56 research outputs found

    Hybrid Transceiver Optimization for Multi-Hop Communications

    Full text link
    Multi-hop communication with the aid of large-scale antenna arrays will play a vital role in future emergence communication systems. In this paper, we investigate amplify-and-forward based and multiple-input multiple-output assisted multi-hop communication, in which all nodes employ hybrid transceivers. Moreover, channel errors are taken into account in our hybrid transceiver design. Based on the matrix-monotonic optimization framework, the optimal structures of the robust hybrid transceivers are derived. By utilizing these optimal structures, the optimizations of analog transceivers and digital transceivers can be separated without loss of optimality. This fact greatly simplifies the joint optimization of analog and digital transceivers. Since the optimization of analog transceivers under unit-modulus constraints is non-convex, a projection type algorithm is proposed for analog transceiver optimization to overcome this difficulty. Based on the derived analog transceivers, the optimal digital transceivers can then be derived using matrix-monotonic optimization. Numeral results obtained demonstrate the performance advantages of the proposed hybrid transceiver designs over other existing solutions.Comment: 32 pages, 6 figures. This manuscript has been submitted to IEEE Journal on Selected Areas in Communications (special issue on Multiple Antenna Technologies for Beyond 5G

    Two-step multiuser equalization for hybrid mmWave massive MIMO GFDM systems

    Get PDF
    Although millimeter-wave (mmWave) and massive multiple input multiple output (mMIMO) can be considered as promising technologies for future mobile communications (beyond 5G or 6G), some hardware limitations limit their applicability. The hybrid analog-digital architecture has been introduced as a possible solution to avoid such issues. In this paper, we propose a two-step hybrid multi-user (MU) equalizer combined with low complexity hybrid precoder for wideband mmWave mMIMO systems, as well as a semi-analytical approach to evaluate its performance. The new digital non-orthogonal multi carrier modulation scheme generalized frequency division multiplexing (GFDM) is considered owing to its efficient performance in terms of achieving higher spectral efficiency, better control of out-of-band (OOB) emissions, and lower peak to average power ratio (PAPR) when compared with the orthogonal frequency division multiplexing (OFDM) access technique. First, a low complexity analog precoder is applied on the transmitter side. Then, at the base station (BS), the analog coefficients of the hybrid equalizer are obtained by minimizing the mean square error (MSE) between the hybrid approach and the full digital counterpart. For the digital part, zero-forcing (ZF) is used to cancel the MU interference not mitigated by the analog part. The performance results show that the performance gap of the proposed hybrid scheme to the full digital counterpart reduces as the number of radio frequency (RF) chains increases. Moreover, the theoretical curves almost overlap with the simulated ones, which show that the semi-analytical approach is quite accurate.publishe

    Esquemas de pré-codificação e equalização para arquiteturas híbridas sub-conectadas na banda de ondas milimétricas

    Get PDF
    In the last years, the demand for high data rates increased substantially and the mobile communications are currently a necessity for our society. Thus, the number of users to access interactive services and applications has increased. The next generation of wireless communications (5G) is expected to be released in 2020 and it is projected to provide extremely high data rates for the users. The millimeter wave communications band and the massive MIMO are two promising keys technologies to achieve the multi Gbps for the future generations of mobile communications, in particular the 5G. The conjugation of these two technologies, allows packing a large number of antennas in the same volume than in the current frequencies and increase the spectral efficiency. However, when we have a large number of antennas, it is not reasonable to have a fully digital architecture due to the hardware constrains. On the other hand, it is not feasible to have a system that works only in the analog domain by employing a full analog beamforming since the performance is poor. Therefore, it is required a design of hybrid analog/digital architectures to reduce the complexity and achieve a good performance. Fully connected and sub-connected schemes are two examples of hybrid architectures. In the fully connected one, all RF chain connect to all antenna elements while in the sub-connected architecture, each RF chain is connected to a group of antennas. Consequently, the sub-connected architecture is more attractive due to the low complexity when compared to the fully connected one. Also, it is expected that millimeter waves be wideband, however, most of the works developed in last years for hybrid architectures are mainly focused in narrowband channels. Therefore, in this dissertation it is designed a low complex analog precoder at the user terminals and a hybrid analog-digital multi-user linear equalizer for broadband sub-connected millimeter wave massive MIMO at the base station. The analog precoder at the transmitter considers a quantized version of the average angle of departure of each cluster for its computation. In order to remove the multi-user interference, it is considered a hybrid sub-connected approach that minimizes the bit error rate (BER). The performance results show that the proposed hybrid sub-connected scheme is close to the hybrid full-connected design. However, due to the large number of connections, the full-connected scheme is slightly better than the proposed sub-connected scheme but with higher complexity. Therefore, the proposed analog precoder and hybrid sub-connected equalizer are more feasible to practical applications due to the good trade-off between performance and complexity.Nos últimos anos, a necessidade por elevadas taxas de transmissão de dados tem vindo a aumentar substancialmente uma vez que as comunicações móveis assumem cada vez mais um papel fundamental na sociedade atual. Por isso, o número de utilizadores que acedem a serviços e aplicações interativas tem vindo a aumentar. A próxima geração de comunicações móveis (5G) é esperada que seja lançada em 2020 e é projetada para fornecer elevadas taxas de transmissão de dados aos seus utilizadores. A comunicação na banda das ondas milimétricas e o MIMO massivo são duas tecnologias promissoras para alcançar os multi Gb/s para as comunicações móveis futuras, em particular o 5G. Conjugando essas duas tecnologias, permite-nos colocar um maior número de antenas no mesmo volume comparativamente às frequências atuais, aumentando assim a eficiência espectral. No entanto, quanto se tem um grande número de antenas, não é viável ter uma arquitetura totalmente digital devido às restrições de hardware. Por outro lado, não é viável ter um sistema que trabalhe apenas no domínio analógico. Assim sendo, é necessária uma arquitetura híbrida analógica-digital de modo a remover a complexidade geral do sistema. É esperado que os sistemas de comunicação baseados em ondas milimétricas sejam de banda larga, no entanto, a maioria dos trabalhos feitos para arquiteturas híbridas são focados em canais de banda estreita. Dois exemplos de soluções híbridas são as arquiteturas completamente conectada e sub-conectada. Na primeira, todas as cadeias RF estão ligadas a todas as antenas enquanto na arquitetura sub-conectada cada cadeia RF é ligada apenas a um grupo de antenas. Consequentemente, a arquitetura sub-conectada é mais interessante do ponto de vista prático devido à sua menor complexidade quando comparada à arquitetura completamente conectada. Nesta dissertação é projetado um pré-codificador analógico de baixa complexidade no terminal móvel, combinado com um equalizador multiutilizador desenhado para uma arquitetura híbrida sub-conectada, implementado na estação base. O pré-codificador no transmissor assume um conhecimento parcial da informação do canal e, de modo a remover eficientemente a interferência multiutilizador, é proposta também uma arquitetura híbrida sub-conectada que minimiza a taxa média de erro. Os resultados de desempenho mostram que o esquema híbrido sub-conectado proposto está próximo da arquitetura híbrida completamente conectada. No entanto, devido ao grande número de conexões, a arquitetura híbrida completamente conectada é ligeiramente melhor que a arquitetura sub-conectada proposta à custa de uma maior complexidade. Assim sendo, o pré-codificador analógico e o equalizador sub-conectado híbrido proposto são mais viáveis para aplicações práticas devido ao compromisso entre o desempenho e a complexidade.Mestrado em Engenharia Eletrónica e Telecomunicaçõe

    Técnicas de equalização iterativa para arquiteturas híbridas sub-conectadas na banda de ondas milimétricas

    Get PDF
    Mestrado em Engenharia Eletrónica e TelecomunicaçõesThe millimeter wave communications and the use of a massive number of antennas are two promising technologies that being combined allow to achieve the multi Gb/s required by future 5G wireless systems. As this type of systems has a high number of antennas it is impossible to use a fully digital architecture, due to hardware limitations. Therefore, the design of signal processing techniques for hybrid analog-digital architectures is a requirement. Depending on the structure of the analog part the hybrid analog-digital architectures may be fully connected or sub-connected. Although the fully connected hybrid architectures allow to connect all RF chains to any antenna element, they involve a high cost due to its structural and computational complexity. As such, the sub-connected hybrid architectures become more attractive, since either at the hardware level or from the computational point of view they are less demanding. In this dissertation, we propose a hybrid iterative block multiuser equalizer for sub-connected millimeter wave massive MIMO systems. The user terminal transceiver has low-complexity and as such employ a pure analog random precoder, with a single RF chain. For the base station, a sub-connected hybrid analog-digital equalizer is designed to remove the multiuser interference. The hybrid equalizer is optimized using the average bit-error-rate as a metric. Due to the coupling between the RF chains in the optimization problem the computation of the optimal solution is way too complex. To address this problem, we compute the analog part of the equalizer sequentially over the RF chains using a dictionary built from the array response vectors. The proposed sub-connected hybrid iterative multiuser equalizer is compared with a recently proposed fully connected hybrid analog-digital approach and with the fully digital architecture. The results show that the performance of the proposed scheme is close to the fully connected hybrid approach after just a few iterations.As comunicações na banda das ondas milimétricas e o uso massivo de antenas são duas tecnologias promissoras que, sendo combinadas permitem alcançar elevadas taxas de transmissão, na ordem dos multi Gb/s, exigidas pelos futuros sistemas sem fios da 5G. Como estes sistemas possuem um número elevado de antenas, torna-se impossível o uso de uma arquitetura totalmente digital devido às limitações de hardware. Desta forma, é necessário projetar técnicas de processamento de sinal para arquiteturas híbridas analógico-digitais. Dentro das arquiteturas híbridas, foram propostas duas formas de lidar com a parte analógica, que são, a forma totalmente conectada e a forma sub-conectada. Embora as arquiteturas híbridas totalmente conectadas permitam interligar todas as cadeias RF a qualquer elemento de antena, estas envolvem um elevado custo devido à sua complexidade estrutural e computacional. Assim sendo, as arquiteturas híbridas sub-conectadas tornam-se mais atraentes pois são menos exigentes do ponto de vista computacional, bem como ao nível do hardware. Nesta dissertação, é proposto um equalizador iterativo para um sistema com uma arquitetura hibrida sub-conectada, com múltiplos utilizadores e um número massivo de antenas a operar na banda das ondas milimétricas. Os terminais dos utilizadores têm baixa complexidade e utilizam pré-codificadores aleatórios analógicos puros, cada um com uma única cadeia RF. Para a estação base, projetou-se um equalizador híbrido analógico-digital de arquitectura sub-conectada, para remover a interferência multiutilizador. O equalizador híbrido é otimizado usando a taxa média de erro de bit como métrica. Devido ao acoplamento entre as cadeias de RF no problema de otimização, o cálculo das soluções ótimas possui elevada complexidade. Para ultrapassar este problema, calculou-se a parte analógica de cada cadeia de RF do equalizador de forma sequencial, usando um dicionário construído a partir da resposta do agregado de antenas. Compara-se o equalizador iterativo híbrido para sistemas multiutilizador de arquitectura sub-conectada proposto com uma abordagem híbrida analógica/digital totalmente conectada, recentemente proposta na literatura e com uma arquitetura totalmente digital. Os resultados mostram que o desempenho do esquema proposto aproximasse da abordagem híbrida totalmente conectada após apenas algumas iterações

    Spatial modulation schemes and modem architectures for millimeter wave radio systems

    Get PDF
    The rapid growth of wireless industry opens the door to several use cases such as internet of things and device-to-device communications, which require boosting the reliability and the spectral efficiency of the wireless access network, while reducing the energy consumption at the terminals. The vast spectrum available in millimeter-wave (mmWave) frequency band is one of the most promising candidates to achieve high-speed communications. However, the propagation of the radio signals at high carrier frequencies suffers from severe path-loss which reduces the coverage area. Fortunately, the small wavelengths of the mmWave signals allow packing a large number of antennas not only at the base station (BS) but also at the user terminal (UT). These massive antenna arrays can be exploited to attain high beamforming and combining gains and overcome the path-loss associated with the mmWave propagation. In conventional (fully digital) multiple-input-multiple-output (MIMO) transceivers, each antenna is connected to a specific radio-frequency (RF) chain and high resolution analog-to-digital-converter. Unfortunately, these devices are expensive and power hungry especially at mmWave frequency band and when operating in large bandwidths. Having this in mind, several MIMO transceiver architectures have been proposed with the purpose of reducing the hardware cost and the energy consumption. Fully connected hybrid analog and digital precoding schemes were proposed in with the aim of replacing some of the conventional RF chains by energy efficient analog devices. These fully connected mapping requires many analog devices that leads to non-negligible energy consumption. Partially connected hybrid architectures have been proposed to improve the energy efficiency of the fully connected transceivers by reducing the number of analog devices. Simplifying the transceiver’s architecture to reduce the power consumption results in a degradation of the attained spectral efficiency. In this PhD dissertation, we propose novel modulation schemes and massive MIMO transceiver design to combat the challenges at the mmWave cellular systems. The structure of the doctoral manuscript can be expressed as In Chapter 1, we introduce the transceiver design challenges at mmWave cellular communications. Then, we illustrate several state of the art architectures and highlight their limitations. After that, we propose scheme that attains high-energy efficiency and spectrum efficiency. In chapter 2, first, we mathematically describe the state of the art of the SM and highlight the main challenges with these schemes when applied at mmWave frequency band. In order to combat these challenges (for example, high cost and high power consumption), we propose novel SM schemes specifically designed for mmWave massive MIMO systems. After that, we explain how these schemes can be exploited in attaining energy efficient UT architecture. Finally, we present the channel model, systems assumptions and the transceiver devices power consumption models. In chapter 3, we consider single user SM system. First, we propose downlink (DL) receive SM (RSM) scheme where the UT can be implemented with single or multiple radio-frequency chains and the BS can be fully digital or hybrid architecture. Moreover, we consider different precoders at the BS and propose low complexity and efficient antenna selection schemes for narrowband and wideband transmissions. After that, we propose joint uplink-downlink SM scheme where we consider RSM in the DL and transmit SM (TSM) in the UL based on energy efficient hybrid UT architecture. In chapter 4, we extend the SM system to the multi-user case. Specifically, we develop joint multi-user power allocation, user selection and antenna selection algorithms for the broadcast and the multiple access channels. Chapter 5 is presented for concluding the thesis and proposing future research directions.Considerando los altos requerimientos de los servicios de nueva generación, las infraestructuras de red actual se han visto obligadas a evolucionar en la forma de manejar los diferentes recursos de red y computación. Con este fin, nuevas tecnologías han surgido para soportar las funcionalidades necesarias para esta evolución, significando también un gran cambio de paradigma en el diseño de arquitecturas para la futura implementación de redes.En este sentido, este documento de tesis doctoral presenta un análisis sobre estas tecnologías, enfocado en el caso de redes inter/intra Data Centre. Por consiguiente, la introducción de tecnologías basadas en redes ópticas ha sido estudiada, con el fin de identificar problemas actuales que puedan llegar a ser solucionados mediante el diseño y aplicación de nuevas técnicas, asimismo como a través del desarrollo o la extensión de los componentes de arquitectura de red.Con este propósito, se han definido una serie de propuestas relacionadas con aspectos cruciales, así como el control de dispositivos ópticos por SDN para habilitar el manejo de redes híbridas, la necesidad de definir un mecanismo de descubrimiento de topologías ópticas capaz de exponer información precisa, y el analizar las brechas existentes para la definición de una arquitectura común en fin de soportar las comunicaciones 5G.Para validar estas propuestas, se han presentado una serie de validaciones experimentales por medio de escenarios de prueba específicos, demostrando los avances en control, orquestación, virtualización y manejo de recursos con el fin de optimizar su utilización. Los resultados expuestos, además de corroborar la correcta operación de los métodos y componentes propuestos, abre el camino hacia nuevas formas de adaptar los actuales despliegues de red respecto a los desafíos definidos en el inicio de una nueva era de las telecomunicaciones.Postprint (published version

    MmWave Amplify-and-Forward MIMO Relay Networks with Hybrid Precoding/Combining Design

    Get PDF
    In this paper, we consider the amplify-and-forward relay networks in mmWave systems and propose a hybrid precoder/combiner design approach. The phase-only RF precoding/combining matrices are first designed to support multi-stream transmission, where we compensate the phase for the eigenmodes of the channel. Then, the baseband precoders/combiners are performed to achieve the maximum mutual information. Based on the data processing inequality for the mutual information, we first jointly design the baseband source and relay nodes to maximize the mutual information before the destination baseband receiver. The proposed low-complexity iterative algorithm for the source and relay nodes is based on the equivalence between mutual information maximization and the weighted MMSE. After we obtain the optimal precoder and combiner for the source and relay nodes, we implement the MMSE-SIC filter at the baseband receiver to keep the mutual information unchanged, thus obtaining the optimal mutual information for the whole relay system. Simulation results show that our algorithm achieves better performance with lower complexity compared with other algorithms in the literature. In addition, we also propose a robust joint transceiver design for imperfect channel state information

    Recent Advances in Acquiring Channel State Information in Cellular MIMO Systems

    Get PDF
    In cellular multi-user multiple input multiple output (MU-MIMO) systems the quality of the available channel state information (CSI) has a large impact on the system performance. Specifically, reliable CSI at the transmitter is required to determine the appropriate modulation and coding scheme, transmit power and the precoder vector, while CSI at the receiver is needed to decode the received data symbols. Therefore, cellular MUMIMO systems employ predefined pilot sequences and configure associated time, frequency, code and power resources to facilitate the acquisition of high quality CSI for data transmission and reception. Although the trade-off between the resources used user data transmission has been known for long, the near-optimal configuration of the vailable system resources for pilot and data transmission is a topic of current research efforts. Indeed, since the fifth generation of cellular systems utilizes heterogeneous networks in which base stations are equipped with a large number of transmit and receive antennas, the appropriate configuration of pilot-data resources becomes a critical design aspect. In this article, we review recent advances in system design approaches that are designed for the acquisition of CSI and discuss some of the recent results that help to dimension the pilot and data resources specifically in cellular MU-MIMO systems

    Transmission strategies for broadband wireless systems with MMSE turbo equalization

    Get PDF
    This monograph details efficient transmission strategies for single-carrier wireless broadband communication systems employing iterative (turbo) equalization. In particular, the first part focuses on the design and analysis of low complexity and robust MMSE-based turbo equalizers operating in the frequency domain. Accordingly, several novel receiver schemes are presented which improve the convergence properties and error performance over the existing turbo equalizers. The second part discusses concepts and algorithms that aim to increase the power and spectral efficiency of the communication system by efficiently exploiting the available resources at the transmitter side based upon the channel conditions. The challenging issue encountered in this context is how the transmission rate and power can be optimized, while a specific convergence constraint of the turbo equalizer is guaranteed.Die vorliegende Arbeit beschäftigt sich mit dem Entwurf und der Analyse von effizienten Übertragungs-konzepten für drahtlose, breitbandige Einträger-Kommunikationssysteme mit iterativer (Turbo-) Entzerrung und Kanaldekodierung. Dies beinhaltet einerseits die Entwicklung von empfängerseitigen Frequenzbereichs-entzerrern mit geringer Komplexität basierend auf dem Prinzip der Soft Interference Cancellation Minimum-Mean Squared-Error (SC-MMSE) Filterung und andererseits den Entwurf von senderseitigen Algorithmen, die durch Ausnutzung von Kanalzustandsinformationen die Bandbreiten- und Leistungseffizienz in Ein- und Mehrnutzersystemen mit Mehrfachantennen (sog. Multiple-Input Multiple-Output (MIMO)) verbessern. Im ersten Teil dieser Arbeit wird ein allgemeiner Ansatz für Verfahren zur Turbo-Entzerrung nach dem Prinzip der linearen MMSE-Schätzung, der nichtlinearen MMSE-Schätzung sowie der kombinierten MMSE- und Maximum-a-Posteriori (MAP)-Schätzung vorgestellt. In diesem Zusammenhang werden zwei neue Empfängerkonzepte, die eine Steigerung der Leistungsfähigkeit und Verbesserung der Konvergenz in Bezug auf existierende SC-MMSE Turbo-Entzerrer in verschiedenen Kanalumgebungen erzielen, eingeführt. Der erste Empfänger - PDA SC-MMSE - stellt eine Kombination aus dem Probabilistic-Data-Association (PDA) Ansatz und dem bekannten SC-MMSE Entzerrer dar. Im Gegensatz zum SC-MMSE nutzt der PDA SC-MMSE eine interne Entscheidungsrückführung, so dass zur Unterdrückung von Interferenzen neben den a priori Informationen der Kanaldekodierung auch weiche Entscheidungen der vorherigen Detektions-schritte berücksichtigt werden. Durch die zusätzlich interne Entscheidungsrückführung erzielt der PDA SC-MMSE einen wesentlichen Gewinn an Performance in räumlich unkorrelierten MIMO-Kanälen gegenüber dem SC-MMSE, ohne dabei die Komplexität des Entzerrers wesentlich zu erhöhen. Der zweite Empfänger - hybrid SC-MMSE - bildet eine Verknüpfung von gruppenbasierter SC-MMSE Frequenzbereichsfilterung und MAP-Detektion. Dieser Empfänger besitzt eine skalierbare Berechnungskomplexität und weist eine hohe Robustheit gegenüber räumlichen Korrelationen in MIMO-Kanälen auf. Die numerischen Ergebnisse von Simulationen basierend auf Messungen mit einem Channel-Sounder in Mehrnutzerkanälen mit starken räumlichen Korrelationen zeigen eindrucksvoll die Überlegenheit des hybriden SC-MMSE-Ansatzes gegenüber dem konventionellen SC-MMSE-basiertem Empfänger. Im zweiten Teil wird der Einfluss von System- und Kanalmodellparametern auf die Konvergenzeigenschaften der vorgestellten iterativen Empfänger mit Hilfe sogenannter Korrelationsdiagramme untersucht. Durch semi-analytische Berechnungen der Entzerrer- und Kanaldecoder-Korrelationsfunktionen wird eine einfache Berechnungsvorschrift zur Vorhersage der Bitfehlerwahrscheinlichkeit von SC-MMSE und PDA SC-MMSE Turbo Entzerrern für MIMO-Fadingkanäle entwickelt. Des Weiteren werden zwei Fehlerschranken für die Ausfallwahrscheinlichkeit der Empfänger vorgestellt. Die semi-analytische Methode und die abgeleiteten Fehlerschranken ermöglichen eine aufwandsgeringe Abschätzung sowie Optimierung der Leistungsfähigkeit des iterativen Systems. Im dritten und abschließenden Teil werden Strategien zur Raten- und Leistungszuweisung in Kommunikationssystemen mit konventionellen iterativen SC-MMSE Empfängern untersucht. Zunächst wird das Problem der Maximierung der instantanen Summendatenrate unter der Berücksichtigung der Konvergenz des iterativen Empfängers für einen Zweinutzerkanal mit fester Leistungsallokation betrachtet. Mit Hilfe des Flächentheorems von Extrinsic-Information-Transfer (EXIT)-Funktionen wird eine obere Schranke für die erreichbare Ratenregion hergeleitet. Auf Grundlage dieser Schranke wird ein einfacher Algorithmus entwickelt, der für jeden Nutzer aus einer Menge von vorgegebenen Kanalcodes mit verschiedenen Codierraten denjenigen auswählt, der den instantanen Datendurchsatz des Mehrnutzersystems verbessert. Neben der instantanen Ratenzuweisung wird auch ein ausfallbasierter Ansatz zur Ratenzuweisung entwickelt. Hierbei erfolgt die Auswahl der Kanalcodes für die Nutzer unter Berücksichtigung der Einhaltung einer bestimmten Ausfallwahrscheinlichkeit (outage probability) des iterativen Empfängers. Des Weiteren wird ein neues Entwurfskriterium für irreguläre Faltungscodes hergeleitet, das die Ausfallwahrscheinlichkeit von Turbo SC-MMSE Systemen verringert und somit die Zuverlässigkeit der Datenübertragung erhöht. Eine Reihe von Simulationsergebnissen von Kapazitäts- und Durchsatzberechnungen werden vorgestellt, die die Wirksamkeit der vorgeschlagenen Algorithmen und Optimierungsverfahren in Mehrnutzerkanälen belegen. Abschließend werden außerdem verschiedene Maßnahmen zur Minimierung der Sendeleistung in Einnutzersystemen mit senderseitiger Singular-Value-Decomposition (SVD)-basierter Vorcodierung untersucht. Es wird gezeigt, dass eine Methode, welche die Leistungspegel des Senders hinsichtlich der Bitfehlerrate des iterativen Empfängers optimiert, den konventionellen Verfahren zur Leistungszuweisung überlegen ist
    corecore