10,787 research outputs found

    A biologically inspired spiking model of visual processing for image feature detection

    Get PDF
    To enable fast reliable feature matching or tracking in scenes, features need to be discrete and meaningful, and hence edge or corner features, commonly called interest points are often used for this purpose. Experimental research has illustrated that biological vision systems use neuronal circuits to extract particular features such as edges or corners from visual scenes. Inspired by this biological behaviour, this paper proposes a biologically inspired spiking neural network for the purpose of image feature extraction. Standard digital images are processed and converted to spikes in a manner similar to the processing that transforms light into spikes in the retina. Using a hierarchical spiking network, various types of biologically inspired receptive fields are used to extract progressively complex image features. The performance of the network is assessed by examining the repeatability of extracted features with visual results presented using both synthetic and real images

    Spinal involvement in mucopolysaccharidosis IVA (Morquio-Brailsford or Morquio A syndrome): presentation, diagnosis and management.

    Get PDF
    Mucopolysaccharidosis IVA (MPS IVA), also known as Morquio-Brailsford or Morquio A syndrome, is a lysosomal storage disorder caused by a deficiency of the enzyme N-acetyl-galactosamine-6-sulphate sulphatase (GALNS). MPS IVA is multisystemic but manifests primarily as a progressive skeletal dysplasia. Spinal involvement is a major cause of morbidity and mortality in MPS IVA. Early diagnosis and timely treatment of problems involving the spine are critical in preventing or arresting neurological deterioration and loss of function. This review details the spinal manifestations of MPS IVA and describes the tools used to diagnose and monitor spinal involvement. The relative utility of radiography, computed tomography (CT) and magnetic resonance imaging (MRI) for the evaluation of cervical spine instability, stenosis, and cord compression is discussed. Surgical interventions, anaesthetic considerations, and the use of neurophysiological monitoring during procedures performed under general anaesthesia are reviewed. Recommendations for regular radiological imaging and neurologic assessments are presented, and the need for a more standardized approach for evaluating and managing spinal involvement in MPS IVA is addressed

    Single-Trial Phase Precession in the Hippocampus

    Get PDF
    During the crossing of the place field of a pyramidal cell in the rat hippocampus, the firing phase of the cell decreases with respect to the local theta rhythm. This phase precession is usually studied on the basis of data in which many place field traversals are pooled together. Here we study properties of phase precession in single trials. We found that single-trial and pooled-trial phase precession were different with respect to phase-position correlation, phase-time correlation, and phase range. Whereas pooled-trial phase precession may span 360°, the most frequent single-trial phase range was only ∼180°. In pooled trials, the correlation between phase and position (r = −0.58) was stronger than the correlation between phase and time (r = −0.27), whereas in single trials these correlations (r = −0.61 for both) were not significantly different. Next, we demonstrated that phase precession exhibited a large trial-to-trial variability. Overall, only a small fraction of the trial-to-trial variability in measures of phase precession (e.g., slope or offset) could be explained by other single-trial properties (such as running speed or firing rate), whereas the larger part of the variability remains to be explained. Finally, we found that surrogate single trials, created by randomly drawing spikes from the pooled data, are not equivalent to experimental single trials: pooling over trials therefore changes basic measures of phase precession. These findings indicate that single trials may be better suited for encoding temporally structured events than is suggested by the pooled data

    Temporal synchronization of CA1 pyramidal cells by high-frequency, depressing inhibition, in the presence of intracellular noise

    Get PDF
    The Sharp Wave-associated Ripple is a high-frequency, extracellular recording observed in the rat hippocampus during periods of immobility. During the ripple, pyramidal cells synchronize over a short period of time despite the fact that these cells have sparse recurrent connections. Additionally, the timing of synchronized pyramidal cell spiking may be critical for encoding information that is passed on to post-hippocampal targets. Both the synchronization and precision of pyramidal cells is believed to be coordinated by inhibition provided by a vast array of interneurons. This dissertation proposes a minimal model consisting of a single interneuron which synapses onto a network of uncoupled pyramidal cells. It is shown that fast decaying, high-frequency, depressing inhibition is capable of rapidly synchronizing the pyramidal cells and modulating spike timing. In addition, these mechanisms are robust in the presence of intracellular noise. The existence and stability of synchronous, periodic solutions using geometric singular perturbation techniques are proven. The effects of synaptic strength, synaptic recovery, and inhibition frequency are discussed. In contrast to prior work, which suggests that the ripple is produced by homogeneous populations of either pyramidal cells or interneurons, the results presented here suggest that cooperation between interneurons and pyramidal cells is necessary for ripple genesis

    The Pairing of Trigger Point Dry Needling with Rehabilitation Techniques

    Get PDF
    Trigger point dry needling is a manual treatment modality used for individuals experiencing tightness, pain, and inhibited range of motion in any region of the body. Dry needling can be described as the insertion of a blunt, microfilament non-medicated needle into the skin for the purpose of targeting specific muscles, which contain tight bands known as trigger points. When the needle is inserted into the trigger point the muscle contracts, holds tight to the needle, and elicits a neural twitch response. This ultimately causes the muscle to relax, allowing for reduction in pain and improvements in range of motion. Although the use of dry needling is rising in popularity in the United States, knowledge of its use and effects is limited. Fortunately, more research is being conducted on this form of treatment. In this thesis, the purpose and physiological effects of dry needling will be discussed in detail, along with a comparison between other alternate medical modalities of treatment which target trigger points. In addition, current research on the effectiveness of incorporating dry needling with other manual therapeutic modalities will be discussed. Dry needling has been shown to be very effective in treating trigger points by improving range of motion, decreasing pain, reducing muscle tightness, and increasing muscle oxygenation. Positive effects of dry needling are even more likely to occur when paired with other modes of therapeutic treatment, often in a physical therapy setting but may also be performed by other health professionals including chiropractors, athletic trainers, occupational therapists, and physicians

    Consequences of converting graded to action potentials upon neural information coding and energy efficiency

    Get PDF
    Information is encoded in neural circuits using both graded and action potentials, converting between them within single neurons and successive processing layers. This conversion is accompanied by information loss and a drop in energy efficiency. We investigate the biophysical causes of this loss of information and efficiency by comparing spiking neuron models, containing stochastic voltage-gated Na+ and K+ channels, with generator potential and graded potential models lacking voltage-gated Na+ channels. We identify three causes of information loss in the generator potential that are the by-product of action potential generation: (1) the voltage-gated Na+ channels necessary for action potential generation increase intrinsic noise and (2) introduce non-linearities, and (3) the finite duration of the action potential creates a ‘footprint’ in the generator potential that obscures incoming signals. These three processes reduce information rates by ~50% in generator potentials, to ~3 times that of spike trains. Both generator potentials and graded potentials consume almost an order of magnitude less energy per second than spike trains. Because of the lower information rates of generator potentials they are substantially less energy efficient than graded potentials. However, both are an order of magnitude more efficient than spike trains due to the higher energy costs and low information content of spikes, emphasizing that there is a two-fold cost of converting analogue to digital; information loss and cost inflation

    Distributed Hypothesis Testing, Attention Shifts and Transmitter Dynatmics During the Self-Organization of Brain Recognition Codes

    Full text link
    BP (89-A-1204); Defense Advanced Research Projects Agency (90-0083); National Science Foundation (IRI-90-00530); Air Force Office of Scientific Research (90-0175, 90-0128); Army Research Office (DAAL-03-88-K0088
    corecore