x̃

(2)
17 x̃

(2)
18 x

(2)
19 x

(2)
20

...

......

...

...

...

...

......

Ω1 Ω2

Ω3 Ω4

x
(3)
1 x

(3)
2 x

(3)
3 x̃

(3)
4 x̃

(3)
5 x̃

(3)
21

x
(3)
11

x
(3)
12

x
(3)
13

x̃
(3)
14

x̃
(3)
15

x̃
(4)
11

x̃
(4)
12

x̃
(4)
13

x
(4)
14

x
(4)
15

x̃
(4)
21 x

(4)
16 x

(4)
17 x

(4)
18 x̃

(4)
19 x̃

(4)
20

(a) (b)

Fig. 3.1. Illustration of the two nearest neighbor exchange phases required to obtain a distributed
vector stored in fully summed form from the same distributed vector stored in partially summed form.
The computational mesh has been partitioned into 4 subdomains, with 5 communication objects
on the interface. Four communication objects are shared by subdomains 1-3, 1-2, 3-4, and 2-4,
respectively, while the remaining object is shared among all subdomains. The owner subdomain of
a given interface point is represented in black, while a non-owner one in white.

SCALABILITY ANALYSIS OF BALANCING DD 17

There are two main implementation issues that significantly influence the per-
formance and scalability of the data exchanges among nearest neighbors. The first
one targets the strategy to determine the owner subdomain of each mesh interface
point, as this strategy influences the trade-off among message size and number of mes-
sages to be exchanged. Our implementation relies on a very simple strategy (that we
demonstrate afterwards to be quite efficient): (1) objects shared by two subdomains
are divided equally among them (i.e., one subdomain is the owner of the first half,
while the other of the second half), so that message sizes to be exchanged on each side
are balanced; (2) objects shared by more than two parts are (arbitrarily) owned by
the part with minimum identifier. This results in a trade-off which chooses a smaller
number of larger messages over a larger number of smaller messages (e.g., assuming
a given object is shared among n parts, a n-to-1 followed by a 1-to-n communication
pattern is preferred over two consecutive n-to-n communication patterns with smaller
messages). The second issue targets the MPI implementation of each data exchange
phase, as the MPI standard does not currently support sparse collectives. There are
two possible solutions to bypass this limitation: (a) to use existing MPI dense col-
lectives, in particular, irregular (vector), personalized all-to-all exchange, in which no
data are exchanged between processes that are not neighbors (i.e., MPI Alltoallv).
This solution has several disadvantages as discussed in detail in [24]; (b) to implement
the sparse collective by means of point-to-point communication operations. This is the
solution followed by the vast majority of existing distributed-memory linear algebra
codes. After a comprehensive literature (see, e.g., [20,21]) and parallel software (e.g.,
TRILINOS [22, 23], PETSC [4, 5], PSBLAS [13, 14]) review, existing general-purpose
solutions can be categorized as follows depending on the order on which the send/re-
ceive operations are issued and the particular blocking semantics of the point-to-point
communication operations:

• PSND-PRCV. Each MPI rank traverses its local neighborhood and issues a
send operation per neighbor. Then, in a second traversal, it issues a receive
operation per neighbor. Send operations are locally blocking while receive
operations are blocking (i.e., MPI Recv). Locally blocking semantics ensure
that the send operation immediately returns the control to the application
after the message to be sent has been copied in an intermediate buffer and
therefore avoids the potential deadlock of blocking sends (i.e., MPI Send).
This is the strategy followed by the PSBLAS library, which in turn inherited
the locally blocking semantics from the BLACS [14].

• IRCV-RSND. All receive operations are issued first, then all send opera-
tions. Receive operations are non-blocking (i.e., MPI IRecv), while send op-
erations are ready blocking (i.e., MPI Rsend). A global barrier operation
(i.e., MPI Barrier) is issued between receive and send operations as required
by the ready blocking semantics. At the end, processes wait for the non-
blocking receive operations to complete (i.e., MPI Waitall). This is the strat-
egy implemented in Epetra-Trilinos [23].

• IRCV-SND. Same as IRCV-RSND but ready blocking sends are replaced by
blocking sends (i.e., MPI Recv). No barrier is required in between sends and
receives.

• IRCV-ISND. Same as IRCV-SND but blocking sends are replaced by non-
blocking sends (i.e., MPI ISend). At the end, processes wait for both the
non-blocking receives and send communication operations.

In order to provide some evidence with respect to the performance and scalabil-

18 S. BADIA, A. F. MARTÍN AND J. PRINCIPE

ity of the communication kernel covered in this section, Figure 3.2 illustrates typical
weak scaling curves for the parallel execution time required to perform the two nearest
neighbor exchange phases on the HPC-FF (see Section 4.1). We focus on 2D struc-
tured meshes of quadrilateral elements, although similar conclusions can be raised in
the 3D structured case. We refer to Section 4.1 for a detailed description of the experi-
ment set-up. Figure 3.2 (a) compares the parallel execution time of the aforementioned
MPI implementations when increasing the number of cores while keeping fixed the lo-
cal problem size to (Hh)2 = 5122 quadrilaterals. This figure shows that PSND-PRCV,
IRCV-SND and IRCV-ISND are weakly scalable MPI implementations, as they reach
asymptotic parallel execution time (of approximately 65 µ-seconds). However, the
performance of IRCV-RSND significantly degrades with the number of cores. On the
HPC-FF, it seems that any performance gain obtained as by-product of the ready
blocking semantics (hand-shaking and intermediate buffer copying removal) does not
pay off the overhead associated to the barrier required in between receives and sends,
which introduces a global synchronization point that limits the amount of parallelism
by exacerbating the effects of load imbalance. The performance and scalability of
the implementation based on MPI Alltoallv is not surprising as it does not properly
capture the parallelism inherent to the sparse communication pattern (as pointed out
in [24]). Figure 3.2 (b) illustrates the results of the same weak scaling study of
Figure 3.2 (a), but it focus on one of the three most efficient implementations (i.e.,
IRCV-ISND) with problem size fixed to several values. Absolute timings and the
order of complexity with H

h shown in Figure 3.2 (b) reveal that, as long as a weak
scalable implementation such as IRCV-ISND is employed, the contribution of this
communication kernel to the overall performance of BDD methods can be considered
negligible compared to that of other building blocks in this family of algorithms, such
as, e.g., the solution of local Dirichlet problems or the computation of a coarse-grid
correction.

0

2

4

6

8

10

12

14

16

18

20

128 392 800 1352 2048 2888 3872

T
im

e
(1

0-5
 s

ec
s.

)

#cores

ALL-TO-ALL
PSND-PRCV
IRCV-RSND

IRCV-SND
IRCV-ISND

0

1

2

3

4

5

6

7

128 392 800 1352 2048 2888 3872

T
im

e
(1

0-5
 s

ec
s.

)

#cores

H/h=16
H/h=32
H/h=64

H/h=128
H/h=256
H/h=512

(a) (b)

Fig. 3.2. Weak scaling for the two exchange phases illustrated in Figure 3.1. (a) Several
implementations and fixed local problem size H

h
= 512. (b) IRCV ISND implementation for several

local problem sizes H
h

.

3.5. Global collectives. The global MPI communication operations required
for the implementation of the coarse-grid preconditioning level in the one processor
case are MPI Gatherv (twice for the preconditioner set-up and once per precondi-
tioner application) and MPI Scatterv (once per preconditioner application), while
MPI Allgatherv (twice for the preconditioner set-up and once per preconditioner ap-

SCALABILITY ANALYSIS OF BALANCING DD 19

plication) is required in case the coarse-grid problem is solved on all processors. These
varying message size collectives are the ones that most accurately capture the global
communication pattern involved in the (serial) solution of the coarse-grid problem.
For structured meshes and regular partitions, boundary subdomains do not send/re-
ceive the same amount of data than internal ones, and for unstructured ones, the
shape of each subdomain local interface is strongly dependent on the underlying (ir-
regular) non-overlapping partition. However, we have experimentally observed on
several distributed-memory platforms that the performance of the solution of the
coarse-grid problem may benefit from exploiting fixed message size collectives, namely
MPI Gather/MPI Scatter/MPI Allgather. Figure 3.3 depicts what we have observed
on the HPC-FF supercomputer. In particular, it reports the parallel execution time
with increasing number of cores for fixed and varying message size collectives for
powers-of-two message sizes in the range 32-8192 bytes; all message sizes exchanged
by BDD methods in the case of structured 2D/3D meshes are enclosed within this
range. Figure 3.3 reveals that for message sizes below or equal to 512 bytes the perfor-
mance of MPI Gather is superior to that of MPI Gatherv, and the smaller the message
size the more superior MPI Gather over MPI Gatherv. We can observe just the op-
posite for message sizes beyond 512 bytes, with the largest gains of MPI Gatherv over
MPI Gather with the largest message sizes. In the case of scatter communication, a
much larger message size of approximately 4096 bytes is required by MPI Scatterv to
become superior to MPI Scatter. Besides, for “small” message sizes, larger gains of
MPI Scatter over MPI Scatterv are attained compared to those observed for gather
communication. Finally, the performance of MPI AllGatherv and MPI AllGather
collectives is almost coincident.

4. Scalability study.

4.1. Experimental framework. The algorithms subject of study were imple-
mented in FEMPAR, an in-house, developed from scratch, OO framework which,
among other features, provides the basic tools for the efficient message-passing (MPI)
implementation of sub-structuring DD solvers, using METIS [25] for unstructured
meshes. All experiments reported in the sequel were obtained on a large-scale multicore-
based distributed-memory machine, the HPC-FF (HPC for Fusion), located at the
Juelich (Germany) Supercomputing Centre. The HPC-FF is a QDR Infiniband in-
terconnected commodity cluster composed of 1080 Bull NovaScale R422-E2 blades.
Each blade is equipped with two Intel Xeon X5570 QuadCore processors running at
2.93 GHz (8 computational cores in total) and 24 GBytes of DDR3 memory, and runs
a full-featured SUSE SLES 11 Linux OS. The codes were compiled using Intel Fortran
compiler (12.1.4) with recommended optimization flags and we used Parastation 5.0
MPI tools and libraries for native message-passing. The codes were linked against
the BLAS/LAPACK and PARDISO available on the Intel MKL library (version 10.3,
build 10). Peak flop performance per core is 11.72 GFLOPs/sec. (i.e., 93.76 GFLOP-
s/sec. per blade) and measured MPI intrasocket, intersocket and internode latency
and bandwidth for this machine are 0.26 µ-seconds and 4.6 GBytes/sec., 0.57 and
3.7, and 1.49 and 3.1, respectively. We stress that we have also evaluated the codes
on several radically different platforms (e.g., MareNostrum, a Myrinet-interconnected
cluster composed of 2560 IBM JS21 compute nodes at the Barcelona Supercomputing
Center). We skip the corresponding results because similar balances to those reported
next for the HPC-FF were achieved.

The experimental study in this paper focuses on the evaluation of the weak scala-
bility of several sub-structuring DD solvers when applied to the Poisson problem. Re-

20 S. BADIA, A. F. MARTÍN AND J. PRINCIPE

1

10

102

103

104

105

64 512 1000 1728 2744 4096

W
al

l c
lo

ck
 ti

m
e

(u
se

cs
.)

#cores

MS=32
MS=64

MS=128

MS=256
MS=512

MS=1024

MS=2048
MS=4096
MS=8192

1

10

102

103

104

105

64 512 1000 1728 2744 4096

W
al

l c
lo

ck
 ti

m
e

(u
se

cs
.)

#cores

MS=32
MS=64

MS=128

MS=256
MS=512

MS=1024

MS=2048
MS=4096
MS=8192

(a) (b)

1

10

102

103

104

105

64 512 1000 1728 2744 4096

W
al

l c
lo

ck
 ti

m
e

(u
se

cs
.)

#cores

MS=32
MS=64

MS=128

MS=256
MS=512

MS=1024

MS=2048
MS=4096
MS=8192

1

10

102

103

104

105

64 512 1000 1728 2744 4096

W
al

l c
lo

ck
 ti

m
e

(u
se

cs
.)

#cores

MS=32
MS=64

MS=128

MS=256
MS=512

MS=1024

MS=2048
MS=4096
MS=8192

(c) (d)

1

10

102

103

104

105

64 512 1000 1728 2744 4096

W
al

l c
lo

ck
 ti

m
e

(u
se

cs
.)

#cores

MS=32
MS=64

MS=128

MS=256
MS=512

MS=1024

MS=2048
MS=4096
MS=8192

1

10

102

103

104

105

64 512 1000 1728 2744 4096

W
al

l c
lo

ck
 ti

m
e

(u
se

cs
.)

#cores

MS=32
MS=64

MS=128

MS=256
MS=512

MS=1024

MS=2048
MS=4096
MS=8192

(e) (f)

Fig. 3.3. Performance and scalability of fixed and varying message size collectives on the
HPC-FF supercomputer. Fixed: (a) MPI Gather ; (c) MPI Scatter; (e) MPI Allgather. Varying:
(b) MPI Gatherv; (d) MPI Scatterv; (f) MPI Allgatherv.

call that weak scaling studies determine at which rate a given magnitude evolves with
the number of cores P while keeping the local problem size H

h constant. In particular,
magnitudes of interest for our study are the total computation time, and the number
of PCG iterations required to solve the preconditioned interface problem (2.3). The
former magnitude is in turn concentrated on three phases: the Schur-complement sys-
tem and preconditioner set-up, and the iterative solution of (2.3) by the PCG Krylov
subspace solver. In Section 4.1.1, and 4.1.2 we introduce the particular ranges of P
and H

h that our study explores for 2D and 3D, respectively, and how the problem is
mapped to the underlying computer.

SCALABILITY ANALYSIS OF BALANCING DD 21

4.1.1. Set-up for 2D experiments. We consider the solution of the Poisson
problem on a rectangle Ω = [0, 2]×[0, 1], a global conforming uniform mesh (partition)
of Ω into quadrilaterals, and a bilinear finite element discretization (i.e., Q1-elements).
The 2D mesh was partitioned into rectangular grids of P = 4m × 2m square subdo-
mains, and distributed over m = 1, 2, . . . , 22 nodes, with 4×2 subdomains/MPI Ranks
per node and one MPI Rank per core of the HPC-FF. In order to evaluate the weak
scaling of the solvers under several computation/communication balances, we consider
increasing values for H

h = 16, 32, 64, 128, 256 and 512, with the two extremes being the
most and least communication-bounded scenarios of the sample. The largest problem
size H

h = 512 was selected strategically to be the largest power-of-two that fits into the
machine given a memory limit per core of 1.7 GBytes. Note that in 2D the number
of quadrilaterals on each local mesh is therefore H

h ×
H
h , and that of the global mesh

is given by 4mH
h × 2mH

h .

4.1.2. Set-up for 3D experiments. We consider the solution of the Poisson
problem on a cube Ω = [0, 1] × [0, 1] × [0, 1], a global conforming uniform mesh
(partition) of Ω into hexahedra and a trilinear finite element discretization (i.e., Q1-
elements). The 3D mesh is partitioned into cubic grids of P = 2m× 2m× 2m cubic
subdomains and distributed overm = 1, 2, . . . , 8 nodes, with 2×2×2 subdomains/MPI
Ranks per node and one MPI Rank per core of the HPC-FF. We consider increasing
values for H

h = 10, 20, 30 and 40. The largest problem size H
h = 40 was selected

strategically to be the largest multiple-of-ten that fits into the machine given a memory
limit per core of 1.7 GBytes. Note that in 3D the number of hexahedra on each local
mesh is H

h ×
H
h ×

H
h , and that of the global mesh is given by 2mH

h × 2mH
h × 2mH

h .

4.2. A simple computational model. Table 4.2 summarizes the well-known
[15] order of arithmetic complexity of the different stages of the serial direct solution
of sparse linear systems arising from the discretization of a square or cube with a
uniform mesh with n nodes, with d = 2, 3 the dimension of the space.

Phase 2D complexity (d = 2) 3D complexity (d = 3)
Reordering O(n) O(n)

Symbolic Factorization O(n log n) O(n
4
3)

Numerical Factorization O(n
3
2) O(n2)

Triangular Solution O(n log n) O(n
4
3)

Table 4.1
Arithmetic complexities of the different stages in the serial direct solution of sparse linear

systems.

If the uniform mesh is distributed over a uniform subdomain grid with P = H−d

subdomains, with n = (Hh)d nodes on each subdomain, the estimated complexity the
NN-PCG and BDD-PCG methods is given on Table 4.2. Recall that, in our codes,
Reordering, Symbolic Factorization and Numerical Factorization are performed during
preconditioner and Schur complement set-up, while Triangular Solution is performed
at each PCG iteration during Schur complement and preconditioner application. The
complexity of reordering and symbolic factorization has been omitted in the table.
Besides, for simplicity, the effect of communication and load unbalancing has been
neglected. Constants cs and ci depend on the particular stencil the sparse direct
method is applied to (linear FEs, quadratic FEs, etc.), and also on the ability of the
software for the efficient exploitation of the underlying machine characteristics. For

22 S. BADIA, A. F. MARTÍN AND J. PRINCIPE

BDD-PCG methods, ci actually depends on n, although this dependence is very mild
(see e.g., (2.9)) and can be neglected as stated in Section 2.3 and 2.4.

Method 2D complexity (d = 2) 3D complexity (d = 3)

NN-PCG csn
3
2 + ci

√
Pn log(n) csn2 + ci

3
√
Pn

4
3

BDD-PCG csfn
3
2 + cscP

3
2 + cifn log(n) + cicP logP csfn

2 + cscP 2 + cifn
4
3 + cicP

4
3

Table 4.2
Parallel complexity for the NN-PCG and BDD-PCG methods. Sparse direct solvers are assumed

as well as the serial solution of the coarse-grid problem. It is obtained as the sum of the set-up phase
complexity, with unknown constant cs, and the iterative phase complexity, with unknown constant ci.
In the case of BDD-PCG methods, the unknown constants cs and ci are separated into coarse-grid
(c) and fine-grid (f) preconditioning contributions.

The simple computational model in Table 4.2 reveals that the scalability of NN-
PCG and BDD-PCG is composed of two components, a scalable one that does not
depend on P , and a non-scalable one that grows with P . In the former method, the
non-scalable component is associated with the lack of a coarse-grid correction and
subsequent degradation of PCG convergence rates with P (see Section 2.2). This
is inherent to the preconditioning approach and cannot be mitigated. In the latter
method, the non-scalable component is associated to the extra cost of the solution of
the coarse-grid problem, and there is a lot of margin for improvement of this term
via high-performance computing techniques (e.g., fine-grid/coarse-grid overlapping,
distributed-memory implementation of coarse-grid preconditioning level). Anyway,
the key of BDD-PCG methods is that the non-scalable component does not depend
on H

h . This means that, as long as H
h is “large enough”, a balance among the non-

scalable and scalable components can be reached such that the latter determines
the overall (weak) scalability of the solution. The purpose of Sections 4.3-4.4 is
to demonstrate that, with the current software and distributed-memory machines,
constants in Table 4.2 are such that our implementation can be very efficient for
interesting ranges of applicability.

4.3. Coarse-grid preconditioning weak scalability. We first evaluate the
weak scalability of the coarse-grid preconditioning level for the BNN and BDDC
solvers. Besides, given the scenario depicted in Section 3.5, we will determine which
is the fastest solution among the following three approaches: solution on one pro-
cessor with fixed or varying message size collectives, and solution on all processors.
Section 4.3.1 and 4.3.2 cover the 2D and 3D Poisson problems, respectively.

4.3.1. 2D experiments. Figures 4.1 (a) and (b) illustrate the weak scalabil-
ity for the parallel execution time of the coarse-grid preconditioner set-up and Fig-
ures 4.1 (c) and (d) that of the coarse-grid preconditioner application for the BNN,
BDDC(c), and BDDC(ce) solvers. The coarse-grid preconditioner set-up execution
times includes both a symbolic phase, where the graph of S0 is built and then symbol-
ically factorized, and a numerical phase, where S0 is assembled and then factorized
by the sparse Cholesky factorization included in PARDISO. Highly parallel computa-
tions in this preconditioning level (such as the computation of ΦtkSkΦk or Φtkrk) are
excluded from the figure, i.e., only those terms that grow with P in Table 4.2, have
been considered.

Figure 4.1 reveals that the weak scalability of the coarse-grid preconditioning level
degrades as higher core counts are employed. This is caused by the combined effect
of the global collectives scalability for increasing number of cores (see Figure 3.3) and

SCALABILITY ANALYSIS OF BALANCING DD 23

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

8 512 800 1152 1568 2048 2592 3200 3872

W
al

l c
lo

ck
 ti

m
e

(s
ec

s.
)

#cores

Fixed message size
Varying message size

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

8 512 800 1152 1568 2048 2592 3200 3872

W
al

l c
lo

ck
 ti

m
e

(s
ec

s.
)

#cores

MUL.BNN. One processor
MUL.BNN. All processors
BDDC.C. One processor
BDDC.C. All processors

BDDC.CE. One processor
BDDC.CE. All processors

(a) (b)

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

8 512 800 1152 1568 2048 2592 3200 3872

W
al

l c
lo

ck
 ti

m
e

(s
ec

s.
)

#cores

Fixed message size
Varying message

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

8 512 800 1152 1568 2048 2592 3200 3872

W
al

l c
lo

ck
 ti

m
e

(s
ec

s.
)

#cores

MUL.BNN. One processor
MUL.BNN. All processors
BDDC.C. One processor
BDDC.C. All processors

BDDC.CE. One processor
BDDC.CE. All processors

(c) (d)

Fig. 4.1. Weak scalability for the parallel execution time of the coarse-grid preconditioner
set-up ((a) and (b)) and application ((c) and (d)) for the 2D Poisson problem on the HPC-FF.
(a) and (c): BDDC(c) preconditioner, one processor is responsible for coarse-grid problem duties,
comparison of fixed and varying message size collectives. (b) and (d): comparison of BDDC(c),
BDDC(ce) and BNN preconditioners with one or all processors responsible for coarse-grid problem
duties, fixed message size collectives.

the serial preconditioner set-up and application. The latter factor results in idling or
wasted computation parallel overheads, as the processors just waste their time wait-
ing on a collective (if they do not have coarse-solver duties) or performing replicated
computation, respectively. The coarse-grid preconditioning level is therefore a critical
component in our current MPI implementation and any improvement can have signif-
icant impact on the performance and scalability of the overall solution (which will be
later evaluated in Section 4.3.2). Figure 4.1 (a) and (c) show one such improvement for
the BDDC(c) preconditioner set-up and application, respectively, which comes from
the use of fixed message size collectives in case one processor is responsible for coarse-
grid level duties. This improvement can be justified by looking carefully at message
sizes sent/received in the collectives. This in turn strongly depends on the particular
algorithm and phase. For the assembling of the coarse-grid residual, each subdomain
sends a message size proportional to the number of neighboring subdomains plus one
in case of the BNN preconditioner, i.e., 9 elements × 8 bytes/element = 72 bytes, and
to the number of local coarse-grid nodes in case of the BDDC preconditioner, i.e.,
4× 8 = 32 bytes and 8× 8 = 64 bytes, for the BDDC(c) and BDDC(ce), respectively.
These quantities are squared for the (numerical) assembling of S0, i.e., 92 × 8 = 648,
42 × 8 = 128, and 82 × 8 = 512 bytes. As pointed out by the above discussion of
Figure 3.3, these message sizes are within the ranges where the use of fixed message

24 S. BADIA, A. F. MARTÍN AND J. PRINCIPE

size collectives can be beneficial over varying message size ones. Another significant
improvement can be observed in Figure 4.1 (d) if one processor instead of all proces-
sors is responsible for coarse-grid preconditioning level duties. This can be justified
by the superiority of the MPI Gather + MPI Scatter solution over the MPI Allgather
one for “small” message sizes (see Figures 3.3 (a), (b) and (c)). Indeed, “All proces-
sor” curves in Figure 4.1 (d) reflect the peaks that are observed for MPI Allgather in
Figure 3.3 (c). Focusing on the winner implementation for each phase and algorithm
in Figures 4.1 (b) and (d), it can be observed that BDDC(ce) is the method with
the most expensive coarse-grid preconditioner set-up and application and besides its
computational time degrades with the number of cores at the highest rate, followed
by the BNN and BDDC(c) solvers. This ranking is not surprising if one takes a closer
look at the stencil of the coarse-grid coefficient matrix of each method for structured
partitions. BDDC(c) presents the stencil corresponding to the Q1 FE discretization,
BNN a more intricate one where neighbors of neighbors in the Q1 FE discretization
are also connected, and finally that of BDDC(ce) resembles that of the Q2 FE dis-
cretization (after static condensation of interior nodes). The complexity of the sparse
direct Cholesky method applied to a uniform grid with n = P grid points is given
in Table 4.2, with the particular stencil only affecting to the constant. Therefore, it
is reasonable that the more intricate the stencil the higher the constant, confirming
what is observed in Figure 4.1 (b) and (d).

4.3.2. 3D experiments. Figures 4.2 (a) and (b) illustrate the weak scalabil-
ity for the parallel execution time of the coarse-grid preconditioner set-up and Fig-
ures 4.2 (c) and (d) that of the coarse-grid preconditioner application for the BNN,
BDDC(ce), and BDDC(cef) solvers.

The solution based on fixed message size collectives is superior to the one based on
varying message size ones (see Figures 4.2 (a) and (c)) and the one processor dedicated
to coarse-grid problem duties solution is also superior to the all processors one (see
Figures 4.2 (b) and (d)); the justification of these results follows the one for the 2D
structured case (although with larger message sizes in 3D). A much more interesting
observation is the relative ranking of the BNN, BDDC(ce) and BDDC(cef) coarse-grid
preconditioners and the rate at which their weak scalability degrades with the number
of cores. As illustrated by Figures 4.2 (b) and (d), BNN turns to be the method with
the cheapest coarse-grid preconditioner set-up and application and the one with the
smallest rate, followed by the BDDC(ce) and BDDC(cef) in this strict order. Table 4.3
provides several metrics of the coarse-grid problem that helps to understand this
observation, namely the size and number of non-zeros in its sparse coefficient matrix,
and the size of the optimal root separator of its adjacency graph. Although the BNN
coarse-grid sparse coefficient is denser, it is 4 and 7 times smaller than that of the
BDDC(ce) and BDDC(cef), respectively, and its optimal root separator is 1.5 and
2 times smaller than that of the BDDC(ce) and BDDC(cef), respectively. The size
of the optimal root separator, which can be used as lower bound for the complexity
of the sparse direct Cholesky (actually its cube and square for the factorization and
forward/backward substitution, respectively), accurately describes what is observed
in Figures 4.2 (b) and (d).

4.4. Overall Scalability. In this section we take into consideration the overall
scalability of the BNN and BDDC solvers. Both fine-grid and coarse-grid precondi-
tioning contributions to the scaling curves are considered, as well as the number of
PCG iterations required to converge. Section 4.4.1 and 4.4.2 cover the 2D and 3D
Poisson problems, respectively.

SCALABILITY ANALYSIS OF BALANCING DD 25

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

8 216 512 1000 1728 2744 4096

W
al

l c
lo

ck
 ti

m
e

(s
ec

s.
)

#cores

Fixed message size
Varying message size

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

8 216 512 1000 1728 2744 4096

W
al

l c
lo

ck
 ti

m
e

(s
ec

s.
)

#cores

MUL.BNN. One processor
MUL.BNN. All processors

BDDC.CE. One processor
BDDC.CE. All processors

BDDC.CEF. One processor
BDDC.CEF. All processors

(a) (b)

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

8 216 512 1000 1728 2744 4096

W
al

l c
lo

ck
 ti

m
e

(s
ec

s.
)

#cores

Fixed message size
Varying message size

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

8 216 512 1000 1728 2744 4096

W
al

l c
lo

ck
 ti

m
e

(s
ec

s.
)

#cores

MUL.BNN. One processor
MUL.BNN. All processors

BDDC.CE. One processor
BDDC.CE. All processors

BDDC.CEF. One processor
BDDC.CEF. All processors

(c) (d)

Fig. 4.2. Weak scalability for the parallel execution time of the coarse-grid preconditioner set-up
((a) and (b)) and application ((c) and (d)) for the 3D Poisson problem on the HPC-FF. (a) and (c):
BDDC(ce) preconditioner, one processor is responsible for coarse-grid problem duties, comparison
of fixed and varying message size collectives. (b) and (d): comparison of BDDC(ce), BDDC(cef)
and BNN preconditioners with one or all processors responsible for coarse-grid problem duties, fixed
message size collectives.

metric BDDC (ce) BDDC (cef) BNN

nc 4P 7P P
nz 234P 462P 125P
ns 3P 2/3 4P 2/3 2P 2/3

Table 4.3
Size (nc), non-zeros (nz) and optimal root separator size (ns) for the coarse-grid coefficient

matrix in the BDDC and BNN algorithms. A periodic structured mesh of a cube with P = p3

subdomains is assumed, with p the number of subdomains per cartesian direction.

4.4.1. 2D experiments. Figure 4.3 reports the weak scalability for the total
computation time of the winner implementation of the multiplicative BNN solver
and two different implementations of the BDDC(c) and BDDC(ce) solvers. The best
implementation of the coarse-grid preconditioning level was used (see Section 4.3). In
the legend of the figure, DEF (symmetric-PD) and IND (symmetric INDefinite) refer
to the kind of linear systems/solvers that are solved/applied for the computation of
the BDDC fine-grid correction (see Section 3.2.2). The winner implementation of
the BNN method exploits symmetric-PD solvers and saves the solution of a Dirichlet
solver per PCG iteration (cf. [2]). Figure 4.4 illustrates the weak scalability for the
number of PCG iterations. In the PCG method, we set the initial solution vector guess

26 S. BADIA, A. F. MARTÍN AND J. PRINCIPE

x0 = 0, and the iteration is stopped whenever the residual rk at a given iteration k
satisfies ‖rk‖2 ≤ 10−6‖r0‖2; this set-up also applies to Section 4.4.2.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

8 512 800 1152 1568 2048 2592 3200 3872

T
O

T
A

L
W

al
l c

lo
ck

 ti
m

e
(s

ec
s.

)

#cores

MUL.BNN.
BDDC.DEF.C.

BDDC.DEF.CE.
BDDC.IND.C.

BDDC.IND.CE.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

8 512 800 1152 1568 2048 2592 3200 3872

T
O

T
A

L
W

al
l c

lo
ck

 ti
m

e
(s

ec
s.

)

#cores

MUL.BNN.
BDDC.DEF.C.

BDDC.DEF.CE.
BDDC.IND.C.

BDDC.IND.CE.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

8 512 800 1152 1568 2048 2592 3200 3872

T
O

T
A

L
W

al
l c

lo
ck

 ti
m

e
(s

ec
s.

)

#cores

MUL.BNN.
BDDC.DEF.C.

BDDC.DEF.CE.
BDDC.IND.C.

BDDC.IND.CE.
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

8 512 800 1152 1568 2048 2592 3200 3872

T
O

T
A

L
W

al
l c

lo
ck

 ti
m

e
(s

ec
s.

)

#cores

MUL.BNN.
BDDC.DEF.C.

BDDC.DEF.CE.
BDDC.IND.C.

BDDC.IND.CE.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

8 512 800 1152 1568 2048 2592 3200 3872

T
O

T
A

L
W

al
l c

lo
ck

 ti
m

e
(s

ec
s.

)

#cores

MUL.BNN.
BDDC.DEF.C.

BDDC.DEF.CE.
BDDC.IND.C.

BDDC.IND.CE.
 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

8 512 800 1152 1568 2048 2592 3200 3872

T
O

T
A

L
W

al
l c

lo
ck

 ti
m

e
(s

ec
s.

)

#cores

MUL.BNN.
BDDC.DEF.C.

BDDC.DEF.CE.
BDDC.IND.C.

BDDC.IND.CE.

Fig. 4.3. Weak scalability for the total computation time of the multiplicative BNN (winner
implementation) and two different implementations of the BDDC(c) and BDDC(ce) solvers for the
2D Poisson problem on HPC-FF. From top to bottom and left to right H

h
= 16, 32, 64, 128, 256, 512.

As predicted by our simple computational model in Section 4.2, Figure 4.3 clearly
evidences that weak scaling curves for the computational time of BNN/BDDC solvers
result from the sum of a non-scalable and a scalable component. For “sufficiently
small” H

h (e.g., with H
h = 16, 32, 64), the non-scalable component (i.e., the one that

grows with P) dominates. The relative ranking of the methods is therefore determined
by the extra cost required for the solution of the coarse-grid problem of each method,
which has already been examined and properly justified in Section 4.3.1. However,
a very nice observation is that for gradually larger H

h , the scalable part becomes
more and more dominant, till the non-scalable component is completely masked, i.e.,
with H

h = 256, 512. Within this range, the winner method is the one with the least

SCALABILITY ANALYSIS OF BALANCING DD 27

 0

 5

 10

 15

 20

 25

8 512 800 1152 1568 2048 2592 3200 3872

N
um

be
r

of
 P

C
G

 it
er

at
io

ns

#cores

MUL.BNN.
BDDC.C.

BDDC.CE.
 0

 5

 10

 15

 20

 25

8 512 800 1152 1568 2048 2592 3200 3872

N
um

be
r

of
 P

C
G

 it
er

at
io

ns

#cores

MUL.BNN.
BDDC.C.

BDDC.CE.

 0

 5

 10

 15

 20

 25

8 512 800 1152 1568 2048 2592 3200 3872

N
um

be
r

of
 P

C
G

 it
er

at
io

ns

#cores

MUL.BNN.
BDDC.C.

BDDC.CE.
 0

 5

 10

 15

 20

 25

8 512 800 1152 1568 2048 2592 3200 3872

N
um

be
r

of
 P

C
G

 it
er

at
io

ns

#cores

MUL.BNN.
BDDC.C.

BDDC.CE.

 0

 5

 10

 15

 20

 25

8 512 800 1152 1568 2048 2592 3200 3872

N
um

be
r

of
 P

C
G

 it
er

at
io

ns

#cores

MUL.BNN.
BDDC.C.

BDDC.CE.
 0

 5

 10

 15

 20

 25

8 512 800 1152 1568 2048 2592 3200 3872

N
um

be
r

of
 P

C
G

 it
er

at
io

ns

#cores

MUL.BNN.
BDDC.C.

BDDC.CE.

Fig. 4.4. Weak scalability for the number of PCG iterations of the multiplicative BNN and the
BDDC(c) and BDDC(ce) solvers for the 2D Poisson problem on HPC-FF. From top to bottom and
left to right H

h
= 16, 32, 64, 128, 256, 512.

asymptotic number of PCG iterations, i.e., the BDDC(ce) solver, as illustrated in
Figure 4.4; a significant maximum improvement of 43% and 30% which comes from
the use of (symmetric-PD) solvers can also be observed within this range for the
BDDC(c) and BDDC(ce) solvers, respectively. The number of cores can certainly be
increased arbitrarily so that the coarse-grid component becomes dominant. However,
a very remarkable conclusion from this study is that given the memory available
per core on current distributed-memory machines, and the experimental evidence
we have gathered so far, this is only expected to happen for simulations with several
tens of thousands of cores. Besides, the margin of improvement for the coarse-grid
preconditioning level is huge. In Figure 4.4 it can also be observed no degradation
of PCG convergence rates with P and fixed H

h , and only a mild (i.e., logarithmic)

grow with H
h and P fixed. This is a well-known property of BNN/BDDC solvers

28 S. BADIA, A. F. MARTÍN AND J. PRINCIPE

easily derived from the condition number bounds of the preconditioned operator (see
Section 2.3 and 2.4).

Although not explicitly provided in Figures 4.3 and 4.4, the NN-PCG solver
required, for H

h = 16, and P = 228 and P = 3872, 0.18 and 1.73 seconds, with 156
and 2207 PCG iterations, respectively. These numbers are significantly worse than
those of the BNN/BDDC solvers. Therefore, even in the most favourable scenario for
the NN-PCG solver in the experiment (i.e., the smallest local problem size considered),
the extra cost associated with the coarse-grid correction more than pays off in terms of
total computational time (due to the significant cut down in the number of iterations).
For larger values of H

h = 16, the gap among NN-PCG and the BDDC/BNN solvers
becomes progressively larger, as predicted by Table 4.2 (as the term that depends on√
P is multiplied by a function that grows with H

h).
Figure 4.5 offers a complementary view of the weak scaling curves in Figure 4.3.

For H
h = 128 (see Figure 4.3 (a) and (b)), the computation time of the precondi-

tioner set-up and iterative phases grow with P (the latter at a very moderate pace
compared to the former as predicted by Section 4.2 and experimentally examined in
Section 4.3.1). However, for H

h = 512 (see Figure 4.3 (c) and (d)), the computation
time of the three phases is constant. An interesting observation for this “large” local
problem size is that the computation time for preconditioner set-up is equivalent for
the BNN and BDDC(ce) solvers. In the latter method, an extra number, proportional
to the number of edge constraints, sparse forward/backward substitutions with the
factor of AiRR are required to build the Schur complement associated to edge con-
straints (see Section 3.2.2). However, this is only a constant and modest multiple,
completely masked by the higher order of complexity of the sparse Cholesky factor-
ization of AiRR. We stress, however, that this is no longer true if approximate solvers
(e.g., AMG) are used as local solvers (due to their linear order of complexity).

4.4.2. 3D experiments. Figures 4.6 and 4.7 compare the weak scalability for
the total computation time and number of PCG iterations of the winner implemen-
tation of the multiplicative BNN solver and those of the winner implementation of
the BDDC(ce) and BDDC(cef) solvers. Figure 4.6 again reveals the two components
of the weak scaling curves. For sufficiently “small” H

h (e.g., H
h = 10, 20), the total

computational time is dominated by computation and communication overheads re-
lated to the solution of the coarse-grid system. To be more precise, it is dominated
by the sparse Cholesky factorization of the coarse-grid coefficient matrix: the shape
of the curves in Figure 4.6 resembles (particularly with large P) that of the curves in
Figure 4.2 (b). For a very precise explanation of the relative ranking of the BNN/B-
DDC solvers for “small” H

h , we refer the reader to Section 4.3.2. For large H
h , the

fine-grid preconditioning component of the solvers dominates and the efficiency of the
methods is very high due to their ability to keep the condition number bounded by a
constant with P and H

h fixed (see Figure 4.7). It is remarkable the nice scalability of
the BNN compared to that of the BDDC solver in terms of computational time (see
Figure 4.6). For this latter method, a (mild) degradation of the weak scalability can
already be observed for large P even for the largest H

h .

5. Conclusions and future work. In this work we have covered in detail the
high-performance distributed-memory implementation of DD methods of balancing
type. This comprehensive coverage presents a pool of hints and considerations that
can be very useful for scientists that are willing to tackle large-scale distributed-
memory machines using these methods. On the other hand, the paper presents a
complete scalability study of BDDC/BNN preconditioners on a large-scale machine

SCALABILITY ANALYSIS OF BALANCING DD 29

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

8 512 800 1152 1568 2048 2592 3200 3872

P
ar

al
le

l e
xe

cu
tio

n
tim

e
(s

ec
s.

)

#cores

PCG
Preconditioner set-up

Schur complement set-up

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

8 512 800 1152 1568 2048 2592 3200 3872

P
ar

al
le

l e
xe

cu
tio

n
tim

e
(s

ec
s.

)

#cores

PCG
Preconditioner set-up

Schur complement set-up

(a) (b)

 0

 2

 4

 6

 8

 10

8 512 800 1152 1568 2048 2592 3200 3872

P
ar

al
le

l e
xe

cu
tio

n
tim

e
(s

ec
s.

)

#cores

PCG
Preconditioner set-up

Schur complement set-up

 0

 2

 4

 6

 8

 10

8 512 800 1152 1568 2048 2592 3200 3872

P
ar

al
le

l e
xe

cu
tio

n
tim

e
(s

ec
s.

)

#cores

PCG
Preconditioner set-up

Schur complement set-up

(c) (d)

Fig. 4.5. Distribution of the total computation time among Schur complement and precon-
ditioner set-up, and the iterative solution of the interface problem for 2D Poisson on HPC-FF.
Multiplicative BNN and BDDC(ce) with H

h
= 128 ((a) and (b), respectively) and H

h
= 512 ((c) and

(d), respectively).

with up to 4096 cores. As far as we know, the state-of-the-art does not include any
work that performs such study with these particular methods, at least with the degree
of detail and up to the scale that are reached in this work. This scalability study an-
swers the very interesting question of how far can the proposed MPI implementation
go in the number of cores and the scale of the problem to still be within reasonable
ranges of efficiency. The answer is up to dozens of thousands of computational cores
in the solution of problems discretized with hundreds of millions FEs. Besides, the
study has also precisely identified, quantified and justified which are the main sources
of inefficiency and bottlenecks in our current implementation, namely communica-
tion and computation associated to the solution of the coarse-grid problem. In light
of these conclusions, we have identified improvements that deserve further research
in order to boost the current scalability of our MPI implementation, e.g., the use
of approximate solvers (as AMG-preconditioned CG), multilevel BDD formulations
(see [29]) or distributed memory coarse-grid solvers.

References.
[1] S. Badia and R. Codina, Algebraic pressure segregation methods for the incompressible Navier-

Stokes equations, Archives of Computational Methods in Engineering 15 (2007), 1–52.
[2] S. Badia, A. F. Mart́ın, and J. Pŕıncipe, Enhanced balancing Neumann-Neumann precondition-

ing in computational fluid and solid mechanics, Submitted (2012).
[3] A. H. Baker, T. Gamblin, M. Schulz, and U. M. Yang, Challenges of scaling algebraic multigrid

across modern multicore architectures, Parallel distributed processing symposium (IPDPS), 2011
IEEE international, 2011, pp. 275 –286.

30 S. BADIA, A. F. MARTÍN AND J. PRINCIPE

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

8 216 512 1000 1728 2744 4096

T
O

T
A

L
W

al
l c

lo
ck

 ti
m

e
(s

ec
s.

)

#cores

MUL.BNN.
BDDC.CE.

BDDC.CEF.

 0

 0.5

 1

 1.5

 2

 2.5

 3

8 216 512 1000 1728 2744 4096

T
O

T
A

L
W

al
l c

lo
ck

 ti
m

e
(s

ec
s.

)

#cores

MUL.BNN.
BDDC.CE.

BDDC.CEF.

 0

 1

 2

 3

 4

 5

 6

8 216 512 1000 1728 2744 4096

T
O

T
A

L
W

al
l c

lo
ck

 ti
m

e
(s

ec
s.

)

#cores

MUL.BNN.
BDDC.CE.

BDDC.CEF.
 0

 2

 4

 6

 8

 10

 12

 14

 16

8 216 512 1000 1728 2744 4096

T
O

T
A

L
W

al
l c

lo
ck

 ti
m

e
(s

ec
s.

)

#cores

MUL.BNN.
BDDC.CE.

BDDC.CEF.

Fig. 4.6. Weak scalability for the total computation time of the multiplicative BNN (winner
implementation) and the BDDC(ce) and BDDC(cef) solvers (winner implementation) for the 3D
Poisson problem on HPC-FF. From top to bottom and left to right H

h
= 10, 20, 30, 40.

[4] S. Balay, J. Brown, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley,
L. C. McInnes, B. F. Smith, and H. Zhang, PETSc users manual, Technical Report ANL-95/11,
Argonne National Laboratory, 2012.

[5] S. Balay, J. Brown, K. Buschelman, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes,
B. F. Smith, and H. Zhang, PETSc Web page, 2012. http://www.mcs.anl.gov/petsc.

[6] S. C. Brenner and R. Scott, The mathematical theory of finite element methods, 3rd edition,
Springer, 2010.

[7] D. Conceição, P. Goldfeld, and M. Sarkis, Robust two-level lower-order preconditioners for a
higher-order stokes discretization with highly discontinuous viscosities, High performance com-
puting for computational science - VECPAR 2006, 2007, pp. 319–333.

[8] T. A. Davis, Direct methods for sparse linear systems, Vol. 2, SIAM, 2006.
[9] C. R. Dohrmann, A preconditioner for substructuring based on constrained energy minimization,

SIAM Journal on Scientific Computing 25 (2003), no. 1, 246–258.
[10] C. Farhat, K. Pierson, and M. Lesoinne, The second generation FETI methods and their applica-

tion to the parallel solution of large-scale linear and geometrically non-linear structural analysis
problems, Computer Methods in Applied Mechanics and Engineering 184 (2000), no. 2–4, 333–
374.

[11] C. Farhat and F.-X. Roux, A method of finite element tearing and interconnecting and its
parallel solution algorithm, International Journal for Numerical Methods in Engineering 32
(1991), no. 6, 1205–1227.

[12] R. M. Ferencz and T. J. R. Hughes, Iterative finite element solutions in nonlinear solid me-
chanics, Handbook of numerical analysis vol. VI: Numerical methods for solids (part 3), 1998.

[13] S. Filippone and A. Buttari, Object-oriented techniques for sparse matrix computations in For-
tran 2003, ACM Transactions on Mathematical Software 38 (2012), no. 4, 23:1–23:20.

[14] S. Filippone and M. Colajanni, PSBLAS: A library for parallel linear algebra computation on
sparse matrices, ACM Transactions on Mathematical Software 26 (2000), no. 4, 527–550.

[15] A. George, Nested dissection of a regular finite element mesh, SIAM Journal on Numerical
Analysis 10 (1973), no. 2, 345–363.

SCALABILITY ANALYSIS OF BALANCING DD 31

 0

 2

 4

 6

 8

 10

 12

 14

 16

8 216 512 1000 1728 2744 4096

N
um

be
r

of
 P

C
G

 it
er

at
io

ns

#cores

MUL.BNN.
BDDC.CE.

BDDC.CEF.
 0

 2

 4

 6

 8

 10

 12

 14

 16

8 216 512 1000 1728 2744 4096

N
um

be
r

of
 P

C
G

 it
er

at
io

ns

#cores

MUL.BNN.
BDDC.CE.

BDDC.CEF.

 0

 2

 4

 6

 8

 10

 12

 14

 16

8 216 512 1000 1728 2744 4096

N
um

be
r

of
 P

C
G

 it
er

at
io

ns

#cores

MUL.BNN.
BDDC.CE.

BDDC.CEF.
 0

 2

 4

 6

 8

 10

 12

 14

 16

8 216 512 1000 1728 2744 4096

N
um

be
r

of
 P

C
G

 it
er

at
io

ns

#cores

MUL.BNN.
BDDC.CE.

BDDC.CEF.

Fig. 4.7. Weak scalability for the number of PCG iterations of the multiplicative BNN and the
BDDC(ce) and BDDC(cef) solvers for the 3D Poisson problem on HPC-FF. From top to bottom
and left to right H

h
= 10, 20, 30, 40.

[16] L. Giraud, A. Haidar, and L. T. Watson, Parallel scalability study of hybrid preconditioners in
three dimensions, Parallel Computing 34 (2008), no. 68, 363 –379.

[17] R. Glowinski and M. F. Wheeler, Domain decomposition and mixed finite element methods for
elliptic problems, First international symposium on domain decomposition methods for partial
differential equations, 1988, pp. 144–172.

[18] P. Goldfeld, Balancing Neumann-Neumann preconditioners for the mixed formulation of almost-
incompressible linear elasticity, Ph.D. Thesis, 2003.

[19] P. Goldfeld, L. F. Pavarino, and O. B. Widlund, Balancing Neumann-Neumann preconditioners
for mixed approximations of heterogeneous problems in linear elasticity, Numerische Mathe-
matik 95 (2003), 283–324.

[20] W. Gropp, E. Lusk, and A. Skjellum, Using MPI: portable parallel programming with the mes-
sage passing interface, Vol. 1, MIT press, 1999.

[21] W. Gropp, E. Lusk, and R. Thakur, Using MPI-2: Advanced features of the message passing
interface, MIT press, 1999.

[22] M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J. Hu, T. G. Kolda, R. B. Lehoucq,
K. R. Long, R. P. Pawlowski, E. T. Phipps, A. G. Salinger, H. K. Thornquist, R. S. Tuminaro,
J. M. Willenbring, A. Williams, and K. S. Stanley, An overview of the Trilinos project, ACM
Transactions on Mathematical Software 31 (2005), no. 3, 397–423.

[23] M. A. Heroux and J. M. Willenbring, Trilinos users guide, Technical Report SAND2003-2952,
Sandia National Laboratories, 2003.

[24] T. Hoefler and J. L. Traff, Sparse collective operations for MPI, Proceedings of the 2009 IEEE
International Symposium on Parallel&Distributed Processing, 2009, pp. 1–8.

[25] G. Karypis and V. Kumar, A fast and high quality multilevel scheme for partitioning irregular
graphs, SIAM J. Sci. Comput. 20 (1998), no. 1, 359–392.

[26] P. T. Lin, J. N. Shadid, M. Sala, R. S. Tuminaro, G. L. Hennigan, and R. J. Hoekstra, Perfor-
mance of a parallel algebraic multilevel preconditioner for stabilized finite element semiconduc-
tor device modeling, Journal on Computational Physics 228 (2009), no. 17, 6250–6267.

[27] J. Mandel, Balancing domain decomposition, Communications in Numerical Methods in Engi-
neering 9 (1993), no. 3, 233–241.

32 S. BADIA, A. F. MARTÍN AND J. PRINCIPE

[28] J. Mandel and C. R. Dohrmann, Convergence of a balancing domain decomposition by con-
straints and energy minimization, Numerical Linear Algebra with Applications 10 (2003), no. 7,
639–659.

[29] J. Mandel, B. Soused́ık, and C. Dohrmann, Multispace and multilevel BDDC, Computing 83
(2008), 55–85.

[30] Y. H. De Roeck and P. Le Tallec, Analysis and test of a local domain decomposition precondi-
tioner, Fourth international symposium on domain decomposition methods for partial differen-
tial equations, 1991, pp. 112.

[31] Y. Saad, Data structures and algorithms for domain decomposition and distributed sparse ma-
trix computations, Technical Report 95-014, Department of Computer Science, University of
Minnesota, Minneapolis, MN, 1995.

[32] , Iterative methods for sparse linear systems, 2nd ed., SIAM, 2003.
[33] Y. Saad and M. Sosonkina, Distributed Schur complement techniques for general sparse linear

systems, SIAM Journal on Scientific Computing 21 (1999), no. 4, 1337–1356.
[34] O. Sahni, C. D. Carothers, M. S. Shephard, and K. E. Jansen, Strong scaling analysis of a

parallel, unstructured, implicit solver and the influence of the operating system interference,
Scientific Programming 17 (2009), no. 3, 261–274.

[35] M. Sala and R. Tuminaro, A new Petrov-Galerkin smoothed aggregation preconditioner for
nonsymmetric linear systems, SIAM Journal on Scientific Computing 31 (2008), no. 1, 143–
166.

[36] O. Schenk and K. Gärtner, Solving unsymmetric sparse systems of linear equations with PAR-
DISO, Future Generation Computer Systems 20 (2004), no. 3, 475 –487.

[37] , On fast factorization pivoting methods for sparse symmetric indefinite systems, Elec-
tronic Transactions on Numerical Analysis 23 (2006), 158–179.

[38] G. Strang, Linear algebra and its applications, Thomson, Brooks/Cole, 2006.
[39] K. Stüben, A review of algebraic multigrid, Journal of Computational and Applied Mathematics

128 (2001), no. 12, 281 –309.
[40] J. Tang, R. Nabben, C. Vuik, and Y. Erlangga, Comparison of two-level preconditioners derived

from deflation, domain decomposition and multigrid methods, Journal of Scientific Computing
39 (2009), no. 3, 340–370.

[41] A. Toselli and O. Widlund, Domain decomposition methods - algorithms and theory (R. Bank,
R. L. Graham, J. Stoer, R. Varga, and H. Yserentant, eds.), Springer-Verlag, 2005.

[42] P. Vaněk, J. Mandel, and M. Brezina, Algebraic multigrid by smoothed aggregation for second
and fourth order elliptic problems, Computing 56 (1996), 179–196.

[43] J. Š́ıstek, B. Soused́ık, P. Burda, J. Mandel, and J. Novotný, Application of the parallel BDDC
preconditioner to the Stokes flow, Computers & Fluids 46 (2011), no. 1, 429 –435.

