
Novel Methods for Multi-view
Learning with Applications in

Cyber Security

a thesis presented for the degree of

Doctor of Philosophy of Imperial College London

and the

Diploma of Imperial College

by

Jack Hogan

Department of Mathematics

Imperial College

180 Queen’s Gate, London SW7 2AZ

April 2023

I certify that this thesis, and the research to which it refers, are the product

of my own work, and that any ideas or quotations from the work of other

people, published or otherwise, are fully acknowledged in accordance with

the standard referencing practices of the discipline.

Signed:

ii

Copyright

The copyright of this thesis rests with the author. Unless otherwise indi-

cated, its contents are licensed under a Creative Commons Attribution-Non

Commercial-No Derivatives 4.0 International Licence (CC BY-NC-ND). Un-

der this licence, you may copy and redistribute the material in any medium

or format on the condition that; you credit the author, do not use it for com-

mercial purposes and do not distribute modified versions of the work. When

reusing or sharing this work, ensure you make the licence terms clear to others

by naming the licence and linking to the licence text. Please seek permission

from the copyright holder for uses of this work that are not included in this

licence or permitted under UK Copyright Law.

iii

Novel Methods for Multi-view Learning with
Applications in Cyber Security

Abstract

Modern data is complex. It exists in many different forms, shapes and kinds.

Vectors, graphs, histograms, sets, intervals, etc.: they each have distinct and

varied structural properties. Tailoring models to the characteristics of various

feature representations has been the subject of considerable research. In this

thesis, we address the challenge of learning from data that is described by

multiple heterogeneous feature representations.

This situation arises often in cyber security contexts. Data from a computer

network can be represented by a graph of user authentications, a time series

of network traffic, a tree of process events, etc. Each representation provides

a complementary view of the holistic state of the network, and so data of

this type is referred to as multi-view data. Our motivating problem in cyber

security is anomaly detection: identifying unusual observations in a joint

feature space, which may not appear anomalous marginally.

Our contributions include the development of novel supervised and unsuper-

vised methods, which are applicable not only to cyber security but to multi-

view data in general. We extend the generalised linear model to operate in a

vector-valued reproducing kernel Hilbert space implied by an operator-valued

kernel function, which can be tailored to the structural characteristics of mul-

tiple views of data. This is a highly flexible algorithm, able to predict a wide

variety of response types. A distinguishing feature is the ability to simulta-

neously identify outlier observations with respect to the fitted model. Our

proposed unsupervised learning model extends multidimensional scaling to

directly map multi-view data into a shared latent space. This vector embed-

ding captures both commonalities and disparities that exist between multiple

views of the data. Throughout the thesis, we demonstrate our models using

real-world cyber security datasets.

iv

Acknowledgments

First, I would like to thank my supervisor, Professor Niall Adams. Without

his encouragement, I would not have undertaken this Ph.D. and without

his incredible support and patience, I doubtless would never have finished.

Niall has been a constant source of ideas, advice and good humour, and I’m

extremely grateful for all his guidance.

I am also thankful for the scholarship provided by QinetiQ. This Ph.D. would

not have been possible without their financial support.

In 2019, I was fortunate to work on a research project for Rolls Royce and the

Alan Turing Institute. I’m grateful to Dr Andrew Duncan for the opportunity

and for all his guidance during the project.

Throughout my time at Imperial, I’ve had great office-mates, who made my

experience immeasurably more enjoyable. I’ve also received helpful advice,

ideas and comments from many people; in particular, I’d like to thank Profes-

sor David Hand and Dr Christoforos Anagnostopoulos for helpful comments

on a manuscript that forms the basis for Chapter 4 of this thesis. Andy

Thomas was always quick to provide technical assistance with software pack-

ages and computational resources. Thanks also to Ed Cohen, Dean Boden-

ham, Nick Heard, Mark Briers and Josh Neil for enjoyable discussions over

the years.

Finally, a special thank you to all my family and friends; in particular, to

my father for all his advice and encouragement, to my mother for always

thinking of me, and to Jasmine, for her endless patience and support.

Jack Hogan

v

Contents

Notation . 1

1 Introduction 3
1.1 Contributions and Thesis Outline 5
1.2 Publications . 7

2 Background 8
2.1 Multi-view Data . 8
2.2 Multi-view Learning . 13

2.2.1 Multi-view Outlier Detection 15
2.3 Cyber Security Datasets . 16

2.3.1 LANL Dataset . 16
2.3.2 EMBER Malware Dataset 19

3 Computer Network Data Analysis 22
3.1 Statistical Cyber Security . 23
3.2 Supervised Learning using Time-shifted Labels 25

3.2.1 Time-shifted Label . 26
3.2.2 Data Fusion . 26
3.2.3 Entity Fusion . 28

3.3 Experiment . 28
3.4 Discussion . 31

4 On Averaging ROC curves 32
4.1 Background and Relevant Literature 33
4.2 ROC Graphs . 35

4.2.1 Definition . 36
4.2.2 Estimation . 37
4.2.3 Area Under the ROC Curve 38

4.3 Averaging ROC Curves . 38
4.3.1 Pooling . 41
4.3.2 Vertical Averaging . 41
4.3.3 Threshold Averaging 42

4.4 Interpreting Average ROC Curves 42
4.4.1 ROC Space Averaging 44

4.5 Simulated Example . 45

vi

4.6 Discussion . 48

5 Semi-supervised Learning via Co-regularised Kernel Lo-
gistic Regression 49
5.1 Background and Relevant Literature 50
5.2 Reproducing Kernel Hilbert Spaces 52

5.2.1 Scalar-valued Kernel Machines 52
5.2.2 Vector-valued RKHSs 54
5.2.3 Multi-view Kernels . 55

5.3 Multi-view Semi-supervised Structural Risk Minimisation . . . 56
5.3.1 Supervised Learning Framework 56
5.3.2 Relation to Single-view Learning Schemes 58
5.3.3 Semi-supervised Learning 58

5.4 Semi-supervised Kernel Logistic Regression 61
5.5 Experiments . 63

5.5.1 Simulated Data . 63
5.5.2 Malware Detection . 66

5.6 Discussion . 70

6 Multi-view Generalised Kernel Machines 72
6.1 Background and Relevant Literature 74
6.2 A Unified Learning Scheme 76

6.2.1 Generalised Linear Models 76
6.2.2 Multi-view GKMs . 78
6.2.3 Parameter Estimation 79
6.2.4 Algorithm . 81
6.2.5 Prediction . 82
6.2.6 Outlier Detection . 82

6.3 Multi-view Kernel Functions 86
6.3.1 MKL Kernel . 87
6.3.2 Cross-covariance Kernel 87
6.3.3 Learned Metric Kernel 88

6.4 Example Response Types . 89
6.4.1 Logistic Regression . 89
6.4.2 Poisson Regression . 90
6.4.3 Multinomial Logistic Regression 91

6.5 Experiments . 93
6.5.1 Binary, Multi-class and Poisson Regression 94
6.5.2 Anomaly Detection . 99

6.6 Discussion . 102

vii

7 Multi-view Multidimensional Scaling 103
7.1 Background and Relevant Literature 105
7.2 Multidimensional Scaling . 107

7.2.1 The SMACOF Algorithm for MDS 108
7.3 Multi-view Embedding . 109

7.3.1 Multi-view MDS . 110
7.3.2 Extending SMACOF for Multi-view MDS 112

7.4 Experiments . 114
7.4.1 Simulated Data . 114
7.4.2 Cyber Situational Awareness 118

7.5 Discussion . 127

8 Conclusion 128

References 153

viii

Notation

Unless stated otherwise, plain x represents a scalar, boldface x represents

a vector (or symbolic data—see Section 2.1), calligraphic X represents a

topological space and capitalised boldface X represents a matrix.

List of Symbols

tp true positive rate
fp false positive rate
P,N positive and negative subsets of binary dataset
k scalar-valued kernel function
K operator-valued kernel function
K kernel gram matrix
⟨·, ·⟩H inner-product in H
Hk RKHS of the reproducing kernel k
L(Z) space of linear functions from Z to itself
J(·) SRM objective function
V (·, ·) loss function
∥·∥2 squared L2-norm
⊗ Kronecker product
In n× n identity matrix
1n n-dimensional vector of ones
∇α gradient with respect to α
∇2

α second derivative, i.e. Hessian matrix with respect to α
ℓ(·) log-likelihood function
δij dissimilarity between observations i and j
∆ matrix of pairwise dissimilarities
dij(Z) Euclidean distance between zi and zj

tr(·) matrix trace
Op×q space of semi-orthogonal p× q matrices

1

List of Acronyms

LANL Los Alamos National Laboratory dataset (Section 2.3.1)

WLS Windows Logging Service—subset of the LANL dataset

EMBER Malware dataset (Section 2.3.2)

ROC Receiver Operating Characteristic

AUC Area Under the (ROC) Curve

RKHS Reproducing kernel Hilbert space

SRM Structural Risk Minimisation

SVM Support Vector Machine

tf-idf term frequency times inverse-document frequency

GLM Generalised Linear Model

GKM Generalised Kernel Machine

MVGKM Multi-view Generalised Kernel Machine

MKL Multiple Kernel Learning

MVML Multi-view Metric Learning

MAE Mean absolute error

MDS Multidimensional scaling

PCA Principal Component Analysis

SMACOF Scaling by Majorising a Complex Function

2

1
Introduction

The most common approach to statistical modelling and machine learning

problems is to assume that data are represented in a single vector space.

Modern data, however, is multiform: it exists in many forms, shapes and

kinds; for example, lists, strings, histograms, graphs, trees, etc. Often, each

instance in a dataset will have distinct representations from multiple—and

potentially disparate—feature spaces. Each representation can be considered

as providing a complementary view about the underlying object and hence

data of this type are often referred to as multi-view data. Archetypal exam-

ples include images, which can be described by colour and texture features;

biological samples, represented by genome sequence, DNA, metabolic type

etc.; and video segments, represented by the image content and the audio

content.

As advances in technology allow data to be gathered inexpensively from mul-

tifarious data sources, the natural and ubiquitous occurrence of multi-view

data has prompted interest in so-called multi-view learning. Commonly, in

order to accommodate multi-view data in a statistical or machine learning

setting, one of two crude approaches is used: early fusion calls for the data

from separate views to be simply combined or concatenated into a single fea-

3

ture representation prior to modelling; late fusion involves individual models

being developed per view, with their outputs then combined or averaged.

In Chapter 2, we will discuss a number of reasons why both approaches

may have unsatisfactory consequences on the quality of the resulting model.

Broadly, the former can lead to valuable information being forfeited when

summarising data into a common representation, while the latter is unable

to capture correlations among features from different views. Our goal in this

thesis is to develop more sophisticated approaches that can maximise the

information captured from complex multi-view data.

Cyber security is one application area for which multi-view learning has par-

ticular promise. This is an extremely data-rich domain: vast datasets refer-

ring to numerous types of network or computer events are routinely available

within even small enterprises, e.g. network data such as Netflow traffic, web

cache and proxy logs, domain name service (DNS) lookup records (Kent,

2016; Morgan et al., 2016), as well as host-based data such as authentica-

tion logs, process trees and command histories (Glass-Vanderlan et al., 2018;

Sanna Passino et al., 2023b). Traditionally, cyber security systems such

as firewalls and anti-virus software have relied on rule-based mechanisms.

These can be thought of as decision trees with hard-coded parameters, of-

ten extracted through trial and error and expert knowledge, and taken from

real-world examples (Hero et al., 2023). While such methods are successful

at detecting repeat attacks, a major disadvantage is that they are unable to

detect malicious activity or attack behaviour for which a rule, or signature,

has not been previously created. There is a need for additional systems,

based on statistical modelling of network data, to complement existing cyber

defence systems and enhance the abilities of cyber security professionals.

In contrast to rule-based detection, statistical approaches attempt to charac-

terise the normal behaviour of some aspect of a computer network and sub-

sequently to detect anomalous departures from normal behaviour (Bhuyan

et al., 2014; Mukherjee et al., 1994; Ye et al., 2002). In this way, anomaly

detection does not explicitly identify malicious behaviour, but rather locates

unusual and surprising activity, which may be symptomatic of an intrusion.

When designing signature-based detection methods, human experts typically

4

try to “combine” different attack characteristics in order to obtain low false

positive rates and high attack detection rates (Giacinto et al., 2003). A sta-

tistical anomaly detector should do the same. By capturing mutual relations

between multiple data sources, multi-view approaches may be able to identify

the unusual co-occurence of observations across data sources, which may not

be unusual within any individual data source or representation. The very

last part of this thesis demonstrates precisely this capability.

The two main challenges addressed in this thesis are thus: (1) how to com-

bine information contained in different complicated data structures in a syn-

ergistic way for various learning problems; and (2) how to detect anomalous

or outlying data points with respect to co-occurring signals across different

views of data, which may not appear anomalous in isolation.

Although cyber security is the key motivator for the procedures we develop

to address these two challenges, they are not limited to this domain. In

Chapters 5 to 7, we consider separately the tasks of semi-supervised, super-

vised and unsupervised learning, and the methods we develop are applicable

in each case to multi-view data in general.

1.1 Contributions and Thesis Outline

This thesis provides novel contributions to both the fields of multi-view learn-

ing and cyber security. From a multi-view learning perspective, we make two

major contributions: we propose novel frameworks for supervised (Chapter 6)

and unsupervised (Chapter 7) learning using complex, multi-view data. In

both cases, we derive optimisation algorithms and demonstrate performance

on real-world data. From a methodological perspective of statistical cyber

security, we propose several novel approaches, including a strategy for novelty

detection (Chapter 3), a tool for investigating port scanning (Chapter 6) and

a framework for asset monitoring and situational awareness (Chapter 7). We

next outline the structure and contributions of the remainder of the thesis.

In Chapter 2, we discuss background material, beginning with a detailed de-

scription of what constitutes multi-view data. The prevalence of such data in

5

modern applications is highlighted through a series of examples. We describe

the shortcomings of simplistic or näıve approaches to modelling multi-view

data and highlight desirable properties for a multi-view learning method.

Two cyber security datasets that are used in the thesis are introduced.

In Chapter 3, we address a prevalent problem in cyber security that precludes

the use of supervised learning approaches: there is a dearth of ground-truth

labels in network data to indicate benign and malicious activity. We propose

a framework for contriving labels from the data so that classification tech-

niques can be deployed for novelty detection. In presenting this framework,

we explore the use of early and late fusion and highlight the sub-optimality

of both approaches.

When comparing early and late fusion classifiers, we measure the difference

in their average performance using ROC curves. There are many ways to

reason about how an average ROC curve should be constructed, though little

guidance is provided in the literature. To address this, in Chapter 4 we take

a brief detour from multi-view learning and explore the interpretation of

different methods of averaging ROC curves. We perform simulation studies

to illustrate the dangers of choosing the incorrect method for a given study.

Fundamentally, the quality of any statistical model hinges on its ability to

capture the underlying structure of a dataset. Kernel methods offer a power-

ful paradigm for learning non-linear patterns in diverse data representations.

In Chapter 5, we exploit a semi-supervised learning framework based on

operator-valued kernel functions to simultaneously address challenges pre-

sented by multi-view data and also the scarcity of labels in cyber security

problems such as malware detection. We modify the loss function of an

existing framework to develop a probabilistic classifier that can learn from

partially labelled multi-view data.

In Chapter 6, we use this framework as the starting point to propose a

novel general-purpose multi-view supervised learning scheme. We extend

the classical generalised linear model to operate in the vector-valued repro-

ducing kernel Hilbert space implied by an operator-valued multi-view kernel.

Our framework has a simple optimisation procedure for binary, categorical,

6

integer- and continuous-valued responses, it results in interpretable outputs

and comes with diagnostic capabilities such as outlier detection. We demon-

strate its performance on a variety of datasets, including an outlier detection

example in the cyber security setting.

The model developed in Chapter 6 learns patterns within multi-view data

based on their representation in a high-dimensional space implied by the

multi-view kernel. In Chapter 7, we propose a novel way of explicitly learn-

ing a vector representation of multi-view data in a shared latent space. Un-

supervised learning and anomaly detection can then be performed directly

using the embeddings of the data in this space. We describe how such an

approach could be used for cyber security situational awareness and provide

a demonstration using real data.

The thesis concludes in Chapter 8 with a summary of contributions.

1.2 Publications

This thesis contains research that has either been accepted for publication

or is under review for publication at the time of writing.

Chapter 3 is based on the following paper:

J. Hogan and N. M. Adams. A study of data fusion for predicting novel

activity in enterprise cyber-security. In IEEE International Conference on

Intelligence and Security Informatics, pages 37–42, 2018.

Chapter 4 is based on the following paper:

J. Hogan and N. M. Adams. On averaging ROC curves. Transactions on

Machine Learning Research, 2023.

Chapter 6 is based on the following paper, currently under revision:

J. Hogan and N. M. Adams. Multi-view generalised kernel machines for

regression, classification and outlier detection. Journal of Machine Learning

Research, 2023.

7

2
Background

This chapter provides a summary of background material for the thesis. We

begin with a discussion of multi-view data in Section 2.1, highlighting its

salient characteristics and illustrating its ubiquity in modern data applica-

tions. In Section 2.2, we briefly discuss some of the challenges that are pre-

sented when constructing statistical models or machine learning algorithms

for multi-view data. We outline the shortcomings of simplistic approaches

and motivate the methods that we develop in this thesis. Section 2.3 details

two cyber security datasets that will be used: one recording network traffic

and authentication behaviour within an enterprise network and the other

describing a collection of benign and malicious computer programmes.

2.1 Multi-view Data

In this thesis, we are concerned with a specific characteristic of certain data;

that is, the ability for the total set of data per subject (i.e. features) to be

naturally decomposed into distinct subsets, each with heterogeneous statisti-

cal properties. It could be argued that this criterion is met by, and therefore

encompasses, essentially all data comprising more than one feature. How-

8

ever, in this thesis, we place particular emphasis on the latter condition: that

the subsets of features are in some way heterogeneous or structurally diverse.

In practice, this decomposition of features is most often encountered when a

dataset is composed of sets of measurements recorded from multiple different

sources, or sets of features engineered for different purposes. For example,

in a dataset of captioned images, the total data available to describe each

subject comprises image data and text data. As we will see, there are many

different families of dataset, which may appear very different—be it concep-

tually or constructionally—yet they share this relevant characteristic.

Across different application domains and learning settings, data of this type

can be found referred to by various names:

• Multi-source (Ouyang et al., 2014; Zhang et al., 2018) is often used

when a given dataset was generated from different sources or measure-

ment devices; e.g. genomes and proteomes measured from biological

specimens.

• Multi-modal (Ngiam et al., 2011; Srivastava and Salakhutdinov, 2012)

is common in the computer vision literature, where different feature

sets may be available that represent different modalities ; e.g. image

and audio.

• Multi-feature (Scheirer and Slaney, 1997; Yang et al., 2012) typically

refers to datasets comprising multiple extracted feature sets from a

single source of raw data; e.g. shape and texture features extracted

from the pixel intensities of an image.

• Multi-view (Bickel and Scheffer, 2004; Kumar et al., 2011) is a general

term to describe data that has multiple feature sets that each capture

a different view or aspect of the subject.

In our opinion, the term multi-source places unnecessary emphasis on the

property that different feature sets are derived from different instruments;

while such data may have heterogeneous structural representations or sta-

tistical properties, this is not necessarily the case. Multi-modal does convey

9

the intuition that different feature sets represent different sensory inputs or

channels of information; however, multiple feature representations may be

available corresponding to a single modality. Additionally, confusion may

arise as the term is already commonly used to describe probability distri-

butions with multiple peaks. Similarly, the term multi-feature data may be

confused with multivariate data. We favour the term multi-view, as we be-

lieve it captures the notion that different feature sets—irrespective of how

they were generated—may offer different but complementary information re-

garding a subject.

In the remainder of this thesis, let the feature space of multi-view data be

given by X = X (1) × . . . × X (v), with X (s),X (t) possibly disjoint spaces

for s ̸= t. We assume that for each view s ∈ {1, . . . , v}, the observations

x
(s)
1 , . . . ,x

(s)
n are independent realisations of a random variable X(s). Then

the ith sample is given by xi = {x(s)
i }vs=1 and the sth view of the dataset is

given by x(s) = {x(s)
i }ni=1. Note that for simplicity, we use vector notation

to denote the sample x
(s)
i , though it may be so-called symbolic data; i.e. any

arbitrary structure, such as a graph, histogram, tree etc. Additionally, where

samples from a specific view are represented as vectors, it is not required that

they share the same dimensionality; for example, variable-length strings or

time series. For a detailed description of symbolic data, along with numerous

examples, see e.g. Billard and Diday (2003); Bock and Diday (1999).

The motivating application of this thesis is cyber security, and in Section 2.3,

we describe two cyber security datasets and highlight multiple heterogeneous

views that can be observed in each, including numeric vectors, graphs, his-

tograms, trees and lists. To illustrate the prevalence of multi-view data

beyond the motivating example of cyber security, we provide the following

additional examples:

Biological Datasets

Data encountered in biological studies offer a perfect example of multi-view

data: gene expression data are represented as vectors or time series; pro-

tein–protein interactions can be expressed as graphs; gene sequence data

are typically strings from a 4-symbol alphabet, while protein sequences are

10

strings from a 20-symbol alphabet (Lanckriet et al., 2004b).

For example, Serra et al. (2015) used data from the Memorial Sloan Ketter-

ing Cancer Center genomics data portal1 to cluster cancer patients in order

to identify novel disease subgroups. Each sample in the dataset corresponds

to a different prostate cancer tumour and four views are used: clinical data

features, gene expressions, microRNA expressions and copy number varia-

tions.

Image Datasets

In image recognition and classification tasks, multi-view data abound. For

example, each sample in a dataset may be represented by multiple images,

or each image may be represented by multiple feature vectors, or both.

Multi-feature datasets are particularly common, or may easily be constructed

from raw image datasets. The Multiple Features dataset (van Breukelen

et al., 1998), available from the UCI machine learning repository2, comprises

multiple feature representations engineered from a collection of binary images

of handwritten numerals (0 − 9), which were extracted from Dutch utility

maps. Six different views (i.e. feature vectors) are provided for each sample:

(1) 76 Fourier coefficients of the character shapes; (2) 216 profile correlations;

(3) 64 Karhunen-Love coefficients; (4) 240 pixel averages in 2 × 3 windows;

(5) 47 Zernike moments; (6) 6 morphological features.

Similarly, the Animals with Attributes dataset3 (Lampert et al., 2009) com-

prises coloured photographs of 50 different species of animals. Six views are

available: (1) 2,688 colour histogram features; (2) 2,000 self-similarity fea-

tures; (3) 252 pyramid histogram of oriented gradients features (PHOG); (4)

2,000 scale-invariant feature transform values (SIFT); (5) 2,000 colour SIFT

values; (6) 2,000 speeded-up robust features (SURF).

Multi-view datasets are also encountered when images are captured using

various devices or using various light wavelengths. For example, hyperspectral

1https://cbio.mskcc.org/cancergenomics/prostate/data/
2https://archive.ics.uci.edu/ml/datasets/Multiple+Features
3https://cvml.ista.ac.at/AwA/

11

https://cbio.mskcc.org/cancergenomics/prostate/data/
https://archive.ics.uci.edu/ml/datasets/Multiple+Features
https://cvml.ista.ac.at/AwA/

imaging can be used by geologists to obtain aerial photographs of an area

of land using a camera that can capture light from multiple bands of the

electromagnetic spectrum beyond those visible to the human eye. Indian

Pines4 (Baumgardner et al., 2015) is a hyperspectral image segmentation

dataset capturing a single landscape in Indiana, U.S.A. across 200 spectral

bands. Ground truth labels indicate segments of the scene that are covered

by named crops, woodland or highways.

A further source of multi-view image datasets is the capturing of multiple

images at different angles or light conditions. For example, the Columbia

object image library (COIL-100) dataset5 (Nene et al., 1996) is a collection

of images of 100 objects, each photographed at 72 fixed angles.

Text Datasets

When analysing text, there are a number of ways in which the data may be

considered multi-view.

The Reuters Multilingual Corpus dataset6 (Amini et al., 2009) comprises over

100,000 articles from six classes; each article is provided in five languages:

English, French, German, Italian, and Spanish.

Text datasets may also be multi-modal in nature, represented in both a fea-

ture space describing the raw text and a graph space describing relationships

between texts. For example, a number of well-known datasets have been con-

structed from scientific articles; see e.g. Cora7 (Sen et al., 2008), PubMed8

(Namata et al., 2012), WebKB9 (Lu and Getoor, 2003). In each, the text

of the article is represented as a bag-of-words feature vector and a graph

contains links between articles if one article cites the other.

4https://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_

Sensing_Scenes
5https://www1.cs.columbia.edu/CAVE/software/softlib/coil-100.php
6https://archive.ics.uci.edu/ml/datasets/Reuters+RCV1+RCV2+

Multilingual,+Multiview+Text+Categorization+Test+collection
7https://relational.fit.cvut.cz/dataset/CORA
8https://linqs.org/datasets/#pubmed-diabetes
9https://linqs.org/datasets/#webkb

12

https://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
https://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
https://www1.cs.columbia.edu/CAVE/software/softlib/coil-100.php
https://archive.ics.uci.edu/ml/datasets/Reuters+RCV1+RCV2+Multilingual,+Multiview+Text+Categorization+Test+collection
https://archive.ics.uci.edu/ml/datasets/Reuters+RCV1+RCV2+Multilingual,+Multiview+Text+Categorization+Test+collection
https://relational.fit.cvut.cz/dataset/CORA
https://linqs.org/datasets/#pubmed-diabetes
https://linqs.org/datasets/#webkb

Multimodal Datasets

Finally, it is worth noting that, beyond the three described here, there are

many more different types of data for which multi-view features may be

available. Further, it is often the case that multiple different types of data

are available per subject in a dataset, each with potentially multiple views. For

example, a number of datasets are available containing images and associated

text captions for use in object detection; see e.g. WIT 10 (Srinivasan et al.,

2021), COCO11 (Lin et al., 2014). For emotion detection, the IEMOCAP

dataset12 (Busso et al., 2008) contains visual, audio and text views, along

with annotations indicating the presence of 9 emotions (angry, excited, fear,

sad, surprised, frustrated, happy, disappointed and neutral).

Later in this thesis, we will consider datasets that combine strings and his-

tograms, multiple audio features, images and text, among others.

2.2 Multi-view Learning

Given the varied nomenclature used to describe multi-view data, it is un-

surprising that there also exists many terms for describing statistical and

machine learning methods or approaches for dealing with multi-view data;

e.g. data fusion (Lanckriet et al., 2004b; Žitnik and Zupan, 2015), data inte-

gration (Gligorijević and Pržulj, 2015; Subramanian et al., 2020), multi-modal

learning (Huang et al., 2021; Ngiam et al., 2011; Srivastava and Salakhutdi-

nov, 2012), multi-view learning (Sindhwani and Rosenberg, 2008; Zhao et al.,

2017b). In each, the challenge to be addressed is how to combine information

contained in multiple, heterogeneous feature representations of each subject

in a dataset. In the language of data fusion, various approaches are often cat-

egorised as early fusion or late fusion, referring to the stage in the modelling

process during which information from different views is combined.

When the various views or modalities of a dataset are highly heterogeneous,

a common but näıve approach to statistical modelling or machine learning

10https://github.com/google-research-datasets/wit
11https://cocodataset.org
12https://sail.usc.edu/iemocap/index.html

13

https://github.com/google-research-datasets/wit
https://cocodataset.org
https://sail.usc.edu/iemocap/index.html

is to develop individual models per view and then combine or average their

outputs (e.g. Long et al. (2008); Serra et al. (2015)). This simple late fusion

strategy has the advantage that the individual models can be tailored to the

statistical properties of each view’s structural representation. For example, in

a classification task using captioned images, a convolutional neural network

could be trained using the image data and a support vector machine could

be applied to the text data. However, as each model is trained in isolation,

correlations among features from different views are ignored.

An alternative approach is to simply combine or concatenate the data from

separate views into a single feature representation prior to model fitting. In

principle, such an early fusion model is able to capture relationships among

features from within and between views. However, when the distributions

and scales of feature spaces are very different, it may be very difficult to

discover the highly non-linear relationships that exist between low-level fea-

tures across views (Ngiam et al., 2011). Consider captioned images again

as an example: the text view could be represented as discrete sparse word-

count vectors, whereas the image view is typically represented using pixel

intensities, which are real-valued and dense. This makes it much more chal-

lenging to discover relationships across views and tends to lead to over-fitting

(Srivastava and Salakhutdinov, 2012). Another problem is the information

loss incurred when combining data from heterogeneous representations into a

common representation (e.g. combining a graph structure with a histogram).

Often, we resort to summarising the data from different views into numeric

vectors for concatenation, forfeiting much of the information contained in

their natural structural representation.

A trade-off is apparent: late fusion prioritises capturing the potential signal

contained within each view’s natural structural representation, while early

fusion prioritises unlocking potential signal by combining information be-

tween views. This compromise is summarised in Table 2.1. The goal of

multi-view learning, and our motivation in this thesis, is to develop methods

that combine the benefits of both strategies.

Early efforts in this vein were inspired by the way in which humans per-

ceive objects using a combination of senses (de Sa, 1994a,b). For example,

14

Capture maximum information
within each view

Capture correlation
between views

Early fusion ✗ ✓

Late fusion ✓ ✗

Table 2.1: The trade-off between early and late data fusion strategies for multi-view learning.

de Sa and Ballard (1998) developed an unsupervised algorithm capable of

learning from co-occurring patterns of sound signals and lip motion from

a human speaker by training separate neural networks on the signals from

the two views and minimising the fraction of training samples on which the

two networks disagree. Similar ideas can be found in Becker (1996); Becker

and Hinton (1992), which led to the development of co-training (Blum and

Mitchell, 1998) and co-regularisation (Sindhwani et al., 2005) approaches to

multi-view learning. In each, the late fusion strategy of training separate

models per view is endowed with the ability to capture dependence between

views. We build on the same idea for the models we develop in Chapters 5

and 6. In Chapter 7, we go in the opposite direction, adopting an early fusion

strategy of mapping all views to a shared representation, and endowing it

with the ability to maximise the information captured from each view.

2.2.1 Multi-view Outlier Detection

The identification of unusual, surprising or anomalous observations within

a dataset is an important challenge in many fields of data analysis; for ex-

ample, fraud detection, system quality control, process monitoring, intrusion

detection, among others. Following seminal studies by Chauvenet (1863);

Dixon (1953); Grubbs (1969), the first comprehensive treatment of outliers

in statistical data was provided by Barnett and Lewis (1978), who define

an outlier as “an observation (or subset of observations) which appears to

be inconsistent with the remainder of that set of data”. A wide range of

techniques have been developed for single-view outlier detection, which may

be density-based (Breunig et al., 2000; Knorr et al., 2000), correlation-based

(Kriegel et al., 2012), clustering-based (He et al., 2003), among others (for a

15

recent review, see Boukerche et al. (2020)).

In this thesis, we develop techniques that can be used for multi-view outlier

detection. This is an emerging set of methods (see e.g. Das et al. (2010);

Marcos Alvarez et al. (2013); Zhao et al. (2017a)) that attempt to simulta-

neously leverage multiple complementary views of a dataset to more accu-

rately and robustly identify unusual observations. For example, individual

views of a given observation may not appear anomalous in isolation, yet their

co-occurrence may be highly unusual; conversely, an observation that may

appear anomalous in one view may be explained by co-occurring attributes

in other views.

2.3 Cyber Security Datasets

In this section, we describe two cyber security datasets that will be used

in this thesis, illustrating the heterogeneous nature of the data structures

contained within each. Beyond the obvious need to handle complex data,

these datasets highlight additional modelling challenges that are presented

by cyber security problems: when modelling the LANL enterprise network

data described below, there is a requirement to identify outliers as part of

the modelling process, while malware detection calls for an ability to learn

from scarce amounts of labelled data. Other sources of cyber security data

exist (e.g. session data (Highnam et al., 2021; Sanna Passino et al., 2023b))

but are not considered in this thesis.

2.3.1 LANL Dataset

Throughout this thesis, we use the publicly available ‘Unified Host and Net-

work Data Set’ (Turcotte et al., 2018), released by Los Alamos National

Laboratory (LANL)13. This comprises two complementary sets of data col-

lected from the LANL enterprise network over the course of approximately

90 days, describing inter- and intra-device activity respectively. Privacy

and security concerns demand that IP addresses, hostnames and usernames

13The data is available at https://csr.lanl.gov/data/2017

16

https://csr.lanl.gov/data/2017

Name Description

Time The start time of the event
Duration The duration of the event in seconds
SrcDevice The device that likely initiated the event
DstDevice The receiving device
Protocol The protocol number
SrcPort The port used by the SrcDevice
DstPort The port used by the DstDevice
SrcPackets The number of packets the SrcDevice sent during the event
DstPackets The number of packets the DstDevice sent during the event
SrcBytes The number of bytes the SrcDevice sent during the event
DstBytes The number of bytes the DstDevice sent during the event

Table 2.2: Netflow data measurements, reproduced from Turcotte et al. (2018).

be anonymised before any real-world enterprise data can be made publicly

available. A distinguishing feature of this collection of data is that the

(anonymised) identity of devices is consistent within and between datasets,

wherever possible. Event times also align across the two datasets, facilitating

statistical models that take advantage of both datasets simultaneously.

Netflow Dataset

The network flow (commonly referred to as Netflow) dataset contains infor-

mation collected at router level. Each flow between two IP addresses is an

aggregate summary of packets (i.e. data) transferred using the same ports,

under the same protocol. Approximately 200 million such flows are recorded

per day in the dataset. Each record is a tuple of 11 measurements, as de-

scribed in Table 2.2. In the statistical cyber security literature, a number

of flow-based techniques have been proposed and shown to be successful at

detecting malicious network behaviours. Methods to detect network traver-

sal have been designed using scan statistics (Neil et al., 2013), graph theory

(Djidjev et al., 2011) correlation of spatial and temporal network state in-

formation (Talpade et al., 1999) and multilevel modelling (Lawson et al.,

2014).

17

{"UserName": "Comp333637$", "EventID": 4624, "LogHost": "Comp081330",

"LogonID": "0x66deb85", "DomainName": "Domain001",

"LogonTypeDescription": "Network", "Source": "Comp333637",

"AuthenticationPackage": "Kerberos", "Time": 259200, "LogonType": 3}

{"UserName": "Comp654002$", "EventID": 4688, "LogHost": "Comp654002",

"LogonID": "0x3e7", "DomainName": "Domain001",

"ParentProcessName": "Proc247259", "ParentProcessID": "0x920",

"ProcessName": "cscript.exe", "Time": 259200, "ProcessID": "0x18a0"}

Example 2.1: Two example WLS data records.

The Netflow data can be represented as a dynamic graph, with IP addresses

(i.e. devices) corresponding to nodes and edges representing communications

between devices. Multiple views of the data are available; for example, indi-

vidual nodes in the graph can be described by their list of neighbours, while

individual edges can be represented as a time series of data transfers, etc.

WLS Dataset

The WLS (Windows Logging Service) dataset contains information relating

to activity taking place on each machine from the subset of devices run-

ning the Microsoft Windows operating system. Each log record describes

the occurrence on a computer of one of 20 unique events. These can be

subdivided into authentication, process and system events. Example events

include successful/failed log-ons, processes starting/ending, Windows start-

ing up/shutting down (see Turcotte et al. (2018) for the full list). Associated

with each event is a set of attributes providing additional information; which

attributes are included in a record depends on the event that was logged.

This is an extremely rich dataset, providing many opportunities for cyber se-

curity researchers. As Anthony (2013) points out, it is at the host level that

most initial compromises happen, and indeed where many of the proceeding

steps of the attack life cycle take place.

Two example records from the WLS dataset are shown in Example 2.1. In

18

the first, a successful network authentication event is being recorded on the

device Comp081330, originating from Comp333637; i.e. a user is logging into

a computer from another computer on the network. In the second example,

the process cscript.exe is started on Comp654002 by user Comp654002$.
This process was triggered by a parent process, Proc247259.

Again, multiple views of this data can be considered. For example, the pro-

cess data could be represented as a tree structure, while the authentication

events could be represented as a directed graph; each computer can be de-

scribed by the list or set of processes that it runs, or by the set of users that

authenticate from or to it.

2.3.2 EMBER Malware Dataset

For malware classification, we will make use of the Elastic Malware Bench-

mark for Empowering Researchers (EMBER) dataset14 (Anderson and Roth,

2018). This labelled dataset contains features extracted from 1.1M binary

files. For each file, eight groups of raw features are available, including both

file-specific parsed features such as lists of imported and exported functions,

as well as format-agnostic feature vectors and histograms. In this thesis, we

will consider three different feature modalities, which we describe below:

Numeric Features

Two groups of raw features include simple numeric and categorical count

values. This includes general file information, such as file size, number of

imported and exported functions, presence/absence of a debug section, num-

ber of symbols, among others. Additionally, a vector of summary statistics

about the file’s printable strings is provided; for example, number of strings,

average string length, number of urls, etc. The combined set of all numeric

features is described in Table 2.3.

14The data is available at https://github.com/elastic/ember

19

https://github.com/elastic/ember

Name Description

size The size of the file in bytes
vsize The virtual size of the file
has debug Whether the file has a debug section
exports Number of exported functions
imports Number of imported functions
has relocations Whether the file has relocations
has resources Whether the file has embedded resources
has signature Whether the file has a signature
has tls Whether the file has thread local storage
symbols Number of symbols
numstrings Number of strings
avlength Average string length
printables Number of printable characters across all strings
entropy Entropy of printable characters across all strings
paths Number of strings that begin with C:\\

urls Number of strings that begin with http:// or https://
registry Number of occurrences of HKEY_
MZ Number of occurrences of MZ

Table 2.3: Numeric features extracted from the EMBER dataset.

Histograms

For each file, two histograms are provided: the byte histogram contains 256

integer values representing the counts of each byte value within the file, while

the byte entropy histogram approximates the joint distribution p(H,X) of

entropy H and byte value X—see Anderson et al. (2012) for details. For our

experiments in this thesis, we normalise the byte histogram to a distribution;

the total file size in bytes is already represented as a feature in the numeric

modality.

Strings

The raw strings representing all the imported and exported functions are

also reported per file. Imported functions are grouped by library in JSON

format and exported functions are provided as a list. We combine both sets

of functions into a single list of strings per file by representing each imported

function as a library:FunctionName pair and concatenating; an example is

20

[‘kernel32.dll:GetTickCount’, ‘shell32.dll:SHGetMalloc’,

‘user32.dll:ShowWindow’, ‘CreateAdaptor’, ...]

Example 2.2: An example list of imported and exported functions from the EMBER dataset.

shown in Example 2.2.

21

3
Computer Network Data

Analysis

In this chapter, we present cyber security as an emerging application area

for data science in general and multi-view learning in particular. We discuss

a number of challenges to the successful deployment of machine learning

methods and propose a framework designed to overcome the most major

of these—the lack of labelled training data. This framework is illustrated

through experiments using real-world enterprise network data. The content

of this chapter is adapted from Hogan and Adams (2018) and serves to mo-

tivate the more sophisticated multi-view learning approaches developed in

Chapters 5 to 7.

The remainder of the chapter proceeds as follows: In Section 3.1, we discuss

the growing need for effective cyber security solutions, highlighting both the

promise of statistical and machine learning approaches and also the obstacles

hindering their successful utilisation. In Section 3.2, we propose a framework

for contriving labelled data from network traffic logs, which allow supervised

learning techniques to be used for anomaly detection. In this setting, we

consider the importance of data fusion—both between views relating to each

22

individual computer and between computers themselves. Section 3.3 presents

an experiment using the LANL enterprise network dataset. This experiment,

using receiver operating characteristic (ROC) curves to assess performance,

reveals an issue with the ROC methodology, which motivates the next chap-

ter.

3.1 Statistical Cyber Security

As the world becomes more interconnected, cyber attacks such as network

intrusions, data theft and malicious damage to crucial systems are increas-

ing in both prevalence and severity. An important task in cyber security

is the detection of malicious activity on computer networks, either in the

form of an unlawful intrusion to the network or errant behaviour within the

network. For many years, enterprise cyber security systems have relied heav-

ily on signatures : precise descriptions of known malicious behaviour. The

dominant approach has been to design rules-based systems to monitor and

scan for these indicators, which are manually defined based on knowledge

gained from previously encountered and analysed attacks. Examples include

file hashes, flagged IP addresses and domains, and traffic characteristics of a

known Command and Control attack protocol (Morgan et al., 2016). While

such methods are successful at detecting repeat attacks, they can easily be

evaded; for example, making a minor modification to a malicious program

will alter its hash, and IP addresses and domain names can be easily changed.

Moreover, such methods are entirely unable to detect zero-day attacks. The

seemingly interminable rise in the number of successful network intrusions

clearly demonstrates that signatures alone are not enough.

Hero et al. (2023) provide an overview of the current problems and challenges

arising from cybersecurity threats in large enterprise systems, and the role

of statistical and data science methods to address them. The promise of

statistical approaches lies in anomaly detection capabilities, which can be

used to complement existing cyber-defence systems and enhance the abilities

of cyber security professionals. Commonly, statistical and machine learning

methods are used to characterise the normal behaviour of some aspect of

23

the network and subsequently to detect anomalous departures from normal

behaviour (Bhuyan et al., 2014; Mukherjee et al., 1994; Ye et al., 2002). In

this way, anomaly detection does not explicitly identify malicious behaviour,

but rather locates unusual and surprising activity, which may be symptomatic

of an intrusion. The outputs of collections of anomaly detectors are used by

security analysts to determine where to focus attention in seeking to uncover

malicious behaviour. This toolkit aims to capitalise on the vast quantities of

data that can be collected relating to network activity.

At first glance, it is surprising that the deployment of machine learning tech-

niques for cyber security in operational environments has been relatively

limited when compared to other data-rich environments such as image recog-

nition, speech recognition and recommender systems. In Sanna Passino et al.

(2023a); Sommer and Paxson (2010), a number of characteristics specific to

the cyber security domain are identified, which present challenges to the suc-

cessful implementation of machine learning. Some of these challenges relate

to the sheer volume and velocity of data. Another challenge is a lack of

training data—or more specifically, a lack of labels. Due to privacy and se-

curity concerns, and the prohibitively high cost of manually labelling data,

real-world computer network data with ground truth malicious behaviour

is extremely hard to come by. This dearth of labelled data precludes su-

pervised learning methods and makes performance evaluation difficult for

unsupervised methods. We propose a strategy for addressing this challenge

in Section 3.2.

A further challenge relates to false positives—benign events that are flagged

as anomalous. As the number of events corresponding to real attacks is

typically very small in relation to the vast quantity of data analysed, even

a low false positive rate can produce a very large number of false alarms.

Anomaly detectors in this context are particularly prone to false positives

due to the difficulty of defining “normal behaviour” in a complex, chaotic

system such as an enterprise computer network (Michailidis, 2023). Anoma-

lous behaviour is not always malicious; likewise, malicious behaviour may

not appear anomalous. By combining data from multiple sources, we hope

to reduce the model’s susceptibility to false positives (i.e. increase precision)

24

while also increasing its recall. Consider a motivating example: to carry out

an attack, a malicious agent typically will have to traverse across a number

of devices on the network, authenticate credentials, run processes etc. These

elements of behaviour can be separately observed from Netflow records, au-

thentication logs and process logs, respectively. It may happen that certain

activity of each type may not appear anomalous when viewed in isolation

but their co-occurrence is highly anomalous. Conversely, an event that may

appear anomalous in one view may be explained by co-occurring events in

other views.

3.2 Supervised Learning using Time-shifted Labels

As a first test for predictive signals within cyber security data sources, we

propose a method for contriving labelled training data that can be used

in supervised learning models. We consider defining data-determined labels

based on “what happens next?”; that is, we can monitor a quantity of interest

in contiguous time intervals, or bins, within the data and define the label for

bin t as the quantity observed in bin t + 1. In this way, it may be possible

to learn signals that predict future activity.

It is critical that statistical approaches be guided by security expertise; the

activity being modelled must be relevant to the cyber security problem. It is

commonly known that novelty is often of direct concern to security analysts.

For this reason, the future behaviour we consider is ‘new events’ occurring on

a computer network. For the purpose of this study, we define a new event to

be a computer communicating for the first time with a device with which it

has not previously communicated. If these new events can be predicted from

the data, then a security analyst could focus attention on those new events

that occur despite a low predicted probability of occurrence. Novelty could be

defined to refer to many other quantities (e.g. new server ports being accessed,

new users on a host) and the study which follows adapted appropriately.

Indeed, by simultaneously monitoring a collection of quantities, a clearer

picture of anomalous activity can be formed.

25

3.2.1 Time-shifted Label

Rather than examining events in isolation, it is common in cyber security to

group together events occurring within fixed intervals of time to better rep-

resent the behaviour of a given computer or of the network as a whole at that

time. The choice of bin length will depend on a number of factors, such as the

time resolution of the available data, the occurrence frequency of the event

of interest and the computational demands of the model being employed.

Interval lengths employed in related studies include 1 minute (Nezhad et al.,

2016), 5 minutes (Whitehouse et al., 2016), 15 minutes (Riddle-Workman

et al., 2018) and 30 minutes (Neil et al., 2013). For our experiments, we

choose to divide each day’s data into disjoint 5-minute bins.

The label we define for this study refers to the presence of a network commu-

nication, as featured in the Netflow subset of the LANL dataset. The Netflow

data for each time bin t can be considered as a graph containing nodes Ci

and edges a
(t)
i,j ∈ {1, 0} indicating the presence/absence of a communication

from Ci to Cj in bin t. For computer Ci we observe Di,t = {Cj ; a
(t)
i,j = 1},

the set of devices with which it communicates in bin t. We wish to predict

if Di,t+1 contains previously unseen devices.

By introducing a time-shifted label for each computer, this can be treated

as a binary classification problem. We define a label yi,t ∈ {0, 1}, which
indicates whether Ci makes a novel communication in bin t+ 1:

yi,t =

0 if Di,t+1 ⊆ Di,1:t

1 otherwise,

where Di,1:t = Di,1∪. . .∪Di,t is the set of all computers Ci has communicated

with up to and including bin t.

3.2.2 Data Fusion

From each of our two datasets—Netflow and WLS—we can construct fea-

tures relating to each computer’s activity in bin t, to serve as input to a

26

supervised learning model. The LANL data is full of structure, and there are

many ways in which features could be defined or engineered. The Netflow

dataset is inherently a directed graph, with nodes representing devices and

edges representing communications, which could even be weighted according

to the number of packets/bytes sent and received. Alternatively, each com-

puter’s total inbound and outbound communications during a bin could be

represented as a time series of byte values. Meanwhile, the process events

from the WLS dataset can be represented as a tree structure, while the au-

thentication events can be viewed as a bipartite graph between users and

hosts. It is easy to see that modelling the LANL enterprise network data is

a multi-view learning problem; beyond even these four highly heterogeneous

feature representations just mentioned, many more are conceivable.

However, as discussed in Section 2.2, in order to combine signals across het-

erogeneous feature representations via early fusion, we are typically forced to

convert each view from its natural structural representation into a numeric

vector so that these can be concatenated. In Table 3.1, we present näıve nu-

meric feature vectors constructed to summarise the activity in each dataset

within a time bin. Clearly, a lot of potentially valuable information may be

lost in this process.

For single-view, or late fusion multi-view learning, bespoke models can be fit

for each different feature representation. While we expect enhanced predic-

tive power could be gained by tailoring models to the more structured feature

representations described above, we restrict this study to using the feature

vectors given in Table 3.1, even for single-view and late fusion experiments.

The aim of this study is simply to investigate whether statistical signals ex-

ist that can be used to predict network communications—and in particular,

we are interested to see whether activity in the intra-device (WLS) dataset

is predictive of activity in the inter-device (Netflow) dataset, and whether

any additional predictive power can be gained by combining signals from

both datasets. In later chapters, we develop models that can combine the

benefits of both early and late data fusion approaches; that is, taking advan-

tage of each view’s natural structural representation, while also capturing

dependence between views.

27

WLS Netflow

Name Description Name Description

Time Bin no. (1-288) Time Bin no. (1-288)
WorkHours Working hours indicator WorkHours Working hours indicator
Events No. of events OutDegree No. of unique outward communications
UniqueEvents No. of unique event types InDegree No. of unique inward communications
Logons No. of successful log-ons TotalOut Total no. of outward communications
FailedLogons No. of failed log-ons TotalIn Total no. of inward communications
Users No. of users active PacketsOut Total no. of packets sent
Processes No. of processes started PacketsIn Total no. of packets received

BytesOut Total no. of bytes sent
BytesIn Total no. of bytes received
UPD Total no. of UDP flows
NewEvents No. of new events in the current bin

Table 3.1: Features extracted from each LANL dataset.

3.2.3 Entity Fusion

We expect there to be some correlation between data arising not only from

the two data sources but also from different individual devices, or entities. A

classifier trained using data from a group of computers may reveal relation-

ships between the features that a classifier trained on any single computer

fails to identify. Combining information from multiple computers may also

mitigate the problem of overfitting the classifier to an individual computer’s

training data.

3.3 Experiment

A random selection of 500 computers was selected from the LANL WLS

dataset. Each of these computers is also present in the Netflow dataset,

ensuring that feature vectors can be constructed from both datasets. For

each Ci, we use the first day of data to burn in Di,1:288, i.e. we populate a

list of all the computers with which Ci has communicated. This allows us

to label data for subsequent time bins, continuously updating Di,1:t. We use

day-2 data, t ∈ [289, 576], as a training set and day-3 data, t ∈ [577, 864], as

a test set.

For this experiment, we use a random forest classifier (Breiman, 2001), as

28

it is often regarded as being among the best ‘out-of-the-box’ classifiers; i.e.

minimal tuning or pre-processing is required. For each computer separately,

we train four classifiers: early fusion, late fusion, and single-view classifiers

from the WLS and Netflow features. For early fusion, the feature sets from

the two views (Table 3.1) are merged to form a fused feature set. For late

fusion, separate classifiers are built using the WLS and Netflow feature sets,

and the output class predictions are then averaged to determine the fused

prediction.

In order to assess and compare the performance of the different families of

classifier, we plot receiver operating characteristic (ROC) curves. Note that

for each classifier type, we have a set of predictions from 500 separately

trained models. This calls for special consideration regarding how to com-

bine these predictions into a single ROC curve per classifier that faithfully

represents its overall performance. This topic will be explored in detail in

Chapter 4. In Hogan and Adams (2018), the predictions made by each model

are simply pooled together per classifier (see Section 4.3.1), and ROC curves

are constructed in the usual way. This is shown in Figure 3.1. To assess

overall performance, we compute the AUC (area under the curve). The

performance of each is remarkably similar. Of particular interest is the per-

formance of the WLS classifier—there appears to be almost as much signal

for predicting a new Netflow event in the WLS features as there is in the

Netflow features. Early fusion of the two sets of features appears to result

in a marginal improvement, suggesting informative interactions between the

views may exist.

As discussed in Section 3.2.3, we expect it may be possible to improve pre-

dictive accuracy by combining training data among entities. We could use

hierarchical clustering on the feature vectors of each computer to identify

groups of ‘similar’ computers, for whom the fusion of training data may im-

prove classification performance. However, these feature vectors are expected

to contain a lot of noise. The random forest classifier extracts from these vec-

tors the signal that predicts new edges for a given computer, and it is the

similarity of the signals across computers that is of interest, rather than the

similarity of the raw data, which contains both signal and noise. We can

29

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

False Positive Rate

T
ru
e
P
os
it
iv
e
R
at
e

WLS (AUC: 0.756)

Netflow (AUC: 0.778)

Early (AUC: 0.777)

Late (AUC: 0.788)

Figure 3.1: Pooled receiver operating characteristic curves for single-view and multi-view
classifiers trained on 500 computers from the LANL dataset.

instead carry out hierarchical clustering on the vectors of importance scores

assigned to each feature, which is based on the Gini impurity index (Breiman

et al., 1984, p. 103) used for the calculation of splits during training. Doing

so reveals two well separated clusters of roughly equal size. We note that for

one cluster, the Time feature is given appreciably more importance.

New training sets are constructed by merging the individual training sets

of each computer in a cluster. We then carry out the same tests as before

and plot ROC curves (Figure 3.2). Interestingly, classification is consider-

ably more accurate for cluster one than for cluster two. Also, the early

fusion classifier performs the best for cluster one, indicating that informa-

tive relationships between the datasets are revealed when data from several

computers is combined. None of the classifiers performs particularly well

in cluster two. The fact that the classifiers for these computers assigned a

relatively higher importance to the Time variable suggests that there is less

signal in the data from these computers.

30

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate

T
ru
e
P
os
it
iv
e
R
at
e

Cluster 1 ROC

WLS (AUC: 0.848)

Netflow (AUC: 0.876)

Early (AUC: 0.887)

Late (AUC: 0.878)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate

T
ru
e
P
os
it
iv
e
R
at
e

Cluster 2 ROC

WLS (AUC: 0.568)

Netflow (AUC: 0.659)

Early (AUC: 0.673)

Late (AUC: 0.661)

Figure 3.2: ROC curves of classifiers trained using combined data from clusters of computers.

3.4 Discussion

We have described how statistical modelling of enterprise network data repre-

sents a paradigmatic multi-view learning problem. Using a real-world public-

domain dataset, we illustrated the inherently heterogeneous, multi-view na-

ture of enterprise network data and described some of the challenges that

arise when trying to combine information from views with diverse underly-

ing representations. A further challenge is presented by a dearth of labels.

We demonstrated a framework for contriving labelled training data for su-

pervised learning and used this to investigate the predictability of Netflow

events. The results are highly promising and suggest that signals exist in

both views. Considering the level of information loss incurred by construct-

ing the rather crude features of Table 3.1, we are motivated to develop more

sophisticated techniques that can appropriately handle data from heteroge-

neous views, while capturing dependence between views. This will be the

focus of Chapters 5 to 7. First, we discuss an issue that arises when combin-

ing the outputs of multiple classifiers into a single ROC curve, as was done

in Figure 3.1.

31

4
On Averaging ROC curves

Receiver operating characteristic curves are a widely used method of present-

ing results from classification studies. The ROC curve describes the sepa-

rability of the distributions of predictions from a single two-class classifier.

However, in the previous chapter, for each learning scheme we constructed an

ROC curve to assess the performance of multiple (500) individually trained

models. More generally, there are a variety of situations in which an analyst

seeks to aggregate the predictions made by multiple classifiers into a single

representative example. A number of methods of doing so are available; how-

ever, there is a degree of subtlety that is often overlooked when selecting the

appropriate one. An important component of this relates to the interpre-

tation of the decision process for which the classifier will be used. In this

chapter, we take a momentary detour to summarise a number of methods

of aggregation and carefully delineate the interpretations of each in order

to inform their correct usage. Through a toy example, we highlight how an

injudicious choice of aggregation method can lead to erroneous conclusions

and misrepresentation of results. The content of this chapter is taken from

Hogan and Adams (2023).

The remainder of the chapter proceeds as follows: Section 4.1 introduces

32

the situations in which average ROC curves are used and discusses relevant

literature. Section 4.2 provides the required definitions and notation for in-

dividual ROC graphs. In Section 4.3 we describe and illustrate the construc-

tion of average ROC curves under the three proposed combination methods.

In Section 4.4, a discussion of the interpretations of different aggregating

methods motivates guidelines for selecting the appropriate method. Finally,

Section 4.5 provides a simple illustration to demonstrate that the choice of

combination method is crucial in the context of comparing classifiers.

4.1 Background and Relevant Literature

ROC curves are widely used to present performance assessment results in

classification studies. Their usage spans many disciplines, including pattern

recognition (Webb, 2003), medical diagnostics (Swets et al., 2000), consumer

credit scoring (Hand and Henley, 1997), and biometrics (Ross and Jain,

2003). Typically, the design and construction of a classifier is an iterative

process: at each stage, choices are made regarding feature selection, distri-

butional assumptions etc., and the classifier must be re-evaluated to assess

the impact of these choices on performance. In many classification problems,

such as those with imbalanced classes or asymmetric misclassification costs,

a scalar measure of performance such as accuracy is not sufficient (Provost

and Fawcett, 1997). In addition, it is often the case that the misclassification

costs and class frequencies are not known at experimentation time and will

only become clear at the time of deployment (Drummond and Holte, 2000;

Hernández-Orallo et al., 2012). ROC curves offer a useful visual evaluation

of the trade-off between different types of error over the full range of possible

costs and class frequencies. By examining a ROC curve, various operating

points of interest—motivated by the specific application of the researcher—

can be compared. If the operating conditions at deployment time are known

precisely, then a plot of the entire ROC curve is redundant, as algorithms can

be compared directly based on specific cost-sensitive classification metrics.

There are many situations in which there is a requirement to produce a sin-

gle summary ROC curve from a collection of individual curves. For example,

33

in credit card fraud detection, a bank may be running classifiers based on

the same features for each customer (Juszczak et al., 2008); in biometric

face verification, separate classifiers are trained for each individual subject

(Marcialis and Roli, 2002); in radiology, multi-reader multi-case (MRMC)

studies involve multiple radiologists producing scores for a collection of im-

age cases (Skaron et al., 2012). Another situation involves the use of k-fold

cross-validation procedures, which attempt to provide some sense of the av-

erage and the uncertainty in the ROC curve. It is perhaps natural in these

settings to seek to report a single ROC curve summarising the performance

of all the individual classifiers. Such a curve will be useful for classifier de-

velopment and selection. Note that a related problem is that of constructing

a covariate-adjusted ROC curve (Janes and Pepe, 2009), which aims to ac-

count for factors or characteristics that influence the predictions made by a

classifier on certain instances within a single dataset. The focus of this paper

is on constructing a single ROC curve from multiple datasets.

Reasoning about a summary or “average” ROC curve calls for fundamental

considerations relating to the operational use of the classifier. Crucially, an

aggregate ROC curve should represent performance in accordance with how

the individual classifiers are to be deployed. As described in Section 4.2, a

threshold T is required to produce a decision from most classifiers. In this

context featuring multiple classifiers, the question is whether every classifier

is to employ the same threshold T or if classifier i operates using threshold Ti.

Next, it is important that the method of aggregating individual ROC curves

is compatible with the application-specific operating points or characteristics

of interest, upon which performance assessments will be made.

The literature contains a number of methods for aggregating ROC curves

(Fawcett, 2006; Swets and Pickett, 1982); however, clear guidance on their

correct usage is lacking. Discussing two methods, vertical averaging and pool-

ing (see Section 4.3), Witten et al. (2011) remark that “it is not clear which

method is preferable. However, the latter method is easier to implement.”

Similarly, Parker et al. (2007) comment that “both strategies are used in

practice and the current literature is equivocal about which approach is to

be recommended.” This is also clear when one considers software packages for

34

ROC analysis; the R package ROCR offers three methods for averaging ROC

curves, though neither its documentation (Sing et al., 2015) nor accompany-

ing paper (Sing et al., 2005) provide any guidance on which is appropriate

for different situations. An online vignette by the authors1 demonstrates

threshold averaging for combining the results of cross-validation. Meanwhile,

a similar tutorial2 for the Python package scikit-learn (Pedregosa et al.,

2011) demonstrates vertical averaging in the same context.

This chapter aims to address this lack of guidance; we will show that care

must be taken when choosing the appropriate averaging method, in particular

with respect to the fundamental considerations described above. We will

provide an example that demonstrates that incorrectly combining curves can

lead to misrepresentation of results. The purpose of this chapter is not to

provide a deeply novel result but rather to clearly delineate the characteristics

of different aggregation procedures and provide guidance for their correct

usage.

4.2 ROC Graphs

Here we follow closely the framework presented by Krzanowski and Hand

(2009). Suppose that there exists two populations—a ‘positive’ population P

and a ‘negative’ population N—together with a classification rule for allocat-

ing unlabelled instances to one or other of these populations. A classification

rule (classifier) is a function S(X) of the random vector X of variables mea-

sured on each instance, used to predict class membership of a given instance.

Some classifiers produce as output a discrete class label indicating only the

predicted class of the instance; others produce a continuous output or score.

The focus of this chapter is the latter set of classifiers, as it is only for these

that ROC curves can be produced. Suppose x is the observed value of X for

a particular instance. The score s(x) can be used to predict class member-

ship according to whether s(x) exceeds or does not exceed some threshold

1https://ipa-tys.github.io/ROCR/articles/ROCR.html
2https://scikit-learn.org/stable/auto_examples/model_selection/plot_

roc_crossval.html

35

https://ipa-tys.github.io/ROCR/articles/ROCR.html
https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc_crossval.html
https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc_crossval.html

T . As S is a continuous variable, we can consider the distribution of scores

pertaining to instances from populations P and N . Let fS|P (s) = p(s | P)

and fS|N(s) = p(s | N) be the probability density functions of scores in P and

N , respectively, with corresponding distribution functions FS|P and FS|N . A

ROC graph is essentially a visual description of the degree of separability of

these score distributions generated by a particular classifier.

We do not discuss how a classifier should be chosen or indeed calibrated for

a particular task. These are well studied problems (Vapnik, 2013; Wolpert,

1996). Rather, we discuss how ROC curves are used to assess the performance

of classifiers, in particular when applied to multiple datasets.

4.2.1 Definition

The score produced by a classifier can be a probability, representing the

likelihood that an instance is a member of a particular class (the positive

class, by convention), or simply a general, uncalibrated score, in which case

it is conventional that higher scores are more indicative of positive class

membership and lower scores indicative of negative class membership. In

either case, the choice of threshold T will dictate the class assignments made

by the classifier. Suppose that t is the value of the threshold T chosen for

a particular classifier; an instance is assigned to P if its score s exceeds t,

otherwise N . In order to assess the efficacy of this choice of T , we must

consider four possible outcomes and the rate at which these occur:

1. an instance from P is correctly classified, i.e. the true positive rate

tp = p(s > t | P);

2. an instance from N is misclassified, i.e. the false positive rate fp =

p(s > t | N);

3. an instance from N is correctly classified, i.e. the true negative rate

tn = p(s ≤ t | N);

4. an instance from P is misclassified, i.e. the false negative rate fn =

p(s ≤ t | P).

36

The choice of operating threshold t is application-specific and often compli-

cated. By varying t and evaluating the four quantities above, we can inform

a decision regarding which value to choose. In fact, as tp + fn = 1 and

fp + tn = 1, we need only consider two of the above quantities, typically fp

and tp. A ROC curve is obtained by varying t from −∞ to ∞ and tracing

a curve of (fp, tp). We can write down the equation of this curve in terms of

the distribution functions defined above:

tp = p(s > t | P), −∞ < t <∞
= 1− FS|P (t), −∞ < t <∞
= 1− FS|P

[
F−1
S|N(1− fp)

]
, 0 ≤ fp ≤ 1.

4.2.2 Estimation

The role of the ROC curve is to present an assessment of the performance of a

classifier over the whole range of potential thresholds. This performance will

be determined by the degree of overlap of the scores assigned by the classifier

to instances from P and N . In practice, we hardly ever know anything about

the true underlying distributions of these scores. One typically only has

available the values of X for a set of instances whose class labels are known.

The data is commonly split into two portions: a training set is used to

estimate any parameters required by the chosen classifier, and this classifier

can then be applied to a test set in order to estimate the score distributions,

and hence fp and tp.

Standard methods of statistical inference are available to the researcher for

this task. One may wish to assume parametric models for FS|P and FS|N and

estimate parameters using maximum likelihood on the sample data. However,

in this case, caution must be taken as the accuracy of the resulting ROC

curve and any derived quantities strongly depends on the validity of the

assumptions made (Krzanowski and Hand, 2009; Zhou et al., 2009). If a

large number of test instances are available, then empirical estimation is

preferred.

37

Let nP and nN be the number of instances in the samples from populations

P and N , respectively. We write nP (t) and nN(t) for the number of those

instances whose classification scores are greater than t. Then the empirical

estimators of tp and fp at the classifier threshold t are given by

t̂p =
nP (t)

nP

and f̂p =
nN(t)

nN

.

The empirical ROC curve is then constructed by plotting the points (f̂p, t̂p)

for varying t.

4.2.3 Area Under the ROC Curve

A quantity widely used to summarise an important element of the informa-

tion portrayed by a ROC curve is the area under the curve (AUC). The AUC

can be interpreted as an average true positive rate, regarding all values of

the false positive rate as equally likely (Hand, 2009). Alternatively, it can

be seen as the probability that the classifier will allocate a higher score to a

randomly chosen instance from P than it will to a randomly and indepen-

dently chosen instance from N . Clearly, a higher AUC is desirable; however,

classifiers should not be compared solely on their AUCs, as a higher AUC

does not imply an everywhere dominating ROC curve. As a scalar measure

of performance, a lot of valuable information contained in the ROC curve is

lost, such as performance in specific regions of ROC space that may be of in-

terest to the researcher. Moreover, there exists a fundamental incoherence in

the use of AUC to compare different classifiers—see Hand (2009) for details,

and Ferri et al. (2011) for an alternative interpretation of AUC.

4.3 Averaging ROC Curves

The ROC graph described in the preceding section relates to a single dataset

comprising instances belonging to either of two classes. Often, as in Sec-

tion 3.3, we have multiple independent datasets of this type and a set of

classification scores for each. In these settings, a separate ROC curve can be

38

constructed from each set of scores. One approach for comparing different

classifiers, or different iterations during classifier design and development,

would be to compare average AUCs. Equally, we could compare the average

accuracy at some known operating point. However, as discussed in Sec-

tion 4.1, it is often the case that full knowledge of the operating conditions

at deployment time is not available during experimentation. This is pre-

cisely why ROC curves are useful, and hence why we may want to construct

a single ROC curve that serves as a summary or average of the collection

of individual ROC curves. In this way, the average performance at specific

operating points can be assessed.

Methods for combining or averaging ROC curves have been proposed; how-

ever the properties of the resulting curves have not been properly explored

nor compared in this context. Moreover, there is very little guidance in the

literature regarding which of the methods is most appropriate for a given

task; in fact, existing guidance can even be misleading. As we will see, the

interpretation of a summary ROC curve differs according to the averaging

technique used, and so care should be taken both in choosing the appropriate

method and in presenting results. Note that methods for averaging paramet-

ric ROC curves have also been proposed, based on averaging the estimated

parameters of each curve (Metz, 1989). However, the focus of this discussion

is on empirical ROC curves.

In this section we adapt the notation slightly to allow for the case where

there is a collection of datasets, each consisting of instances to be classified.

Say that there are M datasets, and dataset i comprises a positive population

Pi and a negative population Ni. A classifier produces scores for each in-

stance, so the ROC curve for dataset i describes the separability of the score

distributions p(s | Pi) and p(s | Ni).

For a simple illustration of the proposed averaging methods, we simulate

scores arising from a probabilistic classifier employed on two datasets: the

first ‘well separable’, the second ‘poorly separable’. We assume equally bal-

anced classes for both datasets but allow the total number of instances to

differ between datasets. The number of scores simulated for the negative and

positive classes of the well separable dataset was nN1 = nP1 = 150; for the

39

D
en
si
ty

-1
0

1
2

3
4

fp = 0.12, tp = 0.91

D
en
si
ty

0
2

4
6

8 fp = 0.45, tp = 0.84
fp = 0.12, tp = 0.45

Score

D
en
si
ty

0.0 0.2 0.4 0.6 0.8 1.0

-0
.5

0.
5

1.
5

2.
5

f̃p = 0.23, t̃p = 0.89

Score

(a)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False Positive Rate
T
ru
e
P
os
it
iv
e
R
at
e

False Positive Rate

(b)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False Positive Rate

T
ru
e
P
os
it
iv
e
R
at
e

False Positive Rate

(c)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False Positive Rate

T
ru
e
P
os
it
iv
e
R
at
e

False Positive Rate

(d)

Figure 4.1: Illustration of three methods of averaging ROC curves. (a) Simulated classifi-
cation scores for two entities (top and middle) with density estimates of the negative and
positive score distributions. The bottom plot shows density estimates of the pooled score
distributions. (b) ROC curve pooling. (c) Vertical averaging. (d) Threshold averaging. In
(b)–(d), coloured markers correspond to the fixed thresholds in (a); a split-colour marker
indicates an average of the rates at the corresponding thresholds.

poorly separable dataset nN2 = nP2 = 75. Density estimates of the simulated

positive and negative scores for the two datasets are shown in the top two

panels of Figure 4.1a.

40

4.3.1 Pooling

Swets and Pickett (1982) propose simply merging or pooling all the scores

assigned to all instances from all datasets. A ROC curve is then constructed

in the usual way as if every instance came from the one dataset:

t̃p =

∑M
i=1 nPi(t)∑M
i=1 nPi

=
nP (t)

nP

f̃p =

∑M
i=1 nNi(t)∑M
i=1 nNi

=
nN(t)

nN

,

where P andN are the total number of positive and negative instances among

all M datasets, respectively.

The pooled ROC curve is a representation of the degree of separability of

the mixture distributions that result from pooling scores between the two

datasets. Density estimates of these mixture distributions can be seen in the

bottom panel of Figure 4.1a. A fixed threshold is shown in all three plots of

Figure 4.1a and the corresponding points in ROC space can be seen on the

ROC curves in Figure 4.1b.

4.3.2 Vertical Averaging

In Provost et al. (1998), vertical averaging is proposed, whereby points are

sampled uniformly along the fp axis and the corresponding tp values from

each individual ROC curve are averaged. Each ROC curve is treated as a

function Ri such that tp = Ri(fp). This is done by choosing the maximum

tp for each fp sampled between 0 and 1, interpolating between points where

necessary. The vertical average ROC curve is

R(fp) =
1

M

M∑

i=1

Ri(fp), 0 ≤ fp ≤ 1.

Standard errors can also be calculated and used to construct confidence inter-

vals for the average curve (a related but different problem is that of construct-

ing confidence bands for a ROC curve estimated from a single dataset—see

41

Macskassy and Provost (2004)).

Note that the threshold that yields a given value of fp on each ROC curve

will usually be different. The fixed threshold in Figure 4.1a yields a false

positive rate of 0.12 for the well-separable dataset; the threshold yielding the

same false positive rate for the poorly-separable dataset is shown in green.

The corresponding true positive values for each dataset are shown on the

ROC curves in Figure 4.1c, along with the vertical average curve.

4.3.3 Threshold Averaging

Instead of sampling points based on their positions in ROC space, threshold

averaging (Fawcett, 2006) samples uniformly from the threshold values t and

averages separately the fp and tp rates achieved by each ROC curve for that

value of t.

tp =
1

M

M∑

i=1

tpi

=
1

M

M∑

i=1

nPi(t)

nPi

fp =
1

M

M∑

i=1

fpi

=
1

M

M∑

i=1

nNi(t)

nNi

.

The threshold average ROC curve is shown in Figure 4.1d. Note that for the

fixed threshold shown in Figure 4.1a, the average fp and tp values do not

equal f̃p and t̃p (the pooled rates). As nN1 > nN2 and nP1 > nP2 , the well

separable scores dominate in the calculation of f̃p and t̃p, so the pooled ROC

curve is drawn closer to the well separable ROC curve. If instead nN1 = nN2

and nP1 = nP2 , then the threshold average curve and the pooled curve would

in fact be identical.

4.4 Interpreting Average ROC Curves

In most cases, the methods described each result in different average ROC

curves. This can be seen clearly in the simple illustration provided in Fig-

ure 4.1. Furthermore, the interpretation of each is subtly different. It is im-

portant therefore to consider which method is most appropriate for a given

42

study.

Pooling classification scores disregards datasets. The pooled ROC curve can

be considered as a weighted average of the individual ROC curves, weighted

by the number of instances scored in each. Pooling produces only a single

curve and so provides no information regarding uncertainty. If one dataset

contains a substantially larger number of instances than the other datasets,

the pooled ROC curve will be biased towards the ROC curve for that dataset.

This should not be an issue in k-fold cross-validation, as the test sets are

typically the same size. However, the pooling strategy—and equivalently,

threshold averaging—assumes that the classifier outputs across folds of cross-

validation are comparable and thus can be globally ordered. Parker et al.

(2007) show that this assumption is generally not valid and can lead to large

pessimistic biases in the estimation of the AUC and the shape of the ROC

curve. Such biases are not suffered by vertical averaging (or its variants,

discussed in Section 4.4.1); Chen and Samuelson (2014) prove that the AUC

of the average curve equals the average of the individual AUCs.

Vertical averaging offers a way of obtaining such a measure of variance. In

Fawcett (2006, p. 869), it is claimed that this method of averaging “is appro-

priate when the [false positive] rate can indeed be fixed by the researcher, or

when a single-dimensional measure of variation is desired.” Threshold aver-

aging is presented as an alternative approach for situations when the false

positive rate is not under the direct control of the researcher. The proposed

solution is to average ROC points with respect to fixed thresholds, as these

can be controlled by the researcher. We argue that this guidance is highly

misleading, and the choice of averaging technique should instead be made

under careful consideration of the interpretation of the resulting ROC curve.

The vertical average ROC curve should be interpreted as the average true

positive rate achieved amongst datasets for each fixed false positive rate, al-

lowing the threshold yielding that false positive rate to vary between datasets.

The threshold average ROC curve’s interpretation is the average performance

achieved amongst datasets if the threshold is fixed across all datasets.

The way in which the classifier is to be deployed should therefore be the first

consideration to guide whether ROC curves should be averaged by threshold

43

or averaged in ROC space. If a fixed threshold is used in practice, then

threshold averaging is appropriate. Otherwise, averaging should take place

in ROC space and the researcher must next consider the characteristics of

the curve upon which evaluation or comparisons will be made.

4.4.1 ROC Space Averaging

In situations where we do not assume a fixed threshold, vertical averaging is

preferable to threshold averaging to provide a representation of the average

performance achieved. Indeed, in many operational settings, the researcher

is concerned with the the average true positive rate achieved for small false

positive rates. However, in other settings it may be more relevant to assess

the average false positive rate suffered in order to achieve a high true positive

rate, say. This information will not be conveyed by the vertical average curve.

Similarly, it is common in biometrics studies (Wayman, 1999) to consider a

ROC curve in terms of the ratio of the false acceptance rate (fp) and the

false rejection rate (1− tp). The equal error rate (EER), the point at which

these rates are equal, is then often used to assess and compare classifier

performance. The vertical average ROC curve will again be a misleading

description of the average performance when considered from this point of

reference.

When averaging ROC curves in ROC space, the researcher must consider how

the curve will be read, i.e. the axis of reference from which characteristics of

interest are compared. To compare performance with respect to fixed false

positive rates, averaging should take place vertically ; for performance with

respect to fixed true positive rates, averaging should take place horizontally ;

for performance with respect to fixed error rate ratios, averaging should take

place diagonally.

All three approaches can be generalised into a single procedure for performing

averaging in ROC space (Chen and Samuelson, 2014). The fp and tp axes

44

are first rotated clockwise by an angle θ by applying a rotation matrix

[
fp ′

tp ′

]
=

[
cos θ sin θ

− sin θ cos θ

][
fp

tp

]
.

The procedure is then the same as vertical averaging: values of fp ′ are sam-

pled uniformly and the corresponding tp ′ values are averaged, yielding tp ′.

The (fp ′, tp ′) pairs are then rotated anti-clockwise to the original ROC space:

[
fp

tp

]
=

[
cos θ − sin θ

sin θ cos θ

][
fp ′

tp ′

]
.

Vertical, horizontal and diagonal averaging can then be achieved using θ = 0,

π/2, π/4 respectively.

Averages along other directions may also be of interest. For example, denote

the cost of misclassifying an instance from P and N by cP and cN , respec-

tively. If the ratio of these costs is known or estimated, the threshold that

minimises cost corresponds to the point of intersection of the ROC curve and

a line originating from the point (0,1) with slope −πP cP/πNcN , where πP and

πN are the probability that an instance comes from P and N , respectively

(Adams and Hand, 1999). Hence, ROC curves can also be averaged with

respect to fixed costs using θ = arctan (πNcN/πP cP). However, Adams and

Hand (1999) point out that it is rare in practice for these costs to be known

precisely, hence the pre-eminence of ROC curves in practical applications.

4.5 Simulated Example

We now present an example of a realistic use-case of ROC curve averaging

in which the resulting conclusion depends on the method of averaging used.

Suppose a researcher wishes to compare the performance of two different

classifiers on data arising from a collection of M datasets. Classification

rules are learnt and scores generated by both classifiers using data from each

dataset separately. The aim is to choose the classifier that has the better

overall or average performance. We illustrate two scenarios.

45

Scenario 1. The output classification scores for two arbitrary classifiers

were simulated as follows: For classifier 1 (C-1), negative and positive class

scores for dataset i are simulated from Gaussian distributions N(µi0, σi0) and

N(µi1, σi1) respectively. For classifier 2a (C-2a), the scores for dataset i are

simulated from N(µi0 + εi, σi0) and N(µi1 + εi, σi1), where εi ∼ N(0, 1) is

some random noise that differs between datasets but is the same for positive

and negative populations within a dataset. As such, the locations of the

modes of the score distributions of the two classifiers will be shifted but the

class separability will be the same.

The first two panels of Figure 4.2 show ROC curves for both classifiers con-

structed using scores for M = 100 datasets simulated in this way. The

vertical and threshold average ROC curves are shown for both classifiers.

95% confidence intervals for the averages were constructed at each point

using the assumption of normality. Note that the vertical average curves

remain approximately equal for both classifiers but the threshold average

curves differ. This highlights the importance of considering the interpreta-

tions of average ROC curves in order to avoid erroneous comparisons. Here,

if the operational intention is to fix a threshold across all datasets, but verti-

cal averaging is used, no difference between the classifiers is evident and the

researcher will choose either.

Scenario 2. The opposite scenario is also possible. We simulate scores for

an alternative classifier (C-2b), this time shifting the modes of C-1’s score

distributions unequally in order to increase the class separability. We do this

by simulating negative class scores for dataset i from N(µi0 + εi, σi0) as we

did for C-2a but simulating positive class scores from N(µi1 + |εi|, σi1). For

datasets where εi < 0, the score distributions become more separable. In

Figure 4.2, the vertical average ROC curve for C-2b dominates both average

curves for C-1; however the threshold average ROC curve remains approx-

imately equal. Again, an averaging method unsuitable for the operational

intentions can result in a misguided choice of classifier.

46

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0
.2

0
.4

0
.6

0
.8

1
.0

Classifier 1 (C-1)

False Positive Rate

T
ru
e
P
os
it
iv
e
R
a
te

vertical average
threshold average

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0
.2

0
.4

0
.6

0
.8

1
.0

Classifier 2a (C-2a)

False Positive Rate

vertical average
threshold average

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Classifier 2b (C-2b)

False Positive Rate

T
ru
e
P
os
it
iv
e
R
at
e

vertical average
threshold average
C1 threshold average

Figure 4.2: Simulated ROC curves for three classifiers and their averages under vertical and
threshold averaging. The locations of the distributions used to simulate classification scores
for C-1 are perturbed such that, for C-2a, the ROC curves—and hence the vertical average
curves—are comparable but the threshold average curves differ, and for C-2b, the threshold
average curves are comparable but the vertical average curves differ.

47

4.6 Discussion

This chapter was prompted by the requirement in Hogan and Adams (2018)

to assess the aggregate performance of multiple separately trained classifiers.

The prevalence of average ROC curves in the literature—often without ref-

erence to the averaging technique used—warranted a formal exploration of

the topic. Here we have summarised the common methods and pointed to-

wards their interpretation in the operational context. Fundamentally, the

appropriate choice of combination method must correspond to the opera-

tional approach intended for the classifier. To drive this message home, we

provided a simple illustration to show that incorrect decisions can result from

an ill-considered choice of combination method. We hope to have highlighted

that in the context of classifier design and development, valuable informa-

tion may be lost if due care and consideration is not paid when presenting

and assessing results. In the following chapters, we return our attention to

multi-view learning.

48

5
Semi-supervised Learning via

Co-regularised Kernel

Logistic Regression

In Chapter 3, we highlighted the unavoidable trade-off that is presented by

early and late data fusion strategies; that is, when heterogeneous feature

representations are available, we are forced to compromise between priori-

tising the potential signal contained within each view’s natural structural

representation and the potential signal unlocked by combining information

between views. In this chapter we explore the use of semi-supervised learning

as a means of modelling a dependence between modalities of multi-view data.

Such an approach is ideally suited to malware detection—an area of cyber

security in which it is possible, but expensive, to obtain labelled training

data, while additional unlabelled data is abundant. Motivated by this, we

develop a probabilistic classifier that can learn from heterogeneous feature

representations and simultaneously harness unlabelled data to capture their

interdependence.

The remainder of the chapter is organised as follows: We begin in Section 5.1

49

with a review of background literature for semi-supervised learning. Addi-

tionally, we discuss how vector-valued kernel methods offer a powerful frame-

work for tailoring models to multi-view data, which is often non-numeric. In

Section 5.2, we introduce the concept of reproducing kernels and define the

feature spaces in which they implicitly operate. For clarity, we illustrate the

scalar case first and present the vector-valued case as a natural extension

thereof. In Section 5.3, we describe an abstract multi-view semi-supervised

learning framework, based on classical structural risk minimisation. This

framework has formed the basis for multiple semi-supervised learning imple-

mentations in the literature. In Section 5.4, we propose a logistic regression

implementation and describe in detail its optimisation procedure. In Sec-

tion 5.5, we test our algorithm using synthetic data and subsequently perform

a malware classification experiment using the EMBER dataset.

5.1 Background and Relevant Literature

When labelled training data is available, the aim of machine learning is to

estimate some target function f :X → Y , which maps elements of the in-

put space X to responses from the output space Y . With multi-view data,

X = X (1) × . . . × X (v), so there are multiple hypothesis spaces, each con-

taining candidate functions. If we assume that each contains a function that

well-approximates the target function, then, intuitively, if these functions

agree with the target function, they should also agree with each other on

unlabelled samples. By rejecting functions from separate hypothesis spaces

that “disagree” with each other, the complexity of the joint learning problem

is reduced.

This is the basis for the co-training algorithm of Blum and Mitchell (1998),

which gave rise to the field of multi-view learning as a self-contained paradigm.

Co-training is initialised by supervised classifiers in each of two views, which

are then alternately re-trained using a training set augmented with the un-

labelled samples most confidently predicted by the other classifier. Under

the assumptions that there exist weak classifiers in each view and that the

features from each view are conditionally independent given the class label,

50

Blum and Mitchell (1998) provided PAC-style guarantees that co-training

can use unlabelled data to learn arbitrarily strong classifiers. A large body of

literature followed, including extensions, applications and theoretical analy-

ses. For example, the co-EM algorithm of Nigam and Ghani (2000) combines

co-training and Expectation Maximisation (Dempster et al., 1977) to oper-

ate simultaneously on all unlabelled samples using classifiers that can learn

from probabilistically labelled training sets. They also show that co-training

on multiple views manually generated by random splits of features can re-

sult in performance improvements even when no natural partitioning of the

features is apparent. SimCLR (Chen et al., 2020), a recent state-of-the-art

semi-supervised learning method based on neural networks, manually gener-

ates multiple views of unlabelled data through augmentation (e.g. cropping,

addition of Gaussian noise).

As we discussed in Section 2.2, for most interesting multi-view learning prob-

lems, the different views can be clearly partitioned based on their heteroge-

neous modalities, e.g. images, text, histograms and time series. The require-

ment to be able to handle diverse data structures immediately motivates the

use of kernel methods for multi-view learning. Ever since seminal work by

Boser et al. (1992) (although their history goes back as early as Aizerman

1964; Aronszajn 1950; Parzen 1962), kernel methods have remained among

the most powerful paradigms in modern statistical machine learning. In addi-

tion to their ability to efficiently represent linear patterns in high dimensional

space, a major strength of kernel methods—first noted by Schölkopf (1997)—

is their ability to operate on symbolic objects, such as graphs, sets, strings,

images, sequences or text documents. As long as a valid (see Section 5.2.1)

kernel function can be constructed, any kernel method can be applied. Such

a kernel function automatically implies a vectorial representation of the data

in some reproducing kernel Hilbert Space (RKHS; see Definition 5.2.2).

Methods for two-view learning based on RKHSs, which can be solved by di-

rect optimisation, were developed by Farquhar et al. (2006); Sindhwani and

Rosenberg (2008); Sindhwani et al. (2005). These so-called co-regularisation

methods optimise an objective function that includes a regularisation term

that explicitly penalises disagreement between the predictions of the two

51

views. Recently, there has been increased research attention focused on

RKHSs of vector-valued functions (Caponnetto et al., 2008; Carmeli et al.,

2006; De Vito et al., 2013; Micchelli and Pontil, 2005; Zhang et al., 2012).

These naturally extend kernel methods from single-output to multiple-output

(or so-called multi-task) learning problems. Kadri et al. (2013) first recog-

nised the opportunity to leverage this same framework for multi-view learn-

ing. By simply converting a scalar-valued response to a vector with equal

components, the vector-valued regularised least squares framework of Evge-

niou et al. (2005) can be readily applied to data with an arbitrary number of

views. Extensions and improvements by Minh et al. (2013, 2016) and Huusari

et al. (2019) followed, demonstrating the vector-valued RKHS framework to

be highly apposite for the requirements of multi-view learning; that is, sepa-

rate kernel functions can be tailored to the characteristics of each individual

view, while also allowing between-view information to be incorporated into

the model.

5.2 Reproducing Kernel Hilbert Spaces

In this section, we introduce the vector-valued reproducing kernel Hilbert

space and its associated operator-valued kernel. We consider these subjects

only to the extent needed to understand the multi-view regularisation frame-

work. For a more detailed discussion, see e.g. Caponnetto et al. (2008);

Carmeli et al. (2006); Evgeniou et al. (2005); Micchelli and Pontil (2005).

5.2.1 Scalar-valued Kernel Machines

The idea of kernel machines is to learn a linear function or decision boundary

in some high-dimensional space that corresponds to the image of a non-linear

transformation of the input space X . The learned function will be non-linear

in X , and may have enhanced representational power. Instead of explicitly

transforming the data before model learning, the so-called “kernel trick”

provides a computational shortcut, which makes it possible to learn the same

model using only operations on the data in X . This is achieved by defining

52

an appropriate function k : X × X → R, known as a kernel. It is required

for most learning tasks that k be a Mercer kernel :1

Definition 5.2.1. Mercer kernel

A function k : X×X → R is called a Mercer kernel if the following properties

hold:

– k(x,x′) = k(x′,x) for all x,x′ ∈ X (symmetric);

–
∑n

i=1

∑n
j=1 αiαjk(xi,xj) ≥ 0 for all n ∈ N+, xi,xj ∈ X and αi, αj ∈ R

(positive semi-definite).

By Mercer’s Theorem (Mercer, 1909), such a function implicitly defines a (not

necessarily unique) mapping from the input space X into a Hilbert space H;
that is, there exists ϕ : X → H, such that

k(x,x′) = ⟨ϕ(x), ϕ(x′)⟩H,

where ⟨·, ·⟩Hk
denotes the inner-product inH. Further, the Moore–Aronszajn

Theorem (Aronszajn, 1950) states that the mapping x 7→ k(x, ·) uniquely

defines a reproducing kernel Hilbert space Hk of functions.

Definition 5.2.2. RKHS

A reproducing kernel Hilbert space is a Hilbert Space Hk that possesses a

reproducing kernel, i.e. a function k : X × X → R for which the following

hold:

– k(x, ·) ∈ Hk for all x ∈ X ;

– ⟨f, k(x, ·)⟩Hk
= f(x) for all x ∈ X , f ∈ Hk (reproducing property).

Hence, we do not need to start with a specific feature transformation in

mind. For symbolic objects such as graphs or strings, it is not obvious how

to construct a transformation into a high-dimensional vector space. It is of-

ten easier to construct a symmetric, positive-semidefinite function between

objects, which implicitly defines a (possibly infinite-dimensional) vector rep-

resentation.
1For a discussion on learning with non-Mercer kernels, see Ong et al. (2004).

53

5.2.2 Vector-valued RKHSs

Vector-valued RKHSs were introduced to the machine learning community

by Micchelli and Pontil (2005) as a way to extend kernel machines from

scalar to vector outputs, with the goal of learning nonlinear vector-valued

functions. As with scalar-valued kernel machines, the idea is to transform

the input space X into a higher-dimensional space, wherein a linear vector-

valued function can be learned. In this case, we require an operator-valued

kernel2 function K:

Definition 5.2.3. Operator-valued kernel

An L(Z)-valued kernel K on X 2 is a function K : X × X → L(Z);

– K is Hermitian if K(x,x′) = K(x′,x)∗ for any (x,x′) ∈ X 2, where ∗

denotes the adjoint operator;

– K is positive-semidefinite on X if K is Hermitian and for every n ∈ N+

and {(xi, zi) ∈ X × Z}ni=1,

∑

i,j

⟨zi, K(xi,xj)zj⟩Z ≥ 0.

Using an L(Z)-valued positive-semidefinite kernel, we can construct the set

of functions {K(·,x)z : x ∈ X , z ∈ Z}:X → Z. Denote by H0 the unique

linear space formed by the span of these functions. We makeH0 a pre-Hilbert

space by defining the inner product

⟨f, f ′⟩H0 =
N∑

i,j=1

⟨zi, K(xi,x
′
j)z

′
j⟩Z ,

for f =
∑N

i=1K(xi, ·)zi, f
′ =
∑N

i=1K(x′
i, ·)z′

i ∈ H0. This can always be com-

pleted into the (Z-valued reproducing kernel) Hilbert space HK (Micchelli

and Pontil, 2005; Minh et al., 2016).

2We capitalise the operator-valued kernel function K(·, ·) to distinguish it from scalar-
valued kernels k(·, ·). For both type of kernel, the corresponding Gram matrix is denoted
using capitalised boldface (e.g. K)—the type of kernel function underlying the matrix
should be clear from context.

54

Definition 5.2.4. Vector-valued RKHS

A vector-valued reproducing kernel Hilbert space is a Hilbert Space HK of

functions f : X → Z that possesses an operator-valued reproducing kernel,

i.e. a positive-semidefinite function K : X ×X → L(Z) for which the follow-

ing hold:

– K(x, ·)z ∈ HK for all x ∈ X , z ∈ Z;

– ⟨f,K(x, ·)z⟩HK
= ⟨f(x), z⟩Z for all x ∈ X , z ∈ Z and f ∈ HK

(reproducing property).

Note that from the reproducing property, we can consider a feature mapping

Φ : X × Z → HK defined by Φ(x, z) := K(·,x)z. Then:

⟨z, K(x,x′)z′⟩Z = ⟨K(·,x)z, K(·,x′)z′⟩HK

= ⟨Φ(x, z),Φ(x′, z′)⟩HK
.

Hence, as in the scalar-valued case, the kernel can be used to compute an

inner-product in some (possibly infinite-dimensional) feature space. The

usual kernel trick can be recovered when Z = R.

5.2.3 Multi-view Kernels

In what follows, our goal will be to learn a Z-valued function using multi-

view data. We assume there are v different views of the set of n observations;

that is, Z = Rv and X = X (1) × . . . × X (v). The learning algorithm will be

based on computing and manipulating the kernel Gram matrix associated

with an operator-valued kernel function. It is not immediately obvious how

to define a function K : X ×X → Rv×v, which takes two objects—each hav-

ing multiple feature representations—and outputs a matrix. In Section 5.3.3

and Section 6.3, we will discuss how to construct such a function using indi-

vidual scalar-valued kernel functions, which can be chosen appropriate to the

data type of each view. Crucially, the resulting function must be positive-

semidefinite in order to validate the following theorem, the proof of which

can be found in Kadri et al. (2016).

55

Theorem 1. An L(Z)-valued kernel K on X ×X is the reproducing kernel

of some Hilbert space HK, if and only if K is positive-semidefinite.

This bijection allows us to build a general learning scheme that can incorpo-

rate information both within and between data of disparate representation.

We now describe that learning framework.

5.3 Multi-view Semi-supervised Structural Risk Minimisation

In this section, we present the regularisation framework for multi-view semi-

supervised learning. We begin by describing a multi-view extension of the

classical structural risk minimisation (SRM) framework (Vapnik and Chervo-

nenkis, 1974), which is foundational to many well-known supervised learning

schemes. This forms the basis for both the semi-supervised classifier de-

scribed in this chapter and the general multi-view supervised learning scheme

of Chapter 6. First we describe the general setting for an arbitrary convex

loss function. We then construct a probabilistic classifier using the nega-

tive log-likelihood of the Bernoulli distribution and derive the algorithm’s

optimisation procedure.

5.3.1 Supervised Learning Framework

The v-view supervised learning problem involves using a labelled training set

{(xi, yi) ∈ X × Y}ni=1 to estimate a function g:X → Y , where—unlike the

single-view setting—the input space is given by X = X (1) × . . .×X (v), with

X (s),X (t) possibly disjoint spaces for s ̸= t. In order to deal with multiple

feature representations, we define the target function as g(·) := w(f(·)),
where a bounded linear operator w : Rv → R is used to transform the output

of a vector-valued function f :X → Rv into a prediction. Here we take the

arithmetic average of the output3 by choosing g(·) = w⊤(b + f(·)), for a

weight vector w =
(
1
v
, . . . , 1

v

)
∈ Rv and a vector of intercept, or bias, terms

b ∈ Rv.

3Note, other weights or combination schemes are possible—for the generalised learning
framework we develop in Chapter 6, we allow these weights to be learned.

56

In what follows, we appeal to the SRM approach to supervised learning,

trading off the complexity of the learned function against its success at fitting

the training data. In this way, the chosen function does not overfit and can

generalise to new data. We can express this as minimisation of the following

objective function:

J(b, f) =
n∑

i=1

V
(
yi,w

⊤(b+ f(xi))
)
+ λ∥f∥2HK

, (5.1)

where V :Y×R→ R is some convex loss function, and a scalar λ controls how

strongly to penalise complexity of f through the squared L2-norm ∥f∥2HK
.

In (5.1), the hypothesis space of functions f is chosen to be the vector-valued

RKHS HK associated with an operator-valued kernel K. As HK is possibly

infinite-dimensional, it is not obvious that this optimisation problem can be

solved efficiently. The following Representer Theorem (Micchelli and Pontil,

2005) proves that the minimiser lies in the subspace of HK spanned by the

images of the training data.

Theorem 2. Let K be a positive-semidefinite operator-valued kernel and HK

its associated vector-valued RKHS. The solution f̂ ∈ HK of the regularised

optimisation problem (5.1) has the following form:

f̂ = argmin
f

J(f ; b) =
n∑

j=1

K(·,xj)cj, with cj ∈ Rv. (5.2)

We can re-write the norm ∥f∥2HK
of a function of this form as:

∥f∥2HK
= ⟨f, f⟩HK

=

〈
n∑

i=1

K(·,xi)ci,
n∑

j=1

K(·,xj)cj

〉

HK

=
n∑

i,j=1

⟨ci, K(xi,xj)cj⟩Rv ,

where the last equality is a result of the reproducing property of K. We can

therefore simplify the infinite-dimensional optimisation problem (5.1) to a

57

finite dimensional one:

J(b, c1, . . . , cn) =
n∑

i=1

V

(
yi,w

⊤

[
b+

n∑

j=1

K(xi,xj)cj

])

+ λ
n∑

i,j=1

⟨ci, K(xi,xj)cj⟩ .

Let K ∈ Rnv×nv denote the Gram matrix of K(·, ·) and c ∈ Rnv be the vector

formed by concatenating the elements of c1, . . . , cn such that c is formed of

v vectors of length n. The problem can then be written more concisely as:

J(b, c) = V
(
y, (w⊤ ⊗ In)(b⊗ 1n +Kc)

)
+ λc⊤Kc, (5.3)

where ⊗ denotes the Kronecker product. For a given loss function V , this

problem can typically be solved using gradient descent methods.

5.3.2 Relation to Single-view Learning Schemes

We can recover several well-known learning schemes as special cases when

v = 1. For example, choosing a squared error loss function leads to the Regu-

larised Least Squares algorithm (Rifkin et al., 2003), while the Support Vec-

tor Machine (SVM) (Cortes and Vapnik, 1995)—though traditionally framed

geometrically as a method for finding a hyperplane that achieves the largest

separation between two classes—corresponds exactly to the single-view ver-

sion of (5.3) with the hinge loss function (Evgeniou et al., 2000).

5.3.3 Semi-supervised Learning

As discussed in Section 5.1, the field of multi-view learning has its roots in

semi-supervised learning, where the aim is to estimate some unknown target

function by utilising a collection of unlabelled data in conjunction with the

labelled training dataset.

Say we havem labelled observations {(xi, yi)}mi=1 and the remainder are unla-

belled {xi}ni=m+1, where often m≪ n. So-called co-regularisation algorithms

58

begin with a kernel machine that makes separate view-specific predictions on

all available data; an additional regularisation term is then added that explic-

itly penalises disagreement between the predictions made by the individual

functions. Early works, which were limited to two views (Sindhwani and

Rosenberg, 2008; Sindhwani et al., 2005), used the sum of squared errors

between predictions as the regularisation term. We can achieve the same for

an arbitrary number of views by modifying the objective function (5.1) to:

J(b, f) =
m∑

i=1

V
(
yi,w

⊤(b+ f(xi))
)
+ λ∥f∥2HK

+ ϕ
n∑

i=1

v∑

s,t=1; s<t

∥∥f (s)(xi)− f (t)(xi)
∥∥2 ,

(5.4)

where we note that the loss function is only applied over the m labelled

samples and the added regularisation term (controlled by scalar ϕ) is applied

to all n data. Minh et al. (2016) prove a Representer theorem that shows

that the minimiser is a combination of kernel products evaluated on both the

labelled and unlabelled data:

f̂ =
n∑

j=1

K(·,xj)cj.

We can construct an operator-valued kernel function K such that the v-

dimensional prediction

f(xi) =
n∑

j=1

K(xi,xj)cj

represents a prediction made using each of the v views. Given scalar-valued

kernel functions ks(·, ·), s = 1, . . . , v, which can be suitably chosen to repre-

sent some notion of similarity between observations in each view, let

K(xi,xj)lm =

kl(xi,xj) if l = m,

0 otherwise.

59

The Gram matrix K is block-diagonal and each block corresponds to the

scalar-valued kernel Gram matrix over one view.

Thus, let f = Kc ∈ Rnv denote the vector of (vector-valued) predictions of

all training samples. As in Minh et al. (2016), we can construct an operator

MB such that the between-view regularisation term in (5.4) can be expressed

by the semi-norm ⟨f ,MBf⟩. In their formulation, f is arranged differently

to how we have defined it. However, we can define an analogous operator,

which is suitable for our framework. Let

Mv = vIv − 1v1
⊤
v .

This is the v×v matrix with (v−1) on the diagonal and −1 elsewhere. Then

for a given training prediction f(xi) = (f (1)(xi), . . . , f
(v)(xi))

⊤ ∈ Rv,

f(xi)
⊤Mvf(xi) =

v∑

s,t=1, s<t

∥∥f (s)(xi)− f (t)(xi)
∥∥2 .

For the regularisation term, we require an operator that can sum the above

term over all training data points. Denote by Mv,c the cth column of Mv.

We can construct MB as the following block matrix:

MB =

In ⊗M⊤
v,1

In ⊗M⊤
v,2

...

In ⊗M⊤
v,v

. (5.5)

We then have that

f⊤MBf =
n∑

i=1

v∑

s,t=1; s<t

∥∥f (s)(xi)− f (t)(xi)
∥∥2 ,

as required. We can express the objective function as:

J(b, c) = V
(
y, (w⊤ ⊗ Im)(b⊗ 1m +Kmc)

)
+ λc⊤Kc

+ ϕ⟨Kc,MBKc⟩,
(5.6)

60

where Km ∈ Rmv×nv is the submatrix of K ∈ Rnv×nv consisting of the rows

that correspond to the labelled observations.

5.4 Semi-supervised Kernel Logistic Regression

In this section we use the framework just described to construct a multi-view

binary classifier that outputs probabilistic predictions. This is achieved by

replacing the loss function in Equation (5.6) with the negative log-likelihood

of the Bernoulli distribution (Zhu and Hastie, 2001):

J(b, c) = −
m∑

i=1

(yig(xi)− log(1 + exp(g(xi)))) + λc⊤Kc

+ ϕ⟨Kc,MBKc⟩,

where, as before, g(xi) = w⊤(b + f(xi)). Denote the vector of predictions

for all m labelled training samples as

g = (w⊤ ⊗ Im)(b⊗ 1m +Kmc) ∈ Rm. (5.7)

This allows us to write

J(b, c) = −y⊤g + 1⊤
mlog(1m + exp(g)) + λc⊤Kc+ ϕ⟨Kc,MBKc⟩. (5.8)

The dual model parameters α := (b, c) ∈ R(n+1)v can be estimated using an

iteratively re-weighted least squares procedure. Let V := (1m ⊗ Iv,Km) ∈
Rmv×(n+1)v and define U , P ∈ R(n+1)v×(n+1)v as follows:

U :=

[
0v×v 0v×nv

0nv×v K

]
, P :=

[
0v×v 0v×nv

0nv×v K⊤M⊤
BK

]
,

i.e. the matrices K and K⊤M⊤
BK padded above and to the left with v

rows/columns of zeros. To simplify notation in what follows, further let

A := (w⊤ ⊗ Im)V ∈ Rm×(n+1)v. Then (5.7) and (5.8) can be expressed in

61

terms of α:

g = Aα;

J(α) = −y⊤Aα+ 1⊤
mlog(1m + exp(Aα)) + λα⊤Uα+ ϕα⊤Pα. (5.9)

The gradient is thus:

∇α = −A⊤(y − µ) + 2λUα+ ϕPα+ ϕP⊤α, (5.10)

where

µ =
exp(Aα)

1m + exp(Aα)
.

The Hessian matrix is given by:

∇2
α = A⊤WA+ 2λU + ϕP + ϕP⊤, (5.11)

where W = diag(µ1(1−µ1), . . . , µm(1−µm)). The Newton-Raphson method

then updates the model parameters according to:

α̂t+1 = α̂t −
(
∇2

α

)−1∇α. (5.12)

Let Q := 2λU + ϕP + ϕP⊤. Then substituting (5.10) and (5.11) into (5.12)

gives:

α̂t+1 = α̂t +
[
A⊤WtA+Q

]−1 [
A⊤[y − µ̂t]−Qα̂t

]
,

which can be rearranged to form

α̂t+1 =
[
A⊤WtA+Q

]−1
A⊤Wtzt, (5.13)

where zt = Aα̂t +W−1
t [y − µt].

The algorithm proceeds by iteratively updating α̂t until some convergence

criterion is met. A simple stopping rule is to compare the value of the ob-

jective function in consecutive iterations and deem the algorithm converged

when the ratio |J(α̂t)− J(α̂t−1)|
|J(α̂t)|

< ϵ,

for some small scalar ϵ > 0. Pseudocode for the algorithm is presented in

62

Algorithm 1.

5.5 Experiments

In this section, we present experimental results using the multi-view semi-

supervised learning scheme just presented. First, using synthetically gener-

ated data, we demonstrate the algorithm’s ability to improve accuracy by

harnessing unlabelled observations. We then test the model on a real-world

malware classification dataset.

5.5.1 Simulated Data

In this experiment, we simulate a toy two-view, two-class dataset. This is

used to investigate the efficacy of our semi-supervised learning algorithm by

performing classification both with and without the inclusion of unlabelled

observations.

Data Generation

In order to aid visualisation, we base our multi-view data on a ‘two circle’

dataset, which is commonly used for demonstrating non-linear regression or

clustering algorithms. For the first view, we simulate 1,000 points from two

circles in R2 (representing two classes) and we add Gaussian noise. Each

point represents an observation from one of two classes, corresponding to

the circle from which the point was drawn. A plot of the data is given in

Figure 5.1a. This type of data is often found in introductory texts on kernel

methods; the two classes are not linearly separable in their original feature

space, though they easily become linearly separable when transformed into

a higher-dimensional space (e.g. in R3 via a polynomial kernel).

We generate the second view of data by applying the following non-linear

63

Algorithm 1: Multi-view Semi-supervised Kernel Logistic Regression

Input:
y ∈ {0, 1, NA}n: vector of responses (NA indicates unlabelled)
K ∈ Rnv×nv: L(Rv)-valued kernel Gram matrix
λ, ϕ ∈ R: regularisation parameters
max iter ∈ N: (optional) maximum number of iterations
ϵ ∈ R: convergence threshold

Initialise:
α̂0 ← 0(n+1)v

Procedure:
Construct Km ∈ Rmv×nv from m labelled rows of K
Construct MB from (5.5)
Construct V , U and P as in Section 6.2.3
A = (w⊤ ⊗ Im)V
Q = 2λU + ϕP + ϕP⊤

w = 1
v
1v

for t = 1 to max iter do
µt = exp(Aα̂t−1)/(1+ exp(Aα̂t−1))
Wt = diag(µt,1(1− µt,1), . . . , µt,m(1− µt,m))
zt = Aα̂t−1 +W−1

t [y − µt]

α̂t ←
[
A⊤WtA+Q

]−1
A⊤Wtzt

check convergence

J(α̂t) = −y⊤Aα̂t+1⊤log(1+exp(Aα̂t))+λα̂⊤
t Uα̂t+ϕα̂⊤

t Pα̂t

if |J(α̂t)− J(α̂t−1)|/|J(α̂t)| < ϵ then
break

Output:
Estimated parameter α̂

64

−1 0 1

−1

0

1

(a)

−1 0 1

−1

0

1

(b)

Figure 5.1: A synthetic multi-view dataset. View 1 (a) is the classic ‘two circles’ dataset.
We generate view 2 (b) by applying a non-linear transformation (5.14) to view 1. To illustrate
the effect of the transformation, we show a grid corresponding to view 1’s coordinate system
under the transformation.

transformation to each point in view 1:

t

([
x

y

])
=

[
x cos(y)

y sin(x)

]
. (5.14)

By doing so, we simulate a new view of the data, where the shape and separa-

bility of the two class clusters is different but we maintain a correspondence

between points in the two spaces. This view is shown in Figure 5.1b.

Evaluation

To fit our model, we choose a scalar-valued kernel function for each view.

For view 1, we use the following polynomial kernel with degree 2:

k1(xi,xj) =
(
x
(1)⊤
i x

(1)
j + 1

)2
.

For view 2, we use the Gaussian, or radial basis function kernel:

k2(xi,xj) = exp

(
−
∥x(2)

i − x
(2)
j ∥2

2σ2

)
, (5.15)

65

with σ set to be 1.

In this toy dataset, neither of the two views of data should pose much of

a challenge to a kernel machine. However, we are interested in whether

our multi-view kernel machine can capture a dependence between the two

views by favouring models that make the same predictions on unlabelled

data. We randomly sample a tiny training set of only 5 observations and

train the algorithm both with and without the inclusion of an additional 400

unlabelled observations. In both cases, the models were evaluated using a

test set consisting of the remaining 595 data points. On this test set, the

supervised and semi-supervised classifiers achieved an ROC AUC score of

75.3% and 95.8%, respectively.

To visually inspect the decision boundary in the original input space, we

sample points along an evenly spaced grid in the coordinate space of view

1 and generate the corresponding points in view 2 via the non-linear trans-

formation (5.14). We then make predictions for each multi-view point using

the fitted supervised and semi-supervised learning models. A plot of the

decision boundaries is shown in Figure 5.2. We can see clearly that in the

semi-supervised case, despite having only a tiny number of labelled obser-

vations, the algorithm is able to learn a more accurate decision surface by

capturing the dependence between the two views of data.

The synthetic dataset and experiment just presented are very artificial and

designed to visually investigate and highlight the ability to learn from unla-

belled data in the multi-view setting. As we see in the following section, the

results are not necessarily an indication of how the algorithm can be expected

to perform on more complex learning tasks in real-world applications.

5.5.2 Malware Detection

In this section, we apply our semi-supervised learning scheme to the problem

of static malware detection. The term static refers to systems that attempt to

classify programmes as malicious or benign without executing them, in con-

trast to dynamic malware detection techniques, which analyse a programme’s

66

−1.5 −1 −0.5 0 0.5 1 1.5

−1

0

1

(a)

−1.5 −1 −0.5 0 0.5 1 1.5

−1

0

1

(b)

Figure 5.2: Decision boundaries of the fitted models: (a) supervised learning; (b) semi-
supervised learning. The labelled observations used in the training of both models are shown
in yellow.

runtime behaviour and time-dependent sequences of system calls (Gandotra

et al., 2014; Ye et al., 2017). Although both types of approach have been

proven to be undecidable in general (Cohen, 1987) (that is, it is impossible

to construct an algorithm that always leads to a correct classification), static

malware detection still offers an important protection layer in a security suite

because, when successful, it allows malicious files to be detected prior to ex-

ecution. A large body of machine learning research has focussed on static

malware classification—see e.g. Kong and Yan (2013); Rieck et al. (2008);

Schultz et al. (2000) or, for a review, Gandotra et al. (2014); Gibert et al.

(2020).

Anderson et al. (2012) recognise malware detection as a multi-view learning

problem; they argue that, while a malicious executable can disguise itself

in some views, disguising itself in every view while maintaining malicious

intent is substantially more difficult. It is also a promising application area

for semi-supervised learning in particular, as there is a relative scarcity of

labelled data and new unlabelled data becomes available continuously.

67

Data and Kernel Selection

For our experiment, we use the EMBER dataset, described in Section 2.3.2.

For each of the three modalities, we construct a scalar-valued kernel as fol-

lows:

• Numeric features: For each file, we construct a vector x
(1)
i ∈ R12

using the features described in Table 2.3. All features are standardised

to have zero mean and standard deviation equal to 1. We then use the

radial basis function kernel:

k1(xi,xj) = exp

(
−
∥x(1)

i − x
(1)
j ∥2

2σ2

)
,

with σ set to be the mean distance between samples:

σ =
1

n(n− 1)

n∑

i

∑

j>i

∥x(1)
i − x

(1)
j ∥.

• Histograms: For our second view, we consider the byte histograms.

As all the histograms contain the same number of bins and are nor-

malised, each can be represented as a vector x
(2)
i ∈ R256. We use the

histogram intersection kernel:

k2(xi,xj) =
256∑

k=1

min
(
x
(2)
i,k ,x

(2)
j,k

)
.

Barla et al. (2003) show that this has the required mathematical prop-

erties to be used as a kernel function.

• Strings: The imported and exported functions for each file are repre-

sented as a variable-length list of strings, as described in Section 2.3.2.

To construct a kernel function between observations, we first tokenise

all strings and create a tf-idf (term frequency times inverse-document

frequency) Bag-of-Words feature representation (see e.g. Schütze et al.

(2008, p. 117)). This results in x
(3)
i ∈ Rp, where p is the total number

68

of unique ‘words’, i.e. imported/exported functions. We then use the

cosine similarity kernel:

k3(xi,xj) =
x
(3)⊤
i x

(3)
j

∥x(3)
i ∥∥x(3)

j ∥
.

Evaluation

For our experiment, we selected a subset of 5,000 observations from the

EMBER dataset. 500 observations were used as a training set, and the

remainder held out for validation. To assess the efficacy of semi-supervised

learning for malware detection, we repeated the following experiment, varying

m, the number of labelled training data points:

1. A model is fit using only m labelled training points. We first perform

hyperparameter tuning using a grid search over a range of values of λ.

For each value, we carry out 5-fold cross validation. With each fold

of the training set, we take a stratified sample of m points as labelled

observations and discard the remaining points. The normalisation and

tokenisation for the numeric and Bag-of-Words features are performed

based on only these m observations. Once the optimal λ is found, this

(supervised) model is evaluated on the validation set.

2. A model is fit using m labelled training points and n = 500−m unla-

belled points. Again, 5-fold cross validation is used with a grid search

to tune the hyperparameter ϕ. This time, having taken a stratified

sample of m points as labelled observations, we remove the label from

the remaining points. All observations are used for normalisation and

tokenisation. The final (semi-supervised) model is evaluated on the

validation set.

3. The ROC AUC score is used to compare classification results.

The results of the experiment are presented in Table 5.1. In Figure 5.3, we

plot the ROC curves. Clearly, for very small values of m, the algorithm is

69

m Supervised AUC Semi-supervised AUC ∆

5 76.87% 80.32% +3.45%
10 81.79% 85.48% +3.69%
20 83.35% 84.66% +1.31%
40 88.46% 88.44% −0.03%
80 91.89% 91.96% +0.07%
250 95.31% 95.37% +0.05%

Table 5.1: Results of the semi-supervised malware detection experiment. For varying values
of m (the number of labelled observations) the ROC AUC scores for supervised and semi-
supervised learning models are presented. ∆ indicates the improvement achieved through the
addition of unlabelled samples.

able to harness unlabelled data to improve predictive accuracy. However,

the improvement in true positive rate, or recall, appears to only be achieved

for rather high values of the false positive rate. Further, as we increase the

number of labelled observations, the influence of the additional unlabelled

data quickly diminishes.

5.6 Discussion

In this chapter, we explored the use of semi-supervised learning to incorpo-

rate information between multi-view data. Motivated by malware detection

as a binary classification problem, we developed a logistic regression vari-

ant of the co-regularisation approach to multi-view learning (Minh et al.,

2013). We proposed an efficient iteratively re-weighted least squares optimi-

sation procedure and demonstrated, using both synthetic and real data, the

algorithm’s ability to simultaneously learn from multiple heterogeneous fea-

ture representations. Irrespective of the merits of utilising unlabelled data,

the classification results are highly promising. Using only 250 training data

points, the multi-view kernel machine is able to combine information from

numeric features, histograms and strings to learn a model that achieves an

AUC of over 95%. In the following chapter, we build on this framework to

develop a novel general-purpose supervised learning scheme for multi-view

data.

70

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

T
ru
e
P
os
it
iv
e
R
at
e

m = 5

Semi-supervised
Supervised

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

m = 10

Semi-supervised
Supervised

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

T
ru
e
P
os
it
iv
e
R
at
e

m = 20

Semi-supervised
Supervised

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

m = 40

Semi-supervised
Supervised

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

False Positive Rate

T
ru
e
P
os
it
iv
e
R
at
e

m = 80

Semi-supervised
Supervised

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

False Positive Rate

m = 250

Semi-supervised
Supervised

Figure 5.3: ROC curves for the malware detection experiment for varying values of m, the
number of labelled observations.

71

6
Multi-view Generalised

Kernel Machines

In Chapter 5, we presented a multi-view classifier designed to address some

of the challenges of static malware detection: namely, the presence of het-

erogeneous feature modalities and a scarcity of labelled training data. Al-

though our experimental results suggested that the benefits of incorporating

unlabelled data may be limited, the framework itself showed great promise

for its ability to be simultaneously tailored to multiple heterogeneous fea-

ture representations. This motivates us to extend the framework to build a

general-purpose supervised learning scheme.

The Generalised Linear Model (GLM) (Nelder and Wedderburn, 1972) is one

of the foundational supervised learning schemes and—due to its simplicity

and flexibility—remains extremely widely used today. Implemented in every

major statistical software platform, it allows a practitioner to fit a model

to data with an arbitrary response type by simply selecting the appropriate

link function from a wide family of candidates. We can imagine a similar

framework for multi-view learning, in which fitting a model is as simple as

specifying a suitable kernel for each modality and selecting the appropriate

72

link function for the response type. In Chapter 5, we were interested in a

binary response type, so the algorithm we developed used the negative log-

likelihood of the Bernoulli distribution as a loss function. Cawley et al. (2007)

show that the negative log-likelihood of any exponential family distribution

can be used as the loss function in a (SRM) kernel machine, thereby creating

a non-linear variant of the GLM, which they term a Generalised Kernel

Machine (GKM). In what follows, we adopt the same strategy to design an

extremely general and highly flexible framework for multi-view learning that

can be easily adapted to the distributional characteristics of a given response

variable.

Our proposed formulation has many advantages over existing methods: it has

a simple and general optimisation strategy for both classification and regres-

sion; an optimal (optionally sparse) weighting of views can be simultaneously

learned; it produces interpretable predictions; it is flexible to a wide range

of response types, including binary, categorical, discrete and continuous; and

it provides outlier detection capabilities. We provide an iterative algorithm

for implementing our learning scheme and demonstrate its performance and

flexibility on real data. The content of this chapter is adapted from Hogan

and Adams (under review 2023b).

The remainder of the chapter proceeds as follows: We begin in Section 6.1 by

describing existing methods in the literature that are closely related to our

proposed framework and discussing their shortcomings. To address these,

in Section 6.2 we draw on GLMs to specify a unified learning scheme for

both regression and classification. We describe in detail the optimisation

procedure, an approach for detecting and penalising uninformative views, and

the calculation of outlier scores. In Section 6.3, we describe several options for

constructing multi-view kernel functions. In Section 6.4, we discuss different

types of response variables that are commonly encountered and we present

appropriate link functions for tailoring our proposed learning scheme to each.

We perform real-data experiments in Section 6.5.

73

6.1 Background and Relevant Literature

The learning algorithm we develop in this chapter builds on the vector-valued

kernel regularisation framework presented in Section 5.3. Due to its flexibility

at modelling heterogeneous modalities through bespoke kernel functions, this

has successfully been used as the basis for a number of multi-view learning

methods. However, existing works—the most closely related of which being

Huusari et al. (2019); Kadri et al. (2013); Minh et al. (2016)—suffer from a

number of shortcomings.

First, these models have primarily focused on only two types of response data

and two corresponding loss functions: typically, for regression, the squared

error loss function; and for classification, the hinge loss function (resulting

in an SVM). For many response data types (e.g. with restricted or skewed

distributions), the quality and interpretability of predictions may be com-

promised. Despite this, in the more general machine learning literature, it

is common to employ the squared error loss function regardless of whether

the problem is one of regression or classification. Rifkin et al. (2003) point

out that while squared error does not “make sense” for binary classification,

empirical results on many datasets show that comparable predictive perfor-

mance can be achieved, with the benefit of a simpler optimisation procedure.

For statistical inference and outlier detection, such an argument is highly

dissatisfactory. As in Section 5.4, we argue instead in favour of the logistic

loss function, which leads to an interpretable model, the outputs of which

are probabilistic predictions.

In many cases, the response variable is neither continuous nor binary. An

example that is treated in the literature is multi-class data. Huusari et al.

(2019) adopt a one-vs-all approach (see e.g. Webb (2003, p. 144)) to multi-

class classification using squared error loss within each classifier. Such an

approach suffers from multiple issues; for example, the scale of predictions

made by each classifiers may differ, and each classifier may be trained on

highly imbalanced datasets, even if the overall class distribution is balanced.

Minh et al. (2016) present a generalisation of the simplex-cone SVM (Mroueh

et al., 2012) for dealing with multi-class data. Simplex-cone SVMs have re-

74

ceived limited application, due to seemingly opaque interpretability (Pouliot,

2018). Again, we argue that this problem can be more satisfactorily solved

by appealing to traditional statistical modelling approaches—in this case

through multinomial logistic regression. By adopting a GLM approach, we

generalise least squares, binary, multi-class and many other types of regres-

sion into a single unifying model with a straightforward optimisation scheme

and interpretable outputs.

Another limitation of existing methods lies in how they combine the pre-

dictions made by different views. For example, Kadri et al. (2013) convert

a scalar valued response variable to a vector with equal elements, and so

all views are assumed to have equal importance, with no mechanism for

estimating—or even assigning—weights to the contributions of various views.

The inclusion of a combination operator by Minh et al. (2016) and Huusari

et al. (2019) does allow for views to be weighted, though in all but the least-

squares case, the authors fail to derive a method for learning these weights,

deferring the challenge to future work. The learning scheme we propose in

the following section is the only method capable of simultaneously learning

the optimum weighting of views for a general response data type.

It is interesting to note that this sub-problem is the subject of an entire fam-

ily of algorithms known as multiple kernel learning (MKL), which seek to find

an optimal weighting of scalar-valued kernel functions and input this into a

learning scheme such as an SVM. A number of these such algorithms were de-

veloped to address the need to consider multiple kernels, or parametrisations

of kernels, to encode different notions of similarity among a single feature set

(Crammer et al., 2003; Lanckriet et al., 2004a). MKL has also been used as

a multi-view learning method to combine data from multiple sources (Bach

et al., 2004; Lanckriet et al., 2004b; Stafford Noble, 2004). In Section 6.3,

we describe how our proposed algorithm offers, as a special case, an elegant

and straightforward solution to MKL.

75

6.2 A Unified Learning Scheme

In this section, we develop a learning scheme that is not only capable of han-

dling different response types but appropriate for each. We adopt a GKM

approach, such that the resulting framework encompasses standard regres-

sion and classification (both binary and multi-class), but is also suitable for

other response types, e.g. count data, inter-arrival times, etc. This is par-

ticularly attractive for cyber security anomaly detection, where we do not

have observations with binary labels Y ∈ {‘benign’, ‘malicious’}, but rather
we wish to model some quantity of interest—often a count, e.g. number of

bytes sent, number of distinct destination ports, etc.—and identify unusual

observations. The model we develop has a general optimisation procedure.

Simultaneous optimisation of the weight vector w (which in Chapter 5 was

fixed) is trivial.

6.2.1 Generalised Linear Models

In a GLM, the vector of responses y = (y1, . . . , yn) is assumed to be a realisa-

tion of a random variable Y , whose components are independently distributed

with means µ = (µ1, . . . , µn). A GLM consists of three components:

1. The random component : The components of Y are assumed to be

independently distributed according to some exponential family distri-

bution; that is, any distribution taking the form

f(yi ; θi, ϕ) = exp

(
yiθi − b(θi)

ai(ϕ)
+ c(yi, ϕ)

)
,

for some functions ai(·), b(·), c(·), where θi and ϕ are the parameters

of the distribution.

2. The systematic component : In a standard GLM (i.e. single-view, “non-

kernelised”), this takes the form η = Xβ for some design matrix X

and vector of estimated coefficients β. In a GKM, we construct η in

76

the feature space HK :

ηi = w⊤ (b+ f(xi)) .

3. The link function: A monotonic, differentiable function h(·) relates the
systematic and random components, such that

ηi = h(µi).

The link function h(·) is chosen to constrain the estimate of the con-

ditional mean to lie within reasonable bounds for the particular mem-

ber of the exponential family concerned. The link function such that

θi = ηi is known as the canonical link and simplifies the optimisation

procedure.

One appealing feature of the exponential family is that we can easily compute

moments of the distribution by taking derivatives of the log-likelihood. The

log-likelihood of an exponential family distribution can be written as:

ℓ(θ, ϕ ; y) =
n∑

i=1

yiθi − b(θi)

ai(ϕ)
+ c(yi, ϕ),

with partial derivatives

∂ℓ

∂θi
=

yi − b′(θi)

ai(ϕ)
and

∂2ℓ

∂θ2i
= −b′′(θi)

ai(ϕ)
.

The mean of the distribution, µ, can be deduced from the relation

E
[
∂ℓ

∂θi

]
= 0 =⇒ µi − b′(θi)

ai(ϕ)
= 0,

such that

E[Yi] = µi = b′(θi).

77

Similarly,

E
[
∂2ℓ

∂θ2i

]
+ E

[
∂ℓ

∂θi

]2
= 0 =⇒ −b′′(θi)

ai(ϕ)
+

Var(Yi)

ai(ϕ)2
= 0,

such that

Var(Yi) = b′′(θi)ai(ϕ).

6.2.2 Multi-view GKMs

In what follows, we build from the SRM objective function of a vector-valued

kernel machine (5.1) and add an additional arbitrary regularisation term for

the weight vector w:

J(b, f,w) =
n∑

i=1

V
(
yi,w

⊤ (b+ f(xi))
)
+ λ∥f∥2HK

+ γR(w),

where V (·) is the loss function. For a given learning task, if we assume that

the response is generated according to an exponential family distribution (see

Section 6.4 for examples covering the most common learning tasks), then

the optimisation problem can be solved by maximum likelihood estimation.

We can replace the loss function V with the negative log-likelihood of the

exponential family distribution (assuming the canonical link, and omitting

elements independent of η):

J(b, f,w) = −
n∑

i=1

(yiηi − b(ηi)) + λ∥f∥2HK
+ γR(w).

The Representer Theorem indicates that the minimiser f̂ is given by (5.2),

so we can write

η = (w⊤ ⊗ In)(b⊗ 1n +Kc), (6.1)

and

J(b, c,w) = −y⊤η + 1⊤
n b(η) + λc⊤Kc+ γR(w). (6.2)

78

6.2.3 Parameter Estimation

The optimisation strategy we propose is a coordinate descent scheme (Fried-

man et al., 2010), alternating between optimising (b, c) for a fixed w and

vice versa. We describe the optimisation for each.

Optimising (b, c)

As in Section 5.4, we can represent (6.2) in terms of α := (b, c) by defining

V := (1n ⊗ Iv,K) ∈ Rnv×(n+1)v, A := (w⊤ ⊗ In)V ∈ Rn×(n+1)v and

U :=

[
0v×v 0v×nv

0nv×v K

]
,

yielding:

η = Aα;

J(α,w) = −y⊤η + 1⊤
n b(η) + λα⊤Uα+ γR(w).

Following the same approach as before, we arrive at the Newton-Raphson

update step:

α̂t+1 =
[
A⊤WtA+ 2λU

]−1
A⊤Wtzt,

where zt = Aα̂t +W−1
t [y − µt] and W = diag(b′′(η1), . . . , b

′′(ηn)).

Optimising w

For the Representer Theorem to hold, we require that the regularisation term

∥f∥2HK
be a squared L2-norm. The same restriction is not required of the

regularisation term on w. For a fixed α, many optimisation procedures may

be considered, depending on the properties of the chosen R(w). Here we

derive a Newton-Raphson update step that can be used for convex, differen-

tiable R(w) and show how it can be used to achieve L2- and approximate

L1-regularisation.

We use the substitution η = (w⊤ ⊗ In)V α ≡ Bw, where B ∈ Rn×v is a

79

matrix filled column-wise from the elements of V α ∈ Rnv. The gradient and

Hessian of (6.2) are then given by:

∇w = −B⊤[y − µ] + 2γ∇wR(w);

∇2
w = B⊤WB + 2γ∇2

wR(w),

where W is as before. The Newton-Raphson update is then:

ŵt+1 = ŵt +
[
B⊤WtB + 2γ∇2

wR(ŵt)
]−1 [

B⊤[y − µt]− 2γ∇wR(ŵt)
]
.

L2-Regularisation

As the squared L2-norm R(w) = ⟨w,w⟩ is convex and twice differentiable,

we can plug the following gradient and Hessian directly into the Newton-

Raphson update formula:

∇wR(w) = w

∇2
wR(w) = Iv

to give:

ŵt+1 = ŵt +
[
B⊤WtB + 2γIv

]−1 [
B⊤[y − µt]− 2γŵt

]
,

which can, as before, be re-written as

ŵt+1 =
[
B⊤WtB + 2γIv

]−1
B⊤Wtut,

where ut = Bŵt +W−1
t [y − µt].

L1-Regularisation

If there are many views, some of which may be redundant, we often prefer

to use an L1-norm as a regularisation term:

R(w) =
v∑

s=1

|ws|.

80

Unfortunately, the L1-norm is non-differentiable, and so first-order methods

are typically used to solve such regularisation problems. Alternatively, we can

replace the L1-norm by a second-order differentiable parameterised function

that approximates it. This has the advantage of allowing us to compute de-

scent directions. The pseudo-Huber function (Hartley and Zisserman, 2003)

approximates the L1-norm for small values of ξ > 0 and has derivatives of

all degrees.

Rξ(w) = ξ

v∑

s=1

(√
1 +

w2
s

ξ2
− 1

)

The gradient of the pseudo-Huber function is given by

∇wRξ(w) =
1

ξ

[
w1

(
1 +

w2
1

ξ2

)− 1
2

, . . . , wv

(
1 +

w2
v

ξ2

)− 1
2

]
(6.3)

and the Hessian is given by

∇2Rξ(w) = diag

(
1

ξ

[(
1 +

w2
1

ξ2

)− 3
2

, . . . ,

(
1 +

w2
v

ξ2

)− 3
2

])
. (6.4)

These can be plugged into the Newton-Raphson update formula, with ξ cho-

sen sufficiently small to approximate L1-shrinkage.

6.2.4 Algorithm

The algorithm iterates between updating α and w until some convergence

criterion is met. A common stopping criterion is to measure the change in

deviance between iterations. The deviance is defined through the difference

of the log-likelihoods between the fitted model, l(α̂, ŵ), and the saturated

model, lsat. If the canonical link function is used, computing lsat amounts to

setting θi = h(yi). The deviance is then defined as:

D = −2[l(α̂, ŵ)− lsat]ϕ,

81

which can be expressed as

D = 2ϕ
n∑

i=1

yi [h(yi)− ηi]− b(h(yi))

ai(ϕ)
+ b(ηi).

In most cases, ai(ϕ) ∝ ϕ, so the deviance does not depend on ϕ. Moreover, as

our stopping criterion is based on a difference in deviances between iterations,

we can ignore the terms involving ϕ, giving rise to the following expression:

Dt = y⊤[h(y)− ηt]− b(h(y)) + b(ηt)

The pseudocode for the algorithm is presented in Algorithm 2.

6.2.5 Prediction

Upon convergence, the estimated parameters α̂ and ŵ can be used to make

predictions on a set of test examples {x∗
i }mi=1. Let K∗ ∈ Rmv×nv be the

kernel Gram matrix constructed by the evaluation of the operator-valued

kernel between each test example and all labelled observations. We can then

predict the values of the mean of the conditional distribution µ∗
i = E(yi | x∗

i).

The vector of predictions is given by:

µ∗ = h−1
(
(ŵ⊤ ⊗ Im)V

∗α̂
)
,

where V ∗ = (1m ⊗ Iv,K
∗) ∈ Rmv×(n+1)v.

6.2.6 Outlier Detection

By choosing to adopt the GKM framework for multi-view learning, we have

gained great flexibility to model any number of response types. Another

advantage of this framework is the rich toolbox of diagnostic techniques

that have been developed for traditional GLM models, which can be readily

adapted for the kernelised multi-view analogues developed here. One partic-

ularly attractive diagnostic tool is Cook’s distance (Cook, 1977), a technique

for identifying samples with high influence, i.e. observations that have an

82

Algorithm 2: Multi-view Generalised Kernel Machine

Input:
y ∈ Yn: vector of responses
K ∈ Rnv×nv: L(Rv)-valued kernel Gram matrix
λ, γ ∈ R: regularisation parameters
model ∈ {“Gaussian”, “logistic”, “Poisson”, . . . }
w update ∈ {“L1”, “L2”}
max iter ∈ N: (optional) maximum number of iterations
ϵ ∈ R: convergence threshold

Initialise:
ŵ0 ← 1

v
1v

α̂0 ← 0(n+1)v

D0 ←∞
Procedure:

Construct V and U from K as in Section 6.2.3
Choose b(·) and h(·) according to model (See Section 6.4)
for t = 1 to max iter do

ηt = (w⊤
t−1 ⊗ In)V α̂t−1

Dt = y⊤[h(y)− ηt]− b(h(y)) + b(ηt)
if |Dt −Dt−1| < ϵ then

break
µt = b′(ηt)
Wt = diag(b′′(ηt))
zt = (w⊤

t−1 ⊗ In)V α̂t−1 +W−1
t [y − µt]

α̂t ←[
V ⊤(wt−1 ⊗ In)Wt(w

⊤
t−1 ⊗ In)V + λU

]−1
V ⊤(wt−1 ⊗ In)Wtzt

Construct B ∈ Rn×v column-wise from V α̂t ∈ Rnv

ηt = Bŵt−1

µt = b′(ηt)
Wt = diag(b′′(ηt))
if w update = L2 then

ut = Bŵt−1 +W−1
t [y − µt]

ŵt ←
[
B⊤WtB + γIv

]−1
B⊤Wtut

else if w update = L1 then
∇wRµ(ŵt−1) = (6.3)
∇2

wRµ(ŵt−1) = (6.4)
ŵt ← ŵt−1 +[
B⊤WtB + γ∇2

wR(ŵt−1)
]−1 [

B⊤[y − µt]− γ∇wR(ŵt−1)
]

Output:
Estimated parameters α̂, ŵ

83

unusually strong impact on the fit of the regression model (and hence also

on its downstream predictions).

Cook’s distance was originally developed for ordinary least squares regression.

Pregibon (1981) developed an approximation for Cook’s distance in the case

of GLMs. We will follow the same approach as Pregibon (1981) in deriving

the Cook’s distance score for multi-view GKMs.

Cook’s Distance for Squared Error

Consider the maximum likelihood estimate (MLE) of α that would be ob-

tained if we used the least squares loss function, i.e. the solution of the

objective function:

min
α∈R(n+1)v

∥y −Aα∥2 + λα⊤Uα+ γR(w).

Setting the derivative w.r.t. α equal to 0, we obtain the MLE:

0 = −2A⊤(y −Aα̂) + 2λUα̂

α̂ =
[
A⊤A+ λU

]−1
A⊤y. (6.5)

Cook’s distance depends on the concept of leverage (see e.g. Chatterjee and

Hadi (1986)). A high-leverage point is an observation made at an extreme

or outlying region of the feature space, such that the lack of neighbouring

observations causes the fitted regression model to pass close to that particular

observation. Leverage scores are computed from the projection or “hat”

matrix; that is, the matrix H that maps the vector of response values to the

vector of fitted values: ŷ = Hy. In this case, the vector of fitted values is

given by

ŷ = Aα̂

= A
[
A⊤A+ λU

]−1
A⊤y.

84

and so the hat matrix is

H = A
[
A⊤A+ λU

]−1
A⊤.

The leverage for the ith sample is given by hi := Hii, the ith diagonal element

of the hat matrix. Cook’s distance can then be computed as

ci = r̂2i
hi

(1− hi)
,

where r̂i is the ith element of the vector of residuals r̂ = y − ŷ.

Cook’s Distance for Multi-view GKMs

The parameters α and w were updated in Section 6.2 using an iteratively re-

weighted least squares method. Upon convergence (where we have obtained

W := limt→∞Wt), the maximum likelihood estimator for α can be expressed

as the solution of a weighted least squares problem:

α̂ =
[
A⊤WA+ λU

]−1
A⊤Wz, (6.6)

Comparing (6.6) with (6.5), we see that the same regression weights would

be obtained if we had performed an ordinary linear regression of pseudo-

observations W
1
2z on pseudo-predictors W

1
2A. Under this representation,

all model diagnostics from linear regression are readily applied. The hat

matrix becomes:

H(α) = W
1
2A
[
A⊤WA+ λU

]−1
A⊤W

1
2

and the generalised version of Cook’s distance becomes:

c
(α)
i = (r̃i)

2 hi

(1− hi)
, (6.7)

where r̃ = W
1
2 r̂.

Note that (6.7) measures outliers with respect to the estimation of α. We

85

can follow the same procedure to estimate Cook’s distances with respect to

the estimation of w, yielding the following hat matrix:

H(w) = W
1
2B
[
B⊤WB + γIn

]−1
B⊤W

1
2 .

Intuitively, a high value of h
(α)
i suggests that an observation lies in an outlying

region of the (possibly infinite dimensional) reproducing kernel Hilbert space

implied by the multi-view kernel. A high value of h
(w)
i identifies observations

that are outlying in Rv.

6.3 Multi-view Kernel Functions

We have described an algorithm for learning from multi-view data. Infor-

mation from within and between view representations is encoded into the

algorithm through the operator-valued kernel Gram matrix. In this section,

we describe three ways to construct a positive-semidefinite operator-valued

kernel using individual scalar-valued kernel functions ks(·, ·) for each view

s ∈ {1, ..., v}. The kernel functions do not need to be of the same type and

can be chosen appropriate to the data type of each view. Some common

choices include: for vectorial data—the radial basis function kernel, polyno-

mial kernel and Laplacian kernel; for variable length strings—the substring

kernel (Hastie et al., 2009, p. 668); for graphs—the path kernel (Deng et al.,

2012, p. 99); for histograms—the generalised histogram intersection kernel

(Boughorbel et al., 2005). For a survey of kernels for structured data types,

see Gärtner (2003).

Given v scalar-valued kernels, we can then construct a class of L(Rv)-valued

kernels, which takes the following form:

K(xi,xj)lm =
〈
ϕl

(
x
(l)
i

)
,Σlmϕm

(
x
(m)
j

)〉
Hkl

, (6.8)

where ϕs(·) is the feature map associated with the kernel ks. The linear

operator Σlm allows us to incorporate within- and between-view information.

86

6.3.1 MKL Kernel

In the simplest case, we define

Σlm =

1 if l = m

0· lm otherwise,

where 0· lm ∈ L(Hkm ,Hkl) is the zero map, 0· lm : ϕm

(
x(m)

)
7→ 0 ∈ Hkl . The

multi-view kernel then reduces to

KMKL(xi,xj)lm =

kl(xi,xj) if l = m,

0 otherwise,
(6.9)

which was the kernel we used in Chapter 5. The Gram matrix KMKL is block-

diagonal and each block corresponds to the scalar-valued kernel Gram matrix

over one view. Each element of the learned function f = (f (1), . . . , f (v))

thus uses within-view information only and the optimal weighting of these

functions is learned through w.

This has a clear resemblance to Multiple Kernel Learning (MKL) algorithms.

A challenge that these types of algorithms face is constraining the learned

weights to be non-negative. This is required in order to ensure the positive-

definiteness of the combined kernel. In our case, the multi-view kernel (6.9) is

by definition positive-semidefinite, as the Gram matrixKMKL is block-diagonal

with each block being positive-semidefinite. Our learning scheme therefore

provides a simple and elegant optimisation procedure for MKL. This again

highlights the benefit of our approach over that of Minh et al. (2016), who

cannot find an optimal weighting of kernels in the classification setting.

6.3.2 Cross-covariance Kernel

Cross covariance operators were first used for solving problems in information

theory (Baker, 1970) but have more recently received attention by researchers

in machine learning, who have employed them for measuring statistical de-

pendence (Gretton et al., 2005) and for dimensionality reduction (Fukumizu

87

et al., 2004, 2009). To our knowledge, Kadri et al. (2013) is the only work

to use a multi-view kernel based on cross-covariance operators. The cross-

covariance operator is defined as:

Σlm = E [ϕl(Xl)⊗ ϕm(Xm)]− E [ϕl(Xl)]⊗ E [ϕm(Xm)] .

In order to compute the kernel (6.8), we must estimate the cross-covariance

operator from the training data. Let Φs = (ϕs(x1), . . . , ϕs(xn)) denote a ma-

trix of the images of the training data under ϕs and let µ̂Xs =
1
n

∑n
i=1 ϕs(xi)

be the empirical estimate of the expected feature map E[ϕs(Xs)]. The em-

pirical cross-covariance operator is then given by:

Σ̂lm =
1

n

(
Φl − µ̂Xl

1⊤
n

) (
Φm − µ̂Xm1

⊤
n

)⊤

=
1

n

(
Φl −

1

n
Φl1n1

⊤
n

)(
Φm −

1

n
Φm1n1

⊤
n

)⊤

=
1

n
ΦlHΦ⊤

m,

where H = In − 1
n
1n1

⊤
n is a centring matrix.

The multi-view kernel (6.8) can thus be constructed as:

KCC(xi,xj)lm =

〈
ϕl(xi),

1

n
ΦlHΦ⊤

mϕm(xj)

〉

Hl

=
1

n

〈
Φ⊤

l ϕl(xi),HΦ⊤
mϕm(xj)

〉

=
1

n
⟨kl(xi),Hkm(xj)⟩ ,

where we have written ks(xi) = (ks(xi,xt))
n
t=1, i.e. the ith column of the

Gram matrix Ks. It is then easy to see that the Gram matrix KCC corre-

sponding to this multi-view kernel KCC(·, ·) is a block matrix, with the lm-th

block equal to 1
n
KlHKm.

6.3.3 Learned Metric Kernel

Huusari et al. (2019) consider linear operators Σlm that can be expressed

88

as Σlm = ΦlMlmΦ
⊤
m, where Mlm is a positive definite matrix that plays

the role of a metric between the two features maps associated with ker-

nels kl and km. The multi-view kernel is then given by KMVML(xi,xj)lm =

⟨km(xi),Mlmkm(xj)⟩, and it is easy to see that the block kernel Gram ma-

trix KMVML corresponding to this multi-view kernel is given by

KMVML = KMKLMKMKL,

where M = (Mlm)
v
l,m=1 ∈ Rnv×nv encodes pairwise similarities between all

of the views.

Multi-view Metric Learning (MVML), as proposed by Huusari et al. (2019),

corresponds to simultaneously learning the metric M and the classifier or

regressor. This is achieved through the inclusion of an additional regular-

isation term into the objective function, which adds a further step to the

alternating gradient descent optimisation scheme. For the sake of clarity

in our exposition of the optimisation strategy presented in Section 6.2, we

have not considered the simultaneous learning of the kernel metric M in our

framework.

6.4 Example Response Types

We now provide some examples of exponential family distributions that can

be used to model different response types that are frequently encountered in

real-world learning problems.

6.4.1 Logistic Regression

With binary response data, the target yi indicates whether the ith observa-

tion belongs to the positive (yi = 1) or negative (yi = 0) class. In this case,

the responses can be viewed as a series of Bernoulli trials, such that

f(yi ; πi) = πyi
i (1− πi)

1−yi ,

89

where πi represents the probability (conditioned on the input xi) that the

ith example belongs to the positive class. The Bernoulli distribution can be

written as a one-parameter member of the exponential family as

f(yi ; θi) = exp (yiθi − log (1 + exp(θi))) ,

where

πi =
exp(θi)

1 + exp(θi)
.

In this case we have b(θi) = log(1 + exp(θi)). Taking the canonical link such

that θi = ηi, we have that

ηi = h(πi) = logit(πi) = log

(
πi

1 + πi

)
.

The parameters can be estimated as in Section 6.2, where b′′(ηi) = πi(1−πi).

6.4.2 Poisson Regression

When the response data are counts, it is sensible to restrict the estimate of

the conditional mean to be non-negative integers. One choice is the Pois-

son distribution, which models the probability of a given number of events

occurring in a fixed interval of time or space if these events occur with a

known constant rate and independently of the time since the last event. The

Poisson distribution is given by:

f(yi ; µi) =
exp(−µi)µ

yi
i

y!

= exp (yilog(µi)− µi − log(yi!)) ,

such that θ = log(µ) and b(θ) = exp(θ); hence the canonical link is given by

ηi = h(µi) = log(µi).

For parameter estimation, b′′(ηi) = exp(ηi).

90

6.4.3 Multinomial Logistic Regression

Often in classification problems, there are more than two possible discrete

outcomes. We can represent this scenario using a vector response yi =

(yi,1, . . . , yi,g)
⊤, where yi,m ∈ {0, 1}, m = 1, . . . , g and

∑g
m=1 yi,m = 1. The

probability of observing yi is then given by the categorical distribution:

f(yi ; πi) =

g∏

m=1

π
yi,m
i,m .

where πi = (πi,1, . . . , πi,g)
⊤ represents the probability of each class. Due to

the fact that πi,g = 1 −∑g−1
m=1 πi,m, an equivalent parameterisation in terms

of only the first g − 1 components permits an expression in the canonical

form of a multivariate exponential family distribution:

f(yi ; θi) = exp
(
y⊤
i θi − b(θi)

)
,

for yi = (yi,1, . . . , yi,g−1)
⊤ and θi = (θi,1, . . . , θi,g−1)

⊤, with

θi,m = log

(
πi,m

1−∑g−1
s=1 πi,s

)

and

b(θi) = −log
(
1−

g−1∑

m=1

exp (θi,m)

)
.

The optimisation procedure outlined in Section 6.2.3 is readily extended to

this multivariate setting by simply expanding dimensionalities. As the re-

sponse vector is now given by y = (yi, . . . ,yn) ∈ R(g−1)n and we wish to

estimate α ∈ R(g−1)(n+1)v, we need to make a number of modifications to the

components of (5.13). ExpandA ∈ Rn×(n+1)v to makeA ∈ R(g−1)n×(g−1)(n+1)v

91

as follows:

A =

Ig−1 ⊗A1,∗

Ig−1 ⊗A2,∗

...

Ig−1 ⊗An,∗

,

where Ai,∗ denotes the ith row of A. For the W analogue, let the block ma-

trixW := diag(W1, . . . ,Wn), withW i = {πi,s(δst−πi,t)}g−1
s,t=1 ∈ R(g−1)×(g−1),

where δst is the Kronecker delta function. Finally, let U = Ig−1 ⊗ U . The

Newton-Raphson update step (5.13) is then given by:

α̂t+1 =
[
A⊤W tA+ λU

]−1A⊤W tzt, (6.10)

for zt = Aα̂t +W−1
t [y − µt].

Multinomial Cook’s Distance

The Cook’s distance formulation presented in Section 6.2.6, based on Preg-

ibon (1981), assumes a scalar-valued response. Lesaffre and Albert (1989)

extend the work of Pregibon (1981) to the multinomial case. From (6.10),

we see that in the multinomial case, the hat matrix is given by:

H(α) = W
1
2A
[
A⊤WA+ λU

]−1A⊤W
1
2 .

which is a block-matrix, where each block H
(α)
ij ∈ R(g−1)×(g−1). Just as in the

two-group case, the diagonal elements (here, blocks) can be used to define

the concept of a leverage point. Let G = I − H , then a small value of

|Gii| < 1 indicates that observation i has high leverage, as its omission from

the sample greatly increases the variability of the estimated coefficients—see

Lesaffre and Albert (1989) for details. Observations with high influence can

be identified by calculating an approximate Cook’s distance:

c
(α)
i = χ⊤

i G
−1
ii HiiG

−1
ii χi,

where χ = W− 1
2 r̂ is the standardised residual vector.

92

Despite the fact that GLMs are among the most widely used and foundational

methods of statistical analysis, and Cook’s distance is a core diagnostic tool

thereof, the multinomial analogue presented by Lesaffre and Albert (1989)

has received little attention or application. This can perhaps be explained by

the disparity between the computational resources required for its calculation

and the limited processing and storage capabilities available at the time of

its introduction. Though this has since changed dramatically, multinomial

Cook’s distances remain, in our view, under-utilised. Hosmer Jr et al. (2013,

p. 284) comment on their protracted obscurity, noting that “this is somewhat

surprising given that programs to fit the multinomial logistic regression model

are now widespread”. We hope that our demonstration in the following

section will motivate practitioners to consider multinomial Cook’s distances

in any future multi-class classification problems that they may face, whether

multi-view or otherwise.

6.5 Experiments

In this section we investigate the performance of our Multi-View Generalised

Kernel Machine (MVGKM) method for several realistic real-world applica-

tions. First, to showcase the flexibility of MVGKM, we apply it to a number

of different learning tasks and compare its performance with early and late

data fusion strategies. Following this, we demonstrate how we can leverage

Cook’s distances for anomaly detection in cyber security applications.

To facilitate adoption, experimentation and comparison among the multi-

view learning community, we implement our method1 to be compatible with

the scikit-multimodallearn package of Benielli et al. (2022). This al-

lows us to take advantage of the rich toolbox of functionalities available

in scikit-learn (Pedregosa et al., 2011) for building machine learning

pipelines, performing hyperparameter grid searches and cross-validation.

1https://github.com/jackhogan/MVGKM

93

https://github.com/jackhogan/MVGKM

6.5.1 Binary, Multi-class and Poisson Regression

To demonstrate the flexibility of MVGKM, we apply it to the following multi-

view datasets, which contain a diverse selection of data types and correspond-

ing feature representations, as well as distinct response types that match

those described in the preceding section.

• MVSA-Single: This dataset,2 constructed by Niu et al. (2016) con-

tains 5,129 image-text pairs collected from posts on Twitter. Each pair

has been annotated with a class label describing whether the post is

positive, negative or neutral in its sentiment. For the purpose of our ex-

periment, we treat this as a binary classification problem by considering

only the 2,948 positive and negative examples. This is a natural 2-view

dataset and we construct a single feature representation per view. For

the image view, we extract GIST feature vectors (Oliva and Torralba,

2001). We represent the text view using a Bag-of-Words dictionary.

80% of the dataset was used for training and the remaining 20% was

reserved as a test set.

• uWave Gesture Library: The uWave3 dataset (Liu et al., 2009)

contains measurements recorded using a handheld accelerometer while

participants performed eight specific gestures. Though this has only a

single modality, we can consider this as a 3-view dataset, represented

using time series vectors of the accelerometer position along the X, Y

and Z dimensions for the duration of the gesture motion. There are

896 training examples and 3,582 test examples.

• LibriCount: This synthetic dataset4 was generated by Stöter et al.

(2018) to mimic the so-called cocktail party problem, which occurs

when sounds from multiple sources mix before arriving at the ear.

It comprises 5,720 audio wave files of 5s duration; in each, random

2https://mcrlab.net/research/mvsa-sentiment-analysis-on-multi-view-

social-data/
3https://www.timeseriesclassification.com/description.php?Dataset=

UWaveGestureLibraryAll
4https://zenodo.org/record/1216072

94

https://mcrlab.net/research/mvsa-sentiment-analysis-on-multi-view-social-data/
https://mcrlab.net/research/mvsa-sentiment-analysis-on-multi-view-social-data/
https://www.timeseriesclassification.com/description.php?Dataset=UWaveGestureLibraryAll
https://www.timeseriesclassification.com/description.php?Dataset=UWaveGestureLibraryAll
https://zenodo.org/record/1216072

MVSA-Single (AUC) uWave (Acc.) LibriCount (MAE)

MVGKMMKL 82.99 93.80 0.66
MVGKMCC 78.94 67.87 0.77
MVML – 94.84 1.02
SVMearly 78.94 94.42 0.82
SVMlate 74.62 82.74 0.96

Table 6.1: Experimental results. Note that MVML outputs only a binary prediction so was
omitted from the MVSA-Single experiment.

utterances from varying numbers of speakers (0 − 10) are mixed to-

gether. This is a single-modality dataset, though we can describe each

instance using multiple feature spaces. We use the librosa Python li-

brary (McFee et al., 2015) to extract three feature representations: Mel-

frequency cepstral coefficients (Mermelstein, 1976), root-mean-square

values, and chromagram features (Ellis and Poliner, 2007). We ran-

domly sample 1,000 instances for our training set and use the remainder

as a test set.

Experimental Setup

For each learning task, we compare the efficacy of our proposed method

against the two most common approaches to learning from multi-view data:

so-called early and late fusion (as described in Section 2.2). We also include

the Multi-View Metric Learning (MVML) method of Huusari et al. (2019) in

our comparison, which is available as part of the scikit-multimodallearn

package.

As MVGKM and MVML are kernel-based methods, we perform early and

late fusion using support vector machines and refer to them as SVMearly and

SVMlate, respectively. For the Bag-of-Words text feature representation in

the MVSA-Single dataset, we use a linear kernel. In all other cases, we use

a Gaussian kernel

k(x, z) = exp

(
− 1

2σ2
∥x− z∥2

)
,

95

with σ chosen to be the mean of distances in the training set. For all ex-

periments, we tune the hyperparameters of each classifier by performing a

grid search on the training set over a range of values and using 5-fold cross-

validation. The following scoring metrics for model selection and comparison

were chosen: for MVSA-Single, we use area under the ROC curve (AUC); for

uWave, we use multi-class accuracy; for LibriCount, we use mean absolute

error (MAE).

It is important to emphasise that for all experiments, we expect that superior

performance could be achieved through a number of modifications to the

experimental design presented here. Domain expertise with text, audio or

image data would inform a more considered approach to feature extraction,

kernel design and selection. However, our goal here is not to outperform the

state-of-the-art in any particular problem but to showcase how our method

performs as well as common alternatives, while also providing a number of

additional desirable features and advantages.

Results

Results from the three experiments are listed in Table 6.1.

In the MVSA-Single sentiment classification experiment, the MVGKMmodel

with MKL kernel outperforms early and late fusion SVMs. Their ROC and

Precision/Recall curves are plotted in Figure 6.1a. At almost all points, the

MVGKM curve dominates the others. One advantage of (logistic) MVGKM

for binary classification is that it is well calibrated by default. The support

vector machine output requires calibration using Platt scaling (Platt, 1999)

to produce probabilistic predictions. In Figure 6.1b, we plot density estimates

of the predicted probabilities for MVGKMMKL and SVMearly grouped by true

class label. We can see that for negative Twitter posts, the predictions made

by SVMearly are nearly uniformly distributed.

For the multi-class classification experiment, MVML achieves the highest ac-

curacy, with SVMearly and MVGKMMKL marginally lower. It is interesting

to note that in this case, there appears to be little advantage gained from

96

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

False Positive Rate

T
ru
e
P
os
it
iv
e
R
at
e

MVGKMMKL

SVMearly

SVMlate

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

Predicted Probability

D
en
si
ty

MVGKMMKL

Negative
Positive

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Recall

P
re
ci
si
on

MVGKMMKL

SVMearly

SVMlate

(a)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

Predicted Probability

D
en
si
ty

SVMearly

Negative
Positive

(b)

Figure 6.1: Results from the binary sentiment classification experiment. Column (a) shows
Receiver Operation Characteristic curves and Precision/Recall curves for three classifiers. Col-
umn (b) shows kernel density estimates of the predicted probabilities made by the MVGKMMKL

and SVMearly classifiers, grouped by the true class label.

adopting a multi-view approach in favour of simply concatenating feature

vectors. This can be explained by the fact that the three views are all of the

same modality: spatial coordinates in the X, Y and Z dimensions. In the

first experiment, one view was GIST features from an image—real-valued and

dense—while the other view was a Bag-of-Words dictionary—integer-valued

and sparse. MVML benefits from the ability to apply a custom kernel to

each modality individually and learn a metric to incorporate between-view

information. In Figure 6.2a, we take advantage of MVGKM’s ability to com-

pute multinomial Cook’s distances in order to investigate whether the uWave

97

0 200 400 600 800

0

0.5

1

1.5

2

·105

Index

C
o
ok

’s
d
is
ta
n
ce

(a)

−2 −1 0 1 2 −2−1
0
1
2−3

−2
−1
0
1
2
3

(b)

Figure 6.2: Illustration of outlier detection using MVGKM. (a) shows the multinomial Cook’s
distance for each observation in the uWave training set. (b) shows a sample of 50 observations
plotted in 3-dimensions. All are of the same class as the outlier observation, which is plotted
in red.

dataset contains any outliers. A large spike is immediately obvious. As the

uWave dataset comprises paths in 3-dimensional space, we can visually in-

vestigate whether this observation does appear to differ substantially from

others. In Figure 6.2b, its path is plotted in red against a sample of other

observations from the same class; a departure from the pattern displayed

by other observations is clear. One could argue that such an obvious out-

lier could be detected by other means as part of a pre-processing step prior

to model training with an arbitrary learning scheme. However, for many

learning problems, mixed modalities and high dimensionalities make the dis-

covery of outliers extremely difficult without a built-in functionality like that

of MVGKM.

In the LibriCount voice counting experiment, (Poisson) MVGKMMKL scored

the lowest MAE on the test set. The learned model is naturally constrained

to predict non-negative integer responses, in contrast with MVML and SVMs,

which can predict negative values. Figure 6.3a shows the MAE of each clas-

sifier conditioned on the true value of the response. Figure 6.3b shows a

normalised confusion matrix of the true response versus predicted number of

voices for the MVGKM model.

98

0 2 4 6 8 10

0

0.5

1

1.5

2

y

M
A
E

MVGKM MVML
SVMearly SVMlate

(a)

0 1 2 3 4 5 6 7 8 9 10

10
9
8
7
6
5
4
3
2
1
0

y

ŷ

0

0.2

0.4

0.6

0.8

(b)

Figure 6.3: Results from the LibriCount voice counting experiment. (a) shows the mean
absolute error (MAE) for each ground-truth value of the response. Error bars show the 95%
confidence intervals. (b) shows a normalised confusion matrix of the predicted value ŷ versus
the true response y for the best performing model (Poisson MVGKM).

6.5.2 Anomaly Detection

In Chapter 3, we proposed a framework for detecting anomalous activity

based on a discrepancy between the observed value and its prediction. In

effect, we were identifying points with large residuals. One of the strengths

of the GKM framework we have since developed is the ability to detect points

that have both large residuals and/or high leverage (see Section 6.2.6). By

combining both these concepts, Cook’s distance gives us a fuller picture of

a given observation’s ‘unusualness’. In this experiment, we investigate the

efficacy of applying our outlier detection framework to the LANL dataset.

Experimental Setup

As in Chapter 3, we model a computer’s activity during fixed intervals of

time. For this experiment, the data is divided into 15-minute bins. For a

given computer, the response variable we choose to model is the number

of unique destination ports used for communications during that bin. This

is known to be a quantity of interest, as malicious actors often employ a

technique known as “port scanning” before an attack, whereby requests are

sent to hosts using a range of destination ports in order to learn details

99

0 5 10 15
0

20

40

60

80

100

Number of destination ports

C
ou

n
t

Figure 6.4: A histogram of the number of unique destination ports used during a 15-minute
bin in communications by a specific computer from the LANL dataset (Comp007792) over 7
days.

about their running services or locate potential vulnerabilities (Panjwani

et al., 2005). A device is chosen from the WLS dataset, to ensure that it is a

computer with both NetFlow and process activity. A histogram of the value

of the response variable over 7 days (i.e. 672 bins) is shown in Figure 6.4.

As there are no counts of zero, this computer is active continuously over the

duration of the experiment.

We consider two views of the data and choose appropriate kernel functions:

• Netflow: As described in Section 3.2, the Netflow data during a given

time interval can be considered as a graph containing nodes Ci and

edges ai,j ∈ {0, 1} indicating the presence/absence of a communication

between Ci and Cj. For bin i, we construct x
(1)
i = {Cj ; ai,j = 1}, i.e.

the set of devices with which our target computer communicates. For

our kernel, we use the Jaccard index (Jaccard, 1912):

k1(xi,xj) =
|x(1)

i ∩ x
(1)
j |

|x(1)
i ∪ x

(1)
j |

.

100

Gower (1971) proves that this is a valid positive-semidefinite kernel

function.

• Processes: For bin i, we gather from the WLS dataset a list of all the

processes that run on our target device. We use a tf-idf bag-of-words

representation and the cosine kernel function:

k2(xi,xj) =
x
(2)⊤
i x

(2)
j

∥x(2)
i ∥∥x(2)

j ∥
.

A Poisson MVGKMMKL regression model (Section 6.4.2) was trained using 7

days of LANL data. The hyperparameters λ and γ were tuned using 5-fold

cross validation. The best performing combination achieved a mean MAE of

0.96 across the test folds.

Results

Once the hyperparameters were selected, the model was re-trained on the

full 7 days of data. The Cook’s distance values for each bin were calculated

using (6.7); these are shown in Figure 6.5a. The value for bin 100 is shown

in red, where y100 = 6. As an experiment, we changed the response value for

that observation to be y100 = 15 and re-trained the model. When the Cook’s

distances are calculated again on the new model, a clear spike appears at

index 100. This can be seen in Figure 6.5b. Note that we observed similar

spikes when we changed the response for other bins, provided the change was

large enough, i.e. from relatively low to high but not for smaller changes (e.g.

from 10 to 12).

This is a promising result, indicating that the model is able to identify when

the response for a given bin is anomalous with respect to its associated fea-

tures. This is all the more impressive when we remind ourselves that these

‘features’ are actually a representation of the data in a possibly infinite-

dimensional vector-valued Hilbert space implied by a multi-view kernel. In

the following chapter, we develop a method of learning an explicit finite-

dimensional representation of multi-view data.

101

0 100 200 300 400 500 600 700

0

0.5

1

1.5

2

Index

C
o
ok

’s
d
is
ta
n
ce

(a)

0 100 200 300 400 500 600 700

0

0.5

1

1.5

2

Index

(b)

Figure 6.5: Cook’s distance plots for 7 days (i.e. 672 bins) of LANL data, computed from a
Poisson MVGKMMKL regression model that was trained using: (a) the true response values;
(b) the response values with y100 changed from 6 to 15.

6.6 Discussion

In this chapter, we have presented a new general framework for multi-view

supervised learning. We extended the Generalised Linear Model paradigm

to operate in vector-valued RKHSs and, by doing so, developed a single uni-

fying learning scheme for modelling an arbitrary response type using data

that can be described using multiple, heterogeneous feature representations.

Through experiments with real data, we demonstrated the flexibility and

user-friendliness of our framework. Beyond what has been presented here,

the framework can be further extended with additional link functions, multi-

view kernels and diagnostic tools. Of particular interest would be the in-

clusion of the simultaneous metric learning capability of MVML, as in our

experiments, the cross-covariance multi-view kernel performs poorly at incor-

porating between-view information. We have implemented MVGKM to be

compatible with the scikit-multimodallearn library so that it is available

for adoption and adaption by members of the multi-view learning community.

Having considered semi-supervised and supervised learning, in the following

chapter we develop a novel approach to multi-view unsupervised learning.

102

7
Multi-view Multidimensional

Scaling

In Chapters 3 and 6, we presented examples of ways in which multi-view

learning could be used for anomaly detection in cyber security. Recall that

in both cases, anomalies were defined with respect to a supervised learning

model’s prediction of some pre-specified quantity of interest: in Chapter 3,

unpredicted Netflow communications; in Chapter 6, traffic over an unusual

number of destination ports. While such an approach enables known attack

behaviours to be targeted, its success depends on the ability of the multi-view

data to predict or explain the chosen quantity of interest. Further, unknown

attack patterns will fail to be identified. In order to capture less prescriptive

notions of anomalous behaviour, we must appeal to unsupervised learning

techniques.

In this chapter, we propose a multi-view extension of multidimensional scal-

ing (MDS), a well-known unsupervised technique for learning a latent vector

representation of a dataset by preserving its pairwise dissimilarity structure.

When multiple pairwise dissimilarity measurements are available, based on

different views of the data, the challenge lies in dealing with disagreement;

103

i.e. objects that are similar in one view but dissimilar in another. We argue

that the level of dependence between views lies somewhere on a continuum:

at one extreme, multiple dissimilarity scores represent noisy measurements

of the same pairwise relationship between objects; on the other extreme,

the set of dissimilarity scores are independent, each measuring the level of

dissimilarity between objects based on disjoint subsets of the true latent fea-

ture set. Our method assumes that multiple views of data are generated

from potentially intersecting subsets of the features of the same true latent

representation.

In doing so, our method embeds multi-view data into a common latent space

that captures both shared and view-specific factors of variation. By consid-

ering the joint distribution of the data, as opposed to each marginal distri-

bution, this representation has the potential to provide enhanced anomaly

detection capabilities. For example, we may be able to identify the unusual

co-occurence of observations across data sources, each of which may not be

unusual within any individual data source or representation.

This idea is integral to situational awareness in cyber security: the contin-

uous monitoring of assets within the IT infrastructure and the detection of

any changes in behaviour over time (see e.g. Endsley (1995); Jajodia et al.

(2009)). One challenge of situational awareness is deciding what quantities

to monitor. By monitoring for changes taking place in a latent space that

captures multiple different aspects of behaviour, we may be able to spot pre-

viously unconsidered indicators of attack. There are many ways in which

the learned multi-view representation could be used in this context. In this

chapter, we illustrate first steps towards a situational awareness tool based

on monitoring for changes in the pairwise distance between computers in the

latent space.

The remainder of the chapter proceeds as follows: In Section 7.1, we provide

background to representation learning and discuss related literature. We

describe single-view MDS in Section 7.2 and outline an efficient optimisation

procedure. This forms the basis for our proposed multi-view extension in

Section 7.3. We motivate the modified objective function and derive the

optimisation scheme. In Section 7.4, the intuition behind the algorithm is

104

illustrated through an experiment with a toy dataset. Subsequently, using

the LANL dataset, we present an initial demonstration of how our multi-view

MDS algorithm could be used for situational awareness and change detection,

with highly promising results.

7.1 Background and Relevant Literature

Representation learning refers to a set of techniques for finding a fixed-length

vector embedding of data that makes it easier to extract useful information

during downstream learning tasks. The goal is to map observed data to

points in some latent space such that the locations of, or distances between,

points in this space encode some meaningful property of the data.

The history of representation learning goes back to early work on principal

component analysis (PCA) (Pearson, 1901) and its supervised variant, linear

discriminant analysis (Fisher, 1936). A wide variety of extensions and alter-

natives have since been proposed to address different characteristics of the

learning task. For example, kernel PCA (Schölkopf et al., 1998) is designed

for datasets with non-linear structure, locally linear embedding (Roweis and

Saul, 2000) attempts to preserve the local geometry of the data, while Isomap

(Tenenbaum et al., 2000) attempts to preserve geometry at all scales. Most

recently, a wide variety of representation learning techniques have been devel-

oped based on deep learning; for example, sparse coding (Lee et al., 2006; Ol-

shausen and Field, 1996), autoencoders (Kramer, 1991; Vincent et al., 2008),

convolutional neural networks (LeCun et al., 1998), restricted Boltzmann

machines (Hinton and Salakhutdinov, 2006) and deep Boltzmann machines

(Salakhutdinov and Hinton, 2009). For a review of classical and modern

representation learning techniques, see Zhong et al. (2016); for emphasis on

deep learning approaches, see Bengio et al. (2013). Recently, extensions to

many of these methods have been proposed for the multi-view setting—see

Li et al. (2019) for a review. One approach with an interesting connection

to the method we develop in this chapter is CLIP (Contrastive Language-

Image Pre-training) (Radford et al., 2021). CLIP separately embeds two

views of data into a shared latent space so that the per-view embeddings

105

of each observation in this space are close together. In the method we de-

velop, the multiple views of data are embedded into separate (but potentially

overlapping) latent spaces, which each correspond to some lower-dimensional

subspace of a shared latent space.

Our approach in this chapter is based on multidimensional scaling. MDS

refers to a family of algorithms for modelling dissimilarity data as distances

among points in a Cartesian space. Given ∆ ∈ Rn×n, a symmetric, non-

negative matrix of dissimilarities δij measured between a set of n objects,

MDS attempts to find Z ∈ Rn×p, an embedding1 of each object in a p-

dimensional Euclidean space, such that the inter-point distances approximate

the given dissimilarities. Algorithms in this family can broadly be categorised

into metric vs. non-metric and strain- vs. stress-based models. In metric

MDS, the objective is to achieve distances in the embedding space as close as

possible to the given dissimilarities, while in non-metric MDS, only the order

relations between dissimilarities are important. Strain-based, or classical,

MDS (Torgerson, 1958) is an algebraic problem closely related to PCA, which

can be solved by eigenvalue decomposition. Stress-based MDS (Kruskal,

1964a,b; Shepard, 1962) uses a geometric loss function which results in a

non-linear and non-convex optimisation problem.

MDS has been most widely used for dimensionality reduction and visual-

isation applications, due to its ability to produce an intelligible 2- or 3-

dimensional graphical representation of complicated high-dimensional data

structures.2 However, as we will show, the utility of MDS algorithms goes

beyond data visualisation. Symbolic data, which may have extremely high-

dimensional or even variable length vector representations can be naturally

embedded into a latent space in which similar observations are positioned

close together.

In multi-view problems, the dissimilarity of observations can be measured

based on each different view; i.e. we have v different dissimilarity matrices

1Note we use Z to denote the embedding, in order to avoid confusion with the raw
data X

2For this reason, many graph drawing algorithms are based on MDS; e.g. Gansner et al.
(2005); Kamada et al. (1989).

106

∆(s), s = 1, . . . , v. We could assume that the various dissimilarity matrices

correspond to different noisy measurements of the same pairwise relation-

ship. In this case, a multi-view MDS algorithm would attempt to find an

embedding that minimises the average disagreement with respect to the dis-

similarity measures. Such an approach is used by Izquierdo (2017), who

proposes a multi-view version of classical MDS based on common princi-

pal components analysis (Flury, 1984; Trendafilov, 2010), and by Bai et al.

(2017), who modify the objective function in MDS to minimise a weighted

combination of stress functions applied to each dissimilarity matrix.

It is perhaps more natural to assume that dissimilarity matrices based on

different views of data will represent different relationships between obser-

vations. Instead of trying to compromise between disagreeing dissimilar-

ity measures, our latent embedding should aim to capture this interesting

structural information. Ma et al. (2010) propose carrying out MDS on each

view independently, resulting in Z(s) ∈ Rn×ps , s = 1, . . . , v, and then con-

catenating these together to form the latent embedding Z∗ ∈ Rn×q, with

q = p1 + · · · + pv. The problem with this approach is that the solution of

MDS is invariant to rotation, so multiple runs of the same algorithm will

produce different embeddings, which will fail to capture the correlations be-

tween views. A better approach is that of Hossain et al. (2020), who propose

a method for constructing 3d visualisations given multiple 2d projections.

In what follows, we take the same approach to develop a general-purpose

multi-view representation learning algorithm.

7.2 Multidimensional Scaling

In this section, we define the objective function for stress-based MDS in the

single-view setting and describe an efficient optimisation procedure. Recall

that MDS seeks Z ∈ Rn×p such that the inter-point Euclidean distances

approximate the dissimilarities δij stored in the matrix ∆ ∈ Rn×n. The error

criterion, known as stress, is given by:

σ(Z ; ∆) =
∑

i>j

(dij(Z)− δij)
2 , (7.1)

107

where dij(Z) = ∥zi − zj∥2. For a chosen dimensionality p, the optimum

set of points Z∗, known as a configuration, is determined by minimising

σ(Z ; ∆) with respect to Z. In practice, this is usually achieved by setting

a random initial configuration Z0 and performing a gradient-descent-type

procedure until a minimum is found. We now describe one such optimisation

procedure, which is guaranteed to converge monotonically to a (possibly

local) minimum.

7.2.1 The SMACOF Algorithm for MDS

The expression (7.1) can be decomposed as follows:

σ(Z ; ∆) =
∑

i>j

d2ij(Z)− 2δijdij(Z) + δ2ij

= tr
(
Z⊤V Z

)
− 2tr

(
Z⊤B(Z)Z

)
+
∑

i>j

δ2ij, (7.2)

for matrices V , B(Z) ∈ Rn×n with elements:

vij =

−1 i ̸= j

n− 1 i = j,

bij =

− δij
dij(Z)

i ̸= j, dij(Z) ̸= 0

0 i ̸= j, dij(Z) = 0

−∑k ̸=i bik i = j.

The objective function (7.2) is non-linear in Z and non-convex, which sug-

gests the following first-order, gradient descent algorithm:

Zt+1 = Zt − αt∇σ(Zt ; ∆)

= Zt − 2αt (V Zt −B(Zt)Zt) .

The step size αt must be computed at each iteration by means of line search,

which may be prohibitively expensive for large-scale problems.

108

De Leeuw and Heiser (1977) suggest replacing the function σ(Z ; ∆) by a

simpler majorising function τ(Z,Y). A function τ(Z,Y) is a majorising

function if τ(Z,Y) ≥ σ(Z ; ∆) for all Y ∈ Rn×p, with equality when

Y = Z. They show that by the Cauchy-Swartz inequality, the following

function meets this criteria:

σ(Z ; ∆) ≤ tr(Z⊤V Z)− 2tr(Z⊤B(Y)Y) +
∑

i>j

δ2ij = τ(Z,Y).

The function τ(Z,Y) is quadratic in Z; finding its minimum involves solving

∇τ(Z,Y) = 2V Z − 2B(Y)Y = 0

=⇒ argmin
Z

τ(Z,Y) = V †B(Y)Y ,

where V † is a Moore-Penrose inverse given by V † = n−1(In − n−11n).

The SMACOF algorithm (Scaling by Majorising a Complex Function) be-

gins by constructing a random initial configuration Z0 and then iteratively

minimising the majorising function τ(Z,Zt), i.e. at iteration t, we find Zt+1

as follows:

Zt+1 = V †B(Zt)Zt.

Gradient descent proceeds until σ(Zt) − σ(Zt−1) < ϵ or a certain iteration

limit is reached. Pseudo-code for the algorithm is shown in Algorithm 3.

7.3 Multi-view Embedding

As discussed in Section 7.1, MDS is often pigeon-holed as purely a data

visualisation tool; that is, given some dataset with many features, plot a 2-

dimensional embedding of this data for the purpose of identifying structure

or patterns. Despite this, it is clear from our description above that the MDS

procedure can be used to discover a general p-dimensional latent Euclidean

representation of a dataset, given only a dissimilarity metric between obser-

vations. Indeed, by choosing p ≫ 2, MDS is given more degrees of freedom

to better approximate the structure of the input data. Finding such a la-

109

Algorithm 3: SMACOF

Input:
∆ ∈ Rn×n: dissimilarity matrix
p ∈ N+: target dimension
ϵ ∈ R: convergence threshold
max iter: maximum number of iterations

Initialise:
Z0 ∈ Rn×p

Procedure:
V † ← n−1(I − n−11)
for t = 1 to max iter do

Zt ← V †B(Zt−1)Zt−1

if σ(Zt ; ∆)− σ(Zt−1 ; ∆) < ϵ then
break

Output:
Configuration Z∗

tent embedding may be particularly useful if the input data is not naturally

represented in vector form (e.g. symbolic data such as graphs, trees, strings)

but a meaningful dissimilarity metric exists between observations. Similarly,

there may be vector-valued data of variable length, e.g. DNA sequences,

documents, etc. In these cases, MDS can be used to find a latent feature

representation, which can serve as the input to any unsupervised learning

procedure.

We are concerned with the situation when there exists multiple, disparate fea-

ture representations for each observation, which—as in our examples above—

are difficult to concatenate into a vector. Our goal is to find a single, shared

embedding, which jointly preserves the distance/dissimilarity structure of

multiple views of the data.

7.3.1 Multi-view MDS

In the multi-view setting, we have multiple dissimilarity matrices ∆(s), s =

1, . . . , v and we are seeking a common embedding in a latent p-dimensional

Euclidean space. A näıve approach would be to define the following multi-

110

view stress function:

σ
(
Z ;

{
∆(s)

})
=

v∑

s=1

∑

i>j

(
dij (Z)− δ

(s)
ij

)2
.

Where there is disagreement between dissimilarity measures (i.e. two points

are considered similar according to one view but dissimilar according to an-

other), this approach would find the best compromise. This would be ap-

propriate if we assume that the various dissimilarity matrices correspond to

different noisy measurements of the same pairwise relationships. However,

with multi-view data, we expect that different modalities will capture differ-

ent relationships between observations.

We could instead allow certain subspaces of the latent feature space to cor-

respond to different views of the data. Consider as a motivating example

viewing (literally) points in 3-d space. Viewed from a certain perspective,

two points may appear close together even though from another angle, they

are clearly far apart. The different views in this example correspond to dif-

ferent orthogonal projections of the 3-dimensional data onto 2-dimensional

planes. This motivates defining a new stress function:

σ
(
Z,
{
P (s)

}
;
{
∆(s)

})
=

v∑

s=1

∑

i>j

(
dij
(
ZP (s)

)
− δ

(s)
ij

)2
, (7.3)

where for each view s, we minimise the disagreement between its given dissim-

ilarity measurements δ
(s)
ij and dij

(
ZP (s)

)
, the Euclidean distances between

points in the configuration, after projection onto some lower-dimensional sub-

space. Here, P (s) is a p× p orthogonal projection matrix of rank qs; that is,

P (s) transforms the configuration into some subspace of dimension qs ≤ p.

To learn the optimum embedding, we must now simultaneously learn the

configuration Z and the set of orthogonal projections
{
P (s)

}
.

111

7.3.2 Extending SMACOF for Multi-view MDS

Note that a matrix P ∈ Rp×p is a rank-q orthogonal projection if and only

if P = QQ⊤ for some matrix Q ∈ Op×q, where Op×q denotes the space of

semi-orthogonal p×q matrices. As dij(ZP) = dij(ZQ), expression (7.3) can

be decomposed as follows:

σ
(
Z, {Q(s)} ; {∆(s)}

)
=

v∑

s=1

∑

i>j

d2ij(ZQ(s))− 2δ
(s)
ij dij(ZQ(s)) + (δ

(s)
ij)2

=
v∑

s=1

tr(Z⊤V ZQ(s)Q(s)⊤)

− 2tr(Z⊤B(ZQ(s))ZQ(s)Q(s)⊤) + C,

where C is a constant term. This is differentiable in terms of both Z and

each Q(s). We can therefore perform coordinate descent (Friedman et al.,

2010); within each iteration we cycle through Z,Q(1), . . . ,Q(v), updating one

component while keeping the others fixed. To do so, we can use the same

approach as SMACOF (Section 7.2.1) by defining the following majorising

functions:

To majorise Z:

τ (Z,Y) = tr

(
Z⊤V Z

v∑

s=1

Q(s)Q(s)⊤

)

− 2tr

(
Z⊤

v∑

s=1

B(Y Q(s))Y Q(s)Q(s)⊤

)
+ C

≥ σ
(
Z ; {Q(s)}, {∆(s)}

)
;

To majorise Q(s):

τ
(
Q(s),D

)
= tr

(
Q(s)⊤Z⊤V ZQ(s)

)
− 2tr

(
Q(s)⊤Z⊤B(ZD)Y D

)
+ C

≥ σ
(
Q(s) ; Z, {Q(t)}t̸=s, {∆(s)}

)
.

112

This leads to the following gradient descent equations:

Zt+1 = V †

(
v∑

s=1

B(ZtQ
(s))ZtQ

(s)Q(s)⊤

)(
v∑

s=1

Q(s)Q(s)⊤

)−1

;

Q̃
(s)
t+1 =

(
Z⊤V Z

)−1
Z⊤B(ZQ

(s)
t)ZQ

(s)
t . (7.4)

Note that equation (7.4) is not sufficient for updating Q(s). This is because

Op×q is not a subspace of Rp×q. To overcome this, we need to follow our

gradient step with a projection back into the required space. The projection

of Q̃ ∈ Rp×q onto Op×q is given by

argmin
Q∈Op×q

∥Q̃−Q∥F ,

where ∥·∥F is the Frobenius norm. Q can easily be computed via singular

value decomposition of Q̃: if Q̃ = UΣV ⊤, then Q = UV ⊤. Pseudocode for

multi-view SMACOF is shown in Algorithm 4.

Note that while SMACOF algorithms guarantee a series of non-increasing

stress values, they may converge to a local minimum. However, as De Leeuw

and Mair (2009) point out, local minima are more likely to occur in low-

dimensional solutions and are rather unlikely in high-dimensional solutions.

As we are using MDS for representation learning, as opposed to data visu-

alisation, we are not required to seek a low-dimensional solution and so do

not expect local minima to present a problem.

A further important point to note is that we have so far assumed knowledge

of both the desired embedding dimensionality p and the ranks of the per-

view projections q1, . . . , qv. In reality, the optimum choice will need to be

estimated from the data. One option is to search over the set of possible com-

binations of embedding dimensionality and projection ranks to find the model

that results in the lowest stress. However, for a fixed embedding dimension-

ality, an exhaustive search over projection ranks would require testing pv

combinations, which may be prohibitive. In Section 7.4.2, we will describe a

practical approach to solving this problem.

113

Algorithm 4: Multi-view SMACOF

Input:
∆(1), . . . ,∆(v) ∈ Rn×n: dissimilarity matrices
p ∈ N+: target dimension
q1, . . . , qv ∈ N+, qs ≤ p: subspace dimension for each view
ϵ ∈ R: convergence threshold
max iter: maximum number of iterations

Initialise:
Z0 ∈ Rn×p

Q
(1)
0 ∈ Op×q1 , . . . ,Q

(v)
0 ∈ Op×qv

Procedure:
V † ← n−1(I − n−11)
for t = 1 to max iter do

Zt ←
V †
(∑v

s=1B(Zt−1Q
(s)
t−1)Zt−1Q

(s)
t−1Q

(s)⊤
t−1

)(∑v
s=1Q

(s)
t−1Q

(s)⊤
t−1

)−1

for s = 1 to v do

Q̃
(s)
t =

(
Z⊤

t V Zt

)−1
Z⊤

t B(ZtQ
(s)
t−1)ZtQ

(s)
t−1 = UΣV ⊤

Q
(s)
t ← UV ⊤

if σ(Zt, {Q(s)
t } ; {∆(s)})− σ(Zt−1, {Q(s)

t−1} ; {∆(s)}) < ϵ then
break

Output:
Configuration Z∗

7.4 Experiments

In this section, we present experimental results using the multi-view embed-

ding procedure just presented. First, using synthetically generated data, we

demonstrate the algorithm’s ability to embed multi-view data into a shared

latent space that accounts for correlation between views. Subsequently, we

present an experiment designed to illustrate how the method could be em-

ployed for cyber security situational awareness.

7.4.1 Simulated Data

The multi-view MDS method is designed to embed separate views of a dataset

into potentially overlapping subspaces of the same shared latent space. The

114

following experiment, using a simulated toy dataset, is designed to reinforce

this concept.

Data Generation

Inspired by the technique of orthographic projection in engineering and tech-

nical drawing (see e.g. Shah and Rana (2009, ch. 12)), we simulate data

comprising points within an irregular 3-d shape and construct three ‘views’

of this data by taking the orthogonal projections onto the xy, xz and yz

planes. The data and corresponding views are depicted in Figure 7.1. Two

points are shown in red to highlight disagreement between views; in the yz

view, the points appear very close, despite being far apart in both the xy

and xz views.

This example visually conveys the intuition behind our approach to multi-

view representation learning. The assumption is that there exists some latent

representation of the data, from which all views are generated. Instead of

corresponding to multiple noisy measurements of the true data, multiple

views each represent incomplete snapshots of the true data. Different views

capture different—but not necessarily disjoint—subsets of the total informa-

tion contained in the data’s latent representation. The goal of multi-view

representation learning is to reconstruct or approximate this latent represen-

tation, taking into account both the commonality and disparity between the

information conveyed by different views.

Evaluation

As shown in Figure 7.1, we have three views of the data: x
(s)
i ∈ R2, s =

1, 2, 3, i = 1, . . . , n. We construct dissimilarity matrices by calculating the

inter-point Euclidean distances:

∆
(s)
ij = ∥x(s)

i − x
(s)
j ∥2, s = 1, 2, 3.

115

0

40
80

120 0
5

10
15

0

5

10

Figure 7.1: Simulated data and different views under orthogonal projections. Two example
points are shown in red, which appear close together in one view but are far apart in the other
two views.

The per-view data can be discarded, as the multi-view SMACOF algorithm

has access only to these three sets of inter-point dissimilarities. The algo-

rithm is initialised with a set of n randomly sampled points Z0 ∼ N(03, I3);

matrices Q̃
(s)
0 ∈ R3×2 are similarly sampled before being projected onto

Q
(s)
0 ∈ O3×2 as described in Section 7.3.2.

In each iteration, the algorithm first adjusts the positions of all points in

the configuration Zt to reduce the value of the stress criterion, given the

current projection matrices. Then, given the positions of the points in the

configuration, the algorithm finds—for each view in turn—a new matrix Q
(s)
t

such that the projection of the data ZtQ
(s)
t better captures the distance

structure implied by that view’s dissimilarity matrix ∆(s).

In Figure 7.3, we plot the projections ZtQ
(s)
t Q

(s)⊤
t after various numbers of

iterations. After 30 iterations, the configuration appears to be moving in the

116

40
60

80
100

−20
0

20

−40
−20

0

20

(a) 5 iterations

0

50

100 0

10

0

10

(b) 15 iterations

0

50

100 0

10

0

5

10

(c) 30 iterations

0

50

100 0

10

0

5

(d) 60 iterations

Figure 7.2: Fitted projections after various numbers of iterations.

right direction; after 60 iterations, the algorithm has reconstructed the true

configuration.

To highlight the difference between this joint configuration/projection ap-

proach and standard MDS, we compare it with the following approaches:

• MDSavg: We apply single-view metric MDS (i.e. Algorithm 3), using

the following distance matrix:

∆avg =
1

3

3∑

s=1

∆(s).

117

By using this method, we assume that all views represent noisy mea-

surements of the same pairwise relationship. If noise in the observed

dissimilarity matrices is assumed to be independent and identically dis-

tributed, then ∆avg is an unbiased estimate of the true distance matrix.

• MDSsum: We apply single-view metric MDS, with

∆sum =

√√√√
3∑

s=1

(∆(s))
2
.

This assumes that each view contains disjoint subsets of information.

As MDS models dissimilarities as Euclidean distances, the total inter-

point distance is given by the Euclidean sum of view-specific distances.

In Figure 7.3, we visually compare the results. The fitted configuration from

an MDS algorithm is invariant to rotation, so the points are first rotated

to re-align with the standard axes. As the shapes of the configurations are

hard to discern in a 3d plot, we show 2d projections onto the xy and xz

planes. Clearly, multi-view SMACOF is the only algorithm that is able to

reconstruct the true data.

Note that MDSsum fails in this example due to correlation between views. The

resulting configuration is distorted due to individual components of the true

interpoint distances contributing to multiple terms inside the Euclidean sum-

mation. If the different views were truly disjoint—i.e. if we had constructed

dissimilarity matrices from the x, y and z components separately—then we

would expect MDSsum to reconstruct the true data. Multi-view SMACOF

would naturally allow for this situation also by learning rank-1 projection

matrices Q(s) ∈ Op×1.

7.4.2 Cyber Situational Awareness

With this experiment, we demonstrate how our multi-view representation

learning algorithm could be used for cyber security situational awareness.

The idea is to represent each computer’s activity during a given time interval

118

0 20 40 60 80 100 120

0

5

10

15

0 20 40 60 80 100 120

0

2

4

6

8

10

0 20 40 60 80

0

5

10

15

0 20 40 60 80

0

5

10

0 50 100 150

0

5

10

15

0 50 100 150

−10

−5

0

5

10

Figure 7.3: Two-dimensional views of the fitted three-dimensional configurations from multi-
view SMACOF (top row), MDSavg (middle row) and MDSsum (bottom row). In each case, the
left column shows the xy perspective and the right column shows the xz perspective.

119

as a point in a shared latent space and to monitor for changes that occur in

this space over time.

Data and Dissimilarity Measures

As in Chapter 6, we divide the LANL data into 15-minute bins. Each com-

puter can then be considered based on three different views of the data, which

capture different aspects of its activity: who uses the computer, what pro-

cesses run on the computer and where does network traffic flow. We define

the following views and corresponding dissimilarity measures:

• Netflow: As described in Section 3.2, the Netflow data during a given

time interval can be considered as a graph containing nodes Ci and

edges ai,j ∈ {0, 1} indicating the presence/absence of a communication

between Ci and Cj. For each bin, we construct x
(1)
i = {Cj ; ai,j = 1},

i.e. the set of devices with which computer i communicates. To measure

dissimilarity between computers, we use the Jaccard distance (Jaccard,

1912):

δ
(1)
ij = 1−

|x(1)
i ∩ x

(1)
j |

|x(1)
i ∪ x

(1)
j |

.

• Processes: For each computer, we gather from the WLS dataset a list

of all the processes that run on the device during each bin. We use a

tf-idf bag-of-words representation and the cosine distance function:

δ
(2)
ij = 1−

x
(2)⊤
i x

(2)
j

∥x(2)
i ∥∥x(2)

j ∥
.

• Authentications: We consider the outbound authentication activ-

ity from each computer. According to Turcotte et al. (2018), the

DomainName field, combined with the UserName field should be consid-

ered a unique account identity. We therefore inspect all authentication

events for which a given computer is listed as the Source, and gather

a list of user account identifiers. Again we use the Jaccard distance to

120

measure dissimilarity:

δ
(3)
ij = 1−

|x(3)
i ∩ x

(3)
j |

|x(3)
i ∪ x

(3)
j |

.

Multi-view Embedding

As discussed in Section 7.3.2, the quality of the learned multi-view represen-

tation depends on the choice of latent dimensionality and the rank of each

projection. These typically will not be known a priori and should be esti-

mated from the data. In single-view MDS problems, the overall quality of

an embedding is typically measured using a normalised version of the stress

function, known as Kruskal’s type-1 stress:

σ1(Z ; ∆) =

√√√√
∑

i>j (dij(Z)− δij)
2

∑
i>j δ

2
ij

. (7.5)

The dimensionality p should be chosen sufficiently large to achieve a value

of σ1(Z ; ∆) below some desired threshold. Based on guidelines by Kruskal

(1964a), a commonly used threshold is 0.05. However, it is important to note

that this guideline is based on empirical experience, rather than theoretical

criteria. The stress of an MDS solution will depend on various factors, such

as the number of points, the dimensionality of the configuration, the kind

and amount of error in the input dissimilarities, etc. As such, guideline

thresholds should be used with care and other diagnostic tests should be

considered when selecting a threshold—see e.g. Borg and Groenen (2005, ch.

3).

For each individual view, we can therefore perform single-view MDS (Algo-

rithm 3) to determine the dimensionality required to achieve a sufficiently

high-quality fit. Figure 7.4 shows a scree plot (Cattell, 1966) of the nor-

malised stress from MDS configurations for increasing values of p. We use

this plot to inform our choice of projection ranks qs, s = 1, 2, 3 in Algo-

rithm 4. Evidently, 9 dimensions are required to achieve a high-quality re-

121

5 10 15 20 25 30 35 40

0.1

0.2

0.3

p

σ
1

NetFlow view
Process view
Authentication view

Figure 7.4: Three scree plots obtained by fitting single-view MDS models to the dissimilarity
matrices of each view separately. The filled markers indicate the value of p for which a model
achieved a normalised stress below the threshold 0.05.

construction of the NetFlow view; 15 and 31 dimensions are required for the

process and authentication views, respectively.

If the three views of data were independent, then the shared configuration

would require p =
∑

qs = 55 dimensions in order for the three projections

of the configuration to achieve the same level of quality as their single-view

MDS counterparts. As was illustrated through the toy dataset experiment,

the resulting configuration would be equivalent to performing MDSsum. If

there is shared information among the views, then a value of 31 ≤ p ≤ 55

will allow certain dimensions of the configuration to contribute to multiple

projections; that is, multiple projections will have shared structure. To find

the optimum latent dimensionality, we can repeat the same procedure as

before, this time re-fitting multi-view SMACOF for increasing values of p

until the normalised stress of the configuration under each projection is below

our threshold: σ1

(
ZP (s) ; ∆(s)

)
≤ 0.05, s = 1, 2, 3. In Figure 7.5, this

criterion is met for p = 48; that is, we can learn a representation of the

multi-view data in R48, such that certain ‘features’ of this representation

capture information shared by multiple different views.

122

32 34 36 38 40 42 44 46 48 50 52 54 56

0.1

0.2

p

σ
1

NetFlow view
Process view
Authentication view

Figure 7.5: Scree plots showing the per-view normalised stress of the multi-view SMACOF
configuration; i.e. σ1

(
ZP (s) ; ∆(s)

)
for s = 1, 2, 3. For p = 48, all three components of the

total stress are below 0.05.

Detecting an Artificial Change in Behaviour

Each computer, during bin t of data, can be represented by zi,t ∈ R48. As

MDS configurations are invariant to rotation, it is meaningless to monitor

zi,t directly as a time series for contiguous values of t. However, there are

many other options available to monitor for changes within the latent space;

for example clustering methods, density estimation, etc. One approach is to

monitor the inter-computer distances, which are unaffected by rotation. In

particular, we could monitor each computer’s distance from a specific com-

puter of known importance. One example computer within an organisation

that is of paramount concern is the Active Directory. This computer au-

thenticates and authorises all user accounts and computers in the network,

assigning and enforcing security policies. If a malicious actor gains access to

the Active Directory, they hold the keys to all the computers on the network.

It may therefore be interesting to monitor a computer’s distance from the

Active Directory in latent space and detect any abrupt (or indeed gradual)

changes over time.

To illustrate this idea, we perform multi-view MDS for each 15-minute bin of

data during a day, using a sample of 1,000 computers from the LANL dataset.

For each zi,t, we use the Mahalanobis distance (Mahalanobis, 1936) to mea-

123

sure how far each computer is from the Active Directory in latent space. This

is shown for a random sample of 100 computers in Figure 7.6. Highlighted in

black are two example computers, one of which is consistently ‘closer’ to the

Active Directory than the other. To simulate the situation where a computer

on the network abruptly changes behaviour, from bin 30 to 96, we artificially

alter the raw data corresponding to the farther computer by replacing its ac-

tivity with that of the closer. We refit the multi-view MDS algorithm using

the resulting modified dissimilarity matrices. In the top panel of Figure 7.7,

we plot the latent distance between the doctored computer and the Active

Directory. A clear change can be seen. This is entirely expected, based on

how we altered the data. However, it is interesting to note that when we ex-

amine the individual view-specific dissimilarity measures (bottom two panels

of Figure 7.7), the change is considerably less obvious. This is due to the

fact that a computer’s position in latent space is determined based on its

dissimilarities with respect to all other computers.

In practice, upon detecting a change such as that shown in Figure 7.7, a

security analyst would triage to understand the cause of the change in la-

tent space. They may discover, for example, that the set of processes being

run on the device changed in some measurable way. If this was a quantity

that was not previously being monitored, its discovery could help inform

the design of future signature-based anomaly detection techniques. This re-

flects the OODA (observe-orient-decide-act) loop (Boyd, 1996), a well known

framework in situational awareness.

Red Team

A distinguishing feature of the LANL dataset is the presence of so-called red

team activity within the data. During days 57 through 82, the security team

at LANL tested the robustness of the network by mimicking a cyber attack.

One host, Comp215429, was selected as the initially compromised host, from

which the red team attempted to compromise other network hosts. With

this knowledge in hand, we performed multi-view embedding using the same

views as previously to investigate whether any unusual activity would be

124

0 10 20 30 40 50 60 70 80 90

15

20

25

30

Figure 7.6: Mahalanobis distance between a sample of 100 computers and the Active Direc-
tory in latent space. Two example computers are highlighted in black with different average
distances from the Active Directory in latent space.

apparent in the resulting time series of inter-computer distances.

In Figure 7.8, we show the distance between Comp215429 and the Active

Directory in latent space between days 56 and 60. A substantial spike is

evident on day 59. When we examine the raw data, we learn that some

NetFlow activity takes place on the computer in days 57 and 58, while the

first outbound authentication event to another device occurs on day 59, cor-

responding with this spike. Closer inspection of the data reveals an unusual

pattern. During most 15-minute bins, authentications take place from thou-

sands of computers on the network; however, during the bin corresponding to

the spike, Comp215429 is the only computer active in the authentication view.

This is clearly an artefact of the red team exercise and this specific change

in network behaviour would likely be detected by numerous other situational

awareness tools. That said, this example still illustrates a promising aspect of

our proposed tool: the ability to detect arbitrary changes in network activity,

which may or may not be monitored elsewhere.

125

0 10 20 30 40 50 60 70 80 90
16

18

20

22

24

0 10 20 30 40 50 60 70 80 90

0.998

0.9985

0.999

0.9995

1

0 10 20 30 40 50 60 70 80 90

0.994

0.996

0.998

1

Figure 7.7: Time series of distances between the artificially doctored computer and the
Active Directory. A dashed line indicates when the raw data was modified. Top: Mahalanobis
distance between computers in latent space. Middle: Jaccard distance between computers in
the NetFlow view. Bottom: cosine distance between computers in the Process view. Note the
Authentication view is not shown, as the distance remained constant.

126

0 50 100 150 200 250 300 350 400 450 500

10

15

20

25

30

t

D
is
ta
n
ce

Figure 7.8: Distance between Comp215429 and the Active Directory during the red team
security exercise. The dashed lines indicate days 56 to 60.

7.5 Discussion

In this chapter, we have presented a novel framework for learning a shared

latent representation of multi-view data. We extended the SMACOF al-

gorithm to jointly optimise a shared configuration and per-view projection

matrices. We presented a procedure for choosing the dimensionality of the

configuration and the ranks of the projection matrices, which determine the

level of shared information between views. An experiment with toy data

illustrated the intuition behind the model, and highlighted how our method

fills the gap between two edge cases of multi-view MDS relating to the level

of dependence between views. When either of these two approaches is in fact

appropriate for a given dataset, our method recovers it as a special case. Fi-

nally, we presented a simple example of how multi-view MDS could be used

for situational awareness in the cyber security context. We demonstrated

the detection of both an artificial and a real change in the network activity.

The results suggest that multi-view MDS may be a promising tool for cyber

security situational awareness, which could be further developed with the

assistance of deeper domain knowledge.

127

8
Conclusion

The work presented in this thesis was motivated by various challenges that

are presented when attempting to apply statistical approaches to cyber se-

curity. First, cyber data is multi-view: a given aspect of a network or a piece

of software can be simultaneously represented by a combination of graphs,

lists, vectors, histograms, trees, etc. Second, labelled data indicating benign

and malicious observations is either scarce or completely unavailable. When

labelled data is scarce, semi-supervised learning approaches may be effec-

tive; these were considered in Chapter 5. Otherwise, a lack of labelled data

calls for anomaly detection approaches. We proposed three approaches for

multi-view anomaly detection:

In Chapter 3, we proposed a framework for contriving labelled data so that

classification techniques can be deployed for novelty detection. The idea be-

hind the anomaly detection framework is to draw attention to events that are

observed despite a low predicted probability of occurrence; i.e. observations

with high residuals. In demonstrating the framework, we explored the use of

näıve early and late fusion strategies for multi-view learning. Although both

approaches are sub-optimal, the results highlighted that dependence exists

between features from multiple views of the LANL dataset.

128

In Chapter 6, we proposed a strategy that characterises observations as

anomalous based not only on their residuals but also their leverage. In or-

der to identify such observations in multi-view data, we required a more

sophisticated modelling technique. We proposed a novel multi-view super-

vised learning algorithm, which is capable of learning to predict an arbitrary

response type using complicated input data with multiple diverse feature

representations. Our model extends the classical generalised linear model to

operate in the vector-valued RKHS implied by an operator-valued multi-view

kernel. This kernel can be tailored to the characteristics of multiple views of

the input data, which may be vector-valued or symbolic. The flexibility and

strong predictive performance of the model was demonstrated on a variety

of datasets, as well as its ability to detect outlier points.

The MVGKM algorithm of Chapter 6 implicitly maps multi-view observa-

tions into a vector-valued RKHS, wherein a linear model is fit. Observations

with high leverage correspond to points in outlying regions of this implicit

feature space. Inspired by this, in Chapter 7, we proposed a novel algo-

rithm for explicitly mapping multi-view data into a shared latent space. Us-

ing a modified multidimensional scaling objective function, we proposed a

SMACOF-style optimisation procedure, which embeds multi-view data into

a latent space in a way that simultaneously preserves multiple notions of

distance between observations. This feature representation can then be used

for any unsupervised algorithm, such as clustering or outlier detection. We

demonstrated one potential application of the method: cyber security situa-

tional awareness.

Finally, it should be noted that cyber security is just one of the many in-

teresting potential application areas for the novel methods we developed in

this thesis. With technological advances comes an ability to gather and store

data in increasingly granular and structure-rich representations. Statisti-

cal models based on appropriately designed kernel and distance functions

have a proven ability to identify signals within complicated data structures.

We hope this thesis has contributed to the understanding that multi-view

learning—including the methods we have proposed—can and should be used

to uncover signals hidden both within and between diverse views of data.

129

Future Work

To conclude, we provide a brief discussion of some limitations of the methods

described in this thesis and interesting opportunities for future work.

Chapter 4 presented a thorough exploration of various methods of averaging

ROC curves and provided clear and reasoned guidance on how to select the

appropriate method for a given study. A known limitation of ROC curves

is their tendency to provide misleading or optimistic assessments of classifier

performance in the presence of extreme class imbalance (Davis and Goadrich,

2006). In these situations, the Precision/Recall curve is often more mean-

ingful. It would be interesting therefore to extend the study of averaging

techniques to Precision/Recall curves.

The semi-supervised learning method developed in Chapter 5 could be ex-

tended to further leverage unlabelled data. In our formulation, a regulari-

sation term is used to encourage agreement between the predictions of the

per-view target functions for unlabelled data. An additional regularisation

term could be used to restrict the hypothesis space of target functions to lie

on some low-dimensional manifold. So-called manifold regularisation (Belkin

et al., 2006) attempts to learn the geometry of the input space using unla-

belled data. Minh and Sindhwani (2011) describe a regularisation term that

can be used to capture possible dependencies between output variables by

the use of, for example, an output graph Laplacian.

One of the main strengths of the multi-view supervised learning framework

proposed in Chapter 6 was its flexibility to model a wide variety of response

data types. However, the quality of the resulting model will depend on the

validity of the distributional assumptions made. There is scope to improve

the robustness of the framework by developing additional link functions and

making any required modifications to the optimisation procedure to allow

for response variables that violate the assumptions of simple exponential

family distributions. For example, the Poisson likelihood function could be

substituted for a quasi-likelihood function that can deal with over-dispersion;

i.e. the case when the variability of yi about µ̂i is larger than what µ̂i predicts.

A different, but related, situation that often arises when modelling count

130

data is a seemingly “excessive” number of examples with a count of 0. A

zero-inflated Poisson model could be developed to deal with this.

A further limitation of the MVGKM method is its computational complex-

ity. Single-view kernel methods suffer from the requirement to invert the

kernel Gram matrix, resulting in a computational cost of O(n3). In the

MVGKM, this is exacerbated by the presence of multiple views, leading to an

O(v3n3) computational cost in most cases, and an even worse O((g−1)3v3n3)

cost for multinomial logistic regression. A popular method of reducing the

computational burden of kernel methods is so-called Nyström approximation

(Williams and Seeger, 2000), whereby the kernel Gram matrix is replaced

by a low-rank approximation. Another popular method is random Fourier

features (RFF) (Rahimi and Recht, 2007), which estimates low-dimensional

feature embeddings such that their inner-products approximate the kernel

function. An operator-valued kernel analogue of RFF has been proposed by

Brault et al. (2016).

Finally, the unsupervised multi-view representation learning method devel-

oped in Chapter 7 presents an obvious avenue for future work. The moti-

vating hypothesis was that various views of a dataset are generated from

possibly overlapping subsets of the features of some shared latent represen-

tation. As such, our multi-view MDS method estimates a latent embedding

so that various orthogonal projections of this embedding approximate the

embeddings that would be generated from single-view MDS on the respec-

tive views. It would be interesting to apply this same construction using

different embedding methods such as autoencoders. These have been proven

to capture interesting non-linear structure within datasets that may not be

revealed through the dissimilarity measures available to MDS.

131

References

N. M. Adams and D. J. Hand. Comparing classifiers when the misallocation

costs are uncertain. Pattern Recognition, 32(7):1139–1147, 1999.

M. A. Aizerman. Theoretical foundations of the potential function method

in pattern recognition learning. Automation and Remote Control, 25:821–

837, 1964.

M. R. Amini, N. Usunier, and C. Goutte. Learning from multiple partially

observed views — an application to multilingual text categorization. Ad-

vances in Neural Information Processing Systems, 22:28–36, 2009.

B. Anderson, C. Storlie, and T. Lane. Improving malware classification:

Bridging the static/dynamic gap. In Proceedings of the 5th ACM Workshop

on Security and Artificial Intelligence, pages 3–14, 2012.

H. S. Anderson and P. Roth. EMBER: An open dataset for training static

PE malware machine learning models. arXiv preprint arXiv:1804.04637,

2018.

R. Anthony. Detecting security incidents using Windows workstation event

logs. SANS Institute, InfoSec Reading Room Paper, 2013.

N. Aronszajn. Theory of reproducing kernels. Transactions of the American

Mathematical Society, 68(3):337–404, 1950.

F. R. Bach, G. R. Lanckriet, and M. I. Jordan. Multiple kernel learning,

conic duality, and the SMO algorithm. In International Conference on

Machine Learning, pages 6–13, 2004.

S. Bai, X. Bai, L. J. Latecki, and Q. Tian. Multidimensional scaling on mul-

tiple input distance matrices. In Proceedings of the 31st AAAI Conference

on Artificial Intelligence, pages 1281––1287, 2017.

132

C. R. Baker. Mutual information for Gaussian processes. SIAM Journal on

Applied Mathematics, 19(2):451–458, 1970.

A. Barla, F. Odone, and A. Verri. Histogram intersection kernel for image

classification. In Proceedings of the International Conference on Image

Processing, volume 3, pages III–513, 2003.

V. Barnett and T. Lewis. Outliers in Statistical Data. John Wiley & Sons,

1st edition, 1978.

M. F. Baumgardner, L. L. Biehl, and D. A. Landgrebe. 220 band AVIRIS

hyperspectral image data set: June 12, 1992 Indian pine test site 3, 2015.

S. Becker. Mutual information maximization: Models of cortical self-

organization. Network: Computation in Neural Systems, 7(1):7–31, 1996.

S. Becker and G. E. Hinton. Self-organizing neural network that discovers

surfaces in random-dot stereograms. Nature, 355(6356):161–163, 1992.

M. Belkin, P. Niyogi, and V. Sindhwani. Manifold regularization: A geomet-

ric framework for learning from labeled and unlabeled examples. Journal

of Machine Learning Research, 7(11):2399–2434, 2006.

Y. Bengio, A. Courville, and P. Vincent. Representation learning: A re-

view and new perspectives. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 35(8):1798–1828, 2013.

D. Benielli, B. Bauvin, S. Koço, R. Huusari, C. Capponi, H. Kadri, and

F. Laviolette. Toolbox for multimodal learn (scikit-multimodallearn).

Journal of Machine Learning Research, 23(51):1–7, 2022.

M. H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita. Network anomaly

detection: Methods, systems and tools. IEEE Communications Surveys &

Tutorials, 16(1):303–336, 2014.

S. Bickel and T. Scheffer. Multi-view clustering. In Proceedings of the 4th

IEEE International Conference on Data Mining, volume 4, pages 19–26,

2004.

133

L. Billard and E. Diday. From the statistics of data to the statistics of

knowledge: Symbolic data analysis. Journal of the American Statistical

Association, 98(462):470–487, 2003.

A. Blum and T. Mitchell. Combining labeled and unlabeled data with co-

training. In Proceedings of the 11th Annual Conference on Computational

Learning Theory, pages 92–100, 1998.

H.-H. Bock and E. Diday. Analysis of Symbolic Data: Exploratory Methods

for Extracting Statistical Information from Complex Data. Springer Science

& Business Media, 1999.

I. Borg and P. J. Groenen. Modern Multidimensional Scaling: Theory and

Applications. Springer Science & Business Media, 2005.

B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm for

optimal margin classifiers. In Proceedings of the 5th Annual Workshop on

Computational Learning Theory, pages 144–152, 1992.

S. Boughorbel, J.-P. Tarel, and N. Boujemaa. Generalized histogram in-

tersection kernel for image recognition. In Proceedings of the 13th IEEE

International Conference on Image Processing, volume 3, pages III–161,

2005.

A. Boukerche, L. Zheng, and O. Alfandi. Outlier detection: Methods, models,

and classification. ACM Computing Surveys (CSUR), 53(3):1–37, 2020.

J. R. Boyd. The essence of winning and losing. Unpublished lecture notes,

1996.

R. Brault, M. Heinonen, and F. Buc. Random Fourier features for operator-

valued kernels. In Asian Conference on Machine Learning, pages 110–125.

PMLR, 2016.

L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification

and Regression Trees. Routledge, 1984.

134

M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander. LOF: Identifying

density-based local outliers. In Proceedings of the ACM SIGMOD Inter-

national Conference on Management of Data, pages 93–104, 2000.

C. Busso, M. Bulut, C.-C. Lee, A. Kazemzadeh, E. Mower, S. Kim, J. N.

Chang, S. Lee, and S. S. Narayanan. IEMOCAP: Interactive emotional

dyadic motion capture database. Language Resources and Evaluation, 42:

335–359, 2008.

A. Caponnetto, C. A. Micchelli, M. Pontil, and Y. Ying. Universal multi-task

kernels. Journal of Machine Learning Research, 9(52):1615–1646, 2008.

C. Carmeli, E. De Vito, and A. Toigo. Vector valued reproducing kernel

Hilbert spaces of integrable functions and Mercer theorem. Analysis and

Applications, 4(04):377–408, 2006.

R. B. Cattell. The scree test for the number of factors. Multivariate Behav-

ioral Research, 1(2):245–276, 1966.

G. C. Cawley, G. J. Janacek, and N. L. Talbot. Generalised kernel machines.

In IEEE International Joint Conference on Neural Networks, pages 1720–

1725, 2007.

S. Chatterjee and A. S. Hadi. Influential observations, high leverage points,

and outliers in linear regression. Statistical Science, pages 379–393, 1986.

W. Chauvenet. A Manual Of Spherical And Practical Astronomy Vol II. J.

B. Lippincott & Company, 1st edition, 1863.

T. Chen, S. Kornblith, M. Norouzi, and G. Hinton. A simple frame-

work for contrastive learning of visual representations. arXiv preprint

arXiv:2002.05709, 2020.

W. Chen and F. W. Samuelson. The average receiver operating characteristic

curve in multireader multicase imaging studies. The British Journal of

Radiology, 87(1040):20140016, 2014.

F. Cohen. Computer viruses: Theory and experiments. Computers & Secu-

rity, 6(1):22–35, 1987.

135

R. D. Cook. Detection of influential observation in linear regression. Tech-

nometrics, 19(1):15–18, 1977.

C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20

(3):273–297, 1995.

K. Crammer, J. Keshet, and Y. Singer. Kernel design using boosting. In

Advances in Neural Information Processing Systems, pages 553–560, 2003.

S. Das, B. L. Matthews, A. N. Srivastava, and N. C. Oza. Multiple ker-

nel learning for heterogeneous anomaly detection: Algorithm and aviation

safety case study. In Proceedings of the 16th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, pages 47–56, 2010.

J. Davis and M. Goadrich. The relationship between Precision-Recall and

ROC curves. In Proceedings of the 23rd International Conference on Ma-

chine Learning, pages 233–240, 2006.

J. De Leeuw and W. J. Heiser. Convergence of correction matrix algo-

rithms for multidimensional scaling. Geometric Representations of Re-

lational Data, 36:735–752, 1977.

J. De Leeuw and P. Mair. Multidimensional scaling using majorization:

SMACOF in R. Journal of Statistical Software, 31:1–30, 2009.

V. R. de Sa. Learning classification with unlabeled data. In Advances in

Neural Information Processing Systems, pages 112–119, 1994a.

V. R. de Sa. Minimizing disagreement for self-supervised classification. In

Proceedings of the 1993 Connectionist Models Summer School, pages 300–

307, 1994b.

V. R. de Sa and D. H. Ballard. Category learning through multimodality

sensing. Neural Computation, 10(5):1097–1117, 1998.

E. De Vito, V. Umanità, and S. Villa. An extension of Mercer theorem to

matrix-valued measurable kernels. Applied and Computational Harmonic

Analysis, 34(3):339–351, 2013.

136

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from

incomplete data via the EM algorithm. Journal of the Royal Statistical

Society: Series B (Methodological), 39(1):1–22, 1977.

N. Deng, Y. Tian, and C. Zhang. Support Vector Machines: Optimization

Based Theory, Algorithms, and Extensions. CRC Press, 2012.

W. J. Dixon. Processing data for outliers. Biometrics, 9(1):74–89, 1953.

H. Djidjev, G. Sandine, C. Storlie, and S. Vander Wiel. Graph based sta-

tistical analysis of network traffic. In Proceedings of the 9th Workshop on

Mining and Learning with Graphs, 2011.

C. Drummond and R. C. Holte. Explicitly representing expected cost: An al-

ternative to ROC representation. In Proceedings of the 6th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, pages

198––207, 2000.

D. P. Ellis and G. E. Poliner. Identifying ‘cover songs’ with chroma fea-

tures and dynamic programming beat tracking. In IEEE International

Conference on Acoustics, Speech and Signal Processing, volume 4, pages

1429–1432, 2007.

M. R. Endsley. Toward a theory of situation awareness in dynamic systems.

Human Factors, 37(1):32–64, 1995.

T. Evgeniou, M. Pontil, and T. Poggio. Regularization networks and support

vector machines. Advances in Computational Mathematics, 13(1):1–50,

2000.

T. Evgeniou, C. A. Micchelli, and M. Pontil. Learning multiple tasks with

kernel methods. Journal of Machine Learning Research, 6:615–637, 2005.

J. Farquhar, D. Hardoon, H. Meng, J. S. Shawe-Taylor, and S. Szedmak.

Two view learning: SVM-2K, theory and practice. In Advances in Neural

Information Processing Systems, pages 355–362, 2006.

T. Fawcett. An introduction to ROC analysis. Pattern Recognition Letters,

27(8):861–874, 2006.

137

C. Ferri, J. Hernández-Orallo, and P. A. Flach. A coherent interpretation of

AUC as a measure of aggregated classification performance. In Interna-

tional Conference on Machine Learning, pages 657–664, 2011.

R. A. Fisher. The use of multiple measurements in taxonomic problems.

Annals of Eugenics, 7(2):179–188, 1936.

B. N. Flury. Common principal components in K groups. Journal of the

American Statistical Association, 79(388):892–898, 1984.

J. Friedman, T. Hastie, and R. Tibshirani. Regularization paths for general-

ized linear models via coordinate descent. Journal of Statistical Software,

33(1):1–22, 2010.

K. Fukumizu, F. R. Bach, and M. I. Jordan. Dimensionality reduction for

supervised learning with reproducing kernel Hilbert spaces. Journal of

Machine Learning Research, 5:73–99, 2004.

K. Fukumizu, F. R. Bach, and M. I. Jordan. Kernel dimension reduction in

regression. The Annals of Statistics, 37(4):1871–1905, 2009.

E. Gandotra, D. Bansal, and S. Sofat. Malware analysis and classification:

A survey. Journal of Information Security, 5:56–64, 2014.

E. R. Gansner, Y. Koren, and S. North. Graph drawing by stress majoriza-

tion. In Proceedings of the 12th International Symposium on Graph Draw-

ing, pages 239–250, 2005.

T. Gärtner. A survey of kernels for structured data. ACM SIGKDD Explo-

rations Newsletter, 5(1):49–58, 2003.

G. Giacinto, F. Roli, and L. Didaci. Fusion of multiple classifiers for intrusion

detection in computer networks. Pattern Recognition Letters, 24(12):1795–

1803, 2003.

D. Gibert, C. Mateu, and J. Planes. The rise of machine learning for de-

tection and classification of malware: Research developments, trends and

challenges. Journal of Network and Computer Applications, 153:102526,

2020.

138

T. R. Glass-Vanderlan, M. D. Iannacone, M. S. Vincent, R. A. Bridges, and

Q. Chen. A survey of intrusion detection systems leveraging host data.

arXiv preprint arXiv:1805.06070, 2018.

V. Gligorijević and N. Pržulj. Methods for biological data integration: Per-

spectives and challenges. Journal of the Royal Society Interface, 12(112),

2015.

J. C. Gower. A general coefficient of similarity and some of its properties.

Biometrics, pages 857–871, 1971.

A. Gretton, O. Bousquet, A. Smola, and B. Schölkopf. Measuring statistical

dependence with Hilbert-Schmidt norms. In International Conference on

Algorithmic Learning Theory, pages 63–77, 2005.

F. E. Grubbs. Procedures for detecting outlying observations in samples.

Technometrics, 11(1):1–21, 1969.

D. J. Hand. Measuring classifier performance: A coherent alternative to the

area under the ROC curve. Machine Learning, 77(1):103–123, 2009.

D. J. Hand and W. E. Henley. Statistical classification methods in consumer

credit scoring: A review. Journal of the Royal Statistical Society: Series

A (Statistics in Society), 160(3):523–541, 1997.

R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision.

Cambridge University Press, 2003.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learn-

ing: Data Mining, Inference, and Prediction. Springer Science & Business

Media, 2009.

Z. He, X. Xu, and S. Deng. Discovering cluster-based local outliers. Pattern

Recognition Letters, 24(9-10):1641–1650, 2003.

J. Hernández-Orallo, P. Flach, and C. Ferri. A unified view of perfor-

mance metrics: Translating threshold choice into expected classification

loss. Journal of Machine Learning Research, 13(91):2813–2869, 2012.

139

A. Hero, S. Kar, J. Moura, J. Neil, H. V. Poor, M. Turcotte, and B. Xi.

Statistics and data science for cybersecurity. Harvard Data Science Review,

5(1), 2023.

K. Highnam, K. Arulkumaran, Z. Hanif, and N. R. Jennings. BETH dataset:

Real cybersecurity data for anomaly detection research. In ICML Work-

shop on Uncertainty and Robustness in Deep Learning, 2021.

G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data

with neural networks. Science, 313(5786):504–507, 2006.

J. Hogan and N. M. Adams. A study of data fusion for predicting novel

activity in enterprise cyber-security. In IEEE International Conference on

Intelligence and Security Informatics, pages 37–42, 2018.

J. Hogan and N. M. Adams. On averaging ROC curves. Transactions on

Machine Learning Research, 2023.

J. Hogan and N. M. Adams. Multi-view generalised kernel machines for re-

gression, classification and outlier detection. Journal of Machine Learning

Research, under review 2023b.

D. W. Hosmer Jr, S. Lemeshow, and R. X. Sturdivant. Applied Logistic

Regression, volume 1. John Wiley & Sons, 2013.

M. I. Hossain, V. Huroyan, S. Kobourov, and R. Navarrete. Multi-

perspective, simultaneous embedding. IEEE Transactions on Visualization

and Computer Graphics, 27(2):1569–1579, 2020.

Y. Huang, C. Du, Z. Xue, X. Chen, H. Zhao, and L. Huang. What makes

multi-modal learning better than single (provably). Advances in Neural

Information Processing Systems, 34:10944–10956, 2021.

R. Huusari, H. Kadri, and C. Capponi. General framework for multi-view

metric learning. In Linking and Mining Heterogeneous and Multi-view

Data, pages 265–294. Springer, 2019.

140

S. K. Izquierdo. Multiview pattern recognition methods for data visualiza-

tion, embedding and clustering. PhD thesis, Universitat Politècnica de

Catalunya (UPC), 2017.

P. Jaccard. The distribution of the flora in the Alpine zone. New Phytologist,

11(2):37–50, 1912.

S. Jajodia, P. Liu, V. Swarup, and C. Wang. Cyber Situational Awareness.

Springer, 2009.

H. Janes and M. S. Pepe. Adjusting for covariate effects on classification ac-

curacy using the covariate-adjusted receiver operating characteristic curve.

Biometrika, 96(2):371–382, 2009.

P. Juszczak, N. M. Adams, D. J. Hand, C. Whitrow, and D. J. Weston.

Off-the-peg and bespoke classifiers for fraud detection. Computational

Statistics & Data Analysis, 52(9):4521–4532, 2008.

H. Kadri, S. Ayache, C. Capponi, S. Koço, F.-X. Dupé, and E. Morvant.

The multi-task learning view of multimodal data. In Asian Conference on

Machine Learning, pages 261–276, 2013.

H. Kadri, E. Duflos, P. Preux, S. Canu, A. Rakotomamonjy, and J. Aud-

iffren. Operator-valued kernels for learning from functional response data.

Journal of Machine Learning Research, 17(1):613–666, 2016.

T. Kamada, S. Kawai, et al. An algorithm for drawing general undirected

graphs. Information Processing Letters, 31(1):7–15, 1989.

A. D. Kent. Cyber security data sources for dynamic network research.

In Dynamic Networks and Cyber-Security, pages 37–65. World Scientific,

2016.

E. M. Knorr, R. T. Ng, and V. Tucakov. Distance-based outliers: Algorithms

and applications. The VLDB Journal, 8(3):237–253, 2000.

D. Kong and G. Yan. Discriminant malware distance learning on structural

information for automated malware classification. In Proceedings of the

141

19th ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining, pages 1357–1365, 2013.

M. A. Kramer. Nonlinear principal component analysis using autoassociative

neural networks. AIChE Journal, 37(2):233–243, 1991.

H.-P. Kriegel, P. Kröger, E. Schubert, and A. Zimek. Outlier detection in ar-

bitrarily oriented subspaces. In Proceedings of the 12th IEEE International

Conference on Data Mining, pages 379–388. IEEE, 2012.

J. B. Kruskal. Multidimensional scaling by optimizing goodness of fit to a

nonmetric hypothesis. Psychometrika, 29(1):1–27, 1964a.

J. B. Kruskal. Nonmetric multidimensional scaling: A numerical method.

Psychometrika, 29(2):115–129, 1964b.

W. J. Krzanowski and D. J. Hand. ROC Curves for Continuous Data. Chap-

man & Hall/CRC Monographs on Statistics & Applied Probability. Taylor

& Francis, 2009.

A. Kumar, P. Rai, and H. Daume. Co-regularized multi-view spectral cluster-

ing. Advances in Neural Information Processing Systems, 24:1413––1421,

2011.

C. H. Lampert, H. Nickisch, and S. Harmeling. Learning to detect unseen

object classes by between-class attribute transfer. In IEEE Conference on

Computer Vision and Pattern Recognition, pages 951–958, 2009.

G. R. Lanckriet, N. Cristianini, P. Bartlett, L. E. Ghaoui, and M. I. Jordan.

Learning the kernel matrix with semidefinite programming. Journal of

Machine Learning Research, 5:27–72, 2004a.

G. R. Lanckriet, T. De Bie, N. Cristianini, M. I. Jordan, and W. S. Noble.

A statistical framework for genomic data fusion. Bioinformatics, 20(16):

2626–2635, 2004b.

D. J. Lawson, P. Rubin-Delanchy, N. Heard, and N. M. Adams. Statistical

frameworks for detecting tunnelling in cyber defence using big data. In

142

IEEE Joint Intelligence and Security Informatics Conference, pages 248–

251, 2014.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning

applied to document recognition. Proceedings of the IEEE, 86(11):2278–

2324, 1998.

H. Lee, A. Battle, R. Raina, and A. Ng. Efficient sparse coding algorithms.

Advances in Neural Information Processing Systems, 19:801––808, 2006.

E. Lesaffre and A. Albert. Multiple-group logistic regression diagnostics.

Journal of the Royal Statistical Society: Series C (Applied Statistics), 38

(3):425–440, 1989.

Y. Li, M. Yang, and Z. Zhang. A survey of multi-view representation learn-

ing. IEEE Transactions on Knowledge and Data Engineering, 31(10):1863–

–1883, 2019.

T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár,

and C. L. Zitnick. Microsoft COCO: Common objects in context. In

Proceedings of the 13th European Conference on Computer Vision, pages

740–755, 2014.

J. Liu, L. Zhong, J. Wickramasuriya, and V. Vasudevan. uWave:

Accelerometer-based personalized gesture recognition and its applications.

Pervasive and Mobile Computing, 5(6):657–675, 2009.

B. Long, P. S. Yu, and Z. Zhang. A general model for multiple view unsuper-

vised learning. In Proceedings of the 2008 SIAM International Conference

on Data Mining, pages 822–833, 2008.

Q. Lu and L. Getoor. Link-based classification. In International Conference

on Machine Learning, pages 496–503, 2003.

Z. Ma, A. Cardinal-Stakenas, Y. Park, M. W. Trosset, and C. E. Priebe. Di-

mensionality reduction on the Cartesian product of embeddings of multiple

dissimilarity matrices. Journal of Classification, 27(3):307—-321, 2010.

143

S. A. Macskassy and F. Provost. Confidence bands for ROC curves: Meth-

ods and an empirical study. In Proceedings of the 1st Workshop on ROC

Analysis in AI, pages 61–70, 2004.

P. C. Mahalanobis. On the generalised distance in statistics. In Proceedings

of the National Institute of Science of India, volume 12, pages 49–55, 1936.

G. L. Marcialis and F. Roli. Fusion of LDA and PCA for face verification. In

International Workshop on Biometric Authentication, pages 30–37, 2002.

A. Marcos Alvarez, M. Yamada, A. Kimura, and T. Iwata. Clustering-based

anomaly detection in multi-view data. In Proceedings of the 22nd ACM In-

ternational Conference on Information & Knowledge Management, pages

1545–1548, 2013.

B. McFee, C. Raffel, D. Liang, D. P. Ellis, M. McVicar, E. Battenberg,

and O. Nieto. librosa: Audio and music signal analysis in Python. In

Proceedings of the 14th Python in Science Conference, volume 8, pages

18–25, 2015.

J. Mercer. Functions of positive and negative type, and their connection

with the theory of integral equations. Philosophical Transactions of the

Royal Society of London. Series A, Containing Papers of a Mathematical

or Physical Character, 209:415–446, 1909.

P. Mermelstein. Distance measures for speech recognition, psychological and

instrumental. Pattern Recognition and Artificial Intelligence, 116:374–388,

1976.

C. E. Metz. Some practical issues of experimental design and data analysis

in radiological ROC studies. Investigative Radiology, 24(3):234–245, 1989.

C. A. Micchelli and M. Pontil. On learning vector-valued functions. Neural

Computation, 17(1):177–204, 2005.

G. Michailidis. Challenges for anomaly detection in large-scale cyber-physical

systems. Harvard Data Science Review, 5(1), 2023.

144

H. Q. Minh and V. Sindhwani. Vector-valued manifold regularization. In

Proceedings of the 28th International Conference on Machine Learning,

pages 57–64, 2011.

H. Q. Minh, L. Bazzani, and V. Murino. A unifying framework for vector-

valued manifold regularization and multi-view learning. In International

Conference on Machine Learning, pages 100–108, 2013.

H. Q. Minh, L. Bazzani, and V. Murino. A unifying framework in vector-

valued reproducing kernel Hilbert spaces for manifold regularization and

co-regularized multi-view learning. Journal of Machine Learning Research,

17(1):769–840, 2016.

M. Morgan, J. Sexton, J. Neil, A. Ricciardi, and J. Theimer. Network attacks

and the data they affect. In Dynamic Networks and Cyber-Security, pages

1–36. World Scientific, 2016.

Y. Mroueh, T. Poggio, L. Rosasco, and J.-J. Slotine. Multiclass learning with

simplex coding. In Advances in Neural Information Processing Systems,

pages 2789–2797, 2012.

B. Mukherjee, L. T. Heberlein, and K. N. Levitt. Network intrusion detection.

IEEE Network, 8(3):26–41, 1994.

G. Namata, B. London, L. Getoor, B. Huang, and U. Edu. Query-driven

active surveying for collective classification. In International Workshop on

Mining and Learning with Graphs, volume 8, 2012.

J. Neil, C. Hash, A. Brugh, M. Fisk, and C. B. Storlie. Scan statistics for

the online detection of locally anomalous subgraphs. Technometrics, 55

(4):403–414, 2013.

J. A. Nelder and R. W. Wedderburn. Generalized linear models. Journal of

the Royal Statistical Society: Series A (General), 135(3):370–384, 1972.

S. A. Nene, S. K. Nayar, and H. Murase. Columbia object image library

(Coil-100). Technical report, CUCS-006-96, 1996.

145

S. M. T. Nezhad, M. Nazari, and E. A. Gharavol. A novel DoS and DDoS

attacks detection algorithm using ARIMA time series model and chaotic

system in computer networks. IEEE Communications Letters, 20(4):700–

703, 2016.

J. Ngiam, A. Khosla, M. Kim, J. Nam, H. Lee, and A. Y. Ng. Multimodal

deep learning. In International Conference on Machine Learning, pages

689–696, 2011.

K. Nigam and R. Ghani. Analyzing the effectiveness and applicability of co-

training. In Proceedings of the 9th International Conference on Information

and Knowledge Management, volume 5, pages 86–93, 2000.

T. Niu, S. Zhu, L. Pang, and A. E. Saddik. Sentiment analysis on multi-view

social data. In International Conference on Multimedia Modeling, pages

15–27, 2016.

A. Oliva and A. Torralba. Modeling the shape of the scene: A holistic

representation of the spatial envelope. International Journal of Computer

Vision, 42(3):145–175, 2001.

B. A. Olshausen and D. J. Field. Emergence of simple-cell receptive field

properties by learning a sparse code for natural images. Nature, 381(6583):

607–609, 1996.

C. S. Ong, X. Mary, S. Canu, and A. J. Smola. Learning with non-positive

kernels. In International Conference on Machine Learning, pages 81–88,

2004.

W. Ouyang, X. Chu, and X. Wang. Multi-source deep learning for human

pose estimation. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 2329–2336, 2014.

S. Panjwani, S. Tan, K. M. Jarrin, and M. Cukier. An experimental evalua-

tion to determine if port scans are precursors to an attack. In Proceedings of

the IEEE International Conference on Dependable Systems and Networks,

pages 602–611, 2005.

146

B. J. Parker, S. Günter, and J. Bedo. Stratification bias in low signal mi-

croarray studies. BMC Bioinformatics, 8(1):1–16, 2007.

E. Parzen. Extraction and detection problems and reproducing kernel Hilbert

spaces. Journal of the Society for Industrial and Applied Mathematics,

Series A: Control, 1(1):35–62, 1962.

K. Pearson. On lines and planes of closest fit to systems of points in space.

The London, Edinburgh, and Dublin Philosophical Magazine and Journal

of Science, 2(11):559–572, 1901.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, et al. Scikit-learn:

Machine learning in Python. Journal of Machine Learning Research, 12:

2825–2830, 2011.

J. C. Platt. Probabilistic outputs for support vector machines and com-

parisons to regularized likelihood methods. In Advances in Large Margin

Classifiers, number 3, pages 61–74, 1999.

G. Pouliot. Equivalence of multicategory SVM and simplex cone SVM: Fast

computations and statistical theory. In International Conference on Ma-

chine Learning, pages 4130–4137, 2018.

D. Pregibon. Logistic regression diagnostics. The Annals of Statistics, 9(4):

705–724, 1981.

F. Provost and T. Fawcett. Analysis and visualization of classifier perfor-

mance: Comparison under imprecise class and cost distributions. In Pro-

ceedings of the 3rd International Conference on Knowledge Discovery and

Data Mining, pages 43––48, 1997.

F. J. Provost, T. Fawcett, and R. Kohavi. The case against accuracy esti-

mation for comparing induction algorithms. In International Conference

on Machine Learning, pages 445–453, 1998.

A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sas-

try, A. Askell, P. Mishkin, J. Clark, G. Krueger, and I. Sutskever. Learning

147

transferable visual models from natural language supervision. In Interna-

tional Conference on Machine Learning, pages 8748–8763. PMLR, 2021.

A. Rahimi and B. Recht. Random features for large-scale kernel machines.

Advances in Neural Information Processing Systems, 20:1177–1184, 2007.

E. Riddle-Workman, M. Evangelou, and N. M. Adams. Adaptive anomaly

detection on network data streams. In IEEE International Conference on

Intelligence and Security Informatics, pages 19–24, 2018.

K. Rieck, T. Holz, C. Willems, P. Düssel, and P. Laskov. Learning and clas-

sification of malware behavior. In International Conference on Detection

of Intrusions and Malware, and Vulnerability Assessment, pages 108–125,

2008.

R. Rifkin, G. Yeo, and T. Poggio. Regularized least-squares classification. In

Advances in Learning Theory: Methods, Model and Applications. NATO

Science Series III: Computer and Systems Sciences, volume 190, pages

131–154. IOS Press, 2003.

A. Ross and A. Jain. Information fusion in biometrics. Pattern Recognition

Letters, 24(13):2115–2125, 2003.

S. T. Roweis and L. K. Saul. Nonlinear dimensionality reduction by locally

linear embedding. Science, 290(5500):2323–2326, 2000.

R. Salakhutdinov and G. Hinton. Deep boltzmann machines. In Proceedings

of the 12th International Conference on Artificial Intelligence and Statis-

tics, volume 5, pages 448–455, 2009.

F. Sanna Passino, N. M. Adams, E. A. Cohen, M. Evangelou, and N. A.

Heard. Statistical cybersecurity: A brief discussion of challenges, data

structures, and future directions. Harvard Data Science Review, 5(1),

2023a.

F. Sanna Passino, A. Mantziou, D. Ghani, P. Thiede, R. Bevington, and

N. A. Heard. Unsupervised attack pattern detection in honeypot data

using Bayesian topic modelling. arXiv preprint arXiv:2301.02505, 2023b.

148

E. Scheirer and M. Slaney. Construction and evaluation of a robust multifea-

ture speech/music discriminator. In Proceedings of the IEEE International

Conference on Acoustics, Speech, and Signal Processing, volume 2, pages

1331–1334, 1997.

B. Schölkopf. Support vector learning. PhD thesis, Oldenbourg München,

Germany, 1997.

B. Schölkopf, A. Smola, and K.-R. Müller. Nonlinear component analysis as

a kernel eigenvalue problem. Neural Computation, 10(5):1299–1319, 1998.

M. G. Schultz, E. Eskin, F. Zadok, and S. J. Stolfo. Data mining methods

for detection of new malicious executables. In Proceedings of the IEEE

Symposium on Security and Privacy, pages 38–49, 2000.

H. Schütze, C. D. Manning, and P. Raghavan. Introduction to Information

Retrieval, volume 39. Cambridge University Press Cambridge, 2008.

P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, and T. Eliassi-Rad.

Collective classification in network data. AI Magazine, 29(3):93–93, 2008.

A. Serra, M. Fratello, V. Fortino, G. Raiconi, R. Tagliaferri, and D. Greco.

MVDA: A multi-view genomic data integration methodology. BMC Bioin-

formatics, 16(1):1–13, 2015.

M. B. Shah and B. C. Rana. Engineering Drawing. Pearson Education India,

2009.

R. N. Shepard. The analysis of proximities: Multidimensional scaling with

an unknown distance function. I. Psychometrika, 27(2):125–140, 1962.

V. Sindhwani and D. S. Rosenberg. An RKHS for multi-view learning and

manifold co-regularization. In International Conference on Machine Learn-

ing, pages 976–983, 2008.

V. Sindhwani, P. Niyogi, and M. Belkin. A co-regularization approach to

semi-supervised learning with multiple views. In Proceedings of the ICML

Workshop on Learning with Multiple Views, pages 74–79, 2005.

149

T. Sing, O. Sander, N. Beerenwinkel, and T. Lengauer. ROCR: Visualizing

classifier performance in R. Bioinformatics, 21(20):3940–3941, 2005.

T. Sing, O. Sander, N. Beerenwinkel, and T. Lengauer. Package ‘ROCR’.

Visualizing the Performance of Scoring Classifiers, pages 1–14, 2015.

A. Skaron, K. Li, and X.-H. Zhou. Statistical methods for MRMC ROC

studies. Academic Radiology, 19(12):1499–1507, 2012.

R. Sommer and V. Paxson. Outside the closed world: On using machine

learning for network intrusion detection. In IEEE Symposium on Security

and Privacy, pages 305–316, 2010.

K. Srinivasan, K. Raman, J. Chen, M. Bendersky, and M. Najork. WIT:

Wikipedia-based image text dataset for multimodal multilingual machine

learning. In Proceedings of the 44th International ACM SIGIR Conference

on Research and Development in Information Retrieval, pages 2443–2449,

2021.

N. Srivastava and R. R. Salakhutdinov. Multimodal learning with deep Boltz-

mann machines. In Advances in Neural Information Processing Systems,

pages 2222–2230, 2012.

W. Stafford Noble. Support vector machine applications in computational

biology. In Kernel Methods in Computational Biology, pages 71–92. MIT

Press, 2004.

F.-R. Stöter, S. Chakrabarty, B. Edler, and E. A. Habets. Classification

vs. regression in supervised learning for single channel speaker count esti-

mation. IEEE International Conference on Acoustics, Speech and Signal

Processing, pages 436–440, 2018.

I. Subramanian, S. Verma, S. Kumar, A. Jere, and K. Anamika. Multi-omics

data integration, interpretation, and its application. Bioinformatics and

Biology Insights, 14:1–24, 2020.

J. A. Swets and R. M. Pickett. Evaluation of Diagnostic Systems: Methods

from Signal Detection Theory. Academic Press, New York, 1982.

150

J. A. Swets, R. M. Dawes, and J. Monahan. Better decisions through science.

Scientific American, 283(4):82–87, 2000.

R. Talpade, G. Kim, and S. Khurana. NOMAD: Traffic-based network moni-

toring framework for anomaly detection. In Proceedings of the IEEE Inter-

national Symposium on Computers and Communications, pages 442–451,

1999.

J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global geometric

framework for nonlinear dimensionality reduction. Science, 290(5500):

2319–2323, 2000.

W. S. Torgerson. Theory and Methods of Scaling. Wiley, 1958.

N. T. Trendafilov. Stepwise estimation of common principal components.

Computational Statistics & Data Analysis, 54(12):3446–3457, 2010.

M. J. M. Turcotte, A. D. Kent, and C. Hash. Unified host and network data

set. In Data Science for Cyber-Security, pages 1–22. World Scientific, 2018.

M. van Breukelen, R. P. Duin, D. M. Tax, and J. Den Hartog. Handwritten

digit recognition by combined classifiers. Kybernetika, 34(4):381–386, 1998.

V. N. Vapnik. The Nature of Statistical Learning Theory. Springer Science

& Business Media, 2013.

V. N. Vapnik and A. Y. Chervonenkis. On the method of ordered risk mini-

mization, (I and II). Automation and Remote Control, 34:1226–1235 and

1403–1412, 1974.

P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol. Extracting and

composing robust features with denoising autoencoders. In International

Conference on Machine Learning, pages 1096–1103, 2008.

J. L. Wayman. Technical testing and evaluation of biometric identification

devices. Biometrics: Personal Identification in Networked Society, 479:

345–368, 1999.

A. R. Webb. Statistical Pattern Recognition. John Wiley & Sons, 2003.

151

M. Whitehouse, M. Evangelou, and N. M. Adams. Activity-based tempo-

ral anomaly detection in enterprise-cyber security. In IEEE International

Conference on Intelligence and Security Informatics, pages 248–250, 2016.

C. Williams and M. Seeger. Using the Nyström method to speed up kernel

machines. Advances in Neural Information Processing Systems, 13:682–

688, 2000.

I. H. Witten, E. Frank, and M. A. Hall. Data Mining: Practical Machine

Learning Tools and Techniques. Morgan Kaufmann Publishers Inc., 3nd

edition, 2011.

D. H. Wolpert. The lack of a priori distinctions between learning algorithms.

Neural Computation, 8(7):1341–1390, 1996.

Y. Yang, J. Song, Z. Huang, Z. Ma, N. Sebe, and A. G. Hauptmann. Multi-

feature fusion via hierarchical regression for multimedia analysis. IEEE

Transactions on Multimedia, 15(3):572–581, 2012.

N. Ye, S. M. Emran, Q. Chen, and S. Vilbert. Multivariate statistical analysis

of audit trails for host-based intrusion detection. IEEE Transactions on

Computers, 51(7):810–820, 2002.

Y. Ye, T. Li, D. Adjeroh, and S. S. Iyengar. A survey on malware detection

using data mining techniques. ACM Computing Surveys, 50(3):1–40, 2017.

H. Zhang, Y. Xu, and Q. Zhang. Refinement of operator-valued reproducing

kernels. Journal of Machine Learning Research, 13(1):91–136, 2012.

L. Zhang, Y. Xie, L. Xidao, and X. Zhang. Multi-source heterogeneous data

fusion. In Proceedings of the IEEE International Conference on Artificial

Intelligence and Big Data, pages 47–51, 2018.

H. Zhao, H. Liu, Z. Ding, and Y. Fu. Consensus regularized multi-view

outlier detection. IEEE Transactions on Image Processing, 27(1):236–248,

2017a.

J. Zhao, X. Xie, X. Xu, and S. Sun. Multi-view learning overview: Recent

progress and new challenges. Information Fusion, 38:43–54, 2017b.

152

G. Zhong, L.-N. Wang, X. Ling, and J. Dong. An overview on data represen-

tation learning: From traditional feature learning to recent deep learning.

The Journal of Finance and Data Science, 2(4):265–278, 2016.

X.-H. Zhou, D. K. McClish, and N. A. Obuchowski. Statistical Methods

in Diagnostic Medicine. Wiley Series in Probability and Statistics. John

Wiley & Sons, 2009.

J. Zhu and T. Hastie. Kernel logistic regression and the import vector ma-

chine. In Advances in Neural Information Processing Systems, volume 14,

pages 1081–1088, 2001.

M. Žitnik and B. Zupan. Data fusion by matrix factorization. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, 37(1):41–53, 2015.

153

	Notation
	Introduction
	Contributions and Thesis Outline
	Publications

	Background
	Multi-view Data
	Multi-view Learning
	Multi-view Outlier Detection

	Cyber Security Datasets
	LANL Dataset
	EMBER Malware Dataset

	Computer Network Data Analysis
	Statistical Cyber Security
	Supervised Learning using Time-shifted Labels
	Time-shifted Label
	Data Fusion
	Entity Fusion

	Experiment
	Discussion

	On Averaging ROC curves
	Background and Relevant Literature
	ROC Graphs
	Definition
	Estimation
	Area Under the ROC Curve

	Averaging ROC Curves
	Pooling
	Vertical Averaging
	Threshold Averaging

	Interpreting Average ROC Curves
	ROC Space Averaging

	Simulated Example
	Discussion

	Semi-supervised Learning via Co-regularised Kernel Logistic Regression
	Background and Relevant Literature
	Reproducing Kernel Hilbert Spaces
	Scalar-valued Kernel Machines
	Vector-valued RKHSs
	Multi-view Kernels

	Multi-view Semi-supervised Structural Risk Minimisation
	Supervised Learning Framework
	Relation to Single-view Learning Schemes
	Semi-supervised Learning

	Semi-supervised Kernel Logistic Regression
	Experiments
	Simulated Data
	Malware Detection

	Discussion

	Multi-view Generalised Kernel Machines
	Background and Relevant Literature
	A Unified Learning Scheme
	Generalised Linear Models
	Multi-view GKMs
	Parameter Estimation
	Algorithm
	Prediction
	Outlier Detection

	Multi-view Kernel Functions
	MKL Kernel
	Cross-covariance Kernel
	Learned Metric Kernel

	Example Response Types
	Logistic Regression
	Poisson Regression
	Multinomial Logistic Regression

	Experiments
	Binary, Multi-class and Poisson Regression
	Anomaly Detection

	Discussion

	Multi-view Multidimensional Scaling
	Background and Relevant Literature
	Multidimensional Scaling
	The SMACOF Algorithm for MDS

	Multi-view Embedding
	Multi-view MDS
	Extending SMACOF for Multi-view MDS

	Experiments
	Simulated Data
	Cyber Situational Awareness

	Discussion

	Conclusion
	References

