thesis

Fibred contextual quantum physics

Abstract

Inspired by the recast of the quantum mechanics in a toposical framework, we develop a contextual quantum mechanics via the geometric mathematics to propose a quantum contextuality adaptable in every topos. The contextuality adopted corresponds to the belief that the quantum world must only be seen from the classical viewpoints à la Bohr consequently putting forth the notion of a context, while retaining a realist understanding. Mathematically, the cardinal object is a spectral Stone bundle Σ → B (between stably-compact locales) permitting a treatment of the kinematics, fibre by fibre and fully point-free. In leading naturally to a new notion of points, the geometricity permits to understand those of the base space B as the contexts C — the commutative C*–algebras of a incommutative C*–algebras — and those of the spectral locale Σ as the couples (C, ψ), with ψ a state of the system from the perspective of such a C. The contexts are furnished with a natural order, the aggregation order which is installed as the specialization on B and Σ thanks to (one part of) the Priestley's duality adapted geometrically as well as to the effectuality of the lax descent of the Stone bundles along the perfect maps

    Similar works