75,838 research outputs found

    Novel methods for multi-view learning with applications in cyber security

    Get PDF
    Modern data is complex. It exists in many different forms, shapes and kinds. Vectors, graphs, histograms, sets, intervals, etc.: they each have distinct and varied structural properties. Tailoring models to the characteristics of various feature representations has been the subject of considerable research. In this thesis, we address the challenge of learning from data that is described by multiple heterogeneous feature representations. This situation arises often in cyber security contexts. Data from a computer network can be represented by a graph of user authentications, a time series of network traffic, a tree of process events, etc. Each representation provides a complementary view of the holistic state of the network, and so data of this type is referred to as multi-view data. Our motivating problem in cyber security is anomaly detection: identifying unusual observations in a joint feature space, which may not appear anomalous marginally. Our contributions include the development of novel supervised and unsupervised methods, which are applicable not only to cyber security but to multi-view data in general. We extend the generalised linear model to operate in a vector-valued reproducing kernel Hilbert space implied by an operator-valued kernel function, which can be tailored to the structural characteristics of multiple views of data. This is a highly flexible algorithm, able to predict a wide variety of response types. A distinguishing feature is the ability to simultaneously identify outlier observations with respect to the fitted model. Our proposed unsupervised learning model extends multidimensional scaling to directly map multi-view data into a shared latent space. This vector embedding captures both commonalities and disparities that exist between multiple views of the data. Throughout the thesis, we demonstrate our models using real-world cyber security datasets.Open Acces

    Crossing Generative Adversarial Networks for Cross-View Person Re-identification

    Full text link
    Person re-identification (\textit{re-id}) refers to matching pedestrians across disjoint yet non-overlapping camera views. The most effective way to match these pedestrians undertaking significant visual variations is to seek reliably invariant features that can describe the person of interest faithfully. Most of existing methods are presented in a supervised manner to produce discriminative features by relying on labeled paired images in correspondence. However, annotating pair-wise images is prohibitively expensive in labors, and thus not practical in large-scale networked cameras. Moreover, seeking comparable representations across camera views demands a flexible model to address the complex distributions of images. In this work, we study the co-occurrence statistic patterns between pairs of images, and propose to crossing Generative Adversarial Network (Cross-GAN) for learning a joint distribution for cross-image representations in a unsupervised manner. Given a pair of person images, the proposed model consists of the variational auto-encoder to encode the pair into respective latent variables, a proposed cross-view alignment to reduce the view disparity, and an adversarial layer to seek the joint distribution of latent representations. The learned latent representations are well-aligned to reflect the co-occurrence patterns of paired images. We empirically evaluate the proposed model against challenging datasets, and our results show the importance of joint invariant features in improving matching rates of person re-id with comparison to semi/unsupervised state-of-the-arts.Comment: 12 pages. arXiv admin note: text overlap with arXiv:1702.03431 by other author

    Nonparametric Estimation of Multi-View Latent Variable Models

    Full text link
    Spectral methods have greatly advanced the estimation of latent variable models, generating a sequence of novel and efficient algorithms with strong theoretical guarantees. However, current spectral algorithms are largely restricted to mixtures of discrete or Gaussian distributions. In this paper, we propose a kernel method for learning multi-view latent variable models, allowing each mixture component to be nonparametric. The key idea of the method is to embed the joint distribution of a multi-view latent variable into a reproducing kernel Hilbert space, and then the latent parameters are recovered using a robust tensor power method. We establish that the sample complexity for the proposed method is quadratic in the number of latent components and is a low order polynomial in the other relevant parameters. Thus, our non-parametric tensor approach to learning latent variable models enjoys good sample and computational efficiencies. Moreover, the non-parametric tensor power method compares favorably to EM algorithm and other existing spectral algorithms in our experiments

    Learning Deep Latent Spaces for Multi-Label Classification

    Full text link
    Multi-label classification is a practical yet challenging task in machine learning related fields, since it requires the prediction of more than one label category for each input instance. We propose a novel deep neural networks (DNN) based model, Canonical Correlated AutoEncoder (C2AE), for solving this task. Aiming at better relating feature and label domain data for improved classification, we uniquely perform joint feature and label embedding by deriving a deep latent space, followed by the introduction of label-correlation sensitive loss function for recovering the predicted label outputs. Our C2AE is achieved by integrating the DNN architectures of canonical correlation analysis and autoencoder, which allows end-to-end learning and prediction with the ability to exploit label dependency. Moreover, our C2AE can be easily extended to address the learning problem with missing labels. Our experiments on multiple datasets with different scales confirm the effectiveness and robustness of our proposed method, which is shown to perform favorably against state-of-the-art methods for multi-label classification.Comment: published in AAAI-201

    Multi-view Learning as a Nonparametric Nonlinear Inter-Battery Factor Analysis

    Get PDF
    Factor analysis aims to determine latent factors, or traits, which summarize a given data set. Inter-battery factor analysis extends this notion to multiple views of the data. In this paper we show how a nonlinear, nonparametric version of these models can be recovered through the Gaussian process latent variable model. This gives us a flexible formalism for multi-view learning where the latent variables can be used both for exploratory purposes and for learning representations that enable efficient inference for ambiguous estimation tasks. Learning is performed in a Bayesian manner through the formulation of a variational compression scheme which gives a rigorous lower bound on the log likelihood. Our Bayesian framework provides strong regularization during training, allowing the structure of the latent space to be determined efficiently and automatically. We demonstrate this by producing the first (to our knowledge) published results of learning from dozens of views, even when data is scarce. We further show experimental results on several different types of multi-view data sets and for different kinds of tasks, including exploratory data analysis, generation, ambiguity modelling through latent priors and classification.Comment: 49 pages including appendi
    • …
    corecore