110 research outputs found

    Synchronisation, détection et égalisation de modulation à phase continue dans des canaux sélectifs en temps et en fréquence

    Get PDF
    Si les drones militaires connaissent un développement important depuis une quinzaine d’année, suivi depuis quelques années par les drones civiles dont les usages ne font que se multiplier, en réalité les drones ont un siècle avec le premier vol d’un avion équipé d’un système de pilotage automatique sur une centaine de kilomètre en 1918. La question des règles d’usage des drones civiles sont en cours de développement malgré leur multiplication pour des usages allant de l’agriculture, à l’observation en passant par la livraison de colis. Ainsi, leur intégration dans l’espace aérien reste un enjeu important, ainsi que les standards de communication avec ces drones dans laquelle s’inscrit cette thèse. Cette thèse vise en effet à étudier et proposer des solutions pour les liens de communications des drones par satellite.L’intégration de ce lien de communication permet d’assurer la fiabilité des communications et particulièrement du lien de Commande et Contrôle partout dans le monde, en s’affranchissant des contraintes d’un réseau terrestre (comme les zones blanches). En raison de la rareté des ressources fréquentielles déjà allouées pour les futurs systèmes intégrant des drones, l’efficacité spectrale devient un paramètre important pour leur déploiement à grande échelle et le contexte spatiale demande l’utilisation d’un système de communication robuste aux non-linéarités. Les Modulations à Phase Continue permettent de répondre à ces problématiques. Cependant, ces dernières sont des modulations non-linéaire à mémoire entraînant une augmentation de la complexité des récepteurs. Du fait de la présence d’un canal multi-trajet (canal aéronautique par satellite), le principal objectif de cette thèse est de proposer des algorithmes d’égalisation (dans le domaine fréquentiel pour réduire leur complexité) et de synchronisation pour CPM adaptés à ce concept tout en essayant de proposer une complexité calculatoire raisonnable. Dans un premier temps, nous avons considéré uniquement des canaux sélectifs en fréquence et avons étudier les différents égaliseurs de la littérature. En étudiant leur similitudes et différences, nous avons pu développer un égaliseur dans le domaine fréquentiel qui proposant les mêmes performances a une complexité moindre. Nous proposons également des méthodes d’estimation canal et une méthode d’estimation conjointe du canal et de la fréquence porteuse. Dans un second temps nous avons montré comment étendre ces méthodes à des canaux sélectifs en temps et fréquence permettant ainsi de conserver une complexité calculatoire raisonnable

    Synchronization Techniques for Burst-Mode Continuous Phase Modulation

    Get PDF
    Synchronization is a critical operation in digital communication systems, which establishes and maintains an operational link between transmitter and the receiver. As the advancement of digital modulation and coding schemes continues, the synchronization task becomes more and more challenging since the new standards require high-throughput functionality at low signal-to-noise ratios (SNRs). In this work, we address feedforward synchronization of continuous phase modulations (CPMs) using data-aided (DA) methods, which are best suited for burst-mode communications. In our transmission model, a known training sequence is appended to the beginning of each burst, which is then affected by additive white Gaussian noise (AWGN), and unknown frequency, phase, and timing offsets. Based on our transmission model, we derive the Cramer-Rao bound (CRB) for DA joint estimation of synchronization parameters. Using the CRB expressions, the optimum training sequence for CPM signals is proposed. It is shown that the proposed sequence minimizes the CRB for all three synchronization parameters asymptotically, and can be applied to the entire CPM family. We take advantage of the simple structure of the optimized training sequence in order to design a practical synchronization algorithm based on the maximum likelihood (ML) principles. The proposed DA algorithm jointly estimates frequency offset, carrier phase and symbol timing in a feedforward manner. The frequency offset estimate is first found by means of maximizing a one dimensional function. It is then followed by symbol timing and carrier phase estimation, which are carried out using simple closed-form expressions. We show that the proposed algorithm attains the theoretical CRBs for all synchronization parameters for moderate training sequence lengths and all SNR regions. Moreover, a frame synchronization algorithm is developed, which detects the training sequence boundaries in burst-mode CPM signals. The proposed training sequence and synchronization algorithm are extended to shaped-offset quadrature phase-shift keying (SOQPSK) modulation, which is considered for next generation aeronautical telemetry systems. Here, it is shown that the optimized training sequence outperforms the one that is defined in the draft telemetry standard as long as estimation error variances are considered. The overall bit error rate (BER) plots suggest that the optimized preamble with a shorter length can be utilized such that the performance loss is less than 0.5 dB of an ideal synchronization scenario

    Automatic modulation classification of communication signals

    Get PDF
    The automatic modulation recognition (AMR) plays an important role in various civilian and military applications. Most of the existing AMR algorithms assume that the input signal is only of analog modulation or is only of digital modulation. In blind environments, however, it is impossible to know in advance if the received communication signal is analogue modulated or digitally modulated. Furthermore, it is noted that the applications of the currently existing AMR algorithms designed for handling both analog and digital communication signals are rather restricted in practice. Motivated by this, an AMR algorithm that is able to discriminate between analog communication signals and digital communication signals is developed in this dissertation. The proposed algorithm is able to recognize the concrete modulation type if the input is an analog communication signal and to estimate the number of modulation levels and the frequency deviation if the input is an exponentially modulated digital communication signal. For linearly modulated digital communication signals, the proposed classifier will classify them into one of several nonoverlapping sets of modulation types. In addition, in M-ary FSK (MFSK) signal classification, two classifiers have also been developed. These two classifiers are also capable of providing good estimate of the frequency deviation of a received MFSK signal. For further classification of linearly modulated digital communication signals, it is often necessary to blindly equalize the received signal before performing modulation recognition. This doing generally requires knowing the carrier frequency and symbol rate of the input signal. For this purpose, a blind carrier frequency estimation algorithm and a blind symbol rate estimation algorithm have been developed. The carrier frequency estimator is based on the phases of the autocorrelation functions of the received signal. Unlike the cyclic correlation based estimators, it does not require the transmitted symbols being non-circularly distributed. The symbol rate estimator is based on digital communication signals\u27 cyclostationarity related to the symbol rate. In order to adapt to the unknown symbol rate as well as the unknown excess bandwidth, the received signal is first filtered by using a bank of filters. Symbol rate candidates and their associated confident measurements are extracted from the fourth order cyclic moments of the filtered outputs, and the final estimate of symbol rate is made based on weighted majority voting. A thorough evaluation of some well-known feature based AMR algorithms is also presented in this dissertation

    Equalization of CPM signals over doubly-selective aeronautical channels

    Get PDF
    Communication technologies have always been one of the fundamental milestones of the aeronautical environment. Despite the growing demand for high performances, the aviation context is reluctant to move towards new technologies. Common communication strategies are not suitable to transmit at very high data rates over time- and/or frequency-dispersive (i.e., doubly-selective) air-ground channels, therefore, new requirements have to be fulfilled by an incremental approach, that is, by updating some parts of the legacy systems. This thesis deals with receiver synthesis for aeronautical communication data-links employing continuous-phase modulated (CPM) signals over doubly-selective wireless communication channels. The goal is to design efficient and low-complexity time-varying equalizers, by exploiting all of the CPM signal features, in order to compensate for the effects due to the rapidly time-varying aeronautical channels. The application of the basis expansion model (BEM) to a typical aeronautical communication channel is considered and validated by computer simulations. The second-order statistical characterization of the pseudo-symbols arising from Laurent representation of CPM signals is introduced and discussed. Both linear time-varying (LTV) and widely-linear time-varying (WLTV) zero forcing (ZF) and minimum mean square error (MMSE) receiver structures for CPM signals operating over doubly-selective channels are proposed and implemented by using the BEM model for the channel. Monte Carlo simulation results, carried out in typical aeronautical scenarios, show that the proposed approaches are able to work satisfactorily also over rapidly time-varying channels

    Advanced low-complexity multiuser receivers

    Get PDF
    It tema centrale di questa tesi è la rivelazione multi-utente per sistemi di comunicazione wireless ad elevata efficienza spettrale. Lo scopo del lavoro è quello di proporre nuovi ricevitori multi-utente a bassa complessità con elevate prestazioni. Sono considerati sistemi satellitari basati su FDM (Frequency Division Multiplexing), in cui ogni utente adotta una modulazione CPM (Continuous Phase Modulation) concatenata serialmente con un codificatore tramite un interlacciatore e decodifica iterativa. Si considerano, inoltre, canali lineari in presenza di AWGN (additive white Gaussian noise). In particolare, si studiano sistemi FDM, in cui i canali adiacenti possono sovrapporsi in frequenza per aumentere l'efficienza spettrale, e sistemi CDMA (code division multiple access). Per gli scenari presi in esame, proponiamo schemi di rivelazione con un eccellente compromesso tra prestazioni e complessità computazionale, che permettono di implementare schemi di trasmissione con straordinaria efficienza spettrale, al prezzo di un limitato aumento di complessità rispetto ad un classico ricevitore singolo-utente che ignora l'interferenza.This thesis deals with multiuser detection (MUD) for spectrally-efficient wireless communication systems. The aim of this work is to propose new advanced low-complexity multiuser receivers with near-optimal detection performance. We consider frequency division multiplexing (FDM) satellite systems where each user employs a continuous phase modulation (CPM), serially concatenated with an outer code through an interleaver, and iterative detection/decoding. We also consider linear channels impaired by additive white Gaussian noise (AWGN), focusing on FDM systems where adjacent channels are allowed to overlap in frequency, and on code division multiple access systems (CDMA). For the considered scenarios, we propose detection schemes with an excel- lent performance/complexity tradeoff which allow us to implement transmission schemes with unprecedented spectral efficiency at a price of a limited complexity increase with respect to a classical single-user receiver which neglects the interference

    A Linear Subspace Approach to Burst Communication Signal Processing

    Get PDF
    This dissertation focuses on the topic of burst signal communications in a high interference environment. It derives new signal processing algorithms from a mathematical linear subspace approach instead of the common stationary or cyclostationary approach. The research developed new algorithms that have well-known optimality criteria associated with them. The investigation demonstrated a unique class of multisensor filters having a lower mean square error than all other known filters, a maximum likelihood time difference of arrival estimator that outperformed previously optimal estimators, and a signal presence detector having a selectivity unparalleled in burst interference environments. It was further shown that these improvements resulted in a greater ability to communicate, to locate electronic transmitters, and to mitigate the effects of a growing interference environment

    Sparse graph-based coding schemes for continuous phase modulations

    Get PDF
    The use of the continuous phase modulation (CPM) is interesting when the channel represents a strong non-linearity and in the case of limited spectral support; particularly for the uplink, where the satellite holds an amplifier per carrier, and for downlinks where the terminal equipment works very close to the saturation region. Numerous studies have been conducted on this issue but the proposed solutions use iterative CPM demodulation/decoding concatenated with convolutional or block error correcting codes. The use of LDPC codes has not yet been introduced. Particularly, no works, to our knowledge, have been done on the optimization of sparse graph-based codes adapted for the context described here. In this study, we propose to perform the asymptotic analysis and the design of turbo-CPM systems based on the optimization of sparse graph-based codes. Moreover, an analysis on the corresponding receiver will be done
    • …
    corecore