72 research outputs found

    Rough Sets Determined by Quasiorders

    Full text link
    In this paper, the ordered set of rough sets determined by a quasiorder relation RR is investigated. We prove that this ordered set is a complete, completely distributive lattice. We show that on this lattice can be defined three different kinds of complementation operations, and we describe its completely join-irreducible elements. We also characterize the case in which this lattice is a Stone lattice. Our results generalize some results of J. Pomykala and J. A. Pomykala (1988) and M. Gehrke and E. Walker (1992) in case RR is an equivalence.Comment: 18 pages, major revisio

    Sobriety of crisp and fuzzy topological spaces

    Get PDF
    The objective of this thesis is a survey of crisp and fuzzy sober topological spaces. We begin by examining sobriety of crisp topological spaces. We then extend this to the L- topological case and obtain analogous results and characterizations to those of the crisp case. We then brie y examine semi-sobriety of (L;M)-topological spaces

    Sobriety of crisp and fuzzy topological spaces

    Get PDF
    The objective of this thesis is a survey of crisp and fuzzy sober topological spaces. We begin by examining sobriety of crisp topological spaces. We then extend this to the L- topological case and obtain analogous results and characterizations to those of the crisp case. We then brie y examine semi-sobriety of (L;M)-topological spaces

    Probability over PÅ‚onka sums of Boolean algebras: States, metrics and topology

    Get PDF
    The paper introduces the notion of state for involutive bisemilattices, a variety which plays the role of algebraic counterpart of weak Kleene logics and whose elements are represented as PÅ‚onka sums of Boolean algebras. We investigate the relations between states over an involutive bisemilattice and probability measures over the (Boolean) algebras in the PÅ‚onka sum representation and, the direct limit of these algebras. Moreover, we study the metric completion of involutive bisemilattices, as pseudometric spaces, and the topology induced by the pseudometric

    Topological Dualities in Semantics

    Get PDF

    Fibred contextual quantum physics

    Get PDF
    Inspired by the recast of the quantum mechanics in a toposical framework, we develop a contextual quantum mechanics via the geometric mathematics to propose a quantum contextuality adaptable in every topos. The contextuality adopted corresponds to the belief that the quantum world must only be seen from the classical viewpoints à la Bohr consequently putting forth the notion of a context, while retaining a realist understanding. Mathematically, the cardinal object is a spectral Stone bundle Σ → B (between stably-compact locales) permitting a treatment of the kinematics, fibre by fibre and fully point-free. In leading naturally to a new notion of points, the geometricity permits to understand those of the base space B as the contexts C — the commutative C*–algebras of a incommutative C*–algebras — and those of the spectral locale Σ as the couples (C, ψ), with ψ a state of the system from the perspective of such a C. The contexts are furnished with a natural order, the aggregation order which is installed as the specialization on B and Σ thanks to (one part of) the Priestley's duality adapted geometrically as well as to the effectuality of the lax descent of the Stone bundles along the perfect maps

    Topos and Stacks of Deep Neural Networks

    Full text link
    Every known artificial deep neural network (DNN) corresponds to an object in a canonical Grothendieck's topos; its learning dynamic corresponds to a flow of morphisms in this topos. Invariance structures in the layers (like CNNs or LSTMs) correspond to Giraud's stacks. This invariance is supposed to be responsible of the generalization property, that is extrapolation from learning data under constraints. The fibers represent pre-semantic categories (Culioli, Thom), over which artificial languages are defined, with internal logics, intuitionist, classical or linear (Girard). Semantic functioning of a network is its ability to express theories in such a language for answering questions in output about input data. Quantities and spaces of semantic information are defined by analogy with the homological interpretation of Shannon's entropy (P.Baudot and D.B. 2015). They generalize the measures found by Carnap and Bar-Hillel (1952). Amazingly, the above semantical structures are classified by geometric fibrant objects in a closed model category of Quillen, then they give rise to homotopical invariants of DNNs and of their semantic functioning. Intentional type theories (Martin-Loef) organize these objects and fibrations between them. Information contents and exchanges are analyzed by Grothendieck's derivators
    • …
    corecore