68 research outputs found

    Energy-Efficient Softwarized Networks: A Survey

    Full text link
    With the dynamic demands and stringent requirements of various applications, networks need to be high-performance, scalable, and adaptive to changes. Researchers and industries view network softwarization as the best enabler for the evolution of networking to tackle current and prospective challenges. Network softwarization must provide programmability and flexibility to network infrastructures and allow agile management, along with higher control for operators. While satisfying the demands and requirements of network services, energy cannot be overlooked, considering the effects on the sustainability of the environment and business. This paper discusses energy efficiency in modern and future networks with three network softwarization technologies: SDN, NFV, and NS, introduced in an energy-oriented context. With that framework in mind, we review the literature based on network scenarios, control/MANO layers, and energy-efficiency strategies. Following that, we compare the references regarding approach, evaluation method, criterion, and metric attributes to demonstrate the state-of-the-art. Last, we analyze the classified literature, summarize lessons learned, and present ten essential concerns to open discussions about future research opportunities on energy-efficient softwarized networks.Comment: Accepted draft for publication in TNSM with minor updates and editin

    Fog-Assisted Caching Employing Solar Renewable Energy and Energy Storage Devices for Video on Demand Services

    Get PDF
    This paper examines the reduction in the non-renewable power consumption of transport networks including core, metro and access layers when Video-on-Demand (VoD) content is cached in solar-powered fog data centres with Energy Storage Devices (ESDs). The effects of considering optical bypass routing and Mixed Line Rate (MLR) in the core network, the availability of solar renewable energy in the access network, and optimising the use of ESDs were addressed. A Mixed Integer Linear Programming (MILP) model that considers the above factors was developed to optimise delivering VoD content from cloud data centres in the core network or fog data centres in the access network

    Evaluating the energy consumption and the energy savings potential in ICT backbone networks

    Get PDF

    Green Vehicular Content Distribution Network

    Get PDF
    With environmental awareness becoming a global concern, content distribution has become popular in the context of modern city scenario with obvious concerns for ICT power consumption. The business world demands huge amounts of information exchange for advertisement and connectivity, which is an integral part of a smart city. In this thesis, a number of energy saving and performance improvement techniques are proposed for the content delivery scenario. These are: content cache location optimisation techniques for energy saving and transceiver load adaptive techniques that save energy while maintaining acceptable piece delay. With the recent advancement in Fog computing, nano-servers are introduced in the later part of the thesis for content delivery and process of user demands. Two techniques random sleep cycles and rate adaptation are proposed to save transmission energy. The quality of service in terms of piece delay and dropping probability are optimised by deploying renewable and non-renewable energy powered nano-servers (NS). Finally, mixed integer linear programming models (MILP) were developed alongside other optimisations methods like bisection, greedy and genetic algorithms which judiciously distribute renewable energy to the fog servers in order to minimise the piece delay and dropping probability in heavily loaded regions of the city area

    Online algorithms for content caching: an economic perspective

    Get PDF
    Content Caching at intermediate nodes, such that future requests can be served without going back to the origin of the content, is an effective way to optimize the operations of computer networks. Therefore, content caching reduces the delivery delay and improves the users’ Quality of Experience (QoE). The current literature either proposes offline algorithms that have complete knowledge of the request profile a priori, or proposes heuristics without provable performance. In this dissertation, online algorithms are presented for content caching in three different network settings: the current Internet Network, collaborative multi-cell coordinated network, and future Content Centric Networks (CCN). Due to the difficulty of obtaining a prior knowledge of contents’ popularities in real scenarios, an algorithm has to make a decision whether to cache a content or not when a request for the content is made, and without the knowledge of any future requests. The performance of the online algorithms is measured through a competitive ratio analysis, comparing the performance of the online algorithm to that of an omniscient optimal offline algorithm. Through theoretical analyses, it is shown that the proposed online algorithms achieve either the optimal or close to the optimal competitive ratio. Moreover, the algorithms have low complexity and can be implemented in a distributed way. The theoretical analyses are complemented with simulation-based experiments, and it is shown that the online algorithms have better performance compared to the state of the art caching schemes

    Softwarization in Future Mobile Networks and Energy Efficient Networks

    Get PDF
    The data growth generated by pervasive mobile devices and the Internet of Things at the network edge (i.e., closer to mobile users), couple with the demand for ultra-low latency, requires high computation resources which are not available at the end-user device. This demands a new network design paradigm in order to handle user demands. As a remedy, a new MN network design paradigm has emerged, called Mobile Edge Computing (MEC), to enable low-latency and location-aware data processing at the network edge. MEC is based on network function virtualization (NFV) technology, where mobile network functions (NFs) that formerly existed in the evolved packet core (EPC) are moved to the access network [i.e., they are deployed on local cloud platforms in proximity to the base stations (BSs)]. In order to reap the full benefits of the virtualized infrastructure, the NFV technology shall be combined with intelligent mechanisms for handling network resources. Despite the potential benefits presented by MEC, energy consumption is a challenge due to the foreseen dense deployment of BSs empowered with computation capabilities. In the effort to build greener 5G mobile network (MN), we advocate the integration of energy harvesting (EH) into future edge systems

    Energy Efficient Nano Servers Provisioning for Information Piece Delivery in a Vehicular Environment

    Get PDF
    In this paper, we propose energy efficient Information Piece Delivery (IPD) through Nano Servers (NSs) in a vehicular network. Information pieces may contain any data that needs to be communicated to a vehicle. The available power (renewable or non-renewable) for a NS is variable. As a result, the service rate of a NS varies linearly with the available energy within a given range. Our proposed system therefore exhibits energy aware rate adaptation (RA), which uses variable transmission energy. We have also developed another transmission energy saving method for comparison, where sleep cycles (SC) are employed. Both methods are compared against an acceptable download time. To reduce the operational energy, we first optimise the locations of the NSs by developing a mixed integer linear programming (MILP) model, which takes into account the hourly variation of the traffic. The model is validated through a Genetic Algorithm (GA1). Furthermore, to reduce the gross delay over the entire vehicular network, the available renewable energy (wind farm) is optimally allocated to each NS according to piece demand. This, in turn, also reduces the network carbon footprint. A Genetic Algorithm (GA2) is also developed to validate the MILP results associated with this system. Through transmission energy savings, RA and SC further reduce the NSs energy consumption by 19% and 18% respectively, however at the expense of higher download time. MILP model 4 (with RA) and model 5 (with SC) reduced the delay by 81% and 83% respectively, while minimising the carbon footprint by 96% and 98% respectively, compared to the initial MILP model
    • …
    corecore