60,246 research outputs found

    Dynamically Slow Processes in Supercooled Water Confined Between Hydrophobic Plates

    Full text link
    We study the dynamics of water confined between hydrophobic flat surfaces at low temperature. At different pressures, we observe different behaviors that we understand in terms of the hydrogen bonds dynamics. At high pressure, the formation of the open structure of the hydrogen bond network is inhibited and the surfaces can be rapidly dehydrated by decreasing the temperature. At lower pressure the rapid ordering of the hydrogen bonds generates heterogeneities that are responsible for strong non-exponential behavior of the correlation function, but with no strong increase of the correlation time. At very low pressures, the gradual formation of the hydrogen bond network is responsible for the large increase of the correlation time and, eventually, the dynamical arrest of the system and of the dehydration process.Comment: 14 pages, 3 figure

    Using the generalized interpolation material point method for fluid-solid interactions induced by surface tension

    Get PDF
    This thesis is devoted to the development of new, Generalized Interpolation Material Point Method (GIMP)-based algorithms for handling surface tension and contact (wetting) in fluid-solid interaction (FSI) problems at small scales. In these problems, surface tension becomes so dominant that its influence on both fluids and solids must be considered. Since analytical solutions for most engineering problems are usually unavailable, numerical methods are needed to describe and predict complicated time-dependent states in the solid and fluid involved due to surface tension effects. Traditional computational methods for handling fluid-solid interactions may not be effective due to their weakness in solving large-deformation problems and the complicated coupling of two different types of computational frameworks: one for solid, and the other for fluid. On the contrary, GIMP, a mesh-free algorithm for solid mechanics problems, is numerically effective in handling problems involving large deformations and fracture. Here we extend the capability of GIMP to handle fluid dynamics problems with surface tension, and to develop a new contact algorithm to deal with the wetting boundary conditions that include the modeling of contact angle and slip near the triple points where the three phases -- fluid, solid, and vapor -- meet. The error of the new GIMP algorithm for FSI problems at small scales, as verified by various benchmark problems, generally falls within the 5% range. In this thesis, we have successfully extended the capability of GIMP for handling FSI problems under surface tension in a one-solver numerical framework, a unique and innovative approach.Chapter 1. Introduction -- Chapter 2. Using the generalized interpolation material point method for fluid dynamics at low reynolds numbers -- Chapter 3. On the modeling of surface tension and its applications by the generalized interpolation material point method -- Chapter 4. Using the generalized interpolation material point method for fluid-solid interactions induced by surface tension -- Chapter 5. Conclusions

    Study of hybrid air vehicles stability using computational fluid dynamics

    Get PDF
    This paper uses Computational Fluid Dynamics to predict aerodynamic damping of airships or hybrid air vehicles. This class of aircraft is characterised by large lifting bodies combining buoyancy and circulatory lift. Damping is investigated via forced oscillations of the vehicle in pitch and yaw. The employed method is verified using data for lighter than air vehicles. The use of fins and stabilisers was found to be beneficial. The rear part of the body was dominated by separated flow that containedmore frequencies than the forcing frequency imposed on the body. The final design is seen to be dynamically stable across a range of conditions for small pitch angles

    Analysis of Compatible Discrete Operator Schemes for the Stokes Equations on Polyhedral Meshes

    Get PDF
    Compatible Discrete Operator schemes preserve basic properties of the continuous model at the discrete level. They combine discrete differential operators that discretize exactly topological laws and discrete Hodge operators that approximate constitutive relations. We devise and analyze two families of such schemes for the Stokes equations in curl formulation, with the pressure degrees of freedom located at either mesh vertices or cells. The schemes ensure local mass and momentum conservation. We prove discrete stability by establishing novel discrete Poincar\'e inequalities. Using commutators related to the consistency error, we derive error estimates with first-order convergence rates for smooth solutions. We analyze two strategies for discretizing the external load, so as to deliver tight error estimates when the external load has a large irrotational or divergence-free part. Finally, numerical results are presented on three-dimensional polyhedral meshes
    • …
    corecore