
Topological Dualities

in

Semantics

Marcello M. Bonsangue

October 7, 1996

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301669708?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Topological Dualities in Semantics

Bonsangue, Marcello

Topological Dualities in Semantics / Marcello M. Bonsangue

Amsterdam, Vrije Universiteit Amsterdam

Ph.D. Thesis with index, keywords index, and summary in Dutch

ISBN 90-9009958-1

Printed by Universal Press, Veenendaal

Cover design: Frouke M. Visser
Cover photo: Dolomiti Auronzane (Italia)

c
 1996 Marcello M. Bonsangue, Amsterdam, The Netherlands

All rights reserved. No part of this publication may be reproduced, stored in a re-

trieval system, or transmitted, in any form or by any means, electronic, mechanical,

photocopying, recording or otherwise, without prior permission of the author.

The work in this thesis has been carried out under the auspices of the research
school IPA (Institute for Programming research and Algorithmics).

VRIJE UNIVERSITEIT

Topological Dualities in Semantics

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor aan
de Vrije Universiteit te Amsterdam,
op gezag van de rector magni�cus

prof.dr. E. Boeker,
in het openbaar te verdedigen

ten overstaan van de promotiecommissie
van de faculteit der wiskunde en informatica
op donderdag 21 november 1996 te 15.45 uur

in het hoofdgebouw van de universiteit,
De Boelelaan 1105

door

Marcello Maria Bonsangue

geboren te Caltanissetta, Itali�e

Promotoren: prof.dr. J.W. de Bakker
prof.dr. J.N. Kok

Referent: prof.dr. M.W. Mislove

8 marzo 1996

8 marzo, festa della donna.
Tu l' hai sempre festeggiata,

ma quest'anno non sei riuscita a vedere
le mimose che ti abbiamo portato.

Il tuo sorriso ci ha lasciato
ma non lo dimenticheremo.

Adesso cara mamma riposi in pace
e la calma �e con te.

A mia madre e a mio padre

i

Preface

When I was a child I had a dream: climbing a mountain. And it remained just a
dream till I came to Amsterdam for the �rst time as an Erasmus-student in 1989.
It was Vincenzo Lo Cascio of the Universiteit van Amsterdam who showed me
the attractive mountaineering area which the Dutch academic world is. Back in
Italy, my interest for the Dutch mountains was noticed by Nicoletta Sabadini
and Giancarlo Mauri of the Universit�a degli Studi di Milano. They not only
believed that climbing a mountain in a land that �nds itself for a considerable
part below sea-level would create a perfect surrealistic scenery which suited me
best, but also that it was worth while to provide me �nancial assistance by
means of two grants: one of the Universit�a degli Studi di Milano and another
of the Centro Nationale delle Ricerche (CNR).

In Amsterdam I decided to pitch my base-camp at the Centrum voor Wis-
kunde en Informatica (CWI) since I thought it the perfect point of departure
for the realization of my dream. The CWI is located in a scienti�c valley from
which countless paths start in more directions of mathematics and computer
science than anyone would care to count. The atmosphere at the CWI is peace-
ful and friendly, the resources are excellent (not to forget the well-equipped
library), and people are always open to discussion.

It gave me much pleasure to discover that I was supposed to spend my �rst
Dutch winter in the hottest bivouac I had ever seen. It was both for me and
for my Indian colleague Krishna Rao the perfect place to become acclimatized
to the Dutch climate. When spring came, I moved to the o�ce M335 where I
shared my passion for mountains with Franck van Breugel and Daniele Turi. I
will always remember our endless discussions about which itinerary to take or
the way to tackle a mathematical problem.

At the CWI I met Jaco de Bakker who immediately accepted to guide me
through the Dutch highlands, allowing me total freedom to choose my own di-
rection. His advice, appropriate questions and critical comments have strongly
in
uenced my decisions in the past years. His attitude towards theoretical com-
puter science has always been an example to me of how to do research in this
�eld. I am particularly grateful to him for introducing me to the Amsterdam
Concurrency Group. My mountaineering experience along the slopes of the
semantical crags of programming languages owes much to the insights and the
criticisms of the members of this group, headed by Jaco de Bakker and including
Frank de Boer, Franck van Breugel, Arie de Bruin, Jerry den Hartog, Bart Ja-
cobs, Jean-Marie Jaquet, Kees van Kemenade, Joost Kok, Jan Rutten, Daniele
Turi, Erik de Vink, Michiel van Wezel, and Herbert Wiklicky.

At the CWI I also met Joost Kok; I was pleased when he accepted me as his
rope-mate and introduced me in the rudiments of climbing techniques. Later

ii

on he became, together with Jaco de Bakker, my instructor. I would never have
conquered so many mountains if it were not for his enthusiasm, his positive
attitude and his friendship. His perseverance, stimulating questions and, above
all, his continuous encouragements meant, and still mean, a great deal to me.

I will always remember my �rst careful steps along the mathematical paths
I was most attracted to. I am grateful to Jeroen Warmerdam for having shown
me the beautiful prospects of `domain theory'. I am grateful to Jan Rutten and
Daniele Turi for their willingness to climb with me the relatively young hills of
`category theory'. Daniele's excitement for category theory has always been a
great stimulus for me to go forward. Bart Jacobs often choose the right moment
to be there, ready to correct my innumerable mistakes and to suggest a di�erent
path to follow. I am thankful to Jan Rutten and Franck van Breugel for their
company during my expeditions through the ancient mountains of `topology'
and `metric spaces'. It was during one of these expeditions that I got to know
Michael Mislove. He immediately showed interest for my work and encouraged
me to continue along the itinerary of `topological dualities' I had just started.

When my �nancial assistance from Italy �nished, Jaco de Bakker provided
me another base-camp in Amsterdam: the Vrije Universiteit. My knowledge
of the Dutch language improved and I broke new ground with teaching. I am
grateful to Franck van Breugel for o�ering me his generous help which, of course,
I accepted. I thank all the students who attended my tutoring classes: I hope
they learned something from me, I certainly learned a lot from them.

At the Vrije Universiteit I had many inspiring occasions during which I
exchanged ideas with the members of the research group on theoretical com-
puter science: Jaco de Bakker, Allegra Bencivenni, Stefan Blom, Mirna Bognar,
Franck van Breugel, Jerry den Hartog, Jan Willem Klop, Vincent van Oostrom,
Yde Venema, Erik de Vink, and Roel de Vrijer. Moreover, I spent a very en-
joyable time with Vincent, Franck, Allegra and Mirna as roommates. I thank
them all for having created such a good atmosphere to work in.

There are many routes to reach the top of a mountain, and there are several
ways to approach them. I learned di�erent techniques for mountain-climbing
from each of my co-authors. I am grateful to Joost Kok, Bart Jacobs, Erik
de Vink, Marta Kwiatowska, Jan Rutten, and Franck van Breugel for a very
fruitful and enjoyable collaboration.

Being a member of the Dutch climbing-school Instituut voor Programma-
tuurkunde en Algoritmiek (IPA), I had the possibility to exchange my experi-
ences with many other young climbers. The annual meetings organized by IPA
were always a nice occasion to get to know other people with whom I could
share my interest for the highlands.

Often paths cross each other and so did mine: during my hikes I often met
people who strongly in
uenced my thoughts. Among these people I am par-
ticularly thankful to Samson Abramsky, Ralph Back, Bob Flagg, Paul John-
son, Peter Knijnenburg, Paul-Andr�e Mellies, Prakash Panangaden, Mike Smyth,

iii

Philippe S�underhauf, and Fer-Jan de Vries.
Since I came to like staying abroad, from time to time I moved around

the world, always in search of di�erent sights. I gratefully acknowledge the �-
nancial assistance received from the Vrije Universiteit Amsterdam, the Nether-
lands Organization for Scienti�c Research (NWO), Shell Nederland B.V., the
NATO Advanced Study Institute, the Dutch project `Research and Education in
Concurrent Systems' (REX), and the European Community SCIENCE project
`Mathematical Structures in Semantics of Concurrency' (MASK) which made
possible my visits to several conferences and workshops, and to a summer school.
Thanks also to the people who invited me to present parts of the results on which
this thesis has been based: Maurice Nivat and Paul Gastin of the Universit�e de
Paris, Marta Kwiatowska of the University of Birmingham, and Willem-Paul
de Roever and Kai Engelhart of the Christian-Albrechts Universit�at zu Kiel.
During my visits to them I bene�ted from many fruitful discussions and I had
a very enjoyable time.

Like all travelers, I kept a journal during my mountaineering years in Hol-
land. It was not an easy task to write down the scienti�c experiences I acquired
during my climbing-expeditions. Since I knew better where to end than where
to start, I decided to write this thesis starting from the last chapter and ending
with the preface. I wish to express all my gratitude to my supervisors, Jaco de
Bakker and Joost Kok, who carefully went through all successive drafts, often
adapting themselves to my reverse view on my research; they provided an un-
countable number of improvements both in the presentation as in the content.
Without their indefatigable help this thesis would not have been as readable as
it now is.

I am also grateful to Kiki Hannema, Jerry den Hartog, Vincent van Oostrom,
Jan Rutten, Yde Venema, and Erik de Vink for critically reading parts of my
thesis. A special thank goes to Frouke Visser for her improvements in the
presentation of this preface. Frouke and Jan were of great help in translating
the abstract of this thesis in Dutch. I am indebted to Michael Mislove for his
willingness to referee my work and for his incisive comments. Thanks also to
Wim Hesselink, Jan-Willem Klop, Jan van Mill, Jan Rutten, and Yde Venema
for taking part in the opposition and for their interest in my work.

I enjoyed wonderful views from the summit of the mountains I climbed,
every time looking forward to the next expedition, and never forgetting that
some people were always with me in thought. Therefore I would like to thank
my family and Frouke for their love and support. Frouke's encouragements
through all the years that we happily shared together have made possible the
realization of this, and of several other dreams of mine. My parents always had
a never ending interest in my work. My mother, who understood so well my
enthusiasm for mountaineering since she was born in the Dolomites, will never
know that my climbing-dream came true.

iv

The diagrams in this thesis were designed using the TEX macros package of
Paul Taylor.

Contents

1 Introduction 1

2 Mathematical preliminaries 9
2.1 Category theory : 9
2.2 Partial orders : 13
2.3 Metric spaces : 20

I Basic dualities 25

3 The weakest precondition calculus 27
3.1 The sequential language L0 : 29
3.2 State transformer models : 30
3.3 Predicate transformer models : : : : : : : : : : : : : : : : : : : 38
3.4 Can a backtrack operator be added to L0? : : : : : : : : : : : : 50
3.5 Concluding notes : 55

4 The re�nement calculus 57
4.1 Speci�cation and re�nement : 58
4.2 The language L1 and its predicate transformer semantics : : : : 62
4.3 A state transformer semantics for L1 : : : : : : : : : : : : : : : 66
4.4 An operational semantics for L1 : : : : : : : : : : : : : : : : : : 71
4.5 Concluding notes : 89

II Topological dualities 93

5 Topology and a�rmative predicates 95
5.1 A�rmative and refutative predicates : : : : : : : : : : : : : : : 95
5.2 Speci�cations, saturated sets and �lters : : : : : : : : : : : : : : 99
5.3 Examples of topological spaces : : : : : : : : : : : : : : : : : : : 101
5.4 Final remarks : 105

v

vi Contents

6 Powerspaces, multifunctions and predicate transformers 107
6.1 Multifunctions as state transformers : : : : : : : : : : : : : : : : 108
6.2 Topological predicate transformers : : : : : : : : : : : : : : : : 111
6.3 Pairs of predicate transformers : : : : : : : : : : : : : : : : : : : 120
6.4 Concluding notes : 126

7 Predicate transformer semantics for concurrency 129
7.1 A simple concurrent language : : : : : : : : : : : : : : : : : : : 129
7.2 Metric predicate transformers : : : : : : : : : : : : : : : : : : : 130
7.3 Metric predicate transformer semantics : : : : : : : : : : : : : : 135
7.4 Relationships with state transformers : : : : : : : : : : : : : : : 144
7.5 Partial and total correctness : 150
7.6 Temporal properties : 161
7.7 Concluding notes : 163

III A logical perspective 165

8 Topological spaces and observation frames 167
8.1 Observation frames : 168
8.2 M-topological systems : 182
8.3 Some further equivalences : 188
8.4 Concluding notes : 192

9 Frames and observation frames 195
9.1 Two in�nitary algebraic theories : : : : : : : : : : : : : : : : : : 196
9.2 Observation frames as algebras : : : : : : : : : : : : : : : : : : 201
9.3 Frames and observation frames : : : : : : : : : : : : : : : : : : 206
9.4 Concluding notes : 212

10 An in�nitary domain logic for transition systems 213
10.1 Domain theory in logical form : : : : : : : : : : : : : : : : : : : 213
10.2 Transition systems : 214
10.3 Compactly branching transition systems : : : : : : : : : : : : : 221
10.4 Finitary transition systems : 224
10.5 Concluding notes : 226

Bibliography 229

Selected notation 245

Index 249

Abstract 255

Samenvatting (in Dutch) 257

Chapter 1

Introduction

A language is a systematic means of communicating ideas or feelings among
people by the use of conventionalized signs. In contrast, a programming lan-
guage can be thought of as a syntactic formalism which provides a means for the
communication of computations among people and (abstract) machines. Ele-
ments of a programming language are often called programs. They are formed
according to formal rules which de�ne the relations between the various com-
ponents of the language. Examples of programming languages are conventional
languages like Pascal [Wir71] or C++ [Str91], and also the more theoretical
languages such as the �-calculus [Chu32, Bar84] or CCS [Mil80].

A programming language can be interpreted on the basis of our intuitive
concept of computation. However, an informal and vague interpretation of a
programming language may cause inconsistency and ambiguity. As a conse-
quence di�erent implementations may be given for the same language possibly
leading to di�erent (sets of) computations for the same program. Had the lan-
guage interpretation been de�ned in a formal way, the implementation could be
proved or disproved correct. There are di�erent reasons why a formal interpreta-
tion of a programming language is desirable: to give programmers unambiguous
and perhaps informative answers about the language in order to write correct
programs, to give implementers a precise de�nition of the language, and to de-
velop an abstract but intuitive model of the language in order to reason about
programs and to aid program development from speci�cations.

Mathematics often emphasizes the formal correspondence between a nota-
tion and its meaning. For example, in mathematical logic, we interpret a formal
theory on the basis of a more intuitive mathematical domain which properly �ts
the theory (that is, the interpretation of all theorems must be valid). Similarly,
the formal semantics of a programming language assigns to every program of the
language an element of a mathematical structure. This mathematical structure
is usually called the semantic domain. Several mathematical structures can be
used as semantic domain, and the choice as to which one is to be preferred
often depends upon the programming language under consideration. Since a

1

2 Chapter 1. Introduction

programming language is a formal notation, its semantics can be seen as a
translation of a formal system into another one. The need for a formal seman-
tics of a programming language can thus be rephrased as the need for a suitable
mathematical structure closer to our computational intuition. From this math-
ematical structure we expect to gain insights into the language considered.

There are several ways to formally de�ne the semantics of a programming
language. Below we brie
y describe the three main approaches to semantics,
namely the operational, the denotational and the axiomatic approach. Other
important approaches to the semantics of programming languages are given
by the algebraic semantics [GTW78, Mil80, Hoa85, BK86, BWP87, Hen88],
with mathematical foundations based on abstract algebras [GTW+77, EM85],
and the action semantics [Mos92], based on three kinds of primitive semantics
entities: actions, data and yielders.

In the operational semantics one de�nes the meaning of a program in terms
of the computations performed by an abstract machine that executes the pro-
gram. For this reason the operational semantics is considered to be close to
what actually happens in reality when executing a program on a real computer.
Transition systems are the most commonly used abstract machines which sup-
port a straightforward de�nition of a computation by the stepwise execution
of atomic actions. There are di�erent ways to collect the information about
the computations of a transition system which give rise to di�erent operational
semantics. Moreover, transition systems support a structural approach to oper-
ational semantics as advocated by Plotkin [Plo81b]: the transition relation can
be de�ned by induction on the structure of the language constructs.

The denotational approach to the semantics of programming languages is
due to Scott and Strachey [SS71]. Programs are mapped to elements of some
mathematical domain in a compositional way according to the `Fregean princi-
ple' [Fre77]: the semantics of a language construct is de�ned in terms of its com-
ponents. Due to the possibility of self-application given by some programming
languages, the semantic domain must sometimes be de�ned in a recursive way.
This is often impossible with an ordinary set-theoretical construction because
of a cardinality problem. Therefore often a topological structure is associated
with the semantic domain which takes into account qualitative or quantitative
information about the computations. Typical topological structures used for the
denotational semantics of programming languages are complete partial orders,
put forward by Scott [Sco70, Sco76], and complete metric spaces, introduced
in semantics by Arnold and Nivat [AN80] and extensively studied by the Ams-
terdam Concurrency Group (for an overview see [BR92] and also [BV96]). The
denotational semantics is close to the operational semantics but abstracts from
certain details so that attention can be focussed on issues at a higher level.

The axiomatic approach characterizes programs in a logical framework in-
tended for reasoning about their properties. Proof systems are usually used
for axiomatic semantics: computations are expressed by relating programs to

3

assertions about their behaviour. The most well-known axiomatic semantics is
Hoare logic [Hoa69] for total correctness. Assertions are of the form fPg S fQg
meaning that the program S when started at input satisfying the predicate P
terminates and its output satis�es the predicate Q . There are many other kinds
of axiomatic semantics using proof systems such as temporal logic [Pnu77], dy-
namic logic [Pra81] and Hennessy-Milner logic [HM85]. Axiomatic semantics
can also be given without the use of formal proof systems: the behaviour of
a program can be expressed as a function which transforms predicates about
the program. For example, Dijkstra's weakest precondition semantics [Dij76]
regards a program S as a function which maps every predicate Q on the output
state space of S to the weakest predicate among all P 's such that the Hoare
assertion fPgSfQg is valid. Axiomatic semantics is closely related to the ver-
i�cation of the correctness of programs with respect to a given speci�cation.
An axiomatic semantics should preferably be such that the veri�cation of the
correctness of a program can be done by verifying the correctness of its compo-
nents, as advocated by Turing [Tur49] and Floyd [Flo67] (see also the discussion
in [Bak75]).

The choice among the operational, the denotational or the axiomatic se-
mantics for a programming language will depend on the particular goals to be
achieved. To take advantage of these di�erent semantic views of a program it
is important to study their relationships.

The denotational semantics of a programming language is, by de�nition,
compositional. Since an operational semantics is not required to be composi-
tional we cannot have, in general, an equivalence between the two semantics.
Two criteria about the relation between denotational and operational semantics
are commonly accepted. The �rst criterion says that the denotational seman-
tics has to assign a di�erent meaning to those programs of the language which
in some context can be distinguished by the operational semantics. This can
be achieved, for example, by proving the existence of an abstraction function
that when composed with the denotational semantics gives exactly the opera-
tional semantics. In this case the denotational semantics is said to be correct,
or adequate, with respect to the operational semantics. The second criterion
looks for the most abstract denotational semantics which is correct with respect
to a given operational semantics. This can formally be expressed by requiring
that the denotational semantics assigns a di�erent meaning to two programs of
the language if and only if they can be distinguished in some context by the
operational semantics. In this case the denotational semantics is said to be fully
abstract with respect to the operational semantics [Mil73].

The relationship between the denotational and the axiomatic semantics is
the main topic of this thesis. Depending on which kind of information has
to be taken in account, there are di�erent transformations which ensure the
correctness of one semantics in terms of the other. The common factor in all
these transformations is that they form dualities rather than equivalences: the

4 Chapter 1. Introduction

denotational meaning of a program viewed as a function from the input to the
output space is mapped to a function from predicates on the output space to
predicates on the input space. Conversely, the axiomatic meaning of a program
regarded as a function from predicates on the output to predicates on the input
is mapped to a function from the input space to the output space.

The dualities between the denotational and the axiomatic views of a program
are often topological in the sense that they are set in a topological framework.
This is motivated by the tight connection between topology and denotational
semantics: topology has become an essential tool for denotational semantics
and denotational semantics has in
uenced new activities in topology [Smy83b,
Abr87, Vic89, Smy92, Bre94, Mis95, BV96]. The fundamental insight due to
Smyth [Smy83b] is that a topological space may be seen as a `data type' with the
open sets as `observable predicates', and functions between topological spaces as
`computations'. These ideas form the basis for a computational interpretation
of topology.

Abramsky [Abr87, Abr91b], Zhang [Zha91] and Vickers [Vic89, AV93] car-
ried the ideas of Smyth much further by systematically developing a proposi-
tional program logic from a denotational semantics. The main ingredient in
their work is a duality (in categorical terms a contravariant equivalence) be-
tween the category of certain topological spaces and a corresponding category
of frames (algebraic structures with two classes of operators representing �nite
conjunctions and in�nite disjunctions). On one side of the duality, topologi-
cal spaces can arise as semantic domains for the denotations of programs; on
the other side of the duality, frames can arise as the Lindenbaum algebras of a
propositional program logic with properties as elements and proof rules provided
by the various constructions. Accordingly, topological dualities are considered
as the appropriate framework to connect denotational semantics and program
logics [Abr87, Vic89, Zha91].

From a broader perspective, topological dualities (in the form of representa-
tion theorems) can be used to characterize models of abstract algebraic struc-
tures in terms of concrete topological structures. Therefore the ultimate purpose
of setting up a topological duality is to capture axiomatically the class of prop-
erties we have in mind. Let us quote Johnstone [Joh82a, page XX] to summarize
the importance of topological dualities: `Abstract algebra cannot develop to its
fullest extent without the infusion of topological ideas, and conversely if we do
not recognize the algebraic aspects of fundamental structures of analysis our
view of them will be one-sided.'

The contributions of this thesis may roughly be classi�ed into the follow-
ing three kinds. The �rst kind of contribution consists in the characterization
for a given language of an axiomatic semantics using insights from a denota-
tional semantics. For example, we de�ne a weakest precondition semantics for
a sequential language with a backtrack operator using a simple denotational
interpretation. We also characterize a compositional predicate transformer se-

5

mantics for a concurrent language with a shared state space. The semantics
is based on a denotational interpretation of the language given by considering
programs to be functions abstracted from a transition system modulo bisimu-
lation [BZ82, GR89].

The second kind of contribution is dual to the �rst one: the characteriza-
tion of a denotational semantics for a language using an axiomatic semantics.
We characterize a denotational semantics for the re�nement calculus (a lan-
guage with an associated axiomatic semantics based on monotonic predicate
transformers). We use the denotational semantics to derive a new operational
interpretation of the re�nement calculus based on hyper transition systems.
The denotational semantics of the re�nement calculus is proved fully abstract
with respect to the operational interpretation (in fact they are equivalent).

The third kind of contribution is more abstract in nature. We have set up
a framework for a systematic development of a propositional logic for the spec-
i�cation of programs from a denotational semantics. In particular, it gives a
conceptual foundation which answers the question posed by Abramsky [Abr91b,
page 74] about the possibility of expressing in�nite conjunctions in the logic of
domains. The logic derived from a denotational semantics by means of the du-
ality between the category of certain topological spaces and the corresponding
category of frames is not expressive enough to be used for speci�cation pur-
poses: in�nite conjunctions should be added [Abr87, Zha91]. However, such an
extension would necessarily takes us outside open sets. Our contribution con-
sists in the the development of an abstract algebraic framework which allows
both in�nite conjunctions and in�nite disjunctions of abstract open sets. This
framework is related to ordinary topological spaces by means of a representation
theorem, and it is applied by deriving an in�nitary logic for transition systems.

Outline of the chapters

This thesis is divided into three parts. In the �rst part we consider predicates
as subsets of an abstract set of states. In the second part we re�ne the notion
of predicates by considering a�rmative predicates. They are open subsets of
an abstract set of states equipped with a topology. Finally, in the third part we
forget about states and we take predicates to be elements of an abstract algebra
with algebraic operations to represent unions and intersections.

We start by introducing in Chapter 2 some basic concepts in category theory,
partial orders, and metric spaces. Category theory is not needed for understand-
ing the �rst two parts of this thesis. Metric spaces will only play a major role
in Chapter 7.

With Chapter 3 we start the �rst part of the thesis. The chapter is about
the semantics of sequential languages. In particular we consider the weakest
precondition and the weakest liberal precondition semantics, and the relation-
ships to various state transformer semantics. These relationships generalize the

6 Chapter 1. Introduction

duality of Plotkin [Plo79] between predicate transformers and the Smyth pow-
erdomain. We also discuss the weakest precondition semantics of a sequential
non-deterministic language with a backtrack operator.

In Chapter 4 we extend sequential languages with speci�cation constructs.
We use the language of the re�nement calculus introduced by Back [Bac80].
The re�nement calculus is based on a predicate transformer semantics which
supports both unbounded angelic and unbounded demonic non-determinism.
We give a state transformer semantics for the re�nement calculus and relate it
to the predicate transformer semantics by means of a duality. We give also an
operational interpretation of the re�nement calculus in terms of the atomic steps
of the computations of the programs. The latter operational view is connected
to the state transformer semantics.

The second part begins with Chapter 5. In this chapter we re�ne the notion
of predicate introduced in Chapter 3. Following the view of Smyth [Smy83b],
a�rmative predicates are introduced as open sets of a topological space. Several
basic concepts taken from topology are introduced and motivated from the point
of view of a�rmative predicates.

In Chapter 6 we rework in a topological framework the dualities between
predicate and state transformers that were introduced in Chapter 3. These du-
alities show us how to generalize predicate transformers to topological predicate
transformers. The latter can be used as domain for a backward semantics of
non-sequential programming languages. Our starting point is Smyth's duality
between the upper powerspace of a topological space and certain functions be-
tween a�rmative predicates. We show that Smyth's duality holds in a general
topological context. Also, we propose dualities for the lower powerspace and the
(more classical) Vietoris construction on general topological spaces. In passing,
several topological characterizations of metric and order based powerdomains
constructions are investigated.

Chapter 7 is devoted to the semantics of a sequential non-deterministic lan-
guage extended with a parallel operator. A domain of metric predicate trans-
formers is de�ned as the solution of a recursive domain equation in the category
of complete metric spaces. A compositional predicate transformer semantics is
given to the language, and it is shown to be isometric to a state transformer
semantics based on the resumption domain of De Bakker and Zucker [BZ82].
Partial and total correctness properties are studied for the above language using
a connection between the domain of metric predicate transformers and the two
domains of predicate transformers given in Chapter 3. As a consequence, the
semantics of a sequential language is obtained as the abstraction of the unique
�xed point of a metric-based higher-order transformation, and is proved correct
with respect to three order-based semantics obtained as least �xed points of
three higher-order transformations, respectively. Also, we brie
y discuss the
study of temporal properties of a concurrent language via our metric predicate
transformer semantics.

7

The third and last part of the thesis starts with Chapter 8. We abstract
from open sets and regard predicates as elements of an abstract algebra. We
consider a topological space as a function from the abstract set of a�rmative
predicates (with algebraic operations representing arbitrary unions and �nite
intersections) to the abstract set of speci�cations (with algebraic operations
representing arbitrary unions and arbitrary intersections). This structure is
called an observation frame. We show that in certain cases topological spaces
can be reconstructed from observation frames. We obtain a categorical duality
between the category of certain topological spaces (not necessarily sober) and a
corresponding category of observation frames. We also give a propositional logic
of observation frames with arbitrary conjunctions and arbitrary disjunctions.
The logic is shown to be sound and complete if and only if the observation
frame corresponds, canonically, to a topological space. Finally we apply the
above theory in order to obtain dualities for various sub-categories of topological
spaces.

Chapter 9 relates topological spaces seen as frames to topological spaces
seen as observation frames. A new characterization of sober spaces in terms
of completely distributive lattices is given. This characterization can be used
for freely extending the geometric logic of topological spaces to an in�nitary
logic. We also show that observation frames are algebraic structures in a precise
categorical sense.

The thesis ends with Chapter 10. In this chapter an extension of Abramsky's
�nitary domain logic for transition systems to an in�nitary logic with arbitrary
conjunctions and arbitrary disjunctions is presented. To obtain this extension
we apply the theory developed in the previous two chapters. The extension
is conservative in the sense that the domain represented in logical form by the
in�nitary logic coincides with the domain represented in logical form by Abram-
sky's �nitary logic. As a consequence we obtain soundness and completeness of
the in�nitary logic for the class of all �nitary transition systems.

Interdependence of the chapters

The three parts of the thesis can be read almost independently. The logical
interdependence between the chapters is schematically represented by the fol-
lowing diagram.

(2:1) - 8 - 9 - 10

��
��*

��
��*

(2:2) 5

6

([Abr91a])
HHHHj

==) 3
?

- 6
?

- 7
HHHHj

4 (2:3)

6

8 Chapter 1. Introduction

The sections between parentheses and the article [Abr91a] are only necessary
as references to proofs.

Origins of the chapters

Several results of this thesis appeared in publications. Chapter 3 is mostly based
on [BK93b] and [BK94b]. Chapter 6 is an extension of [BK93a] and [BK94a].
The �rst half of Chapter 7 is based on the paper [BKV95] while the second half is
new. Finally, Chapter 8 is a revised version of the paper [BJK95]. Chapters 4, 9
and 10 contain mostly original material, while Chapter 5 follows ideas of Smyth
originally presented in [Smy83b] and [Smy92].

Chapter 2

Mathematical preliminaries

In this chapter, we present some basic notions and properties from category
theory, partial orders and metric spaces which we will need in the subsequent
chapters. This chapter is not intended to provide a comprehensive introduction
to the subjects treated. Rather, it is aimed to list those major facts we shall
assume in the next chapters (providing references for their proofs), and to make
the reader familiar with the notation we will use. The only original material is
Proposition 2.3.3 (stemming from [BKV94]).

2.1 Category theory

In this section we introduce some concepts of category theory and universal
algebra. Statements and facts in this section will be used only in the third part
of this thesis. The �rst two parts will not need any categorical prerequisites.
Unless stated otherwise, our reference for the categorical concepts below is to
the book of Mac Lane [ML71].

We begin with the following three fundamental notions. A category C con-
sists of

(i) a class of objects,
(ii) a class of morphisms. Each morphism has a domain and a codomain

which are objects of the category. The collection of all morphisms with domain
A and codomain B is denoted by C(A;B).
(iii) a composition law which assigns to each pair of morphisms f 2 C(A;B)

and g 2 C(B ;C) a morphism g � f 2 C(A;C).
(iv) an identity morphism idA 2 C(A;A) for each object A such that for all

morphisms f , f � idA = f and idA � f = f whenever the composites are de�ned.

For example, there is a category Set whose objects are sets and whose
morphisms are functions with the usual composition. Similarly, Set2 is the
category whose objects are functions f : A ! B between two sets, and whose

9

10 Chapter 2. Mathematical preliminaries

morphisms between f : A! B and g : A0 ! B 0 are pairs of functions hh : A!
A0; k : B ! B 0i such that g � h = k � f .

A functor F :C ! D is a morphism between two categories. It assigns to
each object A of C an object F (A) of D, and to each morphism f 2 C(A;B) a
morphism F (f) 2 D(F (A);F (B)) such that

(i) it preserves identity, i.e. F (idA) = idF (A), and
(ii) it preserves composition whenever de�ned, i.e. F (f � g) = F (f) � F (g).

A natural transformation � : F ! G is a morphism between two functors
F ;G :C! D. It maps each object A of C to a morphism �A 2 D(F (A);G(A))
such that for all morphisms f 2 C(A;B) we have G(f) � �A = �B � F (f).

In a category C a morphism f 2 C(A;B) is said to be an isomorphism (and
A and B are called isomorphic) if there exists another morphism g 2 C(B ;A)
such that f � g = idB and g � f = idA. An object A of C is called a �xed point
of a functor F : C ! C if A is isomorphic to F (A). A functor F : C ! D is
said to re
ect isomorphisms if for each morphism f of C, f is an isomorphism
whenever F (f) is.

The opposite category Cop of a category C has the same objects of C and
f 2 Cop(A;B) if and only if f 2 C(B ;A). Composition and identities are
de�ned in the obvious way. A category C is a full sub-category of D if every
object in C is an object in D, and C(A;B) = D(A;B).

The main concept of category theory is that of adjunction. For two functors
F :C! D and G :D! C, we say F is left adjoint of G if there is a bijection,
natural in A and B , between C(A;G(B)) and D(F (A);B). In this case the
functor G is said to be right adjoint of F . Every adjunction induces two natural
transformations: the unit � : idC ! G � F (for each A, �A : A ! G(F (A)) is
the morphism which corresponds to idF (A) : F (A) ! F (A)), and its dual, the
counit " : F �G ! idD (for each B , "B : F (G(B))! B is the morphism which
corresponds to idG(B) :G(B)! G(B)). In general we do not need to know that
F is a functor [ML71, page 81, Theorem 2]:

2.1.1. Proposition. A functor G :D! C has a left adjoint if for each object
A of C there exists an object F (A) in D and a morphism �A : A ! G(F (A))
such that for every other morphism f 2 C(A;G(B)) there is a unique h 2
D(F (A);B) satisfying G(h) � �A = f . 2

A re
ection is an adjunction for which the counit "B is an isomorphism for
all B . If both unit and counit are isomorphisms then the adjunction is called
an equivalence and the categories involved are equivalent. We say that two
categories C and D are dual if C is equivalent to Dop . An adjunction is called
Galois if it restricts to an equivalence between the categories F (C) and G(D)
(here F (C) denotes the full sub-category of D whose objects are in the image
of F , and G(D) denotes the full sub-category of C whose objects are in the

2.1. Category theory 11

image of G). An adjunction is Galois if and only if it restricts to a re
ection
from C into F (C) [Isb72b].

Let C be a category and J be a small category (i.e. the objects and the
morphisms of J form a set rather than a proper class). The category CJ has
as objects functors from J to C (in this context often called diagrams), and
morphisms are natural transformations. There is a functor 4 :C! CJ which
maps every object A to the constant functor with value A. We say that C
has limits of type J if the functor 4 has a right adjoint limJ, and we refer to
limJ(D) as the limit of the diagram D . Dually, if 4 has a left adjoint then we
say that C has colimits of type J. If J is the empty category then the limit of a
diagram is called terminal object while the colimit is called initial object. If J is
a discrete category (i.e. one with only identity morphisms) then the limit of a
diagram is called product and the colimit coproduct. Finally, if J is the category
with two objects, two identity morphisms and two parallel morphisms between
the two objects then the limit of a diagram is called equalizer and the colimit
coequalizer.

A category is complete if it has all small limits, and cocomplete if it has all
small colimits. Both categories Set and Set2 are complete and cocomplete.

A monad on a category C is a triple hT ; �; �i where T :C! C is a functor,
and � : idC ! T and � :T �T ! T are natural transformations satisfying some
commutativity laws (see page 133, [ML71]). Every functor F :C! D which is
a left adjoint of G :D! C induces a monad hG � F ; �;G("F (�))i on C, where
� is the unit of the adjunction and " is the counit.

Conversely, given a monad hT ; �; �i on C we can always �nd an adjunction
inducing it. To this aim, denote the category of the algebras of the monad T
on C by CT . Its objects are morphisms (called T -algebras) h 2 C(T (A);A)
such that h � �A = idA and h � �A = h �T (h); its morphisms from a T -algebra
h 2 C(T (A);A) to a T -algebra k 2 C(T (B);B) are morphisms f in C(A;B)
such that f � h = k � T (f). The obvious forgetful functor GT :CT ! C which
sends a T -algebra h 2 C(T (A);A) to A has a left adjoint FT :C! CT which
maps any object A in C to the free T -algebra �A 2 C(T (T (A));T (A)). The
monad de�ned by this adjunction is trivially equal to the original monad T (see
page 136, Theorem 1 in [ML71]), hence every monad is de�ned by its algebras.

A functor G :D! C is said to be monadic if it has a left adjoint F and the
comparison functor K :D ! CT de�ned by K (A) = G("A) is an equivalence
of categories, where T is the monad induced by G � F and " is the counit of
the adjunction between F and G . The following version of Beck's Theorem
(see page 147 in [ML71]) gives conditions on a functor G to ensure that G is
monadic.

2.1.2. Proposition. Let G :D ! C be a functor with a left adjoint F . If D
has all coequalizers, G preserves these coequalizers, and G re
ects isomorphisms
then G is monadic. 2

12 Chapter 2. Mathematical preliminaries

We conclude this section by mentioning the connection between the the-
ory of monads and universal algebra. For a more detailed account we refer
to [Bir67, EM85] for the �nitary case, to [Lin66] for the in�nitary one, and to
the comprehensive [Man76].

An algebraic theory T = h
;E i consists of a class
 of operators each with
an associated set I denoting its arity, and a class E of identities of the form
el = er , where el and er are expressions formed from a convenient set of variables
by applying the given operators.

A T-algebra is a set A together with a corresponding function !A :A
I ! A

for each operator ! of
 of arity I , such that independently of the way we
substitute elements of A for the variables, the identities of E hold in A. More
formally, if e is an expression formed using a set of variables xi for i 2 I by
applying the given operators in
, the substitution of elements of A for the xi 's
gives us a corresponding function e : AI ! A. If A is a T -algebra and el = er
is an identity in E using free variables xi for i 2 I , then the two corresponding
functions el ; er : A

I ! A must be equal.
A T-homomorphism between two T -algebras A and B is a function f :A! B

such that !B ��i2I f = f �!A for each operator ! 2
 of arity I . The collection
of all T -algebras and T -homomorphisms between them form a category T -
Alg. There is a forgetful functor U : T -Alg! Set mapping every T -algebra
A to its underlying set A (its action on morphisms is obvious). The following
proposition [Man76, Chapter 1] summarizes some important features of the
category of T -algebras.

2.1.3. Proposition. For every algebraic theory T the category of T-algebras
T-Alg has all small limits: they are constructed exactly as in Set, and the
forgetful functor U : T-Alg ! Set preserves them. Moreover, if the forgetful
functor U :T-Alg! Set has a left adjoint, then the functor U is monadic and
T-Alg has all small colimits. 2

Let T = h
;E i be an algebraic theory. A presentation T hG j Ri consists of
a set G (called in this context of generators) and a set R of pairs (called in this
context relations) of the form hel ; eri, where el and er are expressions formed
from generators in G by applying the given operators in
. A model for a
presentation T hG j Ri is a T -algebra A together with a function [[�]]A :G ! A
such that if hel ; eri is a relation in R then [[el]]A = [[er]]A. In the latter equality,
we have applied the function [[�]]A : G ! A to an expression e (built up from
generators in G and operators in
) by replacing the generators g by their
interpretation [[g]]A, the operators ! by the corresponding operations !A, and
evaluating the resulting function in A to give [[e]]A 2 A.

Notice that in a presentation we make two di�erent uses of equations: in
the identities of E that are part of T equations contain variables and must hold
whatever values from an algebra are substituted for the variables, and in the

2.2. Partial orders 13

relations of R equations contain generators and must hold when the generators
are given their particular values in a model.

A T -algebra A is presented by a presentation T hG j Ri if it is a model for
the presentation, and for every other model B there exists a unique morphism
h : A ! B in T -Alg such that h([[g]]A) = [[g]]B for every generator g 2 G .
Clearly, the algebra presented by generators and relations if it exists is unique,
up to isomorphisms in T -Alg. Once we know that the forgetful functor U :T -
Alg ! Set has a left adjoint F , the standard theory of congruences gives
us a way to force the relations R on the free T -algebra F (G). The resulting
T -algebra is presented by T hG j Ri.

For a �nitary algebraic theory T , i.e. one with a set (and not a proper class)
of operators and such that each operator has �nite arity, every presentation
T hG j Ri always presents a T -algebra. It can be constructed as a suitable
quotient of the set of terms formed from G by applying the operators of T . This
implies that the forgetful functor T -Alg! Set is monadic [Man76, Chapter 1]
with left adjoint given by the assignment which takes every set G to the algebra
which presents T hG j ;i.

More generally, given any monad on Set we can describe its algebras by
operations and equations, provided that we allow in�nitary theories T (ones
with proper classes of operators and equations, respectively). The converse is,
unfortunately, false: there are in�nitary theories T for which a presentation
T hG j Ri does not present any T -algebra. Technically what goes wrong is
that the collection of terms formed from G by applying the operators of

and satisfying the equations of E can be too big to be a valid set (i.e. it
can be a proper class). Examples are the theory of complete Boolean algebras
[Gai64, Hal64] and the theory of complete lattices [Hal64].

2.2 Partial orders

Partially ordered sets occur at many di�erent places in mathematics, and their
theory belongs to the fundamentals of any book on lattice theory. A classic
reference on lattice theory, representative of the status of the theory in 1967,
is the book of Birkho� [Bir67]. A good introductory modern book on lattice
theory and ordered structures is that of Davey and Priestley [DP90]. In recent
years, partial orders on information have been successfully used in the seman-
tics of programming languages [Sco70, SS71]. The mathematical part of this
approach is called domain theory. Here the word domain quali�es a mathe-
matical structure which embodies both a notion of convergence and a notion of
approximation [AJ94]. A discussion on domain theory is presented in the sub-
section below. The reader who wishes to consult a more detailed introduction to
domain theory and continuous lattices may �nd [Plo81a, AJ94] and [GHK+80]
useful references.

14 Chapter 2. Mathematical preliminaries

Let P be a set. A preorder <� on P is a binary, re
exive and transitive
relation. A partial order on P is a binary relation � which is re
exive, transitive
and also antisymmetric. A poset is a set equipped with a partial order. A poset
P is said to be discrete if the partial order coincides with the identity relation.
Hence every set can be thought of as a discrete poset.

In every preordered set P we denote, for x 2 P , by " x the upper set of x ,
and by # x the lower set of x , that is,

" x = fy 2 P j x <� yg and # x = fy 2 P j y <� xg:

The set " x is also called the principal �lter of X generated by x .
Let P be a poset and S be a subset of P . An element x of P is a join (or

least upper bound) for S , written as x =
W
S , if for all s 2 S , s � x and if

s � y for all s 2 S then x � y . Since the partial order is antisymmetric, the
join of S if it exists is unique. If S is a two element set fs; tg then we write
s _ t for

W
S ; and if S is the empty set ; then we write ? for

W
S . Clearly if ?

exists then it is the least element of P .
Dually, in any poset P we can de�ne the notion of meet by reversing all the

inequalities in the de�nition of the join. We write
V
S , s ^ t and > for the meet

of an arbitrary subset S of P , the binary meet and the empty meet. Notice
that for every upper closed subset S of P , if

V
S exists in S then S = "(

V
S).

A function f : P ! Q between two posets is said to be monotone if p � q
in P implies f (p) � f (q). If the reverse implication holds then f is said to be
order re
ecting. The collection of all posets with monotone functions between
them forms the category PoSet.

A function f :P ! Q between two posets is said to be strict whenever ? 2 P
is the least element of P implies f (?) is the least element of Q .

A function f : P ! Q between two posets is said to be �nitely additive if it
preserves all �nite joins of P , and completely additive if it preserves all joins of
P . Dual notions are �nitely multiplicative and completely multiplicative.

An element x of a poset P is said to be a least �xed point of f : P ! P if
f (x) = x , and f (y) = y implies x � y for all other y 2 P . Dually, x is said to
be a greatest �xed point of f :P ! P if f (x) = x , and f (y) = y implies y � x for
all other y 2 P . The following proposition is due to Knaster [Kna28] and later
reformulated by Tarski [Tar55] to assert that the set of �x-points of a monotone
function f on a complete lattice forms a complete lattice (and therefore f has
a least �xed point).

2.2.1. Proposition. Let P be a poset and let f : P ! P be a monotone func-
tion. If y =

V
fx j f (x) � xg exists in P, then y is the least �xed point of f .

Similarly, if z =
W
fx j x � f (x)g exists in P, then z is the greatest �xed point

of f . 2

A poset in which every �nite subset has a join is called join-semilattice and,
analogously, a poset in which every �nite subset has a meet is called meet-
semilattice. A lattice is a poset in which every �nite subset has both meet

2.2. Partial orders 15

and join. By considering arbitrary subsets, and not just �nite ones, we can
de�ne complete join-semilattice, complete meet-semilattice and complete lattice.
A poset is a complete join-semilattice if and only if it is a complete meet-
semilattice. Thus every complete semilattice is actually a complete lattice.
However it is convenient to distinguish between the two concepts since a mor-
phism of complete join-semilattices (a function preserving arbitrary joins) is
not necessarily a morphism of complete lattices (a function preserving both ar-
bitrary joins and arbitrary meets). We have thus two categories CSLat and
CLat with the same objects but with di�erent morphisms.

A lattice L is called distributive if

a ^ (b _ c) = (a ^ b) _ (a ^ c)

for all a; b and c in L. The above equation holds for a lattice if and only if so
does its dual [Sc890]

a _ (b ^ c) = (a _ b) ^ (a _ c):

The class of all distributive lattices together with functions preserving both
�nite meets and �nite joins de�nes a category, denoted by DLat. A distributive
lattice L is called a Heyting algebra if for all a and b in L there exists an element
a ! b such that, for all c,

c � (a ! b) if and only if (c ^ a) � b:

A Heyting algebra L is said to be a Boolean algebra if and only if for all a 2 L,

(a ! ?)! ? = a:

In this case, the element a ! ? is called the complement of a, denoted by :a.
A complete lattice L satisfying the in�nite distributive law

a ^
_

S =
_
fa ^ s j s 2 Sg

for all a 2 L and all subsets S of L is called a frame. Frames with functions
preserving arbitrary joins and �nite meets form a category called Frm. Every
frame F de�nes a Heyting algebra by putting

a ! b =
_
fc 2 F j c ^ a � bg:

Conversely, every Heyting algebra which has a join for every subset is also a
frame. However, frame morphisms do not need to preserve the ! operation.

A complete lattice L is called completely distributive if, for all sets A of
subsets of L,^

f
_

S j S 2 Ag =
_
f
^

f (A) j f 2 �(A)g;

16 Chapter 2. Mathematical preliminaries

where f (A) denotes the set ff (S) j S 2 Ag and �(A) is the set of all functions
f :A!

S
A such that f (S) 2 S for all S 2 A. The above equation holds for a

complete lattice if and only if so does its dual [Ran52]_
f
^

S j S 2 Ag =
^
f
_

f (A) j f 2 �(A)g:

Because of the presence of arbitrary choice functions in the statement of the
above law, proofs involving complete distributivity require the axiom of choice.
For example, the statement that the set P(X) of all subsets of a set X is a
completely distributive lattice when ordered by subset (or superset) inclusion is
equivalent to the axiom of choice [Col54]. Completely distributive lattices with
functions preserving both arbitrary meets and arbitrary joins form a category,
denoted by CDL. Every completely distributive lattice is a frame and every
frame is a distributive lattice. Moreover, there are obvious forgetful functors
CDL ! Frm and Frm ! DLat. Every complete ring of sets, that is, a set
of subsets of X closed under arbitrary intersections and arbitrary unions, is a
completely distributive lattice.

For a meet semilattice L, a non-empty subset F of L is said to be a �lter if

(i) F is upper closed; i.e. a 2 F and a � b implies b 2 F ; and
(ii) F is a sub-meet-semilattice; i.e. a 2 F and b 2 F imply a ^ b 2 F .

The collection of all �lters of a meet semilattice L is denoted by Fil(L). If
L is also a lattice then a �lter F � L is prime if for all �nite subsets S of L,W
S 2 F implies there exists s 2 S \ F . Finally, if L is a complete lattice then

a �lter F � L is completely prime if
W
S 2 F implies there exists s 2 S \ F .

For example, for any a 2 L the subset "a = fb 2 L j a � bg is a �lter.
For a complete lattice L, an element p 2 L is said to be prime if p 6= >,

and a ^ b � p imply a � p or b � p. The collection of all prime elements of
L is denoted by Spec(L). The map which sends each completely prime element
p 2 L to "

V
(L n #p) and the map which sends each completely prime �lter F

of L to
W
(LnF) form an isomorphism between the completely prime �lters and

the prime elements of a complete lattice L.

Directed complete partial orders

There is a special class of joins in a poset that we will consider next. A non-
empty subset S of a poset P is said to be directed if for all s and t in S there
exists x 2 S with both s � x and t � x . For example, the set of elements of
an !-chain of a poset P forms a directed set, where an !-chain is a countable
sequence (xn)n of element of P such that xn � xn+1 for all n � 0.

We say that P is a directed complete partial order (dcpo) if
W
S exists for

every directed subset S of P . A dcpo P with a least element ? is called a
complete partial order (cpo). If a poset has �nite joins and directed joins then
it has arbitrary joins.

2.2. Partial orders 17

An element b of a dcpo P is compact if for every directed subset S of P ,
b �

W
S implies b � s for some s 2 S . The set of all compact elements of P

is denoted by K(P). In any dcpo, the join of �nitely many compact elements,
if it exists, is again a compact element. A dcpo P is said to be algebraic if
every x 2 P is the join of the directed set of compact elements below it, that
is, x =

W
fb 2 K(P) j b � xg. A dcpo P is !-algebraic if it is algebraic and the

set K(P) is countable. When a dcpo is !-algebraic we do not need to consider
general directed joins, but only joins of !-chains are su�cient.

A monotone function f :P ! Q between two dcpo's is said to be continuous
(or Scott continuous) if it preserves all directed joins. The collection of all
dcpo's with continuous functions forms a category, denoted by DCPO. The
full sub-category ofDCPO whose objects are complete partial orders is denoted
by CPO, whereas the full sub-category of DCPO whose objects are algebraic
dcpo's is denoted by AlgPos. The forgetful functor CPO! DCPO has a left
adjoint (�)? mapping every dcpo P to the lift P?, that is, the poset P with a
new least element adjoined. If P is a set (e.g. discrete dcpo), then the lift P?
is said to be a
at cpo. A
at cpo is algebraic and every element is compact.
Dually to the lift, for a poset P we denote by P> the poset P with a new top
element adjoined.

The forgetful functor U :AlgPos! PoSet has a left adjoint Idl(�) de�ned
by the map which assigns to a poset P the algebraic dcpo Idl(P) of directed
ideals of P (i.e. the directed lower subsets of P) ordered by subset inclusion.
Moreover, Idl(P) is also a cpo if and only if P has a least element. The algebraic
dcpo Idl(P) is often referred to as the ideal completion of the poset P . More
generally, for a preordered set P , the poset Idl(P) of all directed ideals of P
ordered by subset inclusion forms an algebraic dcpo with compact elements " x
for x 2 P .

Let P be an algebraic cpo. There are three standard preorders de�ned on
subsets X and Y of P :

� the Hoare preorder, de�ned as X <�H
Y if 8x 2 X9y 2 Y : x � y ;

� the Smyth preorder, de�ned as X <�S
Y if 8y 2 Y 9x 2 X : x � y ; and

� the Egli-Milner preorder, de�ned as X <�E
Y if X <�H

Y and X <�S
Y .

Powerdomains can be constructed from these preorders by ideal completion:
the Hoare powerdomain H(P), the Smyth powerdomain S(P) and the Plotkin
powerdomain E(P) of an algebraic cpo P are de�ned as the ideal completion of
(P�n(K(P)); <�H

), (P�n(K(P)); <�S
), and (P�n(K(P)); <�E

), respectively, where
P�n(K(P)) consists of all �nite, non-empty sets of compact elements of P .

Let P and Q be two algebraic cpo's. The coalesced sum P � Q is de�ned
as the disjoint union of P and Q with bottom elements identi�ed, whereas the
separated sum P + Q is the disjoint union of P and Q with a new bottom

18 Chapter 2. Mathematical preliminaries

element ? adjoined. The product P � Q is de�ned as the Cartesian product
of the underlying sets ordered componentwise. All these constructions can be
generalized to arbitrary sets of algebraic cpo's. For example, the separated sum,P

I Pi is the algebraic cpo obtained by the disjoint union of all the algebraic
cpo's Pi with a new bottom element ? adjoined.

Let P be a cpo. A minimal upper bound x of a subset S of P is an upper
bound of S (that is, s � x for all s 2 S) such that for all y 2 P ,

8s 2 S : s � y & y � x) x � y :

In other words, x is a minimal upper bound of S if x is above every element in
S and there is no other element y above every element in S but below x . Note
that, in contrast with a least upper bound, a minimal upper bound need not
to be unique. The set mub(S) denotes the set of minimal upper bounds of S ,
and the set mub?(S) is the smallest set Y � P such that S � Y and if X � Y
then mub(X) � Y , that is, mub?(S) is the least set containing S and closed
under mub(�). An algebraic cpo P is said to be an SFP-domain if for every
�nite subset S of compact elements K(P):

(i) if y is an upper bound of S then x � y for some x 2 mub(S), and
(ii) the set mub?(S) is �nite.

Alternatively, one can de�ne SFP-domains as those algebraic cpo's which arise
both as limits and as colimits in CPO of countable sequences (via embedding-
projection pairs) of �nite posets [Plo76]. The full sub-category ofAlgPoswhose
objects are SFP-domains is denoted by SFP. The justi�cation for studying
this category is that it is the largest Cartesian closed category with !-algebraic
cpo's as objects and continuous functions as morphisms [Smy83a]. The only fact
about SFP which we will need in the sequel is that it is closed under the fol-
lowing constructors: lift, coalesced sum, countable separated sum, and Plotkin
powerdomain. Moreover SFP admits recursive de�nitions of SFP-domains by
using the above constructors [Plo81a, Chapter 5, Theorem 1].

Fixed points

In Proposition 2.2.1 su�cient conditions are given to guarantee the existence
of least and greatest �xed points of a monotone function on a poset. Next
we recall other characterizations of least and greatest �xed points of monotone
functions. For an overview of �xed point theorems we refer to [LNS82].

Let P be a poset and let f : P ! P be a function. For any ordinal � de�ne
f h�i and f [�] as the following elements of P (if they exists):

f h�i = f (
_
ff h�i j � < �g) and f [�] = f (

^
ff [�] j � < �g): (2.1)

In general they do not need to exist, since
W
ff h�i j � < �g and

V
ff [�] j � < �g

may not exist. Notice that for � = 0, f h�i = f (?) when the least element

2.2. Partial orders 19

? 2 P exists since in this case the join over an empty index set is the bottom
element. Similarly, for � = 0, f [�] = f (>) when the top element exists. The
following proposition, originally formulated by Kleene [Kle52] in a di�erent
context, characterizes the least �xed point as a directed join in contrast with
Proposition 2.2.1 where the least �xed point is characterized as an in�nite meet.

2.2.2. Proposition. Let P be a complete partial order. If f : P ! P is a
continuous function then f h�i exists in P for every ordinal �, and f h!0i is the
least �xed point of f (here !0 is the �rst limit ordinal). 2

Hitchcock and Park have extended the above proposition by weakening the
constraint on f from continuous to monotone [HP72].

2.2.3. Proposition. Let P be a complete partial order. If f : P ! P is a
monotone function then f h�i exists in P for every ordinal �, and there exists
an ordinal � such that f h�i = f h�i whenever � � �. The latter implies that f h�i

is the least �xed point of f . 2

The dual of the above proposition holds as well. To guarantee the existence
of certain meets we rephrase it for complete lattices.

2.2.4. Proposition. Let P be a complete lattice. If f : P ! P is a monotone
function then f [�] exists in P for every ordinal �, and there exists an ordinal �
such that f [�] = f [�] whenever � � �. The latter implies that f [�] is the greatest
�xed point of f . 2

Under certain circumstances, the least �xed point of a function on a cpo can
be enough to guarantee the existence of the least �xed point of another function
on a poset which is not necessarily complete [AP86].

2.2.5. Proposition. Let P be a cpo and let Q be a poset such that there is a
strict and continuous function h : P ! Q. If x 2 P is the least �xed point of
a monotone function f : P ! P and g : Q ! Q is another monotone function
such that the following diagram commutes

P
f - P

�

Q

h
?

g
- Q
?
h

then the least �xed point of g exists and equals h(x). 2

Several generalizations and applications of the above proposition (often
called the transfer lemma) can be found in [Mey85].

20 Chapter 2. Mathematical preliminaries

2.3 Metric spaces

We conclude this chapter with a section on some basic notions related to metric
spaces. The results in this section will play a key role only in the second part
of this thesis. Like partially ordered sets, metric spaces are fundamental struc-
tures in mathematics, especially in topology. For details we refer the reader to
Engelking's standard work [Eng89] and Dugundji's classical book [Dug66]. We
use metric spaces as a mathematical structure for semantics of programming
languages, following the work of Arnold and Nivat [AN80]. For a comprehen-
sive survey of the use of metric spaces in the semantics of a large variety of
programming notions, we refer the reader to [BV96].

A (one-bounded) metric space consists of a set X together with a function
dX : X � X ! [0; 1], called metric or distance, satisfying, for x ; y and z in X ,

(i) dX (x ; x) = 0 (ii) dX (x ; z) � dX (x ; y) + dX (y ; z)

(iii) dX (x ; y) = dX (y ; x) (iv) dX (x ; y) = dX (y ; x) = 0) x = y

A set X with a function dX :X �X ! [0; 1] satisfying only (i); (ii), and (iii)
is called a (one-bounded) pseudo metric space. A quasi metric space is a set X
with a function dX : X � X ! [0; 1] satisfying axioms (i), (ii), and (iv). We
shall usually write X instead of (X ; dX) and denote the metric of X by dX . A
metric space X with a distance function which satis�es, for all x ; y and z in X ,

dX (x ; z) � maxfdX (x ; y); dX (y ; z)g

is said to be an ultra-metric space. Clearly the above axiom implies axiom (ii).
A countable sequence of points (xn)n of a metric space X is said to converge

to an element x 2 X if

8� > 09k � 08n � k : dX (xn ; x) � �:

Every sequence converges to at most one point which, if it exists, is said to be
the limit of the sequence. It is denoted by limn xn . A countable sequence of
points (xn)n of a metric space X is said to be Cauchy if

8� > 09k � 08m; n � k : dX (xm ; xn) � �:

As can be easily seen, every convergent sequence is Cauchy. A metric space is
called complete if every Cauchy sequence converges to some point in X .

The simplest example of a complete metric space is the following. A metric
space X is called discrete if

8x 2 X9� > 08y 2 X : dX (x ; y) < �) x = y :

Every discrete metric space is complete since it has no non-trivial Cauchy se-
quences. A set X can be seen as a discrete metric space if endowed with a

2.3. Metric spaces 21

distance function which assigns to x ; y 2 X , distance 1 if x 6= y and distance 0
otherwise.

Let X and Y be two metric spaces. A function f : X ! Y is said to be
non-expansive if dY (f (x1); f (x2)) � dX (x1; x2) for all x1; x2 2 X . The set of all

non-expansive functions from X to Y is denoted by X
1
! Y . Complete metric

spaces together with non-expansive maps form a category, denoted by CMS.
Of special interest in the study of metric spaces are contracting functions,

that is, functions f : X ! Y such that

9� < 18x ; y 2 X : dY (f (x1); f (x2)) � � � dX (x1; x2):

The following proposition is known as the Banach �xed point theorem [Ban22].

2.3.1. Proposition. If X is a complete metric space and f : X ! X is a
contracting function then f has a unique �xed point x such that, for every y 2 X ,
x = limn yn , where (yn)n is the Cauchy sequence de�ned inductively by y0 = y
and yn+1 = f (yn). 2

Next we de�ne some of the constructors on metric spaces. For all � � 1
and metric space X , de�ne the metric space � � X as the set X with distance
function, for all x1 and x2 in X ,

d��X (x1; x2) = � � dX (x1; x2):

The product X � Y of two metric spaces X and Y is de�ned as the Cartesian
product of their underlying sets together with distance, for hx1; y1i and hx2; y2i
in X � Y ,

dX�Y (hx1; y1i; hx2; y2i) = maxfdX (x1; x2); dY (y1; y2)g:

The exponent of X and Y is de�ned by

Y X = ff : X ! Y j f is non-expansive g;

with distance, for f and g in Y X ,

dYX (f ; g) = supfdY (f (x); g(x)) j x 2 X g:

Notice that if Y is a set endowed with the discrete metric then every function
from Y to X is non-expansive. The disjoint union X +Y of two metric spaces
X and Y is de�ned by taking the disjoint union of their underlying sets with
distance, for z1 and z2 in X + Y ,

dX+Y (z1; z2) =

8><>:
dX (z1; z2) if z1 2 X and z2 2 X
dY (z1; z2) if z1 2 Y and z2 2 Y
1 otherwise:

22 Chapter 2. Mathematical preliminaries

If both X and Y are complete metric spaces then also X �Y , Y X and X +Y
are complete metric spaces.

The Hausdor� distance between two subsets A and B of a metric space X
is de�ned by

dP(X)(A;B) = maxf supfinffdX (a; b) j b 2 Bg j a 2 Ag;

supfinffdX (a; b) j a 2 Ag j b 2 Bg g

with the convention that inf ; = 1 and sup ; = 0. In general (P(X); dP(X)) is a
pseudo metric space: di�erent subsets of X can have null distance. In order to
turn sets of subsets of a metric space into a metric space, we need the following
notions. A subset S of a metric space X is said to be closed if the limit of every
convergent sequence in S is an element of S . For example, the set X itself is
closed as well as the empty set. Also, every singleton set fxg is closed. In
general, every subset S can be extended to a closed set

cl(S) = flim
n
xn j (xn)n is a convergent sequence in Sg:

Clearly, cl(S) is the smallest closed set containing S . Notice that if S is a closed
subset then cl(S) = S . A subset S of a metric space X is compact if for every
sequence in S there exists a sub-sequence converging to some element in S .
Every compact set is closed, and every �nite set is compact. A metric space X
is compact if the set X is compact. It follows that every compact metric space
is complete.

Both the collection of compact subsets of a metric space X , denoted by
Pco(X), and the collection of closed subsets of X , denoted by Pcl(X), are metric
spaces when taken with the Hausdor� distance. Moreover, if X is a complete
metric space then Pco(X) is a complete metric space [Hah48], and also Pcl(X)
is a complete metric space [Kur56]. We refer to them as the compact and closed
powerdomain of X , respectively. Below we give two properties of the Hausdor�
distance which will be useful later.

2.3.2. Proposition. Let X be a metric space. For all � � 0 and subsets A
and B of X , dP(X)(A;B) � � if and only if for all � > 0,

8a 2 A9b 2 B : dX (a; b) � � + � and 8b 2 B9a 2 A: dX (a; b) � � + �:
2

While the above proposition is standard the following one seems to be new.

2.3.3. Proposition. Let X be a metric space and V and W be two sets of
subsets of X such that for all C � X , if

T
V � C then C 2 V , and ifT

W � C then C 2W. Then

dP(P(X))(V ;W) = dP(X)(
\

V ;
\

W):

2.3. Metric spaces 23

Proof: Put V0 =
T
V and W0 =

T
W . Let also � = dP(P(X))(V ;W) and

�0 = dP(X)(V0;W0). We claim

8X 2 V 9Y 2W : dP(X)(X ;Y) � �0 + � and (2.2)

8Y 2W 9X 2 V : dP(X)(Y ;X) � �0 + �

for an arbitrary �>0. From the above claim � � �0 follows by Proposition 2.3.2.
Next we prove the claim. Choose some � > 0 and X 2 V . Put Y = W0 [X .
By the closure property of W , since W0 � Y , also Y 2 W . Since X � Y we
have that for all x 2 X we can �nd y 2 Y such that dX (x ; y) = 0. On the
other hand, for all y 2 Y , either y 2 W0 or y 2 X by de�nition. So, either
dX (y ; x) � �0 + � for some x 2 V0 � X (since dP(X)(V0;W0) � �0 + � and
V0 � X 2 V) or dX (y ; x) = 0 � �0 + � from x = y 2 X . Hence (2:2) follows by
Proposition 2.3.2. Symmetrically we derive

8Y 2W 9X 2 V : dP(X)(Y ;X) � �0 + �

from which our claim follows and we conclude � = dP(P(X))(V ;W) � �0.
In order to show the converse, i.e. �0 � �, we establish

8x 2 V09y 2W0: dX (x ; y) � � + � and (2.3)

8y 2W09x 2 V0: dX (y ; x) � � + �;

for all � > 0. Since dP(P(X))(V ;W) = �, V0 2 V , and W0 2 W we can �nd
Y 2W and X 2 V by Proposition 2.3.2 such that

dP(X)(V0;Y) � � + � and dP(X)(X ;W0) � � + �:

From this we obtain the result (2.3) and its symmetric version, for V0 � Y and
W0 � X , respectively. Therefore �0 = dP(X)(V0;W0) � �. 2

In [AR89, RT93], generalizing the results of [BZ82], a method has been devel-
oped to justify recursive de�nitions of complete metric spaces as solutions of
domain equations of the form X �= F (X), where F :CMS! CMS is a functor.
A solution for the domain equation X �= F (X) exists and it is unique (up to
isometries) if the functor F is locally contracting, that is, for every two complete
metric spaces X and Y , the mapping

FX ;Y : Y X ! F (Y)F (X)

is contractive, where FX ;Y (f) = F (f) for every non-expansive f : X ! Y . If,
for all objects X ;Y , FX ;Y is non-expansive then the functor is called locally
non-expansive. Composition of a locally non-expansive functor with a locally
contractive one gives a locally contractive functor.

For example, the constructors Pco(�) and Pcl(�) can be extended to func-
tors from CMS to CMS which are locally non-expansive, while the constructor
1
2
� (�) can be extended to a functor from CMS to CMS which is locally con-

tractive. Also, for a �xed set S (understood as a discrete metric space), the
constructors S ��, S (�), and S + (�) can be extended to functors from CMS
to CMS which are locally non-expansive [AR89, RT93].

24 Chapter 2. Mathematical preliminaries

Part I

Basic dualities

25

Chapter 3

The weakest precondition

calculus

The role of a sequential program is to produce a �nal result at the end of a ter-
minating computation. Computations may possibly be non-deterministic and
also fail to terminate. The main characteristic of sequential programs is that
no interaction with its environment is possible. Programs written in classical
programming languages like Pascal are examples of sequential programs. Dif-
ferent semantics for this type of programs (and their relationships) are our main
interest in this �rst part of the thesis.

The semantics of a programming language L is a function which assigns to
each program in L its meaning, that is, an element of a domain of meanings
chosen for modeling the computations speci�ed by the program. There are dif-
ferent approaches to the de�nitions of the semantic function and of the semantic
domain.

The operational approach is intended to specify the meaning of a program
in terms of the steps performed by an abstract machine when executing it.
Formally, a transition relation on the con�gurations of an abstract machine
is speci�ed [HP79, Plo81b]: a transition from a con�guration to another one
represents one atomic step of a computation. Then the semantic function is
de�ned in terms of the transition relation. A computation of a program may
fail to terminate if it contains an in�nite transition sequence. A computation
deadlocks if there is a con�guration reached by the computation from which
no transition is possible. The operational view of a program on the one hand
corresponds often to its intuitive meaning, but, on the other hand, it is not
always abstract enough to be computationally useful since it might require a
rather detailed and intricate analysis.

Another approach to semantics is the denotational one [SS71, MS76, Sto77,
Gor79]: �rst provide an appropriate semantic domain according to the principle
that program constructs denote values, and then de�ne the semantic function
in such way that the meaning of each syntactic construction of a program is

27

28 Chapter 3. The weakest precondition calculus

given in terms of the meanings of its constituent parts. In particular �xed point
techniques are needed to deal with recursion. For sequential programs this re-
sults in the relation between input and output values. Thus the most simple
abstract denotational domain for sequential programs is that of all functions
from a starting state space (the set of all admissible inputs values) to a �nal
state space (the set of all possible output values). The semantics of a program
is a function, which we call state transformer. In order to take into account
non-termination of programs it is a natural step to consider state transformers
employing complete partial orders with a bottom element|a �ctitious state
representing non-termination. Within this framework, non-determinism can be
handled using powerdomains. The state transformer model re
ects closely the
operational view of a program, but abstracts from the intermediate con�gura-
tions.

The axiomatic approach has di�erent aims from the operational and the
denotational ones: proving program correctness, analyzing program properties,
and synthesizing correct programs from formal speci�cations [Dij76, Bac78,
DS90, BW90b]. Informally, a sequential program is correct if it satis�es the in-
tended relation between input values and output value. Program correctness is
expressed by statements of the form fPgSfQg, where S is a sequential program,
P is a predicate on the set of input values (precondition) and Q is a predicate on
the set of output values (postcondition) [Hoa69]. The precondition P describes
the initial input values in which the program S is started, and the postcondition
Q describes the set of the desirable output values. More abstractly, correctness
statements can be de�ned with the weakest precondition and the weakest liberal
precondition: programs can be identi�ed with functions, called predicate trans-
formers, from predicates on the set of all possible output values to predicates
on the set of all admissible input values. The weakest (liberal) precondition
calculus was introduced by Dijkstra [Dij76] as a mathematical tool for reason-
ing about the partial and total correctness of programs, and it has been further
developed in [Gri81, DS90, Hes92b]. This predicate transformer model is called
axiomatic because it relies only on algebraic properties of predicates (described
for example in [Hal62]).

In this chapter we start by introducing the syntax of a sequential language.
Then we de�ne three di�erent state transformer semantic domains. Accordingly,
three state transformer semantics for our language are introduced and related.
We de�ne two predicate transformer semantics, one by taking into account
the possibility of non-termination, and another one by not doing so. State
transformer semantics and predicate transformer semantics will be proved to
be equivalent. We conclude the chapter with a formal treatment of a backtrack
operator in the weakest precondition calculus.

3.1. The sequential language L0 29

3.1 The sequential language L0

We begin by introducing a simple sequential language L0 which is inspired by
Dijkstra's language of guarded commands [Dij76]. The language constructors
are assignment, conditional, non-deterministic choice and sequential compo-
sition. The language allows for recursion by means of procedure variables.
Dijkstra's guarded commands, conditionals and recursive combinators can be
expressed in terms of the basic constructors of L0.

All the constructors of the language are well-known. The free occurrence
of guards as a conditional is already present in Hoare [Hoa78]. The non-
deterministic choice is studied, for example, by De Bakker in [Bak80]. More
generally, the language L0 is a slight variation of Hesselink's calculus of com-
mands [Hes88].

To de�ne the language, we need as basic blocks the sets (v 2) IVar of (indi-
vidual) variables, (e 2)Exp of expressions, (b 2)BExp of Boolean expressions,
and (x 2)PVar of procedure variables, respectively. For a �xed set of values
Val, the set of states (s; t 2) St is given by St = IVar! Val. As usual, for every
state s 2 St, individual variable v 2 IVar and value z 2 Val, s[z=v] denotes the
state which evaluates to s(v 0) for every v 0 6= v and evaluates to z otherwise.
Also, we postulate valuations

EV : Exp! (St! Val) and BV : BExp! P(St):

These functions provide, in a rather abstract way, the semantics of expressions
and Boolean expressions. Clearly EV(e)(s) = z means that the expression e
in a state s has value z , and, similarly, s 2 BV(b) means that the Boolean
expression b is true in a state s. Notice that for simplicity we assume that the
evaluation of an expression and of a Boolean expression is deterministic and
always terminates.

The language below has assignment `:=', conditional `b!', sequential com-
position `;', choice `2', and recursion through procedure variables. Its syntax
is de�ned as follows.

3.1.1. De�nition. (i) The set (S 2) Stat0 of statements is given by
S ::= v := e j b! j x j S ; S j S 2 S :

(ii) The set (d 2)Decl0 of declarations is de�ned by Decl0 = PVar! Stat0.
(iii) The language L0 is given by Decl0 � Stat0.

The computational intuition behind assignments is as usual. The conditional
`b!' deadlocks in a state in which the Boolean expression `b' does not evaluate
to true and acts as a skip otherwise. We assume deadlock is not signaled. The
sequential composition executes the �rst component and then it executes the
second component. The choice executes one of its components (the choice as

30 Chapter 3. The weakest precondition calculus

to which component is taken may be made by an implementation or, for non-
sequential languages, may be forced by some external factor). The intended
meaning of a procedure variable is body replacement.

We do not give an operational semantics for the language L0, since in this
thesis we will not deal with the connection between the operational and denota-
tional semantics (which, of course, is an important topic [Plo81a, BR92, BV96]).
We concentrate on state transformer and predicate transformer models, and we
shall rely on our computational intuition when formulating the semantic func-
tion.

3.2 State transformer models

In the state transformer approach programs are denoted by functions that relate
an input state s to the outcomes of all the computations of the program when
started in s. There are two important aspects to be considered. There may be
input states s for which the program deadlocks or fails to terminate. In the �rst
case, since no outcome is present, the input s is related to the empty set. This is
in accordance with the fact that if a program at input s can either deadlock or
produce some outputs then there is no reason to signal deadlock as a result of a
computation. In the second case we need to introduce a special value |usually
?| to which a non-terminating computation is mapped.

Some di�culties arise when we consider non-deterministic programs. Sup-
pose we have a procedure variable x 2 PVar declared as d(x) = v := 0 ; x , and
let us consider the programs

� P1 = hd ; v := 1i

� P2 = hd ; x i

� P3 = hd ; v := 1 2 x i.

While program P1 always terminates when activated, an execution of the pro-
gram P2 gets stuck in a loop. An execution of the program P3 consists of either
executing the program P1 or the program P2. Which of these three programs
should be considered equivalent by a state transformer semantics?

One view is to consider equivalent those programs which have computations
that may fail to terminate since nothing can be guaranteed for them. Hence
the program P3 should be identi�ed with the program P2 and it should di�er
from the program P1.

Another view is to identify those programs that have the same sets of out-
comes, if any. Then the program P1 should be identi�ed with the program P3,
and both should be di�erent from the program P2.

Finally, another view is to consider what actually happens: all three pro-
grams are di�erent. Below we give three state transformer domains correspond-
ing to these three views.

3.2. State transformer models 31

Smyth state transformers

Let X be the set of inputs and Y be the set of all possible outcomes of a class
of programs we consider. Computations that are possibly non-terminating are
identi�ed (since nothing can be guaranteed of any of them) and mapped to
Y? = Y [f?g. Computations that deadlock are mapped to the empty set.

3.2.1. De�nition. The set of Smyth state transformers from a set X to a set
Y is de�ned by

ST S (X ;Y) = X ! (P(Y) [fY?g):

In general, Smyth state transformers are ordered by the pointwise extension
of the superset order, that is, for �; � 2 ST S (X ;Y)

� � � if and only if 8x 2 X : �(x) � �(x):

The above order can be justi�ed as follows: the smaller the set of outcomes of
a program the more can be guaranteed of it. Smyth state transformers form a
poset with a least element given by the function mapping every x 2 X to Y?

(corresponding to the program which always fails to terminate, and for which
nothing at all can be guaranteed).

Not all Smyth state transformers are `reasonable' denotations of programs.
In particular, we may wish to consider only programs which are �nitely non-
deterministic:

ST �n
S (X ;Y) = X ! (P�n(Y) [fY?g);

where P�n(Y) consists of the �nite subsets of Y .

3.2.2. Lemma. For every set X and Y , both ST S (X ;Y) and ST �n
S (X ;Y)

are complete partial orders.

Proof: Since the function �x 2 X :Y? is in both ST S (X ;Y) and ST �n
S (X ;Y),

it is their least element. Assume now V is a directed set of functions in
ST S (X ;Y). It is easy to see that

�x 2 X :
\
f�(x) j � 2 Vg (3.1)

is the least upper bound of V in ST S (X ;Y). If every � 2 V is in ST �n
S (X ;Y)

then �(x) is either a �nite set or fY?g. Thus also\
f�(x) j � 2 Vg

is a �nite set or fY?g for every x 2 X . It follows that (3.1) is the least upper
bound of V also in ST �n

S (X ;Y). 2

32 Chapter 3. The weakest precondition calculus

An alternative way to prove that ST �n
S (X ;Y) is a complete partial order is to

de�ne it as the set of all functions from X to S(Y?)
>, the Smyth powerdomain

with emptyset (added as a top element) of the
at cpo Y?.
There are two basic operators for Smyth state transformers which can be

used as the semantical counterpart of the syntactical operators of L0.

3.2.3. De�nition. Let X , Y and Z be three sets. De�ne, for every x 2 X ,
the union function 2 : ST S (X ;Y)� ST S (X ;Y)! ST S (X ;Y) by

(�12�2)(x) = �1(x) [�2(x);

and the composition function ; : ST S (X ;Y)� ST S (Y ;Z)! ST S (X ;Z) by

(�1 ; �2)(x) =

8><>:
Y? if ? 2 �1(x) or

9y 2 �1(x):? 2 �2(y)S
f�2(y) j y 2 �1(x)g otherwise:

These functions are monotone in both their arguments. Moreover, if �1 and
�2 are in ST

�n
S (X ;Y), then also �12�2 is in ST

�n
S (X ;Y). Similarly, because the

�nite union of �nite sets is a �nite set, if �1 2 ST �n
S (X ;Y) and �2 2 ST �n

S (Y ;Z)
then �1 ; �2 2 ST�n

S (X ;Z).
Once we have de�ned the semantical operators which will denote the syn-

tactic operators `;' and `2' of the language L0, we have almost all ingredients
to de�ne a state transformer semantics for L0 using ST S (St; St) as semantic
domain: we have only to de�ne the semantics for the atomic commands `v := e'
and `b!', and for the procedure variables `x '.

3.2.4. De�nition. The semantic function StS [[�]] is de�ned as the least function
in L0 ! ST S (St; St) such that, for all s 2 S ,

StS [[hd ; v := ei]](s) = fs[EV(e)(s)=v]g;

StS [[hd ; b!i]](s) =

(
fsg if s 2 BV(b)
; otherwise,

StS [[hd ; x i]](s) = StS [[hd ; d(x)i]](s);

StS [[hd ; S1 ; S2i]](s) = (StS [[hd ; S1i]] ; StS [[hd ; S2i]])(s);

StS [[hd ; S1 2 S2i]](s) = (StS [[hd ; S1i]]2StS [[hd ; S2i]])(s):

The well-de�nedness of the above semantics can be justi�ed as follows. The
semantics StS [[�]] can be obtained as the least �xed point of a higher order
transformation.

3.2. State transformer models 33

3.2.5. Lemma. Let F 2 SemS = L0 ! ST S (St; St) and de�ne 	S : SemS !
SemS inductively, for all s 2 St, by

	S (F)(hd ; v := ei)(s) = fs[EV(e)(s)=v]g;

	S (F)(hd ; b!i)(s) =

(
fsg if s 2 BV(b)
; otherwise

	S (F)(hd ; x i)(s) = F (hd ; d(x)i)(s);

	S (F)(hd ; S1 ; S2i)(s) = (S (F)(hd ; S1i) ; 	S (F)(hd ; S2i))(s);

	S (F)(hd ; S1 2 S2i)(s) = (S (F)(hd ; S1i)2	S (F)(hd ; S2i))(s);

Then 	S is well-de�ned, monotone, and the function StS [[�]] de�ned in De�ni-
tion 3.2.4 is the least �xed point of 	S .

Proof: Well-de�nedness of 	S is readily checked. To prove monotonicity of
	S assume F1 � F2 in SemS . We show that 	S (F1)(hd ; S i) � 	S(F2)(hd ; S i)
for any program hd ; S i by induction on the structure of S . The base cases are
immediate, and for the cases when S � S1 2 S2 or S � S1 ; S2 we use induction
and the fact that both the union function `2' and the composition function `;'
are monotone in each argument.

Finally, since ST S (St; St) is a cpo, SemS is also a cpo. Thus, by Proposi-
tion 2.2.3 the function 	S has a least �xed point, which, from De�nition 3.2.4,
is StS [[�]]. 2

By structural induction on the statement S , and because ST �n
S (St; St) is closed

under the union function `2' and the composition function `;', it follows that
StS [[hd ; S i]] 2 ST �n

S (St; St) for every program hd ; S i in L0.

Hoare state transformers

Next we consider a domain of state transformers which can be used for iden-
tifying programs only on the basis of their sets of outcomes, if any. The main
di�erence with the Smyth state transformers is that now we do not wish to
record non-termination. Deadlocking computations are mapped to the empty
set, as before.

3.2.6. De�nition. The set of Hoare state transformers from a set X to a set
Y is de�ned by

STH (X ;Y) = X ! P(Y):

Alternatively, Hoare state transformers can be de�ned as the cpo of all
functions from X to (H(Y?))?, the Hoare powerdomain with emptyset (added
as a bottom element) of the
at cpo Y?. We prefer our de�nition above since
its conceptually simpler (no extra bottom elements ? have to be added to Y).

34 Chapter 3. The weakest precondition calculus

Since Hoare state transformers do not record non-termination, in�nite sets
of outcomes are possible also for programs with a �nite non-deterministic be-
haviour [Bak80]. Consider for example the program hd ; x i in L0 where the
program variable x is declared as

d(x) = (v := v + 1 ; x) 2 v := v :

According to the intended meaning, if we start the above program in a state
where v = 0 then we expect that the program either fails to terminate or
delivers a state in which the variable v has an arbitrary natural number as
resulting outcome.

The set STH (X ;Y) is ordered by the pointwise extension of the subset
inclusion, the natural order in P(Y). Thus, for � and � in STH (X ;Y),

� � � if and only if 8x 2 X : �(x) � �(x):

The set STH (X ;Y) ordered as above forms a complete partial order with least
element given by the function �x 2 X :;. The least upper bound of a directed
set f�i j i 2 I g of state transformers in STH (X ;Y) is calculated pointwise,
that is,

(
_
f�i j i 2 I g)(x) =

[
f�i(x) j i 2 I g;

for all x 2 X .
It is important to note that STH (X ;Y) is isomorphic to P(X �Y), the set

of all relations on X and Y . This explains why the Hoare state transformer
semantics is often called relational semantics [Plo81a].

Every state transformer in STH (X ;Y) is a state transformer in ST S (X ;Y).
Hence we can de�ne a union function and a composition function exactly in the
same way as for the Smyth state transformers.

3.2.7. De�nition. Let X , Y and Z be three sets. De�ne, for every x 2 X the
union function 2 : STH (X ;Y)� STH (X ;Y)! STH (X ;Y) by

(�12�2)(x) = �1(x) [�2(x);

and the composition function ; : STH (X ;Y)� STH (Y ;Z)! STH (X ;Z) by

(�1 ; �2)(x) =
[
f�2(y) j y 2 �1(x)g

for every x 2 X .

The above `2' and `;' are well-de�ned and continuous in each argument. We
are now in a position to de�ne the Hoare state transformer semantics for L0.

3.2. State transformer models 35

3.2.8. De�nition. The semantic function StH [[�]] is de�ned as the least func-
tion in L0 ! STH (St; St) such that,

StH [[hd ; v := ei]] = StS [[hd ; v := ei]];

StH [[hd ; b!i]] = StS [[hd ; b!i]];

StH [[hd ; x i]] = StH [[hd ; d(x)i]];

StH [[hd ; S1 ; S2i]] = StH [[hd ; S1i]] ; StH [[hd ; S2i]];

StH [[hd ; S1 2 S2i]] = StH [[hd ; S1i]]2StH [[hd ; S2i]]:

The well-de�nedness of the above semantics can be proved in a similar way
as for the semantics StS [[�]].

Egli-Milner state transformers

Finally we turn to the possibility of identifying programs on the basis of what
actually happens. Computations are mapped to the subset of all their possible
outcomes, including ? to denote the possibility of non-termination. Note that
we di�er from the Smyth state transformers because we do not necessarily iden-
tify computations which fail to terminate. As always, deadlocking computations
are mapped to the empty set.

3.2.9. De�nition. The set of Egli-Milner state transformers from a set X to
a set Y is de�ned by

STE (X ;Y) = X ! P(Y [f?g):

The set STE (X ;Y) can be turned into a cpo by the following order. For
�; � 2 STE (X ;Y),

� � � if and only if 8x 2 X : (? 62 �(x) & �(x) = �(x)) or

(? 2 �(x) & �(x) n f?g � �(x)):

This ordering has been introduced for the semantics of non-deterministic pro-
grams by Egli [Egl75], and it has been studied in detail by De Bakker [Bak80].
It is often referred to as the Egli-Milner ordering because Milner has de�ned it
in an essentially equivalent formulation (as reported by Plotkin [Plo76]). The
Egli-Milner ordering is an approximation ordering: the computation represented
by � is `better' than the one represented by � if, for any input x , �(x) can be
obtained form �(x) by replacing the partialness in �(x) (represented by the
presence of ? in �(x)) by some set of outcomes.

Not all Egli-Milner state transformers correspond to denotations of programs
that are �nitely non-deterministic. We could restrict them by considering only
a �nite set of outcomes. However, if a computation fails to terminate then an
in�nite set of outcomes is also possible (essentially for the same reason as for

36 Chapter 3. The weakest precondition calculus

the Hoare state transformers). Therefore, we take ST �n
E (X ;Y) to be the set of

all functions from the set X to all subsets of Y [f?g which are either �nite or
contain ?.

3.2.10. Lemma. For every set X and Y , both STE (X ;Y) and ST �n
E (X ;Y)

are complete partial orders.

Proof: If V is a directed set in STE (X ;Y) then

_
V = �x 2 X :

(S
f�(x) j � 2 Vg if 8� 2 V:? 2 �(x)S
f�(x) n f?g j � 2 Vg otherwise:

(3.2)

Assume now that � 2 ST �n
E (X ;Y) for every � 2 V, and let x 2 X . In order to

show that
W
V is the least upper bound of V in ST �n

E (X ;Y) we need to prove
that the set (

W
V)(x) is �nite whenever ? 62 (

W
V)(x).

Assume ? 62 (
W
V)(x). Then by (3.2), there exists �0 2 V with ? 62 �0(x).

Since V is a directed set, for every �1 2 V, there exists �2 2 V which is an upper
bound of both �0 and �1. By de�nition of the Egli-Milner order and because
? 62 �0(x) it must be the case that �2(x) = �0(x). Hence[

f�(x) j � 2 Vg = �0(x):

By (3.2) and because �0(x) is a �nite subset of Y , (
W
V)(x) is also a �nite subset

of Y .
Finally, the function �x 2 X :f?g is clearly the least element for both

STE (X ;Y) and ST �n
E (X ;Y). Hence they both are cpo's. 2

As for the �nitary Smyth state transformers, an alternative way to prove that
ST �n

E (X ;Y) is a complete partial order is to de�ne it as the set of all functions
from X to E(Y?) � (1)?, the Plotkin powerdomain with emptyset (added by
means of a coalesced sum) of the
at cpo Y?.

Next we give the semantical counterparts of the syntactic operators in L0.

3.2.11. De�nition. Let X ;Y and Z be three sets. De�ne, for every x 2 X ,
the union function 2 : STE (X ;Y)� STE (X ;Y)! STE (X ;Y) by

(�12�2)(x) = �1(x) [�2(x);

and the composition function ; : STE (X ;Y)� STE (Y ;Z)! STE (X ;Z) by

(�1 ; �2)(x) =
[
f�2(y) j y 2 �1(x) n f?gg [f? j ? 2 �1(x)g:

Both these functions are monotone in their arguments. Moreover, the set
ST �n

E (X ;Y) is closed under the union operation, and, if �1 2 ST �n
E (X ;Y)

and �2 2 ST �n
E (Y ;Z) then �1 ; �2 2 ST �n

E (X ;Z). We are now ready for the
de�nition of the Egli-Milner state transformer semantics of L0.

3.2. State transformer models 37

3.2.12. De�nition. The semantic function StE [[�]] is de�ned as the least func-
tion in L0 ! STE (St; St) such that,

StE [[hd ; v := ei]] = StS [[hd ; v := ei]];

StE [[hd ; b!i]] = StS [[hd ; b!i]];

StE [[hd ; x i]] = StE [[hd ; d(x)i]];

StE [[hd ; S1 ; S2i]] = StE [[hd ; S1i]] ; StE [[hd ; S2i]];

StE [[hd ; S1 2 S2i]] = StE [[hd ; S1i]]2StE [[hd ; S2i]]:

We omit the proof of the well-de�nedness of the above semantics since it
can be obtained in a similar way as for the semantics StS [[�]].

Relating the three state transformer models

So far we introduced three state transformer semantics for L0. Next we discuss
how these semantics are related.

For �xed sets X and Y , de�ne the functions EH :STE (X ;Y)! STH (X ;Y)
and ES : STE (X ;Y)! ST S (X ;Y) respectively by

EH (�)(x) = �(x) n f?g and ES (�)(x) =

(
Y? if ? 2 �(x)
�(x) otherwise

for every � 2 STE (X ;Y) and x 2 X . Then both EH and ES are strict,
continuous, and onto, as can be easily veri�ed. Moreover, if � 2 ST �n

E (X ;Y)
then ES (�) 2 ST �n

S (X ;Y).

3.2.13. Lemma. For �0; �1 2 STE (X ;Y) and �2 2 STE (Y ;Z)

ES (�02�1) = ES (�0)2ES (�1) and EH (�02�1) = EH (�0)2EH (�1);

ES (�0 ; �1) = ES (�0) ; ES (�1) and EH (�0 ; �1) = EH (�0) ; EH (�1):

Proof: Immediate from the de�nitions of ES and EH , and of the union and
composition functions on the Egli-Milner, the Smyth and the Hoare state trans-
formers. 2

Both the semantics based on the Smyth and Hoare state transformers are
projections, under ES and EH respectively, of the semantics based on the Egli-
Milner state transformers.

3.2.14. Theorem. For all hd ; S i 2 L0, ES (StE [[hd ; S i]]) = StS [[hd ; S i]] and
EH (StE [[hd ; S i]]) = StH [[hd ; S i]].

38 Chapter 3. The weakest precondition calculus

Proof: We prove that ES (StE [[hd ; S i]]) = StS [[hd ; S i]]. The other equality
EH (StE [[hd ; S i]]) = StH [[hd ; S i]] can be proved in a similar way.

Let SemE denote the set L0 ! STE (St; St), and de�ne a monotone function
	E :SemE ! SemE such that StE [[�]] is the least �xed point of 	E (the de�nition
of 	E can be obtained adapting the de�nition of 	S given in Lemma 3.2.5).

By structural induction on S , following the de�nition of 	E , and using
Lemma 3.2.13 it is straightforward to prove that the following diagram com-
mutes:

SemE

	E - SemE

�

SemS

�F :ES � F
?

	S

- SemS :
?
�F :ES � F

Since ES is strict and continuous and SemE is a cpo, we can use Proposi-
tion 2.2.5: the least �xed point of 	S coincides with the projection under
�F 2 SemE :ES � F of the least �xed point of 	E , showing that

ES (StE [[hd ; S i]]) = StS [[hd ; S i]];

for all hd ; S i 2 L0. 2

3.3 Predicate transformer models

In this section we introduce predicate transformer models for sequential pro-
grams. We will proceed as follows. First we introduce informally predicate
transformers for partial and total correctness. Then we give a partial correct-
ness semantics and a total correctness semantics to L0. Subsequently, we show
that for every state transformer there is an associated predicate transformer, and
conversely, every predicate transformer corresponds uniquely to a state trans-
former. These relationships form the basic dualities we study in this thesis. The
duality between the predicate transformers for total correctness and the �nitary
Smyth state transformers is well-known: it appears already in [Wan77, Bac81],
and it is formally studied by Plotkin [Plo79]. Various generalizations of this
duality have been studied in [Bes83, AP86, BK94b]. The connection between
predicate transformers for partial correctness and the Hoare state transformers
is presented in [Plo81a].

Predicate transformers for partial and total correctness

Let X be a set. Intensionally, a predicate on X is a function which maps each
element of X to either true or false. We will use the extensional characterization
of a predicate as the set of all points of X for which, intensionally, the predicate

3.3. Predicate transformer models 39

is true. This extensional view leads us to de�ne the set of predicates on X as
P(X), the collection of all subsets of X . We will usually denote predicates by P
and Q . Predicates are ordered by subset inclusion when not stated otherwise.

3.3.1. De�nition. A predicate transformer is a total function|typically de-
noted by �; � | from predicates on Y to predicates on X , that is

PT (Y ;X) = P(Y)! P(X):

Predicate transformers are ordered by pointwise extension of the subset order
on X , that is, for �; � 2 PT (Y ;X),

� � � if and only if 8P � Y : �(P) � �(P):

The poset of predicate transformers PT (Y ;X) inherits much of the struc-
ture of P(X): as PT (Y ;X) is the pointwise extension of the complete Boolean
algebra P(X), it will also be a complete Boolean algebra. Meets and joins are
de�ned pointwise by

(
^
I

�i)(P) =
\
I

�i(P) and (
_
I

�i)(P) =
[
I

�i(P);

for every set I , predicate transformers �i 2 PT (Y ;X) (i 2 I), and P � Y .
Also the complement :� of a predicate transformer � 2 PT (Y ;X) is de�ned
pointwise by

(:�)(P) = X n �(P);

for every P � Y .
Predicate transformers in PT (Y ;X) can be used for the interpretation of

a program which starts from a state in X and eventually terminates in some
states that are elements of Y . We consider two di�erent semantic models:

� The total correctness model: for a predicate P on Y and � 2 PT (Y ;X),
the predicate �(P) holds precisely for those inputs x 2 X for which each
computation of the program represented by � terminates in a �nal state
y 2 Y satisfying the predicate P ;

� The partial correctness model: for a predicate P on Y and � 2 PT (Y ;X),
the predicate �(P) holds precisely for those inputs x 2 X for which each
computation of the program represented by � either fails to terminate or
terminates in a �nal state y 2 Y satisfying the predicate P ;

In the total correctness model �(Y) holds precisely for those inputs x 2 X for
which each computation of the program represented by � terminates, whereas,
according to the partial correctness model �(Y) = X .

Not every predicate transformer represents a `reasonable' program. For ex-
ample, a predicate transformer representing a program is required to preserve

40 Chapter 3. The weakest precondition calculus

non-empty intersections: every computation of a program S at input x ter-
minates in a �nal state y 2 Y satisfying the predicate

T
I Pi if and only if

every computation of a program S at input x terminates in a �nal state y 2 Y
satisfying Pi for all i 2 I .

3.3.2. De�nition. Let X and Y be two sets. We de�ne
(i) the domain of total correctness predicate transformers PTT (Y ;X) to be

the set of all predicate transformers in P(Y)! P(X) that preserve non-empty
intersections;

(ii) the domain of partial correctness predicate transformers PTP(Y ;X) to
be the set of all total correctness predicate transformers � 2 PTT (Y ;X) such
that �(Y) = X .

Both the total and partial correctness predicate transformers are closed un-
der arbitrary meets (de�ned pointwise) and functional composition. The closure
under arbitrary meets turns PTT (Y ;X) into a complete lattice.

We are now ready for the de�nition of two predicate transformer semantics
for L0. We de�ne them as the greatest and the least �xed point of a monotone
function on the domain of all possible predicate transformer semantics for L0.

3.3.3. Lemma. Let F 2 SemT = L0 ! PTT (St; St) and de�ne 	T :SemT !
SemT inductively, for all P � St, by

	T (F)(hd ; v := ei)(P) = fs j s[EV(e)(s)=v] 2 Pg;

	T (F)(hd ; b!i)(P) = fs j s 2 BV(b)) s 2 Pg;

	T (F)(hd ; x i)(P) = F (hd ; d(x)i)(P);

	T (F)(hd ; S1 ; S2i)(P) = 	T (F)(hd ; S1i)(T (F)(hd ; S2i)(P));

	T (F)(hd ; S1 2 S2i)(P) = 	T (F)(hd ; S1i)(P) \ 	T (F)(hd ; S2i)(P):

Then 	T is well-de�ned and monotone.

Proof: Both well-de�nedness and monotonicity are immediately proved using
induction on the structure of S 2 L0. 2

As a consequence of Proposition 2.2.1, 	T has both least and greatest �xed
points. We denote them by Wp0[[�]] and Wlp0[[�]], respectively. The names Wp0
and Wlp0 stands for `weakest precondition' and `weakest liberal precondition' ,
respectively (the subscripts indicate the language to which they are referred to).

Dijkstra's weakest precondition calculus [Dij76] can be expressed by the se-
manticsWp0[[�]] if we allow `enough' Boolean expressions in BExp. For example,
the meaning of Dijkstra's guarded command b!S corresponds to Wp0[[hd ; b! ;
S i]]; the meaning of Dijkstra's conditional command

if b1!S1 2 b2!S2 �

3.3. Predicate transformer models 41

is equivalent to Wp0[[hd ; x i]] where the procedure variable x is declared by

d(x) = ((b1! ; S1) 2 (b2! ; S2)) 2 (b3! ; x)

and BV(b3) = St n (BV(b1) [BV(b2). Finally, Dijkstra's iteration command

do b1!S1 2 b2!S2 od

corresponds to Wp0[[hd ; x i]] where the procedure variable x is declared by

d(x) = (((b1! ; S1) ; x) 2 ((b2! ; S2) ; x)) 2 b3!;

and BV(b3) = St n (BV(b1) \ BV(b2)).
Another form of conditional command `fbg' for b 2 BExp, is often consid-

ered [Hes88]. The computational intuition behind the command `fbg' is that it
is unde�ned in a state in which the Boolean expression `b' does not evaluate to
true and acts as a skip otherwise. Identifying unde�ned with failure of termina-
tion (nothing can be guaranteed for an unde�ned statement), we obtain that the
meaning of `fbg' is equivalent to the predicate transformer Wp0[[hd ; x i]] where x
is a procedure variable declared as d(x) = b!2(b 0!;x) and BV(b 0) = StnBV(b).

By de�nition, the Wp0[[�]] semantics is about the total correctness of L0.
Next we show that Wlp0[[�]] is concerned with the partial correctness of L0.

3.3.4. Lemma. For every hd ; S i 2 L0, Wlp0[[hd ; S i]](St) = St.

Proof: We prove, by induction on �, that 	
[�]
T (hd ; S i)(St) = St for all ordinals

�.
For � = 0, it is straightforward to see (by structural induction on S) that

	
[0]
T (hd ; S i)(St) = St. Note that if S � x , for x 2 PVar, then

	
[0]
T (hd ; x i)(St) = F>(hd ; d(x)i)(St)

where F> is the top element of SemT , that is, the function mapping every
program hd ; S i 2 L0 and every P � St to St. Hence F>(hd ; d(x)i)(St) = St.

Next we assume for an ordinal � that for all ordinals � < �,

	
[�]
T (hd ; S i)(St) = St;

and we prove that also 	
[�]
T (hd ; S i)(St) = St. Recall that

	
[�]
T (hd ; S i)(St) = 	T (

^
f	[�]

T j � < �g)(hd ; S i)(St):

By structural induction on S we verify that the above right-hand side equals
St. The only interesting case is when S � x for x 2 PVar:

	T (
V
f	[�]

T j � < �g)(hd ; x i)(St)

= (
V
f	[�]

T j � < �g)(hd ; d(x)i)(St)

42 Chapter 3. The weakest precondition calculus

=
T
f	[�]

T (hd ; d(x)i)(St) j � < �g [meets are pointwise]

=
T
fSt j � < �g [induction hypothesis]

= St.

We can conclude that 	
[�]
T (hd ; S i)(St) = St for every ordinal �. Since Wlp0[[�]]

is de�ned as the greatest �xed point of 	T , by Proposition 2.2.4 there exists an
ordinal � such that Wlp0[[�]] = 	[�]

T . Therefore Wlp0[[hd ; S i]](St) = St for every
hd ; S i 2 L0. 2

Intuitively, the Wp0[[�]] and the Wlp0[[�]] semantics of L0 agree with the informal
characterization of the total and partial correctness models. To make these
correspondences precise we will give duality theorems which relate the state
transformer models with these predicate transformer models.

The total correctness model

Smyth state transformers capture the operational meaning of programs for the
total correctness semantic model. To determine their associated predicate trans-
formers we de�ne the function ! : ST S (X ;Y)! PTT (Y ;X) by

!(�)(P) = fx 2 X j �(x) � Pg; (3.3)

for � 2 ST S (X ;Y) and P � Y . Well-de�nedness of ! is easily veri�ed. If
�(x) = Y? then x 62 !(�)(P) for all predicates P of Y . Accordingly, if � is the
denotation of a program then x 2 !(�)(P) precisely for those inputs x 2 X for
which each computation of the program represented by � terminates in a �nal
state y 2 Y satisfying the predicate P .

We are now in a position to show that ST S (X ;Y) and PTT (Y ;X) are
order-isomorphic, and that the two semantics StS [[�]] (based on the Smyth state
transformers) and Wp0[[�]] (based on the total correctness predicate transform-
ers) are isomorphic. To de�ne an inverse for the function ! above we need the
following lemma. It is a variation of the stability lemma in [Plo79, AP86].

3.3.5. Lemma. Let � be a predicate transformer in PTT (Y ;X) and x 2 X
with x 2 �(Y). Then there is a set q(x ; �) such that

x 2 �(P) if and only if q(x ; �) � P ;

for every P � Y .

Proof: De�ne q(x ; �) =
T
fQ 2 P(Y) j x 2 �(Q)g. If x 2 �(P) then clearly

q(x ; �) � P . For the converse we use the fact that total correctness predicate
transformers preserve non-empty intersections. Since x 2 �(Y), the set fQ 2
P(Y) j x 2 �(Q)g is non-empty. Hence

�(q(x ; �)) =
\
f�(Q) j x 2 �(Q)g;

3.3. Predicate transformer models 43

from which it follows that x 2 �(q(x ; �)). Because q(x ; �) � P and � is
monotone (preserving non-empty intersections),

�(q(x ; �)) � �(P):

Thus x 2 �(P). 2

For any partial correctness predicate transformer � the above lemma shows that
q(x ; �) exists and that it is uniquely determined. This set can be used to obtain
a state transformer from a predicate transformer. Indeed, we can now de�ne
!�1 : PTT (Y ;X)! STS (X ;Y) by

!�1(�)(x) =

(
q(x ; �) if x 2 �(Y)
Y? otherwise;

(3.4)

for every � 2 PTT (Y ;X) and x 2 X .

3.3.6. Theorem. The function ! : ST S (X ;Y) ! PTT (Y ;X) is an order
isomorphism with inverse !�1.

Proof: We �rst prove that both ! and !�1 are monotone. Let �1 � �2 in
ST S (X ;Y) and let P � Y . If x 2 !(�1)(P) then �1(x) � P . But �2(x) �
�1(x), hence also �2(x) � P . It follows that x 2 !(�2)(P). Hence !(�1) � !(�2)
in PTT (Y ;X).

Assume now that �1 � �2 in PTT (Y ;X) and take x 2 X . The only
interesting case is when !�1(�1)(x) 6= Y?. In this case x 2 �1(Y). Since
�1(Y) � �2(Y), x 2 �2(Y). Hence !�1(�2)(x) = q(x ; �2). But q(x ; �2) �
q(x ; �1) because �1 � �2. Thus !

�1(�2)(x) � !�1(�1)(x).
Next we prove that both ! and !�1 are isomorphisms. For � in PTT (Y ;X)

and P � Y we have

!((!�1(�))(P) = fx 2 X j !�1(�)(x) � Pg

= fx 2 X j x 2 �(Y) & q(x ; �) � Pg

= fx 2 X j x 2 �(Y) & x 2 �(P)g [Lemma 3.3.5]

= �(P): [� is monotone]

Conversely, let � in ST S (X ;Y) and x in X . If �(x) = Y? then x 62 !(�)(Y).
Hence !�1(!(�))(x) = Y? = �(x). Otherwise !�1(!(�))(x) = q(x ; !(�)). By
de�nition of !, x 2 !(�)(P) if and only if �(x) � P for all P � Y . Hence, by
Lemma 3.3.5, q(x ; !(�)) = �(x), from which we conclude !�1(!(�))(x) = �(x).

2

Assume � 2 ST �n
S (X ;Y), and let V be a directed set of subsets of Y . Then

�(x) �
[
V) 9P 2 V: �(x) � P (3.5)

44 Chapter 3. The weakest precondition calculus

because V is directed and �(x) is either a �nite set or Y?. Hence

!(�)(
[
V) =

[
f!(�)(P) j P 2 Vg;

that is, !(�) is continuous. Conversely, if � is a continuous predicate trans-
former in PTT (Y ;X) then !�1(�) 2 ST �n

S (X ;Y) because the set q(x ; �) is
�nite. This can be proved using the property that every set is the directed
union of all its �nite subsets. Hence

q(x ; �) =
[
fP � q(x ; �) j P �niteg

, x 2 �(
[
fP � q(x ; �) j P �niteg) [Lemma 3.3.5]

, x 2
[
f�(P) j P ��n q(x ; �)g [� is continuous]

, 9P ��n q(x ; �): q(x ; �) � P : [Lemma 3.3.5]

Therefore the isomorphism of Theorem 3.3.6 restricts to an isomorphism be-
tween ST �n

S (X ;Y) and the continuous predicate transformers in PTT (Y ;X).

3.3.7. Lemma. Let �0 2 ST S (X ;Y) and �1; �2 2 ST S (Y ;Z). Then

!(�1 2 �2)(P) = !(�1)(P) \ !(�2)(P); and
!(�0 ; �1)(P) = !(�0)(!(�1)(P));

for all P � Z .

Proof: For P � Z we have

!(�1 2 �2)(P) = fx 2 X j (�1 2 �2)(x) � Pg

= fx 2 X j �1(x) [�2(x) � Pg

= fx 2 X j �1(x) � P & �2(x) � Pg

= fx 2 X j �1(x) � Pg \ fx 2 X j �2(x) � Pg

= !(�1)(P) \ !(�2)(P);

and also

!(�0 ; �1)(P) = fx 2 X j (�0 ; �1)(x) � Pg

= fx 2 X j
[
f�1(y) j y 2 �0(x)g � Pg

= fx 2 X j ? 62 �0(x) & 8y 2 �0(x): �1(y) � Pg

= fx 2 X j �0(x) � fy j �1(y) � Pgg

= fx 2 X j �0(x) � !(�1)(P)g

= !(�0)(!(�1)(P)):

2

3.3. Predicate transformer models 45

By Theorem 3.3.6 and the above lemma it is immediate that if �0 2 PTT (Y ;X)
and �1; �2 2 PTT (Z ;Y) then

!�1(�1 ^ �2) = !�1(�1) 2 !�1(�2)

!�1(�0 � �1) = !�1(�0) ; !
�1(�1):

Below we demonstrate the equivalence between the Wp0[[�]] semantics and the
StS [[�]] semantics of L0.

3.3.8. Theorem. For all hd ; S i 2 L0 we have

!(StS [[hd ; S i]]) = Wp0[[hd ; S i]] and !�1(Wp0[[hd ; S i]]) = StS [[hd ; S i]]:

Proof: We begin by proving that !(StS [[�]]) is a �xed point of 	T . We proceed
by structural induction on the statement S . If S � v := e then, for P � St,

!(StS [[hd ; v := ei]])(P) = fs 2 St j StS [[hd ; v := ei]](s) � Pg

= fs 2 St j s[EV(e)(s)=v] 2 Pg

= 	T (!(StS [[�]]))(hd ; v := ei)(P):

If S � b! then, for P � St,

!(StS [[hd ; b!i]])(P) = fs 2 St j StS [[hd ; b!i]](s) � Pg

= fs 2 St j s 2 BV(b)) s 2 Pg

= 	T (!(StS [[�]]))(hd ; b!i)(P):

If S � x then

!(StS [[hd ; x i]]) = !(StS [[hd ; d(x)i]]) = 	T (!(StS [[�]]))(hd ; x i):

Assume now S � S1 ; S2. Then, for P � St,

	T (!(StS [[�]]))(hd ; S1 ; S2i)(P)

= 	T (!(StS [[�]]))(hd ; S1i)(T (!(StS [[�]]))(hd ; S2i)(P))

= !(StS [[hd ; S1i]])(!(StS [[hd ; S2i]])(P)) [induction hypothesis]

= !(StS [[hd ; S1i]] ; StS [[hd ; S2i]])(P) [Lemma 3.3.7]

= !(StS [[hd ; S1 ; S2i]])(P).

In case S � S1 2 S2 we proceed similarly. Therefore StS [[�]] is a �xed point of
	T . Since Wp0[[�]] is the least �xed point of 	T ,

Wp0[[hd ; S i]] � !(St[[hd ; S i]]); (3.6)

for all hd ; S i 2 L0. Following essentially the same pattern, we can prove
that !�1(Wp0[[�]]) is a �xed point of the semantic transformation 	S de�ned
in Lemma 3.2.5. Hence

St[[hd ; S i]] � !�1(Wp0[[hd ; S i]]): (3.7)

Because ! and !�1 form an order isomorphism, we can conclude that the in-
equalities in (3.6) and (3.7) are in fact equalities. 2

46 Chapter 3. The weakest precondition calculus

Since for all hd ; S i 2 L0, StS [[hd ; S i]] is in ST �n
S (St; St), and the latter domain

is isomorphic to the set of continuous predicate transformers in PTT (St; St),
the following corollary is immediate from Theorem 3.3.8.

3.3.9. Corollary. For hd ; S i 2 L0, the predicate transformer Wp0[[hd ; S i]] is
continuous. 2

The partial correctness model

We relate the set of Hoare state transformers to the set of partial correctness
predicate transformers by restricting and co-restricting the isomorphism of The-
orem 3.3.6.

The set of Hoare state transformers STH (X ;Y) is a subset of ST S (X ;Y).
If we apply the function ! to a Hoare state transformer � 2 STH (X ;Y) then

!(�)(Y) = fx 2 X j �(x) � Y g = X :

Thus !(�) is a partial correctness predicate transformer in PTP(Y ;X). Con-
versely, if � is a partial correctness predicate transformer in PTP (Y ;X) then,
by applying !�1 to � we obtain a Hoare state transformer because x 2 �(Y)
for all x 2 X . Therefore, by Theorem 3.3.6 we have the following isomorphism.

3.3.10. Theorem. The function ! : STH (X ;Y)! PTP(Y ;X) is an isomor-
phism with inverse !�1. 2

Note that the above isomorphism is not an order isomorphism. If �1 � �2 in
STH (X ;Y) then, for all P � Y ,

!(�1)(P) � !(�2)(P)

because �1(x) � �2(x) for all x 2 X . Similarly, for �1; �2 2 PTP(Y ;X), if
�1(P) � �2(P) for all P � Y then !�1(�1) � !�1(�2) in STH (X ;Y).

3.3.11. Theorem. For all hd ; S i 2 L0 we have

!(StH [[hd ; S i]]) =Wlp0[[hd ; S i]] and !�1(Wlp0[[hd ; S i]]) = StH [[hd ; S i]]:

Proof: In a way similar to the proof of Theorem 3.3.8, we �rst note that
!(StH [[hd ; S i]]) is a �xed point of 	T . Hence

!(StH [[hd ; S i]])(P) �Wlp0[[hd ; S i]](P); (3.8)

for all hd ; S i 2 L0, P � St. Similarly, StH [[hd ; S i]](x) � !�1(Wlp0[[hd ; S i]])(x)
for all x 2 X . Since ! and !�1 are monotone with respect to the opposite of
the Hoare order, it follows that the above inclusions are, in fact, equalities. 2

3.3. Predicate transformer models 47

Total and partial correctness, together

Egli-Milner state transformers denote programs on the basis of what `actually'
happens. In the predicate transformer model this is done by describing both
the total and the partial correctness of a program [DS90]. The relationship
between the two domains is described informally by Nelson [Nel89], it is brie
y
mentioned by De Roever [Roe76] and De Bakker [Bak80], and it has been proved
in its full generality in [BK93b, BK94b].

First we need to characterize those pairs of predicate transformers in the
total and partial correctness models which denote the semantics of the same
computation. To this end, assume �1 and �2 denote the semantics of the same
program in the total and partial correctness model, respectively. Intuitively it
holds that, for every predicate P on the output state space Y ,

�1(P) = �1(Y) \ �2(P) (3.9)

because, �1(P) holds for an input state x if and only if every computation of
the program denoted by �1 at input x terminates (and hence x 2 �1(Y)) in a
�nal state satisfying the predicate P (and hence x 2 �2(P)).

3.3.12. De�nition. Let X and Y be two sets. The domain of Nelson predicate
transformers PTN (Y ;X) consists of pairs (�1; �2) such that

(i) �1 2 PTT (Y ;X),
(ii) �2 2 PTP(Y ;X), and
(iii) �1(P) = �1(Y) \ �2(P) for all P � Y .

We show that the Nelson predicate transformers are in a bijective corre-
spondence with the Egli-Milner state transformers. De�ne � : STE (X ;Y) !
PTN (Y ;X) by

�(�) = h!(ES (�)); !(EH (�))i; (3.10)

for all � 2 STE (X ;Y). Well-de�nedness of � is proved in the following lemma.

3.3.13. Lemma. For every � 2 STE (X ;Y), �(�) 2 PTN (Y ;X).

Proof: Since ES (�) 2 ST S (X ;Y), by Theorem 3.3.6, !(ES(�)) is a total cor-
rectness predicate transformer in PTT (Y ;X). Similarly, !(EH (�)) is a partial
correctness predicate transformer in PTP(Y ;X) because EH (�) 2 STH (X ;Y).

It remains to prove (3.9). For x 2 X and P � Y ,

x 2 !(ES(�))(P) , ES (�)(x) � P

, �(x) � P

, ? 62 �(x) & �(x) n f?g � P

, ES (�)(x) � Y & EH (�) � P

, x 2 !(ES (�))(Y) \ !(EH (�))(P):

2

48 Chapter 3. The weakest precondition calculus

A Nelson predicate transformer h�1; �2i 2 PTN (Y ;X) determines uniquely an
Egli-Milner state transformer ��1(h�1; �2i) by putting, for x 2 X ,

��1(h�1; �2i)(x) = !�1(�2)(x) [f? j x 62 �1(Y)g:

According to the intuition behind the pair h�1; �2i, we use the predicate trans-
former �1 to determine non-terminating computations, whereas we use the pred-
icate transformer �2 to calculate their �nal outcomes.

3.3.14. Theorem. The function � : STE (X ;Y)! PTN (Y ;X) is a bijection
with inverse ��1.

Proof: Let � 2 STE (X ;Y) and x 2 X . We have

��1(�(�))(x)

= ��1(h!(ES(�)); !(EH (�))i)(x) [de�nition �]

= !�1(!(EH (�)))(x) [f? j x 62 !(ES(�))(Y)g [de�nition ��1]

= EH (�)(x) [f? j ES (�)(x) = Y?g [Theorem 3.3.10 and de�nition !]

= (�(x) n f?g) [f? j ? 2 �(x)g [de�nition EH and ES]

= �(x).

Conversely, for h�1; �2i 2 PTN (Y ;X), P � Y , and x 2 X ,

x 2 !(ES(�
�1(h�1; �2i))(P)

, ES (�
�1(h�1; �2i)(x) � P [de�nition !]

, ? 62 ��1(h�1; �2i)(x) & ��1(h�1; �2i)(x) � P [de�nition ES]

, x 2 �1(Y) & !�1(�2)(x) � P [de�nition ��1]

, x 2 �1(Y) & x 2 �2(P) [Lemma 3.3.5]

, x 2 �1(P). [Equation (3.9)]

Hence

�(��1(h�1; �2i))

= h!(ES(�
�1(h�1; �2i))); !(EH (�

�1(h�1; �2i)))i [de�nition �]

= h�1; !(��1(h�1; �2i) n f?g)i [above calculation and de�nition EH]

= h�1; !(!
�1(�2))i [de�nition ��1]

= h�1; �2i. [Theorem 3.3.10] 2

3.3. Predicate transformer models 49

The set of Nelson predicate transformers PTN (Y ;X) can now be turned into
a partial order by the order induced by ��1 on PTN (Y ;X): for h�1; �2i and
h�3; �4i in PTN (Y ;X), de�ne

h�1; �2i � h�3; �4i if and only if ��1(h�1; �2i) � ��1(h�3; �4i):

The order on PTN (Y ;X) satis�es the following equation.

3.3.15. Lemma. For all h�1; �2i and h�3; �4i in PTN (Y ;X),

h�1; �2i � h�3; �4i , 8P � Y : �1(P) � �3(P) & �2(P) � �4(P):

Proof: Let us use � as shorthand for ��1(h�1; �2i) and � as shorthand for
��1(h�3; �4i). Assume �rst � � � in STE (X ;Y) and let P � Y .

If x 2 �1(P) then ? 62 �(x). Since � � � , �(x) = �(x). Because x 2
�1(P) = !(ES (�))(P) it follows that x 2 �3(P) = !(ES (�))(P). Therefore
�1(P) � �3(P).

If x 2 �4(P) we have to consider two cases depending on the presence
of ? in �(x). In case ? 62 �(x), � � � implies �(x) = �(x). Hence x 2
�4(P) = !(EH (�))(P) implies x 2 !(EH (�))(P) = �2(P). In the other case
? 2 �(x). Since � � � then �(x) n f?g � �(x). Thus �(x) n f?g � �(x) n f?g,
that is, EH (�)(x) � EH (�)(x). Hence x 2 �4(P) = !(EH (�))(P) implies x 2
!(EH (�))(P) = �2(P). Therefore �2(P) � �4(P).

For the converse, assume that �1(P) � �3(P) and �2(P) � �4(P) for all P � Y .
First note that for every x 2 X ,

!�1(�2)(x) � !�1(�4)(x) (3.11)

because �4(P) � �2(P) for all P � Y . Next we distinguish two cases.
If ? 62 �(x) then by de�nition of ��1 x 2 �1(Y) and �(x) = !�1(�2)(x).

Since �1(Y) � �3(Y), x 2 �3(Y). Thus ? 62 �(x) and �(x) = !�1(�4)(x).
By (3.11) it follows �(x) � �(x). We still need to prove the reverse inclu-
sion. Because h�1; �2i is a Nelson predicate transformer, x 2 �1(Y) and, by
Lemma 3.3.5, x 2 �2(!

�1(�2)(x)), it follows that x 2 �1(!
�1(�2)(x)). Hence

x 2 �3(!�1(�2)(x)). Because also h�3; �4i is a Nelson predicate transformer, x 2
�4(!

�1(�2)(x)). Thus, by Lemma 3.3.5, !�1(�4)(x) = q(x ; �4) � !�1(�2)(x).
Therefore �(x) � �(x).

If ? 2 �(x) then �(x) n f?g = !�1(�2)(x) by de�nition of ��1. Thus, by
equation (3.11), �(x)nf?g � !�1(�4)(x). Since !

�1(�4)(x) � �(x) by de�nition
of ��1, we obtain that �(x) n f?g � �(x). 2

The above characterization of the order between Nelson predicate transformers
is used in [Roe76] to give an early treatment of recursion in the original weakest
precondition calculus of Dijkstra [Dij76], based on continuity of the weakest
preconditions. A more detailed treatment of the recursion is given in [Heh79]
and [Bak80].

50 Chapter 3. The weakest precondition calculus

We conclude this section by showing that the Egli-Milner state transformer
semantics of L0 corresponds to the pair of weakest precondition and weakest
liberal precondition semantics. For hd ; S i 2 L0 we have

�(StE [[hd ; S i]])

= h!(ES(StE [[hd ; S i]])); !(EH (StE [[hd ; S i]]))i

= h!(StS [[hd ; S i]])); !(StH [[hd ; S i]]))i [Theorem 3.2.14]

= hWp0[[hd ; S i]];Wlp0[[hd ; S i]]i. [Theorems 3.3.8 and 3.3.11]

As a consequence of the above, we obtain that the weakest precondition seman-
tics Wp0[[hd ; S i]] and the weakest liberal precondition semantics Wlp0[[hd ; S i]]
of a program hd ; S i 2 L0 satisfy the pairing condition (3.9).

3.4 Can a backtrack operator be added to L0?

In this section we study the incorporation of a backtrack operator into our
language L0. The backtrack operator is a binary operator `2�' which backtracks
to the second component if the �rst component deadlocks. We de�ne it in
the domain of Egli-Milner state transformers to derive its weakest precondition
semantics. Maybe surprisingly, the backtrack operator is not monotone with
respect to the order of the total correctness predicate transformers. To repair
the problem a new order can be de�ned which re�nes the ordinary order on
predicate transformers and such that the backtrack operator becomes monotone.
However, sequential composition is not monotone with respect to this new order.
In order to justify the well-de�nedness of a weakest precondition semantics for
L0 extended with a backtrack operator we prove that under certain conditions
the least �xed point of a non-monotone function exists.

Our extension of L0 is a variation of the language studied in [Nel89]. In
this article a weakest precondition semantics together with a weakest liberal
precondition semantics for a language with a backtrack operator is given. Below
we will concentrate only on a weakest precondition semantics.

3.4.1. De�nition. (i) The set (S 2) StatB of statements is given by
S ::= v := e j b! j x j S ; S j S 2 S j S 2� S :

(ii) The set (d 2)DeclB of declarations is de�ned by DeclB = PVar! StatB .
(iii) The language LB is given by DeclB � StatB .

To guide the intuition about the backtrack operator `2�' we de�ne the corre-
sponding semantical operator in the domain of the Egli-Milner state transform-
ers. For �1; �2 2 STE (X ;Y) de�ne �1 2� �2 by

(�1 2� �2)(x) =

(
�2(x) if �1(x) = ;
�1(x) otherwise;

3.4. Can a backtrack operator be added to L0? 51

for x 2 X . A similar de�nition can be given for the Smyth state transformers
and for the Hoare state transformers. It is a straightforward veri�cation to see
that

2� : STE (X ;Y)� STE (X ;Y)! STE (X ;Y)

is a monotone function. However this is not true with respect to the order of
the Smyth state transformers ST S (X ;Y). Indeed if y1; y2 2 Y then

�x :fy1g � �x :;

in ST S (X ;Y), but,

�x :fy1g2� �x :fy2g = �x :fy1g

6� �x :fy2g

= �x :;2� �x :fy2g

The above monotonicity problem is caused by the fact that the function �x :; is
the top element of ST S (X ;Y). In STE (X ;Y) this is not the case, and indeed
the backtrack operator is monotone. We can try to de�ne a new domain of state
transformers between ST S (X ;Y) and STE (X ;Y) by introducing a new order
on the Smyth state transformers which preserves deadlock. The idea is that
a state transformer which does not deadlock cannot be substituted by another
which does, even if more can be guaranteed for it.

3.4.2. De�nition. De�ne STD(X ;Y) to be the set of all functions from X to
P(Y) [fY?g ordered as follows. For �; � 2 STD(X ;Y),

� � � if and only if 8x 2 X : (�(x) 6= ; & �(x) � �(x)) or

(�(x) = ; & (�(x) = ; or �(x) = Y?)):

As for ST S (X ;Y), the above domain STD(X ;Y) is a partial order with
the function �x :fY?g as bottom element. However STD(X ;Y) need not to
be a cpo. For example let IN be the set of natural numbers, and consider in
STD(X ; IN) the following directed set

�x :IN � �x :IN n f0g � �x :IN n f0; 1g � ::: :

It has no upper bound in STD(X ; IN) (in ST S (X ; IN) it would have the function
�x :; as a least upper bound).

It is now easy to see that the backtrack operator `2�' is monotonic with
respect to the new domain STD(X ;Y). However the composition function `;',
de�ned exactly as for ST S (X ;Y), is not monotone anymore. For y1; y2 2 Y ,

�x :fy1; y2g � �x :fy1g

52 Chapter 3. The weakest precondition calculus

in STD(X ;Y). If we compose them with the function � 2 ST S (Y ;Z) which
maps y2 to fzg � Z and every other y 2 Y to ; we obtain

�x :fy1; y2g ; � = �x :fzg

6� �x :;

= �x :fy1g ; �:

Next we turn to a weakest precondition semantics for LB . First we use the
isomorphism of Theorem 3.3.6 to derive the semantical backtrack operator in
the domain of total correctness predicate transformers. For �1; �2 2 ST S (X ;Y)
let

�1 = !(�1) and �2 = !(�2):

Then �1 = !�1(�1) and �2 = !�1(�2). For P � Y ,

!(�1 2� �2)(P)

= fx 2 X j (�1 2� �2)(x) � Pg

= fx 2 X j �1(x) = ; & �2(x) � Pg[

fx 2 X j �1(x) 6= ; & �1(x) � Pg

= (fx 2 X j �1(x) � ;g \ fx 2 X j �2(x) � Pg)[

(X n fx 2 X j �1(x) � ;g \ fx 2 X j �1(x) � Pg)

= (!(ES(�1))(;) \ !(ES(�2))(P))[

((X n !(ES(�1))(;)) \ !(ES (�1))(P))

= (�1(;) \ �2(P)) [((X n �1(;)) \ �1(P))

= �1(P) \ (�1(;)) �2(P)),

where P) Q is a shorthand for (P \ Q) [(X n P). The above justi�es the
following de�nition.

3.4.3. De�nition. For �1; �2 2 PTT (Y ;X) de�ne �1 2� �2 2 PTT (Y ;X) by

(�1 2� �2)(P) = �1(P) \ (�1(;)) �2(P));

for all P � Y .

Since ! is an order-preserving isomorphism `2�' is not monotone with re-
spect to the order in PTT (Y ;X). Nevertheless we want to de�ne the weakest
precondition semantics of LB in the same way as we did in Lemma 3.3.3 for the
weakest precondition semantics of L0: as the least �xed point of a higher order
transformation.

3.4. Can a backtrack operator be added to L0? 53

3.4.4. De�nition. Let F 2 SemB = LB ! PTT (St; St) and de�ne 	B :
SemB ! SemB inductively by

	B(F)(hd ; v := ei) = Wp0[[hd ; v := ei]];

	B(F)(hd ; b!i) = Wp0[[hd ; b!i]];

	B(F)(hd ; x i) = F (hd ; d(x)i);

	B(F)(hd ; S1 ; S2i) = 	B(F)(hd ; S1i) �	B(F)(hd ; S2i);

	B(F)(hd ; S1 2 S2i) = 	B(F)(hd ; S1i) ^ 	B(F)(hd ; S2i);

	B(F)(hd ; S1 2� S2i)(P) = 	B(F)(hd ; S1i)2� 	B(F)(hd ; S2i):

Well-de�nedness of 	B is straightforwardly checked, since it is based on
the well-de�nedness of the corresponding semantical operators in PTB(St; St).
Since the semantical operator `2�' is not monotone, also 	B is not monotone.
At �rst sight it seems that we cannot de�ne a weakest precondition semantics
for LB as the least �xed point of 	B because the ordinary �x-point methods
require 	B to be at least monotone.

However, we show that, under certain conditions, the least �xed point of a
non-monotonic function on a poset (which need not to be complete) exists and
that it can be calculated by iteration.

3.4.5. Proposition. Let P be a cpo and let Q be a poset such that there there
is an onto and continuous function h : P ! Q. Assume also that, for every
y 2 Q there is a top element in h�1(y), that is, there exists z 2 h�1(y) such
that x � z for all x 2 h�1(y). If f : P ! P is a monotone function then every
function g : Q ! Q making the following diagram commute

P
f - P

�

Q

h
?

g
- Q
?
h

has a least �xed point. Moreover, for every ordinal �, g h�i exists and equals
h(f h�i).

Proof: By Proposition 2.2.3 f has as least �xed point f h�i, for some ordinal �.
We have:

h(f h�i) = h(f h�+1i) = h(f (f h�i)) = g(h(f h�i)):

So h(f h�i) is a �xed point of g . Next we prove h(f h�i) is also the least one.
Let y 2 Q be such that g(y) = y and let z be the top element in h�1(y).

We prove by induction on ordinals that f h�i � z for every ordinal �. In the
proof below we need the fact that f (z) � z which can justi�ed by the following

h(f (z)) = g(h(z)) = g(y) = y :

54 Chapter 3. The weakest precondition calculus

If � = 0 then f h�i = f (?) � f (z) � z . Assume now that f h�i � z for all ordinals
� < �. We have

(8� < �: f h�i � z))
_
ff h�i j � < �g � z

) f (
_
ff h�i j � < �g) � f (z) [f is monotone]

) f h�i � z : [de�nition of f h�i and f (z) � z]

It follows that f h�i � z . Hence, by monotonicity of h,

h(f h�i) � h(z) = y ;

from which we can conclude that h(f h�i) is the least �xed point of g .
It remains to prove that g h�i = h(f h�i) for every ordinal �. Since h is onto

and monotone, it is also strict. Hence, for � = 0,

h(f h�i) = h(f (?)) = g(h(?)) = g(?) = g h�i:

Using induction on ordinals we have for � > 0

h(f h�i) = h(f (
_
ff h�i j � < �g))

= g(h(
_
ff h�i j � < �g)) [commutativity]

= g(
_
fh(f h�i) j � < �g) [h is continuous]

= g(
_
fg h�i j � < �g) [induction hypothesis]

= g h�i: [by de�nition]

2

In order to apply the above proposition consider the cpo SemE = L0 !
STE (St; St), and de�ne the transformation � : SemE ! SemB by

�(F)(hd ; S i) = !(ES(F (hd ; S i))):

Since ES : STE (St; St) ! STB(St; St) is strict, onto and continuous, and ! :
STB(St; St)! PTT (St; St) is an order isomorphism, � is onto and continuous.
Moreover, if � 2 STB(St; St) then � is also a function in STE (St; St) and
ES (�) = �. Clearly � is the top element of E�1

S (�). Hence also ��1(F) has a
top element for every F 2 SemB .

3.4.6. Theorem. The function 	B : SemB ! SemB has a least �xed point
which can be calculated by iteration from the bottom element of SemB .

3.5. Concluding notes 55

Proof: De�ne 	 : SemE ! SemE inductively by

	E (F)(hd ; v := ei) = StE [[hd ; v := ei]];

	E (F)(hd ; b!i) = StE [[hd ; b!i]];

	E (F)(hd ; x i) = F (hd ; d(x)i);

	E (F)(hd ; S1 ; S2i) = 	E (F)(hd ; S1i) ; 	E (F)(hd ; S2i);

	E (F)(hd ; S1 2 S2i) = 	E (F)(hd ; S1i) 2 	E (F)(hd ; S2i);

	E (F)(hd ; S1 2� S2i)(P) = 	E (F)(hd ; S1i)2� 	E (F)(hd ; S2i):

Well-de�nedness and monotonicity of 	E can be straightforwardly checked. It
is ultimately based on the monotonicity of the corresponding state transformer
constructors. Moreover, by induction on the structure of S , and using Theo-
rem 3.2.14, Theorem 3.3.8, and the de�nition of `2�' we have that

�(E (F))(hd ; S i) = 	B(�(F))(hd ; S i)

for all hd ; S i 2 LB . Therefore by Proposition 3.4.5 	B has a least �xed point
which can be calculated by iteration from the bottom element of SemB . 2

The least �xed point of 	B de�nes the weakest precondition semantics for LB .

3.5 Concluding notes

The predicate transformer semantics we presented in this chapter is formulated
using higher-order transformations. Hence predicate transformers are regarded
as basic objects in contrast to the more traditional view which regards predicates
on states as basic objects. Accordingly, we treated recursion at the level of
predicate transformers whereas for example Dijkstra and Scholten [DS90] treat
recursion at the level of predicates.

Several semantic domains we introduced in this chapter are general enough
to support both recursion and unbounded non-determinism. For example our
Egli-Milner state transformer domain STE (X ;Y) is more general than the simi-
lar domain for countable non-determinism of Apt and Plotkin [AP86], while our
predicate transformers domain PTT (Y ;X) is equivalent to the domain of pred-
icate transformers for unbounded non-determinism treated in [DG86, Hes89].

We have not used the capability of the domains to express unbounded non-
determinism. In this chapter we only treated a language without speci�cation
constructs. An extension of the language L0 with this kind of constructs is
treated in Chapter 4.

The results of this chapter can be extended to capture the semantics of more
general programs than the sequential ones. In Chapter 7 we treat an example of
a program which interacts with its environment by extending L0 with a parallel
operator. The key step towards this goal is a re�nement of our de�nition of

56 Chapter 3. The weakest precondition calculus

predicates. In Chapter 5 a�rmative predicates are introduced as open sets of
a topological space, and in Chapter 6 we introduce two kinds of topological
predicate transformers which generalize the total and the partial correctness
predicate transformers. Dualities between state transformers and topological
predicate transformers are also studied in Chapter 6.

Chapter 4

The re�nement calculus

Predicate transformers were introduced in the previous chapter as a mathemat-
ical domain for the semantics of sequential programming languages. The goal
is to use this domain for the support of systematic development of programs
from their formal speci�cations [DS90]. However, the domain is not yet suited
for a weakest precondition semantics of a language which includes certain spec-
i�cation constructs. For example, it would be nice if angelic non-determinism
were allowed. This is useful, for example, in data abstraction via inverse com-
mands [Bac89, GM91]. Another useful extension is to allow unbounded non-
determinacy both for angelic and for demonic choice.

An extension of the domain which supports both unbounded angelic non-
determinism and unbounded demonic non-determinism is given in the frame-
work of the re�nement calculus. The language of the re�nement calculus as
introduced by Back [Bac80] combines basic predicate transformers (which gen-
eralize assignments and conditionals), functional composition, and the lattice
operations of in�nite meets and in�nite joins. The language is expressive enough
to model both executable sequential programs and abstract speci�cations. The
language of the re�nement calculus has a predicate transformer semantics. The
domain of this semantics consists of the monotonic predicate transformers. This
semantics is based on a lattice theoretical interpretation [Wri90, Hes92a]: de-
monic choice is modeled by the meet of programs and angelic choice is modeled
by the join. The lattice of predicate transformers is the basis of the re�ne-
ment calculus and was �rst introduced in [Bac80], and successively developed
in [Mor87, Mor90, BW90b, Wri90].

The execution of a statement in the re�nement calculus can also be described
as a game between two parties with the goal of trying or preventing, respec-
tively, to reach a state in which a given predicate holds. This game-theoretical
interpretation is inspired by the and/or programs of Harel [Har80] and it is de-
veloped for the re�nement calculus by Back and Von Wright [BW96]. A game
semantics for a language similar to the language of the re�nement calculus is
also given by Hesselink [Hes94].

57

58 Chapter 4. The re�nement calculus

In this chapter we give a short overview of the re�nement calculus. Then
we extend the language L0 to a language L1 with the speci�cation constructs of
the re�nement calculus. A backward predicate transformer semantics is given.
We also give a forward semantics for L1. It is based on a duality between pred-
icate transformers and completely distributive lattices. The idea is to model
commands of the calculus as functions mapping an input state to the collection
of all predicates satis�able by every output of the command. As in the previous
chapter, we show that the backward semantics and the forward semantics are
isomorphic. Based on the operational interpretation of the re�nement calculus
as a two-person game, Back and von Wright [BW96] also present a forward
semantics of the re�nement calculus. They also present a duality between pred-
icate transformers and the two-step game domain. Although their duality result
and forward semantics coincide with our duality and forward semantics, they
have been found independently.

We conclude the chapter by giving an operational semantics for L1 using
hyper transition systems. The hyper transition systems (a generalization of
transition systems) specify the atomic steps of the computations. We show
that the operational and the forward semantics coincide.

4.1 Speci�cation and re�nement

The speci�cation of a sequential program consists usually of the declaration of a
set specifying all possible states in which the program is allowed to work, a pre-
condition (a predicate on the set of states) and a postcondition (also a predicate
on the set of states). The postcondition speci�es states in which the program
has to terminate when started in a state satisfying the precondition [Gri81].

We need a calculus which includes at least a `reasonable' programming lan-
guage, a speci�cation language and a de�nition of a satisfaction relation between
programs and speci�cations. Moreover, we want to have re�nement relations
both for speci�cations and for programs.

If we take the language L0 de�ned in the previous chapter as programming
language, and St as the set of states in which a program of L0 is allowed to
work, then a pair (P ;Q) of subsets of St can be seen as a speci�cation (with
P as precondition and Q as postcondition). A program hd ; S i 2 L0 satis�es
a speci�cation (P ;Q) if P � Wp0[[hd ; S i]](Q): every computation of hd ; S i
starting in a state x 2 P is guaranteed to terminate in a state satisfying Q .
By Theorem 3.3.6, we could equivalently say that hd ; S i satis�es a speci�cation
(P ;Q) if StS [[hd ; S i]](x) � Q for every x 2 P .

A speci�cation can be re�ned by another one provided that any program
satisfying the re�ned speci�cation satis�es also the original one. Thus a spec-
i�cation (P ;Q) is re�ned by a speci�cation (P 0;Q 0) if P 0 � P and Q � Q 0.
In this case, for a program hd ; S i 2 L0, if P � Wp0[[hd ; S i]](Q) then also

4.1. Speci�cation and re�nement 59

P 0 � Wp0[[hd ; S i]](Q
0) by monotonicity of Wp0[[�]]. Hence (P 0;Q 0) is satis�ed

by any program which satis�es (P ;Q).
In the same way a program can be re�ned by another one provided that any

speci�cation satis�ed by the original program is also satis�ed by the re�ned one.
For example, a program hd ; S i 2 L0 is re�ned by a program hd 0; S 0i 2 L0 if,
for all Q � St, Wp0[[hd ; S i]](Q) �Wp0[[hd

0; S 0i]](Q). In this case, if (P ;Q) is a
speci�cation which is satis�ed by hd ; S i then (P ;Q) is also satis�ed by hd 0; S 0i.

In the synthesis of programs from speci�cations it can be useful to have a
single language for programs and speci�cations, and to have a single relation
for expressing the re�nement of speci�cations and programs. The re�nement
calculus uses a language describing monotonic predicate transformers as such a
single language.

4.1.1. De�nition. Let X and Y be two sets. De�ne PTM (Y ;X) to be the set
of all monotonic predicate transformers in PT (Y ;X) ordered as in PT (Y ;X),
i.e., for �1; �2 2 PTM (Y ;X),

�1 � �2 if and only if 8P � Y : �1(P) � �2(P):

The order between monotonic predicate transformers is the re�nement or-
der: the predicate transformer �1 2 PTM (Y ;X) is said to be re�ned by �2 2
PTM (Y ;X) if �1 � �2 in PTM (Y ;X).

4.1.2. De�nition. Amonotonic predicate transformer � 2 PTM (Y ;X) is said
to be totally correct with respect to a precondition P � X and a postcondition
Q � Y if P � �(Q).

In other words, every computation of a program speci�ed by the predicate
transformer � at input x 2 P terminates in a �nal state satisfying the predicate
Q . A monotonic predicate transformer � is said to be terminating if �(Y) = X .
The restriction to monotonicity for � in the above de�nition can be justi�ed as
follows. Assume (P ;Q) is a speci�cation and let � be a predicate transformer
denoting a class of programs which satis�es the above speci�cation. If Q � Q 0

then every computation of every program which for input x 2 P terminates in a
state satisfying Q , terminates also in a state satisfying Q 0. Hence �(Q) � �(Q 0).

Re�nement coincides with preservation of total correctness: �1 re�nes �2 if
�1 satis�es every total correctness speci�cation that �2 satis�es. Moreover this
condition characterizes the re�nement relation exactly.

4.1.3. Proposition. For �1 and �2 in PTM (Y ;X),

�1 � �2 if and only if 8P � X 8Q � Y :P � �1(Q)) P � �2(Q):

Proof: Assume �1(Q) � �2(Q) for all Q � Y . Then P � �1(Q) � �2(Q)
implies P � �2(Q). For the converse, assume the above right hand side holds.
Since �1(Q) � �1(Q) for all Q � Y , �1(Q) � �2(Q). Hence �1 � �2. 2

60 Chapter 4. The re�nement calculus

Next we show how every monotonic predicate transformer can be described by
some primitive monotone predicate transformers together with some construc-
tors on predicate transformers. This gives then the language for the description
of the monotonic predicate transformers in the re�nement calculus. We �rst
give three collections of primitive predicate transformers.

A subset V � X can be lifted to the monotonic predicate transformer
`fV g' 2 PTM (X ;X) by

fV g(P) = V \ P ;

and also to the monotonic predicate transformer `V!' 2 PTM (X ;X) by

V!(P) = fx 2 X j x 2 V) x 2 Pg;

for all P � X . The predicate transformers `fV g' and `V!' are called assert
command and guarded command, respectively. They can be thought of as con-
ditional tests. Note that the predicate transformer `V!' always terminates
whereas `fV g' does not for all inputs x with x 62 V .

Every function f : X ! Y can be lifted to the monotonic predicate trans-
former `hf i' 2 PTM (Y ;X) by

hf i(P) = fx 2 X j f (x) 2 Pg;

for all P � Y . The predicate transformer hf i is called update command and
can be thought of as a multiple assignment.

Next we look at the predicate transformer constructors: two monotonic
predicate transformers �1 2 PTM (Z ;Y) and �2 2 PTM (Y ;X) can be com-
posed by functional composition obtaining the monotonic predicate transformer
�1 � �2 2 PTM (Z ;X). Thus

(�1 � �2)(P) = �1(�2(P));

for all P � Y . The above functional composition is also called sequential
composition.

Finally, from an arbitrary set (possibly empty) of monotonic predicate trans-
formers f�i 2 PTM (Y ;X) j i 2 I g two other monotonic predicate transformers
can be obtained by applying the meet and the join of the lattice PTM (Y ;X).
Although PTM (Y ;X) is not a complete Boolean algebra, it is a complete lat-
tice with meets and joins de�ned pointwise, exactly as in PT (Y ;X). Hence we
have

(
^
f�i j i 2 I g)(P) =

\
f�i(P) j i 2 I g;

(
_
f�i j i 2 I g)(P) =

[
f�i(P) j i 2 I g;

for all P � Y . The meet
V
is called demonic choice while the join

W
is called

angelic choice.

4.1. Speci�cation and re�nement 61

Besides preserving monotonicity, the above constructors are also monotonic
as functions on the lattice of predicate transformers. In general, if z is a variable
ranging over monotonic predicate transformers in PTM (Y ;X) and C (z) is a
monotonic predicate transformer constructed from the above primitive mono-
tonic predicate transformers, the lattice and functional constructors, and con-
taining the variable z , then

�z :C (z) : PTM (Y ;X)! PTM (Y ;X)

is a monotonic function. This means that we may always replace a monotonic
predicate transformer by a re�ned one in any context, because

�1 � �2 implies C (�1) � C (�2):

The following theorem, due to Von Wright [Wri90], shows that every monotonic
predicate transformer can be obtained from the primitive predicate transform-
ers, the lattice constructors and the functional composition.

4.1.4. Theorem. Let � 2 PTM (Y ;X) and let Vx denote the set fxg � X for
x 2 X . Then � coincides with the predicate transformer_

ffVxg �
^
fhf : X ! Y i j 8x 2 X : f (x) 2 Pg j P � Y & x 2 �(P)g:

Proof: The proof proceeds in three steps.

1. Let Q � Y . By de�nition of meets and of the update command,

(
V
fhf : X ! Y i j 8x 2 X : f (x) 2 Pg)(Q)

=
T
fhf : X ! Y i(Q) j 8x 2 X : f (x) 2 Pg

=
T
ffx j f (x) 2 Qg j 8x 2 X : f (x) 2 Pg.

If P � Q then the above set is clearly X . Otherwise, it is empty. To
prove the latter statement let y 2 P n Q (which exists because P 6� Q).
Consider f : X ! Y such that f (x) 2 P for all x 2 X (which exists
because P is nonempty). If f (z) 2 Q for some z 2 X de�ne fz : X ! Y
by

fz (x) =

(
y if x = z
f (x) otherwise;

for every x 2 X . Then fz (x) 2 P for all x 2 X but fz (z) 62 Q . It follows
that, if P 6� Q

\
ffx j f (x) 2 Qg j 8x 2 X : f (x) 2 Pg = ;:

62 Chapter 4. The re�nement calculus

2. Let �x ;P = fVxg �
V
fhf : X ! Y i j 8x 2 X : f (x) 2 Pg. By step 1:, and

the de�nitions of the predicate transformer fVxg and of the functional
composition,

�x ;P(Q) =

(
fxg if P � Q
; otherwise;

(4.1)

for all Q � Y .

3. For x 2 X and P � Y let �x ;P be de�ned as above. For Q � Y ,

(
W
f�x ;P j P � Y & x 2 �(P)g)(Q)

=
S
f�x ;P(Q) j P � Y & x 2 �(P)g

=
S
f�x ;P(Q) j P � Q & x 2 �(P)g [�x ;P (Q) = ; if P 6� Q]

=
S
ffxg j P � Q & x 2 �(P)g [by (4.1)]

=
S
f�(P) j P � Qg

= �(Q). [� is monotone] 2

4.2 The language L1 and its predicate trans-

former semantics

We now extend the programming language L0 to a language L1 with the spec-
i�cation constructs of the re�nement calculus. The main di�erence with the
language of the re�nement calculus is that we have procedure variables in the
language.

4.2.1. De�nition. Let St be a set of states and let PVar be a set of procedure
variables.

(i) The class (S 2) Stat1 of statements is given by
S ::= V! j fV g j hf i j x j

_
I

Si j
^
I

Si j S ; S ;

where V � St, f : St! St, x 2 PVar, and I is an arbitrary set.
(ii) A declaration is a function d 2 Decl1 = PVar! Stat1.
(iii) A command in the language L1 is a pair hd ; S i, where d is a declaration

in Decl1 and S a statement in Stat1.

The language L1 is a proper class since the index I in the
W
and

V
constructs

can be any set. One way of circumventing the use of proper classes is to impose
a limit (which can be an arbitrary cardinal) on the size of the index sets I that
are used in the

W
and

V
constructs. We can then form an inductive hierarchy of

syntactic terms indexed by the ordinals. By �xing a regular cardinal � which is
larger than the cardinalities of the set of states, of the set of procedure variables,
and of the limit imposed on the index sets of

W
and

V
, then it is straightforward

4.2. The language L1 and its predicate transformer semantics 63

to show that the cardinality of L1 is bounded by �. For more details on this
kind of arguments, see [MRS95].

The language L0 of De�nition 3.1.1 can be mapped into L1 via the transla-
tion function (�)y:Stat0 ! Stat1 de�ned inductively by

(v := e)y = h�s 2 St:s[EV(e)(s)=v]i;

(b!)y = BV(b)!;

(x)y = x ;

(S1 ; S2)
y = (S1)

y ; (S2)
y;

(S1 2 S2)
y = (S1)

y ^ (S2)y:

where v 2 IVar, e 2 Exp, b 2 BExp, and x 2 PVar. The mapping (�)y can be
extended to programs in L0 by

(hd ; S i)y = hd y; (S)yi; where, for all x 2 PVar, d y(x) = (d(x))y:

Notice that d y(x) 2 Stat1 for every x 2 PVar and d 2 Decl0.
The semantics of L1 can be given by associating to every command in L1 a

predicate transformer in PTM (St; St).

4.2.2. De�nition. Put (� 2)PTEnv = PVar! PTM (St; St).
(i) The map Pt : Stat1 ! (PTEnv! PTM (St; St)) is given inductively by

Pt(V!)(�) = V!;

Pt(fV g)(�) = fV g;

Pt(hf i)(�) = hf i;

Pt(x)(�) = �(x)

Pt(
W
I Si)(�) =

W
fPt(Si)(�) j i 2 I g;

Pt(
V
I Si)(P) =

V
fPt(Si)(�) j i 2 I g;

Pt(S1 ; S2)(�) = Pt(S1)(�) � Pt(S2)(�):

(ii) For every declaration d :Decl1 de�ne �d : PTEnv! PTEnv by
�d(�)(x) = Pt(d(x))(�):

(iii) The semantics Wp1[[�]] : L1 ! PTM (St; St) is given by
Wp1[[hd ; S i]] = Pt(S)(�d);

where �d is the least �xed point of �d .

Monotonicity of �d can be checked as follows. It is based on the monotonicity
of the corresponding predicate transformer constructors. Since PTM (St; St) is
a complete lattice, PTEnv is a complete lattice too. Therefore the function �d

has a least �xed point by Proposition 2.2.1 (and also by Proposition 2.2.3), say
�d . Note that this means that �d is the least environment such that �d(x) =
Pt(d(x))(�d).

64 Chapter 4. The re�nement calculus

The semantics Wp1[[�]] is a �xed point semantics in the sense that the mean-
ing of a procedure variable is equal to the meaning of its declaration:

Wp1[[hd ; x i]] = Pt(x)(�d) [by de�nition of Pt[[�]]]

= �d(x) [by de�nition of Pt(�)]

= �d (�d)(x) [�d is a �xed point of �d]

= Pt(d(x))(�d) [by de�nition of �d]

= Wp1[[hd ; d(x)i]]: [by de�nition of Wp1[[�]]]

Furthermore, Wp1[[�]] is the least among all `reasonable' �xed point semantics
of L1. This is shown in the next lemma.

4.2.3. Lemma. Let F : L1 ! PTM (St; St) be a function such that

F (hd ;V!i) = V!;

F (hd ; fV gi) = fV g;

F (hd ; hf ii) = hf i;

F (hd ; x) = F (hd ; d(x)i)

F (hd ;
W
I Sii) =

W
fF (hd ; Sii) j i 2 I g;

F (hd ;
V
I Sii)(P) =

V
fF (hd ; Sii) j i 2 I g;

F (hd ; S1 ; S2i) = F (hd ; S1i) � F (hd ; S2i):

Then WP1[[hd ; S i]] � F (hd ; S i) for all hd ; S i 2 L1.

Proof: For an arbitrary but �xed declaration d 2 Decl1 de�ne the environment
� 2 PTEnv by �(x) = F (hd ; d(x)i). By induction on the structure of S it is
easy to see that

F (hd ; S i) = Pt(S)(�): (4.2)

For example, if S � x then

F (hd ; x i) = F (hd ; d(x)i) = �(x) = Pt(x)(�):

Next we prove that the environment � is a �xed point of �d : for every x 2 PVar,

�d(�)(x) = Pt(d(x))(�)

= F (d(x)) [Equation (4.2)]

= �(x): [De�nition of �]

Using again induction on the structure of the statement S we can �nally prove
that Wp1[[hd ; S i]] � F (hd ; S i) for every hd ; S i 2 L1. We treat here only the
case of procedure variables.

4.2. The language L1 and its predicate transformer semantics 65

Since �d is the least �xed point of �d we have �d(x) � �(x) for every x 2
PVar. Therefore

Wp1[[hd ; x i]] = Pt(x)(�d) [De�nition of Wp1[[�]]]

= �d(x) [De�nition of Pt(�)]

� �(x) [�d is the least �xed point of �d]

= F (hd ; d(x)i) [De�nition of �]

= F (hd ; x i):

2

A similar argument to the one used in the above proof can be used to prove
that the Wp1[[�]] semantics is a total correctness semantics which extends con-
servatively the weakest precondition semantics of L0.

4.2.4. Theorem. For every hd ; S i 2 L0, Wp0[[hd ; S i]] = Wp1[[(hd ; S i)
y]].

Proof: By induction on the structure of S , it is easy to see thatWp1[[(hd ; S i)
y]]

is a total correctness predicate transformer in PTT (St; St) for all hd ; S i 2 L0.
Moreover Wp1[[(�)

y]] is a �xed point of the function 	T de�ned in Lemma 3.3.3.
Since Wp0[[�]] is the least �xed point of 	T ,

Wp0[[hd ; S i]] �Wp1[[(hd ; S i)
y]]

for all hd ; S i 2 L0.
Conversely, �rst note by induction on the structure of S that, for all hd ; S i 2

L0, Wp0[[hd ; S i]] = Pt((S)y)(�), where �(x) = Wp0[[hd ; d(x)i]]. It follows that �
is a �xed point of �d and hence

Wp1[[(hd ; S i)
y]] = Pt((S)y)(�d) � Pt((S)y)(�) = Wp0[[hd ; S i]];

for all hd ; S i 2 L0. 2

It is natural to de�ne a re�nement relation on commands of L1 by putting, for
hd ; S1i; hd ; S2i in L1:

hd ; S1i <� hd ; S2i if and only if Wp1[[(hd ; S1i)]] �Wp1[[(hd ; S2i)]]:

In this case we say that hd ; S1i is re�ned by hd ; S2i, since every total correct-
ness property satis�ed by hd ; S1i is satis�ed also by hd ; S2i. Hence the Wp1[[�]]
semantics identi�es speci�cation commands on the basis of the satis�ed total
correctness properties.

66 Chapter 4. The re�nement calculus

4.3 A state transformer semantics for L1

We now look for a forward denotational semantics for the speci�cation language
L1. We want a semantic domain of state transformers which is isomorphic to
the domain of monotonic predicate transformers. Because of the possibility of
arbitrary meets and joins of commands in L1 the simpler domains introduced in
the previous chapter (or variations thereof) will not work. We take as domain
the free completely distributive lattice over X .

4.3.1. De�nition. Let X be a set. De�ne the free completely distributive
lattice over X , denoted by CDL(X), to be the collection of all lower closed
subsets of the complete lattice L = (P(X);�). Elements of CDL(X) are ordered
by subset inclusion.

Clearly CDL(X) is a partial order with ; as least element (which will be
used for denoting a non-terminating computation), and the set of all subsets of
X as top element (which will be used for denoting deadlocking computations).
Since CDL(X) is closed under arbitrary unions and arbitrary intersections, it
is a complete sub-lattice of P(P(X)). Hence CDL(X) is a completely distribu-
tive lattice. In Chapter 9 we will discuss some lattice theoretical properties of
CDL(X), proving, for example, in Theorem 9.1.3 that CDL(X) is indeed the
free completely distributive lattice over X .

Using the above de�nition we can de�ne the semantic domain ST (X ;Y).

4.3.2. De�nition. The domain of state transformers for speci�cation from a
set X to Y is the set X ! CDL(Y) ordered by the pointwise extension of the
order of CDL(Y). It is denoted by ST (X ;Y) with �; � as typical elements.

Before proving that the above domain of state transformers is equivalent the
domain of the predicate transformers, we give some motivation for the de�nition.
A function � in ST (X ;Y) denotes the speci�cation of a class of commands. It
assigns to every input state x 2 X the collection �(x) of all predicates on the
output space Y which must be satis�ed by every computation started in x of
every command speci�ed by �. This implies that every computation started in
x of every command speci�ed by � must terminate (hence no special symbol ?
to record non-termination is required). The set �(x) is maximal in the sense
that it is upper closed because if every computation of a command speci�ed by
� at input x terminates and satis�es a predicate P 2 �(x), then it satis�es also
predicates Q with Q � P .

If there is a computation starting in x that fails to terminate then �(x) = ;.
If every computation of a command started at x deadlocks, then no output in
Y is obtained and hence every predicate in Y is satis�ed. Hence �(x) = fP j
P � Y g speci�es commands which starting from input x always deadlock.

The relationship between state transformers and predicate transformers is
the content of the following theorem.

4.3. A state transformer semantics for L1 67

4.3.3. Theorem. Let X and Y be two sets. There is an order-isomorphism
between

X ! P(P(Y)) and P(Y)! P(X):

The isomorphism is given by the functions

!̂(�)(P) = fx 2 X j P 2 �(x)g and !̂�1(�)(x) = fP � Y j x 2 �(P)g;

for � : X ! P(P(Y)), � : P(Y) ! P(X), x 2 X , and P � Y . Furthermore,
it restricts and co-restricts to an order-isomorphism between ST (X ;Y) and
PTM (Y ;X).

Proof: The function !̂�1 is a right inverse of !̂ because, for x 2 X ,

!̂�1(!̂(�))(x) = fP j x 2 !̂(�)(P)g = fP j P 2 �(x)g = �(x):

Similarly, !̂�1 is a left inverse of !̂ because, for P � Y

!̂(!̂�1(�))(P) = fx j P 2 !̂�1(�)(x)g = fx j x 2 �(P)g = �(P):

Next we show that the isomorphism is order preserving. Assume �1(x) � �2(x)
for every x 2 X . Then P 2 �1(x) implies P 2 �2(x) for all P � Y and therefore
!̂(�1)(P) � !̂(�2)(P).

Conversely, if �1(P) � �2(P) for all P � Y then x 2 �1(P) implies x 2
�2(P) and therefore !̂�1(�1)(x) � !̂�1(�2)(x) for all x 2 X .

Finally we show that the isomorphism restricts and co-restricts to an order-
isomorphism between ST (X ;Y) and PTM (Y ;X). Let � 2 ST (X ;Y). If
P � Q � Y then

!̂(�)(P) = fx j P 2 �(x)g � fx j Q 2 �(x)g = !̂(�)(Q):

Hence !̂(�) is monotone. For the converse, let � be a monotonic predicate
transformer in PTM (Y ;X). For every x 2 X , if P 2 !̂�1(�)(x) and P � Q
then x 2 �(Q) because x 2 �(P) and � is monotone. Thus Q 2 !̂�1(�)(x).
Therefore !̂�1(�) 2 PTM (Y ;X). 2

The predicate !̂(�)(P) can be thought of as the weakest precondition associated
with the function � and the postcondition P . Indeed x 2 !̂(�)(P) exactly when
every computation of a program speci�ed by � for input x terminates in a state
satisfying P .

Next we give some constructors on ST (X ;Y). Since CDL(X) is a completely
distributive lattice, also ST (X ;Y) is completely distributive: meets and joins
are de�ned pointwise. Indeed, if f�i j i 2 I g is an arbitrary set of functions in
ST (X ;Y) then, for x 2 X ,

(
^
f�i j i 2 I g)(x) =

\
f�i(x) j i 2 I g;

(
_
f�i j i 2 I g)(x) =

[
f�i(x) j i 2 I g:

68 Chapter 4. The re�nement calculus

A function �1 2 ST (X ;Y) can be composed with �2 2 ST (Y ;Z) as follows.
For x 2 X ,

(�1 ; �2)(x) =
[
f
\
f�2(y) j y 2 Pg j P 2 �1(x)g: (4.3)

Well-de�nedness of these three operations can be easily veri�ed. The `;' opera-
tion can intuitively be explained as follows.

Assume every computation speci�ed by �1 started at input x terminates and
satis�es a predicate P in �1(x). Next assume that every computation started at
y 2 P terminates satisfying a predicate Qy in �2(y). Then every computation
of the combined commands started at x terminates and is guaranteed to satisfy
every Qy for y 2 P .

4.3.4. Lemma. Let �1 2 PTM (Y ;X), and �2 2 PTM (Z ;Y). Let also f�i j
i 2 I g be a set of monotonic predicate transformers in PTM (Y ;X). Then

(i) !̂�1(
V
I �i) =

V
I !̂

�1(�i),
(ii) !̂�1(

W
I �i) =

W
I !̂

�1(�i),
(iii) !̂�1(�1 � �2) = !̂�1(�1) ; !̂

�1(�2).

Proof: We start by proving the �rst item. For every x 2 X we have:

!̂�1(
V
I �i)(x)

= fP � Y j x 2 (
V
I �i)(P)g

= fP � Y j x 2
T
I �i(P)g

=
T
IfP � Y j x 2 �i(P)g

=
T
I !̂

�1(�i)(x).

The second item can be proved in a similar way. It remains to prove the last
item. For x 2 X ,

!̂�1(�1 � �2)(x)

= fP � Z j x 2 (�1 � �2)(P)g

= fP � Z j x 2 �1(�2(P))g
�
= fP � Z j 9Q � Y : x 2 �1(Q) & 8y 2 Q : y 2 �2(P)g

= fP � Z j 9Q 2 !̂�1(�1)(x): 8y 2 Q :P 2 !̂�1(�2)(y)g

=
S
f
T
f!̂�1(�2)(y) j y 2 Qg j Q 2 !̂�1(�1)(x)g

= (!̂�1(�1) ; !̂
�1(�2))(x),

where
�
� trivially holds if we take Q = �2(P). Conversely, let P � Z such

that there exists Q � Y with x 2 �1(Q) and y 2 �2(P) for all y 2 Q . Then
Q � �2(P). Hence, by monotonicity of �1, we have x 2 �1(Q) � �1(�2(P))
implies x 2 �1(�2(P)). It follows that P 2 fV � Z j x 2 �1(�2(V))g. 2

4.3. A state transformer semantics for L1 69

By Theorem 4.3.3 and the above lemma it is immediate that
(i) !̂(

V
I �i) =

V
I !̂(�i),

(ii) !̂(
W
I �i) =

W
I !̂(�i),

(iii) !̂(�1 ; �2) = !̂(�1) � !̂(�2).
We can now give a forward denotational semantics for L1. We proceed as

for the predicate transformer semantics by using environments to record the
meanings of procedure variables.

4.3.5. De�nition. Put (� 2) STEnv = PVar! ST (St; St).
(i) The map St : Stat1 ! (STEnv! ST (St; St)) is given inductively by

St(V!)(�)(s) = fP � St j s 2 V) s 2 Pg;

St(fV g)(�)(s) = fP � St j s 2 V \ Pg;

St(hf i)(�)(s) = fP � St j f (s) 2 Pg;

St(x)(�) = �(x);

St(
W
I Si)(�) =

W
fSt(Si)(�) j i 2 I g;

St(
V
I Si)(�) =

V
fSt(Si)(�) j i 2 I g;

St(S1 ; S2)(�) = St(S1)(�) ; St(S2)(�):

(ii) For every declaration d :Decl1 de�ne Hd : STEnv! STEnv by
Hd(�)(x) = St(d(x))(�):

(iii) The semantics St[[�]] : L1 ! ST (St; St) is given by
St[[hd ; S i]] = St(S)(�d);

where �d is the least �xed point of Hd .

The transformation Hd : STEnv ! STEnv is monotone. Since STEnv is
a complete lattice, Hd has a least �xed point. Hence the semantics St[[�]] is
well-de�ned. Below we prove that it is isomorphic to the predicate transformer
semantics Wp1[[�]].

4.3.6. Theorem. For every hd ; S i 2 L1,

!̂(St[[hd ; S i]]) = Wp1[[hd ; S i]] and !̂�1(Wp1[[hd ; S i]]) = St[[hd ; S i]]:

Proof: By Theorem 4.3.3 �x :!̂(�(x)) 2 PTEnv for all � 2 STEnv. Next we
prove by structural induction on S , and using Lemma 4.3.4, that

!̂(St(S)(�)) = Pt(S)(�x :!̂(�(x))): (4.4)

We treat only two cases. If S � x then

!̂(St(x)(�)) = !̂(�(x)) = Pt(x)(�x :!̂(�(x))):

If S � S1 ; S2 then

!̂(St(S1 ; S2)(�))

70 Chapter 4. The re�nement calculus

= !̂(St(S1)(�) ; St(S2)(�)) [De�nition of St(�)(�)]

= !̂(St(S1)(�)) � !̂(St(S1)(�)) [Lemma 4.3.4]

= Pt(S1)(�x :!̂(�(x))) � Pt(S2)(�x :!̂(�(x))) [induction hypothesis]

= Pt(S1 ; S2)(�x :!̂(�(x)). [De�nition of Pt(�)(�x :!̂(�(x)))]

Next we characterize the least �xed point of �d , for a declaration d :PVar!
GStat1, in terms of the least �xed point of Hd using the isomorphism !̂. First
we see that for every � 2 STEnv and declaration d ,

!̂(�x :Hd (�)(x))

= !̂(�x :St(d(x))(�)) [De�nition Hd]

= �x :Pt(d(x))(�x :!̂(�(x)) [by 4.4]

= �d(�x :!̂(�(x)). [De�nition �d]

Hence, by Proposition 2.2.5 the least �xed point of �d is !̂(�x :�d(x)), where �d
is the least �xed point of Hd .

We �nally prove that the state transformer semantics and the predicate
transformer semantics of L1 are isomorphic. For all hd ; S i 2 L1,

!̂(St[[hd ; S i]])

= !̂(St(S)(�d)) [De�nition of St[[�]]]

= Pt(S)(�x :!̂(�d(x))) [by 4.4]

= Wp1[[hd ; S i]]. [Def. of Wp1[[�]], �x :!̂(�d (x)) least �xed point of �d]

By Theorem 4.3.3 and the above, !̂�1(Wp1[[hd ; S i]]) = St[[hd ; S i]]. 2

As an immediate consequence of the above theorem and Lemma 4.2.3 we have
the following corollary.

4.3.7. Corollary. The function St[[�]] is the least among all the functions F :
L1 ! ST (St; St) such that

F (hd ;V!i)(s) = fP � St j s 2 V) s 2 Pg;

F (hd ; fV gi)(s) = fP � St j s 2 V \ Pg;

F (hd ; hf ii)(s) = fP � St j f (s) 2 Pg;

F (hd ; x i)(s) = F (hd ; d(x)i)(s);

F (hd ;
W
I Sii)(s) =

S
fF (hd ; Sii)(s) j i 2 I g;

F (hd ;
V
I Sii)(s) =

T
fF (hd ; Sii) j i 2 I g;

F (hd ; S1 ; S2i)(s) = (F (hd ; S1i) ; F (hd ; S2i))(s);

for every s 2 St. 2

4.4. An operational semantics for L1 71

4.4 An operational semantics for L1

In this section we give an operational semantics for L1, and prove it equivalent to
the forward semantics. The operational semantics is based on hyper transition
systems, which are a generalization of standard transition systems.

Transition systems and hyper transition systems

Before we introduce hyper transition systems, we �rst discuss transition sys-
tems. They are a useful mathematical structure to describe the atomic steps of
a computation of a program [Plo81b].

4.4.1. De�nition. A transition system with deadlock is a tuple hX ; �;�!i
where X is the set of all proper con�gurations for a program, � 62 X denotes a
deadlock con�guration, and �!� X � (X [f�g) is a transition relation.

The idea is that con�gurations represent states of a computation, whereas
a transition x �! y (read `x goes to y ') indicates a possible atomic step which
a computation can do, changing the con�guration x into the con�guration y .
If x �! � then the computation in the con�guration x may deadlock. If there
is no y 2 X [f�g such that x �! y then the computation is unde�ned in the
con�guration x .

Let us now be a bit more precise about what we mean by `computation'. Let
T = hX ; �;�!i be a transition system and x 2 X . De�ne a �nite computation
of T starting at x to be a �nite sequence (xn)n�k in X [f�g such that

(i) x = x0,
(ii) xn �! xn+1 for all n < k , and
(iii) for all y 2 X [f�g there is no transition xk �! y in T .

If (xn)n�k is a �nite computation of T starting at x0 then we say that it ter-
minates in the con�guration xk . Notice that xk may also be equal to �. Not
every computation of a program need to be �nite. An in�nite computation of
T starting at x is a countable sequence (xn)n2IN in X [f�g such that

(i) x = x0, and
(ii) xn �! xn+1 for all n 2 IN.

In general, a computation of a transition system T is a �nite or in�nite compu-
tation of T . In other words, a computation of T is a transition sequence of T
that cannot be extended.

The next step is to introduce hyper transition systems. Hyper transition
systems occur under the name of AND/OR graphs or hyper-graphs in logic
programming and arti�cial intelligence [Nil82].

4.4.2. De�nition. A hyper transition system is a pair H = hX ; 2i where X
is the collection of all possible con�gurations in which a computation is allowed
to work, and 2� X �P(X) is a transition relation which speci�es the atomic
steps of a computation.

72 Chapter 4. The re�nement calculus

A hyper transition system speci�es a set of computations by specifying their
atomic steps. The idea is that a computation speci�ed by an hyper transition
system H = hX ; 2i can change a con�guration x into a con�guration y if
the con�guration y satis�es all predicates W � X such that x 2 W (read `x
goes into W '). More formally, the set of all computations speci�ed by a hyper
transition system H can be modeled by the following transition system TS (H).

4.4.3. De�nition. For a hyper transition system H = hX ; 2i de�ne the
induced transition system TS (H) = hX ; �;�!i by

x �! � ,
\
fW j x 2 W g = ;;

x �! y , (9W :x 2 W) & y 2
\
fW j x 2 W g;

for all x ; y 2 X .

A computation of TS (H) (or, equivalently, a computation that satis�es the
speci�cation of the hyper transition system H) in a con�guration x has three
possibilities:

1. it goes to a deadlock con�guration because there is no con�guration y 2 X
satisfying all predicates W � X such that x 2 W ;

2. it is unde�ned because there is no predicate W � X such that x 2 W ;

3. it goes to a con�guration y satisfying all predicates W � X such that
x 2 W .

Observe that, by de�nition, exactly one of the above three possibilities is pos-
sible. Indeed, for every x 2 X , if x 2 W then either x �! � or there
exists y 2 W such that x �! y . Conversely, there exists W � X such that
x 2 W only if either x �! � or x �! y (and in this case y 2W). It follows
that a computation speci�ed by a hyper transition system H is unde�ned in a
con�guration x if and only if there is no W � X such that x 2 W .

As an example of a hyper transition system consider H = hIN; 2i, where
IN is the set of natural numbers and 2 is de�ned by

n 2 W , 8m > 0: m < n) m 2W :

The con�guration `0' is the only con�guration in H such that there is noW � X
with x 2 W . Two of the many computations speci�ed by H are

10 �! 9 �! 4 �! 2 �! 1 �! 0 and 10 �! 7 �! 1 �! 0 :

It is not hard to see that every computation speci�ed by H is �nite and termi-
nates in the con�guration `0'.

4.4. An operational semantics for L1 73

Under the above interpretation of hyper transition systems it is natural to
require that the transition relation 2 is upper closed on the right hand side,
that is,

x 2 V & V �W implies x 2 W : (4.5)

Essentially, the above closure property is due to the fact that V � W if and
only if V = V \W . No extra information is added by upper closing to the
right the transition relation of a hyper transition system.

Observe that hyper transition systems specify computations at the level of
the properties that an atomic step has to satisfy, whereas transition systems
specify computations at the level of the con�gurations that an atomic step may
reach. Because of this di�erence a hyper transition system H = hX ; 2i can
model two di�erent kinds of non-determinism: one at the level of the computa-
tions speci�ed and one at the level of the speci�cation. The non-determinism
of the computations speci�ed by H in a con�guration x depends on all the sets
W � X such that x 2 W : the bigger these sets, the more computations
are speci�ed. The non-determinism of the speci�cation depends on the number
of transitions starting from the same con�guration: the more a speci�cation is
non-deterministic the less is the number of computations that it speci�es.

Consider the following two examples.
(i) Let X = f0; 1; 2g be a set of con�gurations and consider the hyper tran-

sition system H1 = hX ; 21i with 0 21 V if both 0 and 1 are in V . Then H1

speci�es two computations: they are unde�ned in a con�guration di�erent from
0, but in the con�guration 0 one computation does not change con�guration,
whereas the other one changes 0 to 1. In other words, the transition relation of
the induced transition system TS (H1) is de�ned by 0 �! 0 and 0 �! 1.

(ii) Let now H2 = hX ; 22i be a hyper transition system with 0 22 V if
either both 0 and 1 are in V or both 0 and 2 are in V . Then only one of the
computations of H1 is speci�ed by H2, namely the one which does not change
the con�guration 0. Indeed, the only transition in TS (H2) is 0 �! 0.

In the next subsection we will see that the non-determinism of the speci�-
cation is related to angelic non-determinism, and the non-determinism of the
computations is related to the demonic non-determinism.

First we compare hyper transition systems to transition systems. We have
already seen that a hyper transition system H induces a transition system
TS (H) representing all the computations speci�ed by H . However, di�erent
hyper transition systems can specify the same sets of computations. Let X =
f0; 1g and consider two hyper transition systems H1 = hX ; 21i and H2 =
hX ; 22i with

0 21 V if 0 2 V or 1 2 V ; and
0 22 V V � X :

74 Chapter 4. The re�nement calculus

Then TS (H1) = TS (H2) = hX ; �;�!i with 0 �! �.
Conversely, every transition system T induces a canonical hyper transition

system HTS (T) which speci�es exactly all computations of T .

4.4.4. De�nition. For a transition system T = hX ; �;�!i de�ne the hyper
transition system HTS (T) = hX ; 2i by putting x 2 W if and only if

x �! � or (9y 2 X : x �! y) & (8y 2 X : x �! y) y 2W)

for every x 2 X and W � X .

The computations speci�ed by HTS (T) coincide with the computations of
T . This is a consequence of the following lemma.

4.4.5. Lemma. Let T = hX ; �;�!i be a transition system with deadlock.
Then TS (HTS (T)) = T.

Proof: Let TS (HTS (T)) = hX ; �;�!0i and let x 2 X . If x �! � then
x 2 ;, by De�nition 4.4.4. Hence, by De�nition 4.4.3 x �!0 �.

Conversely, if x �!0 � then\
fW � X j x 2 W g = ;:

By De�nition 4.4.4 this is the case only if x �! �.
Let now x ; y 2 X . If x �! y then, by De�nition 4.4.4,

x 2 fy 2 X j x �! yg:

By De�nition 4.4.3 it follows that x �!0 y .
Conversely, if x �!0 y then, by De�nition 4.4.3 there exists W � X such

that x 2 W and for all z 2 X such that x �!0 z , z 2 W . Hence, by
De�nition 4.4.4, x �! y . 2

Which are the hyper transition systems that are in one-to-one correspondence
with transition systems? In order to characterize them, notice that, for every
transition system T = hX ; �;�!i the transition relation 2 of the hyper
transition system HTS (T) is upper closed on the right hand side and it satis�es
the following property:

9W � X : x 2 W) x 2

\
fV � X j x 2 V g (4.6)

for every x 2 X .

4.4.6. Lemma. Let H = hX ; 2i be a hyper transition system satisfying
Equation (4.6) and such that the relation 2 is upper closed on the right hand
side. Then HTS (TS (H)) = H .

4.4. An operational semantics for L1 75

Proof: Let HTS (TS (H)) = hX ; 2
0i, x 2 X and W � X . By De�ni-

tion 4.4.4, if x 2
0 W then there are two cases: either x �! � or there

exists y 2 X such that x �! y and fy 2 X j x �! yg �W .
In the �rst case, by De�nition 4.4.3,

T
fW j x 2 W g = ;. Hence there

exists W � X such that x 2 W and, by Equation (4.6) x 2 ;. Since the
relation 2 is upper closed to the right hand side, x 2 W .

In the other case, by De�nition 4.4.3, there exists W � X such that x 2

W and\
fW � X j x 2 W g = fy 2 X j x �! yg:

By Equation (4.6) and the upper closure on the right hand side of the relation
2 it follows that x 2 W .
Conversely, assume x 2 W . Then, by Equation (4.6), x 2

T
fW � X j

x 2 W g. Let W0 denote the set on the right hand side. By De�nition 4.4.3,
if W0 = ; then x �! �, otherwise x �! y for all y 2 W0. In both cases,
by De�nition 4.4.4, x 2

0 W0. Since W0 � W and the relation 2
0 is upper

closed on the right hand side, x 2
0 W . 2

Essentially, what makes a hyper transition system more expressive than an
ordinary transition system is the possibility of describing two di�erent kinds
of non-determinism in a single framework. However, this does not imply that
transition systems are not expressive enough to specify computations. One
argument for the introduction of hyper transition systems is that they allow for
the speci�cation of a computation in terms of the properties that the atomic
steps of the computation have to satisfy.

A hyper transition system for L1

In this subsection we de�ne a hyper transition system for the language L1. We
consider con�gurations to be either states in St, representing the �nal outcomes
of the computations, or pairs hS ; si where s 2 St is a possible initial or interme-
diate state of a computation and S 2 Stat1 is the speci�cation of the remainder
of the computation to be executed.

4.4.7. De�nition. Let (c 2)Conf1 = (Stat1 � St) [St be the collection of
con�gurations and de�ne, for every declaration d : PVar ! Stat1 the hyper
transition system hConf1; 2di by taking 2d to be the least relation between
con�gurations in Conf1 and subsets of con�gurations of Conf1 satisfying the
following axioms and the rules:

hV!; si 2d W if s 2 V implies s 2W

hfV g; si 2d W if s 2 V \W

hhf i; si 2d W if f (s) 2W

76 Chapter 4. The re�nement calculus

hx ; si 2d W if hd(x); si 2W , for x 2 PVar

hSi ; si 2d W

h
W
I Si ; si 2d W

if i 2 I

fhSi ; si 2d Wi j i 2 I g

h
V
I Si ; si 2d

S
fWi j i 2 I g

hS1; si 2d W

hS1 ; S2; si 2d fhS2; ti j t 2W \ Stg [fhS 01 ; S2; ti j hS
0
1; ti 2W g

:

An explanation is in order here. According to our interpretation of hyper
transition systems, the command hd ;V!i speci�es a computation that when
started at input s 2 V terminates in one step with the state s as the only
outcome because hV!; si 2d fsg. However, if the computation is started at
input s 62 V then it must deadlock because hV!; si �! ;.

The command hd ; fV gi is similar except that the computations speci�ed by
hd ; fV gi are unde�ned at input s 62 V because no transition is possible from
the con�guration hfV g; si.

The command hd ; hf ii speci�es a computation that at input s terminates in
one step, with as only output the state f (s) (because hhf i; si 2d ff (s)g).

The command hd ; x i speci�es a computation that at input s goes to the
con�guration hd(x); si (because hx ; si 2d fhd(x); sig).

The command hd ;
W
I Sii speci�es those computations which are speci�ed

by all hd ; Sii for i 2 I . It increases the non-determinism of the speci�cation
and hence restricts the non-determinism of the computations. For example, if
hS1; si 2d fc1; c2g and hS2; si 2d fc1; c3g then hS1_S2; si 2d fc1; c2g and
hS1 _S2; si 2d fc1; c3g. Hence hd ; S1 _S2i speci�es the computation which at
input s reaches the con�guration c1. The computations speci�ed by hd ;

W
I Sii

are unde�ned at input s only if the computations speci�ed by all hd ; Sii for
i 2 I are unde�ned at input s. The computations speci�ed by hd ;

W
I Sii must

deadlock at input s if there is one hd ; Ski for k 2 I which speci�es a computation
which must deadlock.

The command hd ;
V
I Sii increases the non-determinism at the level of the

speci�ed computations. It speci�es computations which behave as any of the
computations speci�ed by hd ; Sii for i 2 I . For example, if hS1; si �!d fc1g
and hS2; si 2d fc2g then hS1^S2; si 2d fc1; c2g. Thus hd ; S1^S2i speci�es,
among others, the computation which at input s may choose to go either in the
con�guration c1 or in the con�guration c2. Dual to the command hd ;

W
I Sii,

the computations speci�ed by hd ;
V
I Sii are unde�ned at input s if there is one

hd ; Ski for k 2 I which speci�es a computation unde�ned at input s. Also,
the computations speci�ed by hd ;

V
I Sii must deadlock at input s only if the

computations speci�ed by all hd ; Sii for i 2 I must deadlock at input s.
Finally, the command hd ; S1 ; S2i speci�es computations that at input s may

either deadlock, or go to a con�guration hS2; s 0i if S1 speci�es a computation

4.4. An operational semantics for L1 77

which at input s terminates in a state s 0, or goes to a con�guration hS ; S2; s
0i

if S1 speci�es a computation which at input s may go in a state s 0 with hd ; S i
the command specifying the remainder of the computation to be executed.

In order to prove properties of the hyper transition system hConf1; 2di we
will often use induction on the structure of S . Indeed we can de�ne inductively
an assignment of ordinals to statements in Stat1 by

wgt1(V!) = 1;
wgt1(fV g) = 1;
wgt1(hf i) = 1;
wgt1(x) = 1;
wgt1(S1 ; S2) = wgt1(S1) + wgt1(S1) + 1;
wgt1(

W
I Si) = supfwgt1(Si) j i 2 I g+ 1;

wgt1(
V
I Si) = supfwgt1(Si) j i 2 I g+ 1:

Since the index I in the statements
W
I Si and

V
I Si is a set, the above function

is well-de�ned.
The �rst property we prove of the hyper transition system hConf1; 2di is

the upper closure on the right hand side of the transition relation 2d .

4.4.8. Lemma. For all commands hd ; S i of L1 and states s 2 St,

hS ; si 2d W1 & W1 �W2) hS ; si 2d W2:

Proof: We prove the lemma by induction on wgt1(S). Since base cases are
obvious we concentrate on the other sub-cases.

[S1 ; S2] Let hS1 ; S2; si 2d W1 and W2 �W1. De�ne

W1 = fs
0 j hS2; s

0i 2W1g [fhS
0
1; s

0i j hS 01 ; S2; s
0i 2W1g:

Similarly de�ne also W2. Then hS1; si 2d W1 and W1 �W2. Hence,
by induction, hS1; si 2d W2. The latter implies hS1 ; S2; si 2d W2.

[
W
I Si] If h

W
I Si ; si 2d W1 then there exists k 2 I such that hSk ; si 2d

W1. By induction, if W2 � W1 then hSk ; si 2d W2. Therefore
h
W
I Si ; si 2d W2.

[
V
I Si] Assume h

V
I Si ; si 2d W1. By induction all transitions starting from

hSi ; si for i 2 I are upper closed on the right. Hence, by de�nition
of 2d , hSi ; si 2d W1 for all i 2 I . If we take W2 � W1 then, by
induction, hSi ; si 2d W2 for all i 2 I . Hence h

V
I Si ; si 2d W2. 2

78 Chapter 4. The re�nement calculus

Since the transition relation 2d is upper closed on the right hand side we have
that h

V
I Si ; si 2d W if and only if hSi ; si 2d W for all i 2 I . Dually, by

De�nition 4.4.7 2d , h
W
I Si ; si 2d W if and only if there exists k 2 I such

that hSk ; si 2d W .
Recall that the language L0 can be mapped into the language L1 via the

function (�)y. For d 2 Decl0, the restriction of the hyper transition system
hConf1; 2

dyi to a hyper transition system H (with con�gurations stemming
either from state s 2 St or to pair h(S)y; si with S 2 Stat0) induces a transition
system TS (H) which is equivalent to H . This is a consequence of Lemma 4.4.8
and of the result below.

4.4.9. Lemma. For every hd ; S i 2 L0 and s 2 St if there exists W � Conf1
such that h(S)y; si 2

dy W then h(S)y; si 2
dy
T
fW j h(S)y; si 2

dy W g.

Proof: By induction on the structure of S 2 Stat0. We consider only one sub-
case. Assume h(S1 2 S2)

y; si 2
dy W . Since (S1 2 S2)

y = (S1)
y ^ (S2)y, by

de�nition of 2
dy,

h(S1)
y; si 2

dy W and h(S2)
y; si 2

dy W :

Hence, by induction hypothesis,

h(S1)
y; si 2

dy

\
fW j h(S1 2 S2)

y; si 2
dy W g and

h(S2)
y; si 2

dy

\
fW j h(S1 2 S2)

y; si 2
dy W g:

We can conclude that h(S1 2 S2)
y; si 2

dy
T
fW j h(S1 2 S2)

y; si 2
dy W g

becauseT
fW j h(S1 2 S2)

y; si 2
dy W g

=
T
fW j h(S1)y ^ (S2)y; si 2

dy W g

=
T
fW j h(S1)y; si 2

dy W & h(S2)y; si 2
dy W g

=
T
fW j h(S1)

y; si 2
dy W g \

T
fW j h(S2)

y; si 2
dy W g. 2

Operational semantics

Next we want to use the hyper transition system (Conf1; 2d) to de�ne an
operational semantics Op[[�]] for the language L1. Since we are interested only
in the input-output behaviour of the language L1 we need to abstract from
the intermediate con�gurations recorded by the transition relation of the hyper
transition system. Therefore we need to take a kind of transitive closure of the
transition relation.

4.4. An operational semantics for L1 79

4.4.10. De�nition. Let hX ; 2i be a hyper transition system. For every

ordinal � � 0 de�ne the relation
�

2 on X � P(X) inductively by

x
0

2 W � x 2W ;

x
�+1

2 W � 9V � X : x 2 V & 8y 2 V 9� � �: y
�

2 W ;

x
�

2 W � 9� < �: x
�

2 W where � is a limit ordinal

for x 2 X and W � X .

By induction on � it is easy to see that, for every ordinal � � 0, the relation
�

2 is upper closed on the right hand side if the relation 2 is upper closed
on the right hand side.

The ordinal used to label the transition relation x
�

2 W is not equal to
the number of atomic steps which a computation speci�ed by a hyper transition
system starting in a con�guration x need to execute in order to satisfy the
predicate W . Rather, this label is related to the size of the set on the right
hand side of the transition relation.

The relation x
�

2 W for an in�nite ordinal can be de�ned in terms of the
successor ordinal below �. This technical property will be useful in most of the
proofs by induction below.

4.4.11. Lemma. Let hX ; 2i be a hyper transition system. For every limit

ordinal �, x
�

2 W if and only if either x
0

2 W or there exists an ordinal

� < � such that x
�+1

2 W.

Proof: Let � be a limit ordinal. If x
0

2 W then x
�

2 W because 0 < �.
Also, if there exists a �<� such that x

�+1
2 W then �+1<�. Hence x

�
2 W .

The converse follows immediately by showing, by induction on �, that if

x
�

2 W and � is a limit ordinal then either x
0

2 W or there exists a � < �
such that x

�+1
2 W . 2

We can now de�ne a semantics Op[[�]] for the language L1 in terms of the hyper
transition system (Conf1; 2d).

4.4.12. De�nition. (i) Put Sem1 = Decl1 � Conf1 ! P(P(St)) and de�ne
Op 2 Sem1, for d 2 Decl1 and c 2 Conf1, by

Op(d ; c) = fP � St j 9�: c
�
2d Pg:

(ii) The operational semantics Op[[�]] : L1 ! (St! P(P(St)) is given by

Op[[hd ; S i]](s) = Op(d ; hS ; si):

The idea behind the above operational semantics is that of total correctness:
if a predicate P on the output space of a program is in Op[[hd ; S i]](s) then
every computation started at input s and speci�ed by the command hd ; S i of
L1 terminates either in a state t 2 P or in the deadlock con�guration �.

80 Chapter 4. The re�nement calculus

4.4.13. Theorem. Let T = hConf1; �; 2di be the transition system induced
by the hyper transition system associated to L1 according to De�nition 4.4.3.
For all hd ; S i 2 L1, P � St and s 2 St if P 2 Op[[hd ; S i]](s) then every compu-
tation of T starting at hS ; si is �nite and terminates either in the con�guration
� or in a state t 2 P.

Proof: It is enough to prove by induction on the ordinal � that if hS ; si
�
2d P

then every computation of T starting at hS ; si is �nite and terminates either
in � or in a state t 2 P .

For � = 0 the above statement is obviously true because there is no P � St

such that hS ; si
0
2d P .

Assume the above statement holds for all ordinals � � �, and let P � St

such that hS ; si
�+1

2d P . Let also (xn)n be a computation of T with x0 = hS ; si.

By de�nition of
�+1

2d there exists W � Conf1 such that

hS ; si 2d W & 8c 2W 9� � �: c
�
2d P : (4.7)

By de�nition 4.4.3, hS ; si 2d W implies that the sequence (xn)n contains at
least two elements, x0 and x1 with x0 2d x1 in T . Moreover, either x1 = �
or x1 2 W . Since there is no transition in T starting from �, if x1 = � the the
computation (xn)n terminates in �. Otherwise, by (4.7), x1

�
2d P for some

� � �. Hence, by induction hypothesis, every computation of T starting at x1
is �nite and terminates either in � or in state t 2 P . Since x0 2d x1 in T ,
also the computation (xn)n of T is �nite and terminates either in � or in state
xk 2 P . 2

We conjecture that also the converse of the above theorem holds, that is, if
every computation speci�ed by the hyper transition system associated with
L1 and starting at hS ; si is �nite and terminates in either � or t 2 P then
P 2 Op[[hd ; S i]](s). A proof of this statement reduces to the proof of the

existence of an ordinal � such that hS ; si
�
2d P . This will require a rather

detailed analysis of the computations speci�ed by a hyper transition system.

The function Op(�) can be characterized as the least solution of an opera-
tional �xed point equation.

4.4.14. Theorem. The function Op(�) is the least function in Sem1 such that,
for d 2 Decl1, s 2 St, and S 2 Stat1,

Op(d ; s) = fP � St j s 2 Pg

Op(d ; hS ; si) =
S
f
T
fOp(d ; c 0) j c 0 2W g j hS ; si 2d W g

Proof: The proof is divided in two parts. We �rst prove that Op(�) satis�es
the above equations, and then we show that Op(�) is the least function which
satis�es them.

For s 2 St, there is no W � Conf1 such that s 2d W . Hence

4.4. An operational semantics for L1 81

Op(d ; s)

= fP � St j 9�: s
�
2d Pg

= fP � St j s
0
2d Pg

= fP � St j s 2 Pg.

For hS ; si 2 Conf1, P 2 Op(d ; hS ; si) if and only if there exists � � 0 such

that hS ; si
�
2d P . Since P � St, hS ; si 62 P . Hence �>0. There are two cases

to be considered: either � = �+1 for some ordinal � or � is a limit ordinal. In
the �rst case

hS ; si
�+1

2d P

, 9W � Conf1: hS ; si 2d W & 8c 2W 9� � �: c
�
2d P

, 9W � Conf1: hS ; si 2d W & 8c 2W :P 2 Op(d ; c) [Def. Op(�)]

, P 2
S
f
T
fOp(d ; c) j c 2W g j hS ; si 2d W g.

In the second case � is a limit ordinal. By Lemma 4.4.11 hS ; si
�
2d P if and

only if either hS ; si
0
2d P or there exists an ordinal �<� such that hS ; si

�+1
2d

P . Since hS ; si 62 P , hS ; si
0
2d P does not hold. Hence hS ; si

�
2d P if and

only if there exists � < � such that hS ; si
�+1

2d P . We have already seen that
the latter is equivalent to

P 2
[
f
\
fOp(d ; c) j c 2W g j hS ; si 2d W g:

Therefore Op(�) satis�es the two recursive equations above.

Let now F 2 Sem1 be another function such that, for d 2 Decl1, s 2 St,
and S 2 Stat1,

F (d ; s) = fP � St j s 2 Pg

F (d ; hS ; si) =
S
f
T
fF (d ; c 0) j c 0 2W g j hS ; si 2d W g:

We prove, by induction on �, that

c
�
2d P) P 2 F (d ; c); (4.8)

for all c 2 Conf1 and P � St. It follows that Op(d ; c) � F (d ; c).
For � = 0 Equation (4.8) clearly holds. Assume it holds for every ordinal

� � �. Then

c
�+1

2d P

, 9W � Conf1: c 2d W & 8c 0 2W 9� � �: c 0
�
2d P

82 Chapter 4. The re�nement calculus

) 9W � Conf1: c 2d W & 8c 0 2W :P 2 F (d ; c 0) [induction]

, P 2 F (d ; c).

In the last equivalence we used the fact that c 2d W if and only if c = hS ; si
for some S 2 Stat1 and s 2 St.

Finally, let � be a limit ordinal and assume that Equation (4.8) holds for all
ordinals � < �. Then

c
�
2d P

, 9� < �: c
�
2d P

) 9� < �:P 2 F (d ; c) [induction]

, P 2 F (d ; c).

Hence Equation (4.8) holds for all ordinals. 2

The above theorem shows that the operational semantics Op[[hd ; S i]](s) of a
command hd ; S i in L1 at input s 2 St abstracts from the intermediate con�gu-
rations reached by a transition sequence starting from hd ; S i and collects only
the �nal outcomes.

Operational equals denotational semantics

Next we want to relate the state transformer semantics St[[�]] to the hyper tran-
sition system hConf1; 2di. First we need to extend St[[�]] to con�gurations.
De�ne the function St� :Decl1�Conf1 ! CDL(St), for d 2 Decl1 and c 2 Conf1,
by

St�(d ; c) =

(
fP � St j s 2 Pg if c = s 2 St

St[[hd ; S i]](s) if c = hS ; si 2 Stat1 � St:

The function St� is a �xed point of an equation de�ned in terms of the hyper-
transition system hConf1; 2di.

4.4.15. Theorem. For every hd ; S i 2 L1 and s 2 St,

St�(d ; hS ; si) =
[
f
\
fSt�(d ; c) j c 2W g j hS ; si 2d W g:

Proof: In order to simplify the notation, let for W � Conf1

lhs(W) =
\
fSt�(d ; c) j c 2W g:

To prove the theorem we need to prove for all P � St,

P 2 St[[hd ; S i]](s) , 9W � Conf1: hS ; si 2d W & P 2 lhs(W): (4.9)

We proceed by induction on wgt1(S). We treat only two base cases. The cases
when S � fV g and S � hf i can be treated in a way similar to the one below.

4.4. An operational semantics for L1 83

P 2 St[[hd ;V!i]](s)

, s 2 V) s 2 P [De�nition St[[�]]]

, hV!; si 2d P [De�nition 2d]

, hV!; si 2d P & P 2 lhs(P),

where P 2 lhs(P) because, by de�nition of St�, lhs(P) = fQ � St j P � Qg.
Let now x 2 PVar. We have

P 2 St[[hd ; x i]](s)

, P 2 St[[hd ; d(x)i]](s) [De�nition of St[[�]]]

, P 2 St�(d ; hd(x); si) [De�nition of St�]

, hx ; si 2d fhd(x); sig & P 2 lhs(hd(x); si). [De�nition 2d]

Next we consider commands hd ; S i 2 L1 with wgt1(S)>1. We begin by proving
Equation (4.9) for the command hd ;

W
I Sii:

P 2 St[[hd ;
W
I Sii]](s)

, 9k 2 I : P 2 St[[hd ; Ski]](s) [De�nition St[[�]]]

, 9k 2 I9Wk � Conf1 : hSk ; si 2d Wk & P 2 lhs(Wk) [induction]
1
, 9W � Conf1 : h

W
I Si ; si 2d W & P 2 lhs(W),

where, by de�nition of 2d , (
1
)) holds by taking W = Wk whereas (

1
()

holds by taking Wk =W .
Then we prove (4.9) for the command hd ;

V
I Sii:

P 2 St[[hd ;
V
I Sii]](s)

, 8i 2 I : P 2 St[[hd ; Sii]](s) [De�nition St[[�]]]

, 8i 2 I9Wi � Conf1 : hSi ; si 2d Wi & P 2 lhs(Wi) [induction]

2
, 9W � Conf18i 2 I : hSi ; si 2d W & P 2 lhs(W),

, 9W � Conf1 : h
V
I Si ; si 2d W & P 2 lhs(W), [Def. 2d]

where (
2
)) holds by taking W =

S
I Wi because lhs(

S
I Wi) =

T
I lhs(Wi) (a

proof of this statement is immediate) and, by Lemma 4.4.8, hSi ; si 2d

S
I Wi

for all i 2 I . Conversely, (
2
() holds by takingWi = W for all i 2 I because, by

de�nition of 2d and Lemma 4.4.8, if h
V
I Si ; si 2d W then hSi ; si 2d W

for all i 2 I .
It remains to prove Equation (4.9) for the command hd ; S1 ; S2i:

P 2 St[[hd ; S1 ; S2i]](s)

84 Chapter 4. The re�nement calculus

, s 2Wp1[[hd ; S1 ; S2i]](P) [Theorem 4.3.6]

, s 2Wp1[[hd ; S1i]](Wp1[[hd ; S2i]](P)) [De�nition 4.2.2]

, Wp1[[hd ; S2i]](P) 2 St[[hd ; S1i]](s) [Theorem 4.3.6]

, 9W � Conf1 : hS1; si 2d W &Wp1[[hd ; S2i]](P) 2 lhs(W)

[induction]
3
, 9W � Conf1 : hS1 ; S2; si 2d W & P 2 lhs(W),

where (
3
)) holds by taking

W = fhS2; ti j t 2W \ Stg [fhS 01 ; S2; ti j hS
0
1; ti 2W g:

Notice that hS1; si 2d W implies hS1 ; S2; si 2d W , and

Wp1[[hd ; S2i]](P) 2 lhs(W)

, 8c 2W : Wp1[[hd ; S2i]](P) 2 St�(d ; c) [De�nition lhs(W)]

, (8t 2W \ St : t 2Wp1[[hd ; S2i]](P)) &

(8hS 01; ti 2W : Wp1[[hd ; S2i]](P) 2 St[[hd ; S 01i]](t)) [De�nition St�]

, (8t 2W \ St : P 2 St[[hd ; S2i]](t)) &

(8hS 01; ti 2W : t 2Wp1[[hd ; S
0
1i]](Wp1[[hd ; S2i]](P))) [Th. 4.3.6]

, (8t 2W \ St : P 2 St[[hd ; S2i]](t)) &

(8hS 01; ti 2W : t 2Wp1[[hd ; S
0
1 ; S2i]](P)) [De�nition 4.2.2]

, (8t 2W \ St : P 2 St[[hd ; S2i]](t)) &

(8hS 01; ti 2W : P 2 St[[hd ; S 01 ; S2i]](t)) [Theorem 4.3.6]

, 8c 2W : P 2 St�(d ; c) [De�nition W and St�]

, P 2 lhs(W). [De�nition lhs(W)]

Conversely (
3
() holds by taking

W = ft j hS2; ti 2W g [fhS 01; ti j hS
0
1 ; S2; ti 2W g:

As above, if hS1 ; S2; si 2d W then hS1; si 2d W , and P 2 lhs(W) implies
Wp1[[hd ; S2i]](P) 2 lhs(W). 2

As a consequence of the above theorem together with Theorem 4.4.14 we have
that Op[[hd ; S i]](s) � St[[hd ; S i]](s) for all commands hd ; S i in L1 and inputs
s 2 St. In order to prove the converse we need to show that the function Op[[�]]
satis�es the equations characterizing the forward semantics St[[hd ; S i]](s) given
in Corollary 4.3.7. First we show that every function satisfying the �xed point
characterization of the operational semantics Op[[�]] satis�es also many of the
equations characterizing the state transformer semantics St[[�]].

4.4. An operational semantics for L1 85

4.4.16. Lemma. Let F : Decl1 � Conf1 ! P(P(St)) be a function such that,
for d 2 Decl1, s 2 St, and S 2 Stat1,

F (d ; s) = fP � St j s 2 Pg (4.10)

F (d ; hS ; si) =
[
f
\
fF (d ; c 0) j c 0 2W g j hS ; si 2d W g: (4.11)

Then, for every d 2 Decl1 and s 2 St,

(i) F (d ; hV!; si) = fP � St j s 2 V) s 2 Pg,
(ii) F (d ; hfV g; si) = fP � St j s 2 V \ Pg,
(iii) F (d ; hhf i) = fP � St j f (s) 2 Pg,
(iv) F (d ; hx ; si) = F (d ; hd(x); si),
(v) F (d ; h

W
I Si ; si) =

S
fF (d ; hSi ; si) j i 2 I g,

(vi) F (d ; h
V
I Si ; si) =

T
fF (d ; hSi ; si) j i 2 I g.

Proof: We begin by proving item (i).

P 2 F (d ; hV!; si)

, 9W � Conf1 : hV!; si 2d W & 8c 2W : P 2 F (d ; c) [(4.11)]

, 9W � Conf1 : (s 2 V) s 2W) & 8c 2W : P 2 F (d ; c)

[De�nition 2d]
1
, s 2 V) P 2 F (d ; s)

, s 2 V) s 2 P ,

where (
1
() holds by taking W = fsg. Items (ii) and (iii) can be treated

similarly.
Item (iv) follows immediately from the de�nition of 2d :

P 2 F (d ; hx ; si)

, 9W � Conf1 : hx ; si 2d W & 8c 2W : P 2 F (d ; c) [(4.11)]

2
, P 2 F (d ; hd(x); si),

where (
2
() holds by taking W = fhd(x); sig, whereas (

2
)) holds because

hd(x); si 2W by de�nition of 2d .
Next we prove item (v):

P 2 F (d ; h
W
I Si ; s)

, 9W � Conf1 : h
W
I Si ; si 2d W & 8c 2W : P 2 F (d ; c) [(4.11)]

, 9W � Conf1 9k 2 I : hSk ; si 2d W & 8c 2 W : P 2 F (d ; c)
[Def. 2d]

, 9k 2 I : P 2 F (d ; hSk ; s) [(4.11)]

86 Chapter 4. The re�nement calculus

, P 2
S
fF (d ; hSi ; s) j i 2 I g.

In order to prove item (vi) we use the fact that h
V
I Si ; si 2d W if and only if

hSi ; si 2d W for all i 2 I . This statement is a consequence of Lemma 4.4.8
and the de�nition of 2d . We have

P 2 F (d ; h
V
I Si ; s)

, 9W � Conf1 : h
V
I Si ; si 2d W & 8c 2W : P 2 F (d ; c) [(4.11)]

4
, 8i 2 I9Wi � Conf1 : hSi ; si 2d Wi & 8c 2Wi : P 2 F (d ; c)

, 8i 2 I : P 2 F (d ; hSi ; s) [(4.11)]

, P 2
T
fF (d ; hSi ; s) j i 2 I g,

where (
3
() holds by taking W =

S
Wi , while (

3
)) holds by taking Wi = W

for all i 2 I . 2

Next we prove that the operational semantics of the sequential composition of
two statements can be expressed in terms of the components.

4.4.17. Lemma. For d 2 Decl1, s 2 St, and S1; S2 2 Stat1,

Op[[hd ; S1 ; S2i]](s) =
S
f
T
fOp[[hd ; S2i]](t) j t 2 Qg j Q 2 Op[[hd ; S1i]](s)g.

Proof: The proof consists of two parts. In the �rst part we show the inclusion
from left to right, whereas in the second part we show the converse.

Let d 2 Decl1 be a �xed but arbitrary declaration. To prove the inclusion
from left to right it is enough to show, by induction on �, that, for all P � St,
s 2 St and S1; S2 2 Stat1, if

hS1 ; S2; si
�
2d P

then

9Q � St: hS1; si
�
2d Q & (8t 2 Q :P 2 Op[[hd ; S2i]](t)): (4.12)

For � = 0 the above assertion is always true because hS1 ; S2; si 62 P .

Assume now hS1 ; S2; si
�+1

2d P . By de�nition of the transition relation
�+1

2d , there exists W � Conf1 such that

hS1 ; S2; si 2d W & 8c 2W 9� � �: c
�
2d P : (4.13)

Put W = ft j hS2; ti 2 W g [fhS ; ti j hS ; S2; ti 2 W g. By (4.13) and the
de�nition of the hyper transition system for L1 we have that hS1; si 2d W .
Moreover, by (4.13),

8t 2W 9� � �: hS2; ti
�
2d P (4.14)

4.4. An operational semantics for L1 87

and also

8hS ; ti 2W 9� � �: hS ; S2; ti
�
2d P : (4.15)

By de�nition of the function Op[[�]], (4.14) implies

8t 2W : P 2 Op[[hd ; S2i]](t): (4.16)

By induction hypothesis, (4.15) implies that for all hS ; ti 2 W there exists
Q(hS ; ti) � St and � � � such that

hS ; ti
�
2d Q(hS ; ti) & 8t 0 2 Q(hS ; ti): P 2 Op[[hd ; S2i]](t

0): (4.17)

Take now Q = fQ(hS ; ti) j hS ; ti 2 W g. Because
�
2d is upper closed on the

right hand side (4.17) implies that for all hS ; ti 2 W there exists � � � such
that

hS ; ti
�
2d Q & 8t 0 2 Q : P 2 Op[[hd ; S2; t

0i]]: (4.18)

Finally, put Q = Q [ft 2 St j t 2 W g. Because
�
2d is upper closed on the

right hand side, and t
0
2d Q for all t 2 W \ St we have, combining (4.16)

and (4.18),

8c 2W 9� � �: c
�
2d Q & (8t 2 Q : P 2 Op[[hS2; ti]](t)):

Since hS1; si 2d W we obtain, by de�nition of
�+1

2d ,

hS1; si
�+1

2d Q & (8t 2 Q : P 2 Op[[hd ; S2i]](t)):

Therefore if � is a successor ordinal and hS1 ; S2; si
�
2d P then (4.12) holds.

In fact it holds for every ordinal because of Lemma 4.4.11. Hence

Op[[hd ; S1 ; S2i]](s) � (Op[[hd ; S1i]] ; Op[[hd ; S2i]])(s);

for all s 2 St.

To prove the converse we show that for a �xed declaration d 2 Decl1 and
for all ordinals �, P � St, s 2 St and S1; S2 2 Stat1 if

9Q � St: hS1; si
�
2d Q & (8t 2 Q : P 2 Op[[hd ; S2i]](t)) (4.19)

then

P 2 Op[[hd ; S1 ; S2i]](s):

We proceed by induction on �. In case � = 0 clearly there is no Q � St such

that hS1; si
0
2d Q . Hence the statement (4:19) implies P 2 Op[[hd ; S1 ; S2i]](s)

is clearly true.

88 Chapter 4. The re�nement calculus

Assume now there exists Q � St such that

hS1; si
�+1

2d Q & 8t 2 Q : P 2 Op[[hd ; S2i]])(t): (4.20)

By de�nition of
�+1

2d there exists W � Conf1 such that

hS1; si 2d W & 8c 2W 9� � �: c
�
2d Q : (4.21)

Observe that the con�guration c inW can be of two types: either c = t 2 St or
c = hS ; ti 2 Stat1�St. In the �rst case, by de�nition of

�
2d and Lemma 4.4.11,

t
�
2d Q implies � = 0. Hence t 2 Q , from which it follows, by (4.20), that

8t 2W \ St: P 2 Op[[hd ; S2i]](t): (4.22)

In the second case hS ; ti
�
2d Q with � � � and P 2 Op[[hd ; S2i]])(t 0) for all

t 0 2 Q (by (4.20)) implies, by induction hypothesis, that

8hS ; ti 2W : P 2 Op[[hd ; S ; S2i]](t): (4.23)

De�ne now W = fhS2; ti j t 2 W g [fhS ; S2; ti j hS ; ti 2 W g. By
de�nition of 2d and (4.21), hS1 ;S2; si 2d W . By (4.22) hS2; ti 2W implies
P 2 Op[[hd ; S2i]](t); and by (4.23) hS ;S2; ti 2W implies P 2 Op[[hd ; S ;S2i]](t).
Thus

hS1 ; S2; si 2W & 8c 2W : P 2 Op(hd ; ci):

By Theorem 4.4.14 this implies P 2 Op(hd ; hS1 ; S2; sii) = Op[[hd ; S1 ; S2]](s).
Therefore if (4.19) holds for a successor ordinal � then P 2 Op[[hd ; S1 ;

S2i]](s). If � is a limit ordinal then (4.19) implies P 2 Op[[hd ; S1 ; S2i]](s) by
Lemma 4.4.11 and the above. Hence we can conclude that

(Op[[hd ; S1i]] ; Op[[hd ; S2i]])(s) � Op[[hd ; S1 ; S2]](s)

for all s 2 St. 2

The above lemma together with Lemma 4.4.16 applied to the function Op(�)
imply that Op[[�]] satis�es the same equations that are satis�ed by the state
transformer semantics St[[�]]. Since the latter is the least function satisfying the
equations given in Corollary 4.3.7 we obtain that the forward semantics St[[�]]
coincides with the operational semantics Op[[�]].

4.4.18. Theorem. For every hd ; S i 2 L1 and s 2 St,

Op[[hd ; S i]](s) = St[[hd ; S i]](s):

Proof: By Theorem 4.4.15, the function St� satis�es both the Equations (4.10)
and (4.11). By Theorem 4.4.14, Op(�) is the least function which satis�es those
equations. Hence Op[[hd ; S i]](s) � St[[hd ; S i]](s) for all s 2 St.

By Corollary 4.3.7, Lemmas 4.4.16 and 4.4.17, we obtain the converse.
Therefore Op[[hd ; S i]](s) = St[[hd ; S i]](s). 2

This result and Theorem 4.3.6 demonstrate that the operational semantics Op[[�]]
and the predicate transformer semantics Wp1[[�]] are isomorphic.

4.5. Concluding notes 89

A game-theoretical interpretation

We now brie
y develop an alternative interpretation of a hyper transition sys-
tem based on a game between two players, one called angel and another called
demon. Our notion of game is inspired by the game interpretation of the re-
�nement calculus put forward by Back and Von Wright [BW90a] and formally
developed in [Hes94] and [BW96].

A hyper transition system hX ; 2i de�nes the possible con�gurations of
the game by means of the set X , and the possible moves of the game by means
of the relation 2.

The game starts in a given con�guration x 2 X . The angels aims to stop
in a con�guration y 2 P for a given set of terminating con�gurations P � X ,
whereas the demon aims to prevent it. The angel plays �rst by choosingW � X
such that x 2 W . Then, the demon plays by choosing a con�guration y 2W
and the game restarts from the con�guration y . The game terminates if no
move is possible. There are two cases: either the game is in a con�guration x
but there is no W � X such that x 2 W , or the angel has already chosen a
set of con�gurations W but there is no y 2 W (that is, W = ;). In the �rst
case, if x 62 P then the demon wins. Otherwise the angel wins.

A winning strategy for the angel is a function F : X ! P(P(X)) such that
P 2 F (x) if and only if either x 2 P and there is no move for the angel (that
is, there is no W � X such that x 2 W), or there exists a move for the angel
who chooses W � X such that x 2 W and for all possible choices y 2W of
the demon, P 2 F (y).

In Theorem 4.4.18 we have proved that the least winning strategy for the an-
gel with respect to the game de�ned by the hyper transition system hConf1; 2d

i induced by L1 coincides with the state transformer semantics St[[�]] of L1. In
other words, P 2 St[[hd ; S i]](s) (or, equivalently, s 2 Wp1[[hd ; S i]](P)) if and
only if there exists a play in the game de�ned by hConf1; 2di which starts in
the con�guration hS ; si and terminates in P with the victory of the angel.

4.5 Concluding notes

In the re�nement calculus commands are identi�ed with predicate transformers
in order to avoid problems associated with the existence of in�nitary free alge-
bras, as discussed for example in Section 2:1. Hesselink [Hes92a] discusses the
existence of free complete speci�cation algebras, where a speci�cation algebra
is an algebra with an operator of composition and a binary meet. It is called
complete if it allows unbounded meets. In general the completion of a speci�-
cation algebra does not need to exist, since it can be a proper class rather than
a set. The isomorphism of Theorem 4.3.3 clari�es what are the right equations
for ensuring the existence of a complete speci�cation algebra: the unbounded
meets should completely distribute over the unbounded joins. In Chapter 9 we

90 Chapter 4. The re�nement calculus

will return to this topic by proving the existence of a free completely distributive
lattice over a set X .

Our forward semantics for the re�nement calculus is inspired by the minimal
models for modal logic of Chellas [Che80]. Chellas's minimal models are a
generalization of Kripke models. They are indexed functions mapping each
possible world to sets of possible worlds, and are used as models of monotonic
modal logic.

The operational interpretation of the re�nement calculus we presented in
this chapter di�ers in the following aspects from the game semantics of Back
and Von Wright [BW96] and the game semantics of Hesselink [Hes94]. Back
and Von Wright de�ne a game interpretation of the commands of the re�nement
calculus using a standard transition system. A transition step corresponds to
a move in the game. A con�guration is said to be angelic if only the angel can
make a move and is said to be demonic otherwise. This suggests a close relation
to our hyper transition system model. However, every sequence of transitions in
the game interpretation of Back and Von Wright is �nite (in fact in�nite plays
are not possible), and we allow also in�nite sequences. The game semantics
for the re�nement calculus given by Hesselink uses hyper transition systems
which allow for in�nite games. However, both the hyper transition system
induced by the re�nement calculus and the way of collecting the information
from it is di�erent from our operational approach. Furthermore, our operational
interpretation can be used for the step-by-step speci�cation of computations.

Also, our game interpretation of the re�nement calculus di�ers from both
the game semantics of Back and Von Wright [BW96] and the game semantics
of Hesselink [Hes94]. The main di�erence is that our games are not symmetric
(and therefore we do not have to take sides): the angel always makes the �rst
move. The goal of the angel is di�erent from the goal of the demon. Moreover,
the angel and the demon take turns, whereas in the other game interpretations
the choice of the player who plays depends on the con�guration the game is in.

We investigated angelic non-determinism only for sequential languages. The
reader interested in the connection between operational and denotational se-
mantics for a simple language supporting angelic non-determinism and parallel
composition is referred to [MO91, MO92].

We conclude with a short discussion about the size of the set PTM (Y ;X)
of monotonic predicate transformers. For Y an in�nite set, Markowsky [Mar79,
Theorem 2] proved that

j CDL(Y) j= 22
jY j

;

where j � j is the function which assigns to every set its cardinality. Since
j ST (X ;Y) j=j CDL(Y) jjX j, if Y is an in�nite set then by Theorem 4.3.3

j PTM (X ;Y) j= (22
jY j

)jX j = 2(2
jY j�jX j):

4.5. Concluding notes 91

If both X and Y are in�nite countable sets then j Y j=j X j= !0 (the cardi-
nality of the set of all natural numbers). By Cantor's theorem the cardinality
of !0 is strictly smaller than the cardinality of 2!0 . Hence, by [Kun80, Corol-
lary I :10:13],

2!0 � !0 = maxf2!0; !0g = 2!0 :

If we assume the Generalized Continuum Hypothesis [Kun80, De�nition I :10:28]
then

j PTM (X ;Y) j= 2(2
jY j�jX j) = 2(2

!0�!0) = 22
!0 = 2!1 = !2:

If Y is a �nite set then j PTM (X ;Y) j can also be calculated using the more
complicated characterization of the size of CDL(Y) given in [Mar73].

92 Chapter 4. The re�nement calculus

Part II

Topological dualities

93

Chapter 5

Topology and a�rmative

predicates

In the �rst part of this thesis we considered predicates to be subsets of an
abstract set of states. If we think of the states as the denotations of results of
computations of programs then predicates become computationally meaningful
in the sense that we can use partial information about a computation to tell
whether or not a predicate holds for that computation. A predicate for which
only �nite information about a computation is needed to a�rm whether it holds
is called an a�rmative predicate.

A�rmative predicates are closed under �nite intersections and arbitrary
unions. Hence they can be identi�ed with the open sets of a topological space.
The idea that `open sets are observable predicates' was proposed by Smyth
in [Smy83b], although it is also brie
y mentioned in [Plo81a]. Smyth interprets
open sets as semi-decidable properties in some `e�ectively given' topological
space. More generally, open sets can be interpreted as (�nitely) observable pred-
icates [Abr87, Smy92]. Alpern and Schneider [AS85] and Kwiatkowska [Kwi91]
use open sets as `�nite liveness predicates' and closed sets as `safety predicates'
to formalize the informal characterization of liveness and safety properties of
Lamport [Lam77]. The name `a�rmative predicates' has been introduced by
Vickers [Vic89] for denoting the abstract open sets of a frame. A�rmative pred-
icates are also called veri�able predicates by Rewitzky [Rew96], who uses the
term observable for predicates which are both a�rmative and refutative.

In this chapter we introduce a few topological concepts which we will also
need in the subsequent chapters. We motivate these concepts from the point of
view of the a�rmative predicates.

5.1 A�rmative and refutative predicates

Assume that we run a program which outputs a sequence of states in �. Let P be
a predicate on �1, the set of all �nite and in�nite sequences of states. Following

95

96 Chapter 5. Topology and a�rmative predicates

the de�nitions of Chapter 3, the predicate P can be seen, extensionally, as a
subset of �1, which holds for a sequence w 2 �1 if w 2 P . In practice, we can
inspect the output sequence w of the program as it proceeds. Hence, based only
on the �nite segments of w which have been output so far, we can sometimes
a�rm whether the predicate P holds for w . We can never a�rm, on the basis
of our �nite observations, whether the predicate

P = fv 2 �1 j v has in�nitely many occurrences of s 2 � g

holds for w . We need to re�ne our de�nition of predicate to capture predicates
that we can observe. Informally, a predicate P on a set X is said to be af-
�rmative if we can a�rm that it holds for some x in X only on the basis of
what we can actually observe, where an observation must be made within a
�nite amount of time. In general there is no requirement that the absence of a
property should be observable. A predicate P is said to be refutative if we can
refute it for some x in X on the basis of �nite information.

Di�erent physical assumptions on the nature of the observations will describe
di�erent collections of a�rmative predicates. For example, we can assume that
our program can diverge, that is, it can produce some �nite output and then
compute forever without any further output. Hence we cannot distinguish on
the basis of �nite segments of an output w between a computation which halts
and a computation which diverges. Under this assumption a predicate P on
�1 is a�rmative if for all w 2 P there exists a �nite segment v of w such that
every extension of v belongs to P . Clearly, the predicate fwg is not a�rmative
for all sequences w , whereas the set "w of all extensions of w is an a�rmative
predicate if the sequence w is of �nite length.

Alternatively we can assume that our program can continue forever out-
putting an in�nite sequence, but that it has also the additional capacity to
halt, for example by signaling when a computation terminates. Thus we have
that for a �nite sequence w both the predicates fwg and "w are a�rmative.
Technically this can be obtained as follows. A predicate P on �1 is a�rmative
if for all w 2 P there exists a natural number n such that if the length of the
longest common pre�x of w and any other string v is less than n then v belongs
to P .

For every set X , to a�rm x 2 X no observation is necessary. It can be just
a�rmed. Hence X itself is always an a�rmative predicate. Also, we can never
a�rm x 2 ; for all x 2 X . Hence ; is an a�rmative predicate of X .

In general, a�rmative properties over a set X are closed under arbitrary
unions and �nite intersections. Let Pi , for i 2 I , be an arbitrary collection of
properties on X . To a�rm x 2

S
I Pi it is enough to a�rm x 2 Pi for some

i 2 I . Hence, if all Pi are a�rmative properties of X then also their union
S
I Pi

is an a�rmative predicate. The same cannot be said for arbitrary intersections.
To a�rm x 2

T
I Pi we need to a�rm x 2 Pi for all i 2 I . If I is an in�nite set,

this may take an in�nite amount of time even if all Pi are a�rmative properties.

5.1. A�rmative and refutative predicates 97

However, if I is a �nite index set, and all Pi are a�rmative properties, then
also

T
I Pi is a�rmative.

The complement of an a�rmative predicate is, in general, not a�rmative.
Indeed, to a�rm x 2 X n P we must refute x 2 P . Therefore, complement
transforms a�rmative properties in refutative ones, and vice versa. Using the
De Morgan's laws, we have that refutative properties are closed under �nite
unions and arbitrary intersections. Since the classical implication P) Q can
be de�ned in terms of complement, neither a�rmative nor refutative properties
are closed under classical implication.

The closure of a�rmative properties under �nite intersections and arbitrary
unions implies that they form a topology on X [Smy83b, Smy92].

5.1.1. De�nition. A topology on a set X is a collection O(X) of subsets of
X that is closed under �nite intersections and arbitrary unions. A topological
space is a set X together with a topology O(X) on X . The elements of O(X)
are the open sets of the space.

To simplify notation we usually write X for a topological space (X ;O(X)).
Notice that a topology O(X) on a set X is a complete lattice when ordered by
subset inclusion. Since arbitrary unions distribute over �nite intersections, the
lattice of open sets of a topological space X is a frame.

A subset c of a space X is said to be closed if it is the complement of an
open subset of X . The collection of all closed sets of X is denoted by C(X)
and, dually to the case of open sets, is closed under �nite unions and arbitrary
intersections. Closed sets are ordered by superset inclusion. Any topology on
X induces a closure operator. For every subset V � X de�ne its closure cl(V)
as the smallest closed set including V , that is

cl(V) =
\
fc 2 C(X) j V � cg:

One can easily verify that V � cl(V), cl(;) = ;, and cl(V) = cl(cl(V)).
The latter implies that the �xed points of cl are exactly the closed sets of X .
Moreover, for any subsets V1 and V2 of X , cl(V1 [V2) = cl(V1) [cl(V2), and
if V1 � V2 then cl(V1) � cl(V2).

On a set X we can always de�ne at least two topologies: the discrete topology
Od (X) = P(X) (every predicate is a�rmative), and the indiscrete topology
Oi(X) = f;;X g (no non-trivial predicate is a�rmative).

A topology on a set X can be speci�ed in terms of a collection of elementary
a�rmative properties. Other properties can then be constructed by closing
them under arbitrary unions and �nite intersections.

5.1.2. De�nition. A sub-base B of a topologyO(X) is a collection of open sets
such that every open set is the union of intersections of �nitely many elements
of B . If B is already closed under �nite intersections, then it forms a basis and
its elements are called basic opens. A space having a countable base is said to
be second countable .

98 Chapter 5. Topology and a�rmative predicates

For example, the collection of all singletons fxg, with x 2 X , is a sub-base
for the discrete topology. The singleton fxg represents the most elementary
(non-trivial) a�rmation we can make about X .

Once we have �xed a collection of (sub-basic) a�rmative properties on a set
X , then we can use it to determine which elements are observationally equiva-
lent. Even more, we can use a�rmative properties to determine an information
preorder between points: x2 has all observable information of x1 if every a�r-
mative predicate of x1 is also an a�rmative predicate of x2.

5.1.3. De�nition. Let X be a topological space. The specialization preorder
<�O on X induced by the topology O(X) is de�ned, for x1 and x2 in X , by

x1 <�O x2 if and only if 8o 2 O(X) : x1 2 o) x2 2 o :

For example, consider the set of �nite and in�nite strings �1 together with
the topology de�ned by taking as basic open sets the sets "w of all extensions
of w , for all �nite strings w . For arbitrary strings v1 and v2 of �1, we have
v1 <�O v2 if and only if every �nite pre�x w of v1 is also a �nite pre�x of v2. But
this is equivalent to stating that v1 is a pre�x of v2. Hence, the pre�x order on
strings and the specialization preorder coincide.

If we take as sub-basic opens for �1 both "w and fwg (for �nite strings w),
then v1 <�O v2 if and only if v1 = v2. To prove the last statement it is enough
to consider the following two cases:

(i) if v1 is a �nite string then fv1g is an a�rmative predicate of both v1 and
v2 if and only if v1 = v2;

(ii) if v1 is in�nite, then v1 <�O v2 if and only if every �nite pre�x of v1 is a
pre�x of v2, that is, v1 = v2.

Topological spaces can be classi�ed on the basis of the possibility to separate
di�erent points by means of opens.

5.1.4. De�nition. A space X is said to be T0 if the induced specialization
preorder <�O is antisymmetric, that is, it is a partial order. If <�O is also discrete
then X is said to be a T1 space. Finally, X is said to be a T2 space (or Hausdor�)
if, whenever x1 and x2 are two distinct points of X , there are two disjoint open
sets containing x1 and x2 respectively.

Every T2 space is T1, and every T1 space is T0. In practice we almost always
identify any two points of a space X which have the same information, that
is, most of the computationally interesting spaces are at least T0. De�ne an
equivalence relation � on X by

x1 � x2 if and only if x1 <�O x2 and x2 <�O x1:

5.2. Speci�cations, saturated sets and �lters 99

If we now write [x] for the equivalence class containing x , and X =� for the set
of equivalence classes, then the T0-i�cation of X is de�ned as the space X =�
with as opens the collection of all sets f[x] j x 2 og for all o 2 O(x).

Let f : X ! Y be a function between topological spaces, and let P be a
predicate on Y . To a�rm that f (x) has the predicate P , it should su�ce to
a�rm x 2 f �1(P).

5.1.5. De�nition. Let X and Y be two spaces. A function f : X ! Y is
called continuous if, for all opens o of Y ,

f �1(o) = fx j f (x) 2 og

is open in X (or, equivalently, if the inverse of each closed set is closed). Topo-
logical spaces form a category Sp with as morphisms the continuous functions.
We write Sp0 and Sp1 for the full sub-categories of T0 and T1 spaces, respec-
tively.

It is easy to see that a continuous function f : X ! Y is monotonic with
respect to the specialization orders of X and Y [Smy92, Proposition 4:2:4].
Hence continuous functions preserve the observable information. For example,
the assignment x 7! [x] from a space X to its T0-i�cation X =� de�nes a
continuous function.

5.2 Speci�cations, saturated sets and �lters

In [Smy83b] it was suggested that a speci�cation of an object (a program, for
example) can be an arbitrary list of a�rmative predicates, understood as a
conjunction, that the object has to satisfy. Although in practice lists of �nite or
countable length of a�rmative predicates are enough as speci�cations, lists of
arbitrary length are a useful mathematical generalization which will make the
theory we develop in the successive chapters easier. In our view of a�rmative
predicates as open sets of a topological space, a speci�able predicate is a set
obtained as the intersection of arbitrarily many open sets, that is, a saturated
set. Saturated sets which are intersections of countably many open sets are
often called G� sets in the literature.

5.2.1. De�nition. Let X be a topological space. A subset q of X is said to
be saturated if

q =
\
fo 2 O(X) j q � og:

The collection of the saturated subsets of X is denoted by Q(X).

100 Chapter 5. Topology and a�rmative predicates

An intersection system on a set X is a collection of subsets of X closed under
arbitrary intersection. For every space X , the collection Q(X) of saturated sets
is, by de�nition, the least intersection system including all open subsets of
X . Moreover, by using the complete distributivity, we can express an arbitrary
union of saturated sets as an intersection of opens. Since the latter is a saturated
set, we have that saturated sets are closed under arbitrary unions and arbitrary
intersections. Therefore Q(X) is a ring of subsets of X , from which it follows
that Q(X) ordered by subset inclusion is a completely distributive lattice.

Notice also that Q(X) is a topology on X which is closed under arbitrary
intersections. Hence, for a T0 space X , Q(X) coincides with the collection of all
upper sets of X with respect to the specialization order <�O [Joh82a, page 45].

5.2.2. Lemma. For a T0 space X and A � X ,

"A =
\
fo 2 O(X) j A � og;

where "A is the upper closure of A with respect to the specialization preorder
<�O on X induced by the topology O(X).

Proof: The inclusion from left to right is immediate since every open set is
upper closed with respect to the specialization preorder <�O. Conversely, let
x 2

T
fo 2 O(X) j A � og and assume x 62 "A. Then a 6<�O x for all a 2 A.

Thus for all a 2 A there exists oa 2 O(X) such that a 2 oa and x 62 oa . For
o =

S
foa j a 2 Ag we then have the contradiction that A � o and x 62 o. 2

In case X is a T1 space, the specialization order is the identity. Thus every
subset of X is upper closed. From the above discussion it follows that every
predicate of X is speci�able, that is, Q(X) = P(X).

A speci�cation F , understood as list of a�rmative predicates over a space
X , is said to be

(i) proper if ; 62 F ;
(ii) deductively closed if P 2 F and P � Q implies Q 2 F ; and
(iii) consistent if P 2 F and Q 2 F implies P \Q 2 F .

The above merely says that a proper, deductively closed and consistent
speci�cation is a �lter of the lattice of opens O(X). If we want to specify a
single element of X then completely prime �lters are more adequate: a point
which satis�es the disjunction of some predicates, satis�es at least one of these
predicates. Indeed it can be easily checked that a space X is T0 if and only if for
every completely prime �lter F of O(X) there exists at most one point x 2 X
such that

F = fo 2 O(X) j x 2 og:

A space with a bijective correspondence between points and their speci�cations
is called sober.

5.3. Examples of topological spaces 101

5.2.3. De�nition. A space X is said to be sober if for every completely prime
�lter F of O(X) there exists exactly one point x 2 X such that

F = fo 2 O(X) j x 2 og:

For example, every Hausdor� space is sober [Smy92, Proposition 4:3:14].
From the above characterization of T0 spaces in terms of completely prime
�lters, it follows that every sober space is T0. The full sub-category of Sp
whose objects are sober spaces will be denoted by Sob. For an example of
a T1 space which is not sober, and of a sober space which is not T1 we refer
to [Smy92, IV, Example 4.1.4].

5.3 Examples of topological spaces

In this section we introduce the topologies which we will use in the rest of this
thesis.

Alexandrov topology

Given a poset P , the Alexandrov topologyOA(P) on P is de�ned as the collection
of all upper closed subsets of P . Clearly, if P is a discrete poset, then the
Alexandrov topology on P coincides with the discrete topology. In general, a
poset P with the Alexandrov topology is a T0 space.

The specialization preorder induced by the Alexandrov topology coincides
with the partial order on P . Hence the collection of saturated subsets of P
coincides with the collection of Alexandrov open subsets of P . A function
f : P ! Q between two posets is monotone if and only if it is continuous with
respect to their Alexandrov topologies [Ale37].

Scott topology

The Alexandrov topology on a poset is not always computationally adequate:
it should be re�ned in a such way that if we can a�rm that a predicate holds
for the least upper bound of a directed set V then we can a�rm it already for
some of its approximants in V.

5.3.1. De�nition. The Scott topology OS (P) on a dcpo P consists of all the
upper-closed subsets of P such that for any directed set D � X ,_

D 2 o) D \ o 6= ;:

As in the case of the Alexandrov topology, the specialization preorder in-
duced by the Scott topology on a dcpo P coincides with the partial order on

102 Chapter 5. Topology and a�rmative predicates

P [GHK+80, Remark II :1:4]. Hence the collection of saturated sets of P coin-
cides with the Alexandrov topology on P . Also, a function f : P ! Q between
two dcpo's is continuous for the Scott topologies of P and Q if and only if it
preserves directed joins [Sco72].

The Scott topology generalizes the discrete topology in the following sense.
For a set X , if we assume that singleton sets fxg are the most elementary
a�rmations we can make then the collection of all a�rmative predicates is the
discrete topology on X . Assume that we can also a�rm that no element has
been observed yet, for example because of divergence. This can be described as
the Scott topology on the
at cpo X?: every subset of X is Scott open as well
as the set X [f?g. Notice that for
at cpo's, the Alexandrov and the Scott
topology coincide.

The following proposition gives a connection between sober spaces and
dcpo's [Joh82a, Lemma 1:9].

5.3.2. Proposition. If X is a sober space then the specialization preorder on
X has all directed joins. Moreover, every open set o 2 O(X) is Scott open. 2

The converse of the above proposition is false: not every dcpo is sober even
when taken with the Scott topology [Joh81]. The desired result can be obtained
if we impose more structure on a dcpo. In particular, an algebraic dcpo P taken
with the Scott topology is sober [Hof79, Mis91]. In this case we can describe
the Scott topology by means of the compact elements of P : the set of all upper
closed sets " b for compacts b 2 K(P) forms a basis for the Scott topology of
P .

The lattice of open sets of a space X is clearly a dcpo. In the previous section
we suggested that speci�cations are lists of open sets, and hence a predicate on
the lattice O(X). A speci�cation F is said to be �nitary if it is a Scott open set
of the lattice O(X), that is, whenever the union of a directed set D � O(X) of
a�rmative predicates is in F , then some predicate in D is already in F . Scott
open �lters allow us to de�ne compact subsets as �nitarily speci�able subsets.

5.3.3. De�nition. A subset S of a space X is compact if and only if the set

fo 2 O(X) j S � og

is a Scott-open �lter of O(X). A space X is said to be compact if the set X is
compact.

Equivalently, one can use the following (more standard) de�nition of com-
pactness. A subset S of a space X is compact if and only if for every directed
collection D of open sets in O(X) such that S �

S
D there exists an open set

o 2 D such that S � o. Notice that an open subset of a space X is compact if
and only if it is a compact element of the dcpo O(X) in the domain theoretical
sense (as introduced in Section 2:2).

5.3. Examples of topological spaces 103

For example, in any space X , every �nite subset of X is compact, as well
as any arbitrary subset containing the least element ? with respect to the
specialization preorder on X . Also, for an algebraic dcpo P taken with the
Scott topology, every basic open set " b, with b 2 K(P), is compact.

A useful tool for proving compactness of a space is the Alexander sub-basis
theorem [Ale39]

5.3.4. Proposition. Let X be a space with sub-base B. Then X is compact if
for every directed collection D of sub-basic open sets in B such that X �

S
D

there exists an open set b 2 D with X � b. 2

Stone and spectral spaces

We have seen in the previous subsection that an open subset of a space X is
compact if and only if it is a compact element of the dcpo O(X) in the domain
theoretical sense. However the lattice O(X) need not to be algebraic.

5.3.5. De�nition. A space X with an algebraic lattice of opens O(X) is said
to be locally open compact.

This means that the collection KO(X) of compact open subsets of X forms
a basis for the topology O(X). Therefore locally open compact space are of-
ten called spaces with a basis of compact opens [GHK+80]. In terms of points,
locally open compactness can be formulated as follows (for a proof of the propo-
sition below see either [GHK+80] or [BK94a]).

5.3.6. Proposition. Let X be a space. The lattice O(X) is an algebraic dcpo
if and only if for every point x 2 X and open set o 2 O(X) such that x 2 o
there exists a compact open set u 2 KO(X) satisfying x 2 u � o. 2

Locally open compactness does not imply soberness: every poset P taken
with the Alexandrov topology is a locally open compact space but need not to
be sober. For x 2 P and Alexandrov open o such that x 2 o, if we take the
compact Alexandrov open set " x then we have x 2 " x � o.

Also the Scott topology of an algebraic dcpo P is locally open compact (and
sober). For x 2 P and Scott open o satisfying x 2 o, by de�nition of algebraicity
and of the Scott topology, there exists a compact element b 2 K(P) such that
b � x and b 2 o. Hence x 2 " b � o. Since " b is compact in the Scott topology
of P , it follows that P as a topological space is locally open compact.

Locally open compact spaces are of interest because they are �nitary in the
following sense: every a�rmative predicate can be retrieved by the �nitarily
speci�able a�rmative predicates because the lattice of opens O(X) is (isomor-
phic to) the ideal completion of its basis of compact opens KO(X).

104 Chapter 5. Topology and a�rmative predicates

5.3.7. De�nition. A topological space X is said to be spectral if the set
KO(X) of compact open subsets of X forms a basis for O(X) and it is closed
under �nite intersections. If, moreover, compact opens are closed under com-
plement, then X is said to be a Stone space.

Since �nite unions of compact opens are again compact open sets, it follows
that in a spectral space X , the lattice KO(X) of compact opens is distributive,
while in a Stone space X the lattice KO(X) of compact opens is a Boolean
algebra.

Our interest in spectral and Stone spaces is justi�ed by the following obser-
vation. Every SFP domain taken with the Scott topology is spectral [Plo81a],
and every compact ultra-metric space taken with the metric topology (to be
de�ned below) is a Stone space [Smy92, Corollary 6:4:8].

Coherent spaces

The key property of spectral and Stone spaces is the fact that their lattice
of open sets is algebraic. Hence every open set can be obtained as union of
compact open sets. A weaker but similar result can be obtained for a larger
class of topological spaces: the coherent spaces.

5.3.8. De�nition. For a space X let KQ(X) be the set of all compact satu-
rated sets of X . The space X is said to be coherent if it is sober, KQ(X) is
closed under �nite intersections, and, for all open sets o, it holds that

o =
[
fu 2 O(X) j 9q 2 KQ(X): u � q � og:

By the above de�nition it follows that, in a coherent space X , every open
set is the directed union of all compact saturated sets which are included in
it, that is, every a�rmative predicate on X can be approximated by �nitarily
speci�able predicates.

Every spectral space (and hence every Stone space) is coherent. However,
not every algebraic dcpo, even if taken with the Scott topology, is coherent.
Coherent spaces as �nitary algebraic structures (proximity lattices) are studied
in [JS96].

Metric topology

Partial orders and metric spaces play a central role in the semantics of program-
ming languages (see, e.g. [Win93] and [BV96]). The order can be used to give a
comparative description of computations, whereas the metric gives quantitative
information. This quantitative information can be used to de�ne a topology on
the underlying set.

5.4. Final remarks 105

5.3.9. De�nition. The metric topology on a metric space X is de�ned by
taking as open sets all subsets o � X with the following property:

x 2 o) 9� > 0:B�(x) � o;

where B�(x) = fy j dX (x ; y)< �g.

For every � > 0, and x 2 X the ball B�(x) is an open set in the metric
topology. Even more, the set of all balls B�(x) for every � > 0 and x 2 X forms
a basis for the metric topology. One can easily verify that every metric space
with the above topology forms an Hausdor� space, and hence that it is a sober
space. It follows that the collection of saturated sets of a metric space X is
P(X), that is, every predicate on X is speci�able. For a discrete metric space
the metric topology coincides with the discrete topology.

Closed and compact subsets of the space induced by a metric space X coin-
cide, respectively, with the closed and compact subsets of the metric space X
as de�ned in Section 2.3 (see [Eng89]).

5.3.10. Proposition. Let X be a metric space and S � X . The set S is closed
in the metric topology if and only if the limit of every convergent sequence in S
is an element of S . Also, S is compact in the metric topology if and only if for
every sequence in S there is a sub-sequence converging in S. 2

Every non-expansive function f : X ! Y between two metric spaces is
continuous with respect to their metric topologies. However, the converse does
not hold: f is continuous if and only if

8x1 2 X8� > 09� > 08x2 2 X : dX (x1; x2) � �) dY (f (x1); f (x2)) � �:

5.4 Final remarks

A�rmative predicates on X can be described intensionally as continuous func-
tions from the space X to the poset 2 = f0; 1g with 0 � 1 taken with the
Alexandrov topology. In fact we have an order-isomorphism

O(X) �= X !c 2

where X !c 2 is the continuous function space ordered pointwise. An interest-
ing generalization would be to consider functions from X to the closed interval
of reals [0; 1]. These functions can be thought of as fuzzy predicates of X . The
value a function � : X ! [0; 1] assigns to an element x in X can be thought
of as a measure for the extent to which x is an element of �. The connections
between fuzzy predicates and a�rmative predicates have been exploited in the
context of generalized metric spaces by Lawvere [Law73], and more recently
in [BBR96b].

106 Chapter 5. Topology and a�rmative predicates

We conclude this chapter with a few remarks on generalized metric spaces.
Since they are not objects of study in the present work, we give only pointers
to some of the literature.

Generalized metric spaces provide a framework for the study of both pre-
orders and ordinary metric spaces. A generalized metric space consists of a
set X together with a distance function which does not need to be symmetric.
Moreover, di�erent points can have zero distance. Generalized metric spaces
were introduced by Lawvere [Law73, Law86] as an illustration of the thesis
that fundamental structures are categories, and they were subsequently studied
in a topological context by Smyth [Smy87, Smy91] as computational spaces:
they combine the qualitative information of (observational) preorders with the
quantitative (behavioural) information of a distance function.

Some of the basic theory of generalized (ultra-)metric spaces has been devel-
oped in [Wag94, Rut95, FK96], where an approach to the solution of recursive
domain equations is presented which extends both the order-theoretic [SP82]
and the metric [AR89] approaches.

Fundamental constructions for generalized (ultra-)metric spaces like com-
pletion [Smy87, BBR96a, FW96] and powerdomains [Smy91, BBR96a] reconcile
respective constructions for preorders and metric spaces.

Both the Alexandrov and the Scott topology for preorders can be extended
to generalized metric spaces in a such way that for ordinary metric spaces they
both correspond to the metric topology [Smy87, BBR96a, BBR96b]. For the
restricted class of algebraic complete quasi metric spaces the generalized Scott
topology has been shown to be sober [FS96].

Chapter 6

Powerspaces, multifunctions

and predicate transformers

Programming languages can often be de�ned in terms of atomic statements
(like assignments to variables), a set of statement operators (like sequential
composition and non-deterministic choice), a set of process variables, and a re-
cursion operator for each process variable. To give a compositional semantics to
a program it is therefore necessary to de�ne a semantic domain in which atomic
statements and statements operators can be interpreted. Modeling recursion
is one of the di�cult aspects of building a compositional semantics. For this
reason the input and output state spaces of a program are often structured,
complete with respect to some limit construction, and recursively de�ned.

In Chapter 3 we introduced two di�erent models for a compositional seman-
tics of a programming language: the state transformer model and the predicate
transformer model. A rich collection of semantic constructions is available for
state transformers on structured sets of states. However, the same cannot be
said for predicate transformers. Nothing, or very little, is known about compo-
sitional predicate transformer semantics for programs which interact with their
environment.

In this chapter we investigate the relationships between state transformers
and predicate transformers in a general topological setting. Topological duali-
ties between predicate and state transformers provide a mathematical approach
to predicate transformers between structured sets of states. The connection be-
tween state transformers and topological predicate transformers was �rst stud-
ied by Smyth [Smy83b] who placed the result of Plotkin [Plo79] for the Smyth
powerdomain in a broader topological framework using the upper powerspace.
This work is our starting point. However Smyth restricts to sober spaces while
we use T0 spaces. Also, our techniques are more in line with the ones used
in [Plo79]. Besides the upper powerspace we consider also the lower and the
Vietoris powerspaces, and we show that the three isomorphisms established in
Chapter 3 also hold in this general setting. In passing, topological representa-

107

108 Chapter 6. Powerspaces, multifunctions and predicate transformers

tions of order theoretic and metric powerdomains are given.
All topological dualities we describe are order-preserving. As a consequence,

to de�ne a predicate transformer semantics from a state transformer semantics
it is su�cient to de�ne only predicate transformers for the atomic statements
and operators on predicate transformers corresponding to syntactical operators.
Recursive constructs can be handled in the predicate transformer semantics
exactly in the same way as for the state transformer semantics.

6.1 Multifunctions as state transformers

One way to capture a compositional semantics of a concurrent program is to
consider it as a function from input states to the set of all intermediate states
through which the program P passes after one atomic step, followed by the
semantics of the remaining part of the program to be executed. In order to
deal with this recursive de�nition, states are usually endowed with a topolog-
ical structure (usually a partial order or a distance function). To model non-
deterministic computations, semantic functions can be represented by many-
valued functions, or multifunctions.

6.1.1. De�nition. A multifunction f : X ! Y with values in V � P(Y) is
a function that assigns to every element x of a topological space X a subset
f (x) 2 V of a topological space Y .

For a multifunction f : X ! Y and a predicate P on Y , we denote by
f +(P) the upper inverse of f , that is, the set of all inputs x of f such that every
element of f (x) satis�es the predicate P . The lower inverse of f is denoted by
f �(P) and is de�ned as the set of all inputs x of f such that some elements of
f (x) satisfy the predicate P . Formally, for P � Y :

f +(P) = fx 2 X j f (x) � Pg and f �(P) = fx 2 X j f (x) \ P 6= ;g:

Notice that f + and f � are dual function in the sense that f +(P) = X n f �(Y n
P) for all P � Y . Di�erent ways of de�ning inverse give rise to di�erent
ways of de�ning continuity. Below we list three de�nitions of continuity for a
multifunction [Ber63].

6.1.2. De�nition. Let X and Y be two topological spaces. A multifunction
f : X ! Y with values in V � P(Y) is said to be

(i) lower semi-continuous if f �(o) 2 O(X) for every o 2 O(Y),
(ii) upper semi-continuous if f +(o) 2 O(X) for every o 2 O(Y), and
(iii) continuous if it is both upper and lower semi-continuous.

Since f � and f + are dual functions, the above notions of continuity could
also have been expressed in terms of refutative predicates rather than a�rmative

6.1. Multifunctions as state transformers 109

ones. For example, f is lower semi-continuous if and only if f +(c) is a closed
subset of X for every closed subset c of Y . For every notion of continuity of
a multifunction there is a related topology on the collection of subsets of the
codomain [Mic51, Nad78].

6.1.3. De�nition. Let V be a set of subsets of a space X .
(i) The lower topology on V has as sub-base the collection of all sets of the

form Lo for o 2 O(X), where
Lo = fS 2 V j S \ o 6= ;g:

(ii) The upper topology on V is de�ned by taking as base the the collection
of all sets of the form Uo for o 2 O(X), where

Uo = fS 2 V j S � og:
(iii) The Vietoris topology on V has as sub-base the union of the base of the

upper topology and the sub-base of the lower topology.

The de�nitions of the (sub-)bases of the above topologies are chosen in this
way in order to make the proof of the following proposition trivial [Mic51] (see
also [Smy83b]).

6.1.4. Proposition. Let X ;Y be two topological spaces, and let f :X ! Y be
a multifunction with values in V � P(Y) with V 6= ;. Then

(i) f : X ! Y is lower semi-continuous if and only if the corresponding
function f : X ! V is continuous with respect to the lower topology on V;

(ii) f :X ! Y is upper semi-continuous if and only if f :X ! V is continuous
with respect to the upper topology on V; and
(iii) f : X ! Y is continuous if and only if f : X ! V is continuous with

respect to the Vietoris topology on V.
Moreover, these three topologies on V are the only ones that have these proper-
ties. 2

In general, for an arbitrary collection of subsets V of a space X , the upper,
lower and Vietoris topologies on V do not ensure that the resulting space is T0.

6.1.5. Lemma. Let V be a set of subsets of a space X , and A;B 2 V,
(i) A <� B in the preorder induced by the lower topology on V if and only if

cl(A) � cl(B), where cl is the closure operator induced by the topology on X ;
(ii) A <� B in the preorder induced by the upper topology on V if and only

if "A � "B, where the upper closure is taken with respect to the specialization
preorder of X ;
(iii) A <� B in the preorder induced by the Vietoris topology on V if and only

if both cl(A) � cl(B) and "A � "B.

110 Chapter 6. Powerspaces, multifunctions and predicate transformers

Proof: (i) Let o 2 O(X) be such that A 2 Lo . Since A � cl(A), cl(A)\o 6= ;.
If cl(A) � cl(B) then also cl(B)\o 6= ;. It follows that also B \o 6= ;, because
otherwise B � X n o would imply cl(B) � X n o, contradicting B \ o 6= ;.
Hence B 2 Lo . For the converse, assume A 2 Lo implies B 2 Lo for every open
o. Since B � cl(B), B 62 LXncl(B). Hence also A 62 LXncl(B), that is, A � cl(B).
Therefore cl(A) � cl(B).

(ii) Assume A 2 Uo for some o 2 O(X). Then "A � o by de�nition of
specialization preorder. If "A � "B , then also "B � o. But B � "B , thus
B 2 Uo . Conversely, assume A 2 Uo implies B 2 Uo for every open o. Since
"A =

T
fo 2 O(X) j A � og, we can immediately conclude that "A � "B .

(iii) Combine the two previous items. 2

The above lemma justi�es the following restriction which considers only certain
kinds of subsets of a space. Starting from a topological space X , we consider
three spaces of subsets of X :

(i) the lower powerspace of X , denoted by Pl(X) and de�ned as the collec-
tion of all closed subsets of X taken with the lower topology;

(ii) the upper powerspace of X , denoted by Pu(X) and de�ned as the collec-
tion of all upper closed subsets of X taken with the upper topology; and
(iii) the convex powerspace of X , denoted by Pc(X) and de�ned as the collec-

tion of all convex closed subsets of X taken with the Vietoris topology, where
S � X is convex closed if S = cl(S) \ " S .

Variations of the above powerspaces can be obtained by deleting the empty
set or restricting to �nitarily speci�able subsets using compact sets. Below we
denote by Pco

u (X) the collection of all upper closed and compact subsets of X
taken with the upper topology, whereas Pco

c (X) denotes the collection of all
convex closed and compact subsets of X taken with the Vietoris topology.

From Lemma 6.1.5 it follows that the three powerspaces above are T0 (more
precisely, they are isomorphic in Sp to the T0-i�cation of P(X) taken with the
lower, upper and Vietoris topology, respectively).

Let X and Y be two topological spaces. Three posets of topological state
transformers can be identi�ed:

� the lower state transformers, i.e. continuous functions from X to Pl(Y)
ordered by the pointwise extension of the specialization preorder induced
by the lower topology;

� the upper state transformers, i.e. continuous functions from X to Pu(Y)
ordered by the pointwise extension of the specialization preorder induced
by the upper topology;

� the convex state transformers, i.e. continuous functions from X to Pc(Y)
ordered by the pointwise extension of the specialization preorder induced
by the Vietoris topology.

6.2. Topological predicate transformers 111

The above domains of topological state transformers can be related to the three
domains of state transformers introduced in Chapter 3 as follows. Let X ;Y be
two sets, and consider the
at cpo Y? taken with the Scott topology. Then, by
de�nition of the Scott topology on Y?,

Pl (Y?) = fS � Y [f?g j S 6= ;) ? 2 Sg;

Pu(Y?) = P(Y) [fY?g;

Pc(Y?) = P(Y [f?g):

Hence Pl(Y?) n f;g �= P(Y). If we take X with the discrete topology then
every function from X to one of the three powerspaces above is continuous. By
the De�nitions 3.2.6, 3.2.1 and 3.2.9 of the Hoare, Smyth, and Egli-Milner state
transformers, respectively, it follows that

STH (X ;Y) �= X ! (Pl(Y?) n f;g);

ST S (X ;Y) = X ! Pu(Y?); and

STE (X ;Y) = X ! Pc(Y?):

A subset of Y? is compact in the Scott topology if and only if it is either �nite
or contains the bottom element ?. Therefore

ST �n
S (X ;Y) = X ! Pco

u (Y?) and ST �n
E (X ;Y) = X ! Pco

c (Y?):

In the next section we relate the lower, the upper and the convex state
transformers with predicate transformers between a�rmative predicates.

6.2 Topological predicate transformers

Since a�rmative predicates are identi�ed with the open sets of a topological
space, functions from O(Y) to O(X) are the appropriate topological generaliza-
tion of predicate transformers. For ordinary predicate transformers, complete
multiplicativity (preservation of arbitrary meets) is required to rule out those
predicate transformers which represent `imaginary programs' (speci�cations).
In addition, Scott continuity is required on predicate transformers to character-
ize `computable' programs. While the latter constraint can be easily exported to
our topological generalization of predicate transformers (open sets are closed un-
der arbitrary unions), the condition of complete multiplicativity requires more
attention: open sets are not closed under arbitrary intersections.

6.2.1. De�nition. Let X and Y be two topological spaces. A function �
from the lattice of opens O(Y) to the lattice of opens O(X) is said to be
M-multiplicative if whenever

T
P �

T
Q then also

T
�(P) �

T
�(Q), for all

P ;Q � O(Y). The collection of all M-multiplicative functions from O(Y) to
O(X) is denoted by O(Y)!M O(X).

112 Chapter 6. Powerspaces, multifunctions and predicate transformers

Intuitively, an M-multiplicative predicate transformer preserves speci�ca-
tions: if a speci�cation Q on the output space of some program (denoted by
an M-multiplicative predicate transformer �) is re�ned by another speci�cation
P , then every input x which makes the output of the program satisfy P should
also make the the output of the program satisfy Q .

One can easily verify that M-multiplicative functions are monotone with
respect to subset inclusion. Moreover, they preserve all intersections of open sets
which are open. Since in every space the empty intersection is the top element
in the lattice of open sets, M-multiplicative functions are top-preserving. For
M-multiplicative functions we can prove the following stability lemma which
generalizes Lemma 3.3.5.

6.2.2. Lemma. Given two spaces X and Y , let � : O(Y) !M O(X) be an
M-multiplicative function. Then

x 2 �(u) if and only if
\
fo 2 O(Y) j x 2 �(o)g � u

for every u open in Y and x 2 X .

Proof: The direction from left to right is obvious. For the converse we use
M-multiplicativity: if

T
fo 2 O(Y) j x 2 �(o)g � u then

T
f�(o) j x 2 �(o)g �

�(u). Hence x 2 �(u). 2

The M-multiplicative functions arise naturally from upper semi-continuous mul-
tifunctions. If f : X ! Y is an upper semi-continuous multifunction, then its
upper inverse f + :O(Y)! O(X) is an M-multiplicative predicate transformer.
Assume

T
P �

T
Q for P and Q arbitrary collections of opens of Y , and let

x 2
T
ff +(o) j o 2 Pg. Then f (x) � o for all o 2 P and hence f (x) � o for all

o 2 Q . Therefore x 2
T
ff +(o) j o 2 Qg, which proves f + is M-multiplicative.

Dually, if f : X ! Y is a lower semi-continuous multifunction then its
lower inverse f � :O(Y)! O(X) preserves all unions, that is, f � is completely
additive. The collection of all completely additive functions from O(Y) to O(X)
is denoted by O(Y)!A O(X). For completely additive functions we have the
following stability lemma.

6.2.3. Lemma. Given two spaces X and Y , let � : O(Y) !A O(X) be a
completely additive function. Then

x 62 �(u) if and only if u �
[
fo 2 O(Y) j x 62 �(o)g

for every u open in Y and x 2 X .

Proof: The direction from left to right is obvious. Conversely, if u �
S
fo 2

O(Y) j x 62 �(o)g then �(u) �
S
f�(o) j x 62 �(o)g because � is completely

additive (and hence also monotone). Therefore x 62 �(u). 2

6.2. Topological predicate transformers 113

Notice that the completely additive functions are about refutative predicates.
Next we provide duality results between state transformers and topological pred-
icate transformers. They extend the results of Chapter 3 to arbitrary topological
spaces. Both the order-theoretic and the metric state transformers are instances
of topological state transformers. Since there is a rich semantical theory for
order-based state transformers as well as for metric-based state transformers,
the dualities below give an indirect way to de�ne predicate transformer seman-
tics for programming languages.

Lower state transformers

Lower state transformers are related to completely additive predicate trans-
formers. The isomorphism below can be used to give a semantic interpretation
of one domain in terms of the other. The mapping
 from state transformers
to predicate transformers explains that lower state transformers model non-
deterministic computations which `may' satisfy an a�rmative predicate. Con-
versely, the map
�1 from predicate transformers to state transformers tells us
that completely additive predicate transformers are about safety: a state x sat-
is�es �(P) if the computation represented by � at input x is guaranteed not to
terminate in a state not satisfying the a�rmative predicate P .

6.2.4. Theorem. Let X and Y be two topological spaces. The poset of lower
state transformers X ! Pl(Y) is order isomorphic to the poset of completely
additive functions O(Y)!A O(X).

Proof: We use Proposition 6.1.4. For every continuous function f :X ! Pl(Y)
and completely additive predicate transformer � : O(Y) !A O(X) de�ne the
maps f 7!
(f) and � 7!
�1(�) by

(f) = �o 2 O(Y):fx 2 X j f (x) \ o 6= ;g and

�1(�) = �x 2 X :Y n

S
fo 2 O(Y) j x 62 �(o)g:

First note that
(f)(o) = f �(o). Hence
(f) is completely additive and, because
f is lower semi-continuous as multifunction, well-de�ned. To prove that
�1(�)
is lower semi-continuous we see that clearly
�1(�)(x) is a closed subset of Y
for every x 2 X , and moreover, for every o 2 O(Y),

(
�1(�))�(o) = fx 2 X j
�1(�)(x) \ o 6= ;g

= fx 2 X j o 6�
[
fu 2 O(Y) j x 62 �(u)g

= fx 2 X j x 2 �(o)g [Lemma 6.2.3]

= �(o):

Since �(o) is open in X ,
�1(�) is lower semi-continuous. Thus it is well-de�ned.
The above also proves that
�1 is a right inverse of
. It is also a left inverse

114 Chapter 6. Powerspaces, multifunctions and predicate transformers

because, for every x 2 X ,

�1(
(f))(x) = Y n
[
fo 2 O(Y) j x 62
(f)(o)g

= Y n
[
fo 2 O(Y) j f (x) \ o = ;g

=
\
fc 2 C(Y) j f (x) � cg

= f (x);

where the latter equality follows because f (x) is closed in Y . Preservation of
orders is immediate. 2

If a continuous function f : X ! Pl(Y) is non-empty for all x 2 X , then
(f)
is strict, whereas, if a completely additive predicate transformer � : O(Y) !A

O(X) is strict then
�1(�)(x) 6= ; for all x 2 X .
The following corollary restricts the above duality to a �nitary one for locally

open compact spaces.

6.2.5. Corollary. Let X and Y be two locally open compact spaces. The poset
of lower state transformers X ! Pl (Y) is order isomorphic to the poset of
�nitely additive functions in KO(Y)! KO(X).

Proof: Since X and Y are locally open compact, the collections of their com-
pact open sets form bases for their respective topologies. Moreover, because a
function preserves all joins if and only if it preserves all the directed joins and
the �nite ones, the order isomorphism of Theorem 6.2.4 cuts down to an order
isomorphism between X ! Pl(Y) and the �nite unions preserving functions in
KO(Y)! KO(X). 2

A natural question is whether the locally open compact spaces are closed un-
der the lower powerspace construction. The answer is given in the following
proposition which is similar to Proposition 6:11 in [Sch93].

6.2.6. Proposition. If X is a locally open compact space then so is Pl(X).

Proof: Let X be a locally open compact space, and let A 2 Pl(X) be such
that A 2 Lo1 \ ::: \ Lon , where all oi 's are open subsets of X . In order to
show that Pl(X) is also locally open compact we have to �nd an open compact
set of Pl(X) containing A as element and contained in Lo1 \ ::: \ Lon . Since
A 2 Lo1 \ ::: \ Lon we can �nd xi 2 A \ oi . By locally open compactness of
X we can therefore �nd compact open subsets ui of X such that xi 2 ui � oi
for all i 2 f1; :::; ng. Consider the open set Lu1 \ ::: \ Lun of Pl(X). By
construction A 2 Lu1 \ ::: \ Lun � Lo1 \ ::: \ Lon . It remains to prove the
compactness of Lu1 \ ::: \ Lun . Using Proposition 5.3.4 (Alexander sub-basis
theorem) it is enough to �nd a �nite subset K � J for every index set J
such that Lu1 \ ::: \ Lun �

S
J Loj , where all oj 's are open subsets in X . If

6.2. Topological predicate transformers 115

Lu1 \ ::: \ Lun �
S
J Loj then u1 [::: [un �

S
J oj . Hence, by compactness of ui

it follows that there exists a �nite index set K � J such that u1[:::[un �
S
K oj .

Therefore Lu1\:::\Lun �
S
K Loj , from which the required compactness follows.

2

Closure properties of the lower space construction have been extensively stud-
ied by Schalk in her thesis [Sch93]. Using the lower powerlocale as de�ned
in [Rob88], Schalk [Sch93, Proposition 6:26] proved that sober spaces are closed
under the lower space construction. Algebraic cpo's taken with the Scott topol-
ogy are sober and locally open compact (see Chapter 5). What is the connection
between the lower space and the Hoare powerdomain of an algebraic cpo? For
!-algebraic cpo's the question has been answered by Smyth [Smy83b], whereas
for more general (continuous) domains the answer can be found in [Sch93, AJ94,
Mis95].

6.2.7. Proposition. For an algebraic cpo X , the Hoare powerdomain H(X)
taken with the Scott topology is isomorphic in Sp to the non-empty lower space
Pl(X) n f;g. 2

Since continuous functions between two algebraic cpo's X and Y with the Scott
topology are exactly the functions preserving the least upper bounds of directed
sets, from Theorem 6.2.4 and the above proposition we have the following dual-
ity. The poset of Scott continuous functions X !H(Y) is order isomorphic to
the poset of all strict and completely additive functions from the lattice of Scott
opens O(Y) to the lattice of Scott opens O(X). If X and Y are SFP-domains,
then they are spectral in the Scott topology. Hence, by Corollary 6.2.5, the
poset of Scott continuous functions X ! H(Y) is order isomorphic to the
poset of strict and �nitely additive functions from the distributive lattice of
Scott compact opens KO(Y) to the lattice of Scott compact opens KO(X).

Let Y be a metric space taken with the metric topology. By de�nition,
the underlying set of the lower space Pl(Y) coincides with that of the closed
powerdomain Pcl(Y). If X is any discrete metric space, then every function
from X to Pl(Y) is lower semi-continuous. By Theorem 6.2.4, the set of all
functions X ! Pcl(Y) is isomorphic to the set of all completely additive func-
tions from the lattice of metric opens O(Y) to the lattice of metric opens O(X)
(since X is discrete, the latter coincides with the discrete topology on X). In
case both X and Y are compact ultra-metric spaces (and hence Stone spaces
in their metric topology) we can use the characterization of Corollary 6.2.5.
Notice that the lower topology on Pcl(Y) (which is T0) does not coincide with
the metric topology (which is T2). We need to consider non-symmetric metric
spaces. For !-algebraic complete quasi metric spaces a result which generalizes
Proposition 6.2.7 is presented in [BBR96a].

116 Chapter 6. Powerspaces, multifunctions and predicate transformers

Upper state transformers

Next we give a duality between upper state transformers and M-multiplicative
predicate transformers. Intuitively, upper state transformers are models for
non-deterministic computations of which the outputs `must' satisfy a given af-
�rmative predicate. For an M-multiplicative predicate transformer �, a state x
satis�es �(P) if the computation represented by � at input x is guaranteed to
terminate in a state satisfying the a�rmative predicate P .

According to the informal de�nition of safety and liveness predicates given
in [Lam77], an arbitrary predicate can always be expressed as the intersection
of a safety and a liveness predicate. This fact leads [AS85] to the topological
de�nition of safety predicates as closed subsets, whereas a liveness predicate can
be identi�ed with a dense subset (the complement does not contain non-empty
open sets). It is not hard to see that in any topological space X , any subset of
X can be expressed as the intersection of a closed set with a dense one.

Since we are concerned with a�rmative and refutative predicates, it is clear
that M-multiplicative predicate transformers are not liveness predicate trans-
formers in the sense of [Lam77].

6.2.8. Theorem. Let X and Y be two topological spaces. The poset of up-
per state transformers X ! Pu(Y) is order isomorphic to the poset of M-
multiplicative functions O(Y)!M O(X).

Proof: The proof is similar to that of Theorem 6.2.4, making use of Proposi-
tion 6.1.4. For every continuous function f : X ! Pu(Y) and M-multiplicative
predicate transformer � : O(Y) !M O(X) de�ne maps f 7! !(f) and � 7!
!�1(�) by

!(f) = �o 2 O(Y):fx 2 X j f (x) � og and
!�1(�) = �x 2 X :

T
fo 2 O(Y) j x 2 �(o)g:

For every open o of Y , !(f)(o) = f +(o). Hence !(f) is M-multiplicative and,
because f is upper semi-continuous as multifunction, well-de�ned. To prove
that !�1(�) is well-de�ned, observe that an arbitrary intersection of open sets
is upper closed with respect to the specialization order, and, for every o 2 O(Y),

(!�1(�))+(o) = fx 2 X j !�1(�)(x) � og

= fx 2 X j
\
fo 2 O(Y) j x 2 �(o)g � og

= fx 2 X j x 2 �(o)g [Lemma 6.2.2]

= �(o):

Since �(o) is open in X , !�1(�) is upper semi-continuous. Thus it is well-
de�ned. The above also proves that !�1 is a right inverse of !. It is also a left

6.2. Topological predicate transformers 117

inverse because, for every x 2 X ,

!�1(!(f))(x) =
\
fo 2 O(Y) j x 2 !(f)(o)g

=
\
fo 2 O(Y) j f (x) � og

= f (x);

where the latter equality follows because f (x) is upper closed in Y , and hence
a saturated set. Preservation of orders is immediate. 2

As for the case of lower state transformers, if we exclude the empty set as
possible output result of an upper state transformer then the corresponding
restriction on M-multiplicative predicate transformers is strictness.

For every space X , the underlying set of the upper space Pu(X) ordered by
the specialization preorder is a complete lattice. If X is a T1 space, then the
underlying set of Pu(X) coincides with the full powerset of X because every set
is upper closed.

What restrictions are needed on the underlying space in order that the
compact restriction of the upper powerspace is a dcpo or an algebraic dcpo?
For a dcpo the question has been answered in [HM81]: the underlying space
should be sober. This is proved using a bijective correspondence between the
elements of the compact upper powerspace (compact saturated sets) and the
Scott open �lters of the lattice of opens sets (for a proof of this statement we
refer the reader to Corollary 9.3.11).

6.2.9. Proposition. Let X be a sober space. If S is an arbitrary collection
of compact saturated subsets of X directed with respect to superset inclusion
then

T
S is also saturated and compact. Moreover, for any open o 2 O(X), ifT

S � o then there exists q 2 S such that q � o. 2

The �rst statement of the above proposition gives soberness as a su�cient
condition for the compact upper powerspace to be a dcpo (more generally,
Schalk proved that if a space is sober then so is its non-empty compact upper
space [Sch93, Lemma 7:20]). The second statement says that compact opens
are compact elements for the dcpo Pco

u (X). However this dcpo need not to be
algebraic. The algebraicity is obtained by restricting the attention to sober and
locally open compact spaces.

6.2.10. Lemma. Let X be a sober locally open compact space. The underlying
set of the compact upper space Pco

u (X) ordered by the specialization order is an
algebraic dcpo with as compact elements the compact open sets. Moreover, the
Scott topology on Pco

u (X) coincides with the upper topology.

Proof: We need to prove that every compact saturated set q can be expressed
as least upper bound of the compact open sets below q . Because X is locally

118 Chapter 6. Powerspaces, multifunctions and predicate transformers

open compact, every open set can be obtained as a directed union of compact
opens. Hence, if q is a compact saturated set such that q � o for some open
set o, then there exists a compact open u such that q � u � o. For a compact
saturated sets q , this implies

q =
T
fo 2 O(X) j q � og =

\
fu 2 KO(X) j q � ug:

Hence the collection of compact saturated sets is an algebraic dcpo when ordered
by superset inclusion.

Next we prove that the Scott topology and the upper topology on Pu(X)
coincide. The upper closure of a compact open o in Pu(X) is a basic open for
the Scott topology, and by de�nition it coincides with the basic open Uo =
fq j q � og of the upper topology. Hence the Scott topology on Pu(X) is
included in the upper topology. Conversely, let o 2 O(X) and consider the
basic open set Uo of the upper topology on Pu(X). It is clearly upper closed,
and if S � Pu(X) is a directed set such that

T
S 2 Uo then, by Corollary 6.2.9,

there exists q 2 S such that q � o. Therefore Uo is Scott open. 2

Since algebraic dcpo's taken with the Scott topology are sober, the above lemma
implies that the compact upper space of a locally open compact sober space is
again sober. In particular, if X is an algebraic cpo, then so is the poset of
all Scott compact saturated subsets of X ordered by superset inclusion. The
following characterization theorem can be found in [Smy83b] for !-algebraic
cpo's, and in [AJ94, Mis95] for the general case.

6.2.11. Proposition. Let X be an algebraic cpo taken with the Scott topology.
The Smyth powerdomain S(X) together with its Scott topology is isomorphic in
Sp to the non-empty, compact upper powerspace Pco

u (X) n f;g. 2

In order to apply the isomorphism of Theorem 6.2.8 to upper state transform-
ers with values in an upper compact subset, we need to �nd a corresponding
restriction on the predicate transformer side. The de�nition of compact sets as
�nitarily speci�able theory introduced in Chapter 5 is of help here.

6.2.12. Theorem. Let X and Y be two topological spaces. The isomorphism
of Theorem 6.2.8 restricts to an order isomorphism between the poset of compact
upper state transformers X ! Pco

u (Y) and the poset of M-multiplicative and
Scott continuous functions O(Y)!c;M O(X).

Proof: Let f 2 X ! Pco
u (Y). Also let � : O(Y) !c;M O(X) be a Scott

continuous function. We need to prove !(f) Scott continuous and !�1(�)(x)
compact for all x 2 X . Let S be a directed subset of opens in Y .

If x 2 !(f)(
S
S) then f (x) �

S
S . By compactness of f (x) it follows that

f (x) � o for some o 2 S . Therefore x 2
S
f!(f)(o) j o 2 Sg. Since !(f) is

monotone, being M-multiplicative, it follows that !(f) is Scott continuous.

6.2. Topological predicate transformers 119

Take now x 2 X and assume !�1(�)(x) �
S
S . By Lemma 6.2.2 then

x 2 �(
S
S). Since � is Scott continuous, there exists o 2 S such that x 2 �(o).

Using Lemma 6.2.2 again it follows that !�1(�)(x) � o, that is !�1(�)(x) is
compact. 2

Using Corollary 9.3.11, Smyth [Smy83b] was the �rst who realized that for a
sober space Y , the poset of upper state transformers X ! Pco

u (Y) is order iso-
morphic to the poset of �nitely multiplicative and Scott continuous functions
in O(Y) ! O(X). In the above theorem, we do not have the requirement
of Y being sober, but we consider M-multiplicativity instead of �nitely mul-
tiplicativity. Hence, if Y is a sober space then a (Scott-)continuous function
in O(Y) ! O(X) is �nite multiplicative if and only if it is M-multiplicative.
Best [Bes83] has proved a similar result for countable
at cpo's.

6.2.13. Corollary. Let X and Y be two sets and let � : P(Y)! P(X) Scott
continuous. If � preserves binary intersections then it preserves all non-empty
intersections.

Proof: Consider the
at dcpo Y? taken with the Scott topology. Notice that
the latter equals P(Y) [fY?g. Hence we can extend � to a Scott-continuous
function from O(Y?) ! P(X) by mapping �(Y?) = X . If � preserves binary
intersections then its extension preserves all �nite intersections (being top pre-
serving). Since Y? is a sober space, the extension of � is M-multiplicative.
Hence � : P(Y)! P(X) preserves all non-empty intersections. 2

Another consequence of the combination of the result of Smyth [Smy83b] and
Theorem 6.2.12 is the following.

6.2.14. Corollary. Let X and Y be two spectral spaces. The poset of compact
upper state transformers X ! Pco

u (Y) is order isomorphic to the poset of �nitely
multiplicative functions in KO(Y)! KO(X).

Proof: Since Y is spectral, it is also sober. Moreover the intersection of com-
pact opens is compact open by de�nition. Hence every Scott continuous and
M-multiplicative function � : O(Y)! O(X) restricts to a �nite meet preserv-
ing function in KO(Y) ! KO(X). Conversely, every �nite meet preserving
function � : KO(Y)! KO(X) extends by means of ideal completion uniquely
to a Scott continuous and �nite meet preserving function in O(Y) ! O(X)
the restriction of which to compact sets is exactly �. Since Y is sober, this
extension of � is M-multiplicative. 2

Let X and Y be two algebraic cpo's. From Theorem 6.2.8 and Proposi-
tion 6.2.11 we have that the poset of Scott continuous functions from X ! S(Y)
is order isomorphic to the poset of strict, Scott continuous and �nite multiplica-
tive functions from the lattice of Scott opens O(Y) to the lattice of Scott opens

120 Chapter 6. Powerspaces, multifunctions and predicate transformers

O(X). Moreover, if X and Y are SFP-domains, then they are spectral in the
Scott topology. Hence, by Corollary 6.2.14, the poset of Scott continuous func-
tions from X ! S(Y) is order isomorphic to the poset of strict and �nitely
multiplicative functions from the distributive lattice of Scott compact opens
KO(Y) to the lattice of Scott compact opens KO(X).

Let X be a discrete metric space and let Y be a metric space. Thus every
function from X to Pco

u (Y) is continuous. Notice that the underlying sets of
Pco
u (Y) and of the metric compact powerdomain Pco(Y) coincide. Therefore,

by Theorem 6.2.12, the set of all functions X ! Pco(Y) is isomorphic to the
set of all Scott continuous and �nitely multiplicative functions from the lattice
of metric opens O(Y) to the lattice of metric opens O(X). In case both X and
Y are compact ultra-metric spaces, the set X ! Pco(Y) is isomorphic to the
set of strict and �nitely multiplicative functions from the distributive lattice of
metric compact opens KO(Y) to the lattice of metric compact opens KO(X).

6.3 Pairs of predicate transformers

In Chapter 3 we have seen that the Egli-Milner state transformers are dual to
the Nelson predicate transformers. The natural topological generalization of
the Egli-Milner state transformers are the convex state transformers. In order
to generalize the Nelson predicate transformers we need to consider pairs h�; �i
of topological predicate transformers, where � is M-multiplicative and � is com-
pletely additive. In this way we can model both the positive and the negative
information about a computation. However, we have to restrict our considera-
tions to those pairs h�; �i of predicate transformers which represent the same
computation. What we need is a stability lemma similar to Lemma 6.2.2 and
Lemma 6.2.3. The de�nition below is inspired by the work of Johnstone [Joh82b]
on the Vietoris powerlocale.

6.3.1. De�nition. Given two spaces X and Y , a pair h�; �i of functions from
O(Y) to O(X) is said to be jointly multiplicative if � is M-multiplicative, � is
completely additive, and

(i) �(o1 [o2) � �(o1) [�(o2), and
(ii) (

T
S \ o1) � o2 implies (

T
f�(o) j o 2 Sg \ �(o1)) � �(o2).

for opens o1; o2 of Y and S � O(Y). Jointly multiplicative functions are
ordered componentwise by the extension to functions of subset inclusion.

For a pair h�; �i of jointly multiplicative functions, according to the above
de�nition there are two `non-observable' requirements (in the sense that they
involve sets which need not to be open): the M-multiplicativity of � and the
second condition of joint multiplicativity. In the previous section we have shown
that if � is Scott continuous and the space Y is sober, then M-multiplicativity

6.3. Pairs of predicate transformers 121

is equivalent to �nite multiplicativity. The latter is clearly an observable and
�nitary requirement.

The non-observability of condition (ii) of De�nition 6.3.1 is more delicate.
In locale theory, for the construction of the Vietoris powerlocale the following
condition is required [Joh82b] instead of (ii),

�(o1) \ �(o2) � �(o1 \ o2) (6.1)

for all o1; o2 2 O(Y). Notice that (i) of De�nition 6.3.1 and the above (6:1) are
the modal axioms relating the 2 and 3 operators in negation free modal logic
(often called Hennessy-Milner logic) [HM85].

For all spaces X and Y , if h�; �i is a jointly multiplicative pair of functions
from O(Y) to O(X) then (6:1) clearly holds. The converse holds if we restrict
Y to be a coherent space and � to be Scott continuous.

6.3.2. Lemma. Let X and Y be two spaces such that Y is coherent. For
every pair h�; �i of Scott continuous functions from O(Y) to O(X) such that �
preserves �nite meets, and � preserves �nite joins, the following two statements
are equivalent:

(i) �(o1) \ �(o2) � �(o1 \ o2) for all o1; o2 2 O(Y);
(ii) (

T
S \ o1) � o2 implies (

T
f�(o) j o 2 Sg \ �(o1)) � �(o2) for all

o1; o2 2 O(Y) and S � O(Y).

Moreover, if Y is spectral then both (i) and (ii) are equivalent to

(iii) �(o1) \ �(o2) � �(o1 \ o2) for all o1; o2 2 KO(Y).

Proof: Obviously (ii) implies (i). Hence we concentrate on the opposite direc-
tion. Assume �(o)\�(o 0) � �(o\o 0) for all opens o and o 0 of Y . Let S � O(Y)
and o1; o2 2 O(Y). Because Y is coherent, every open set o of Y is the union
of all the compact saturated subsets q of Y such that there exists u 2 O(Y)
with u � q � o. Hence the set

T
S \ o1 is equivalent to the set\

fq 2 KQ(Y) j 9u 2 O(Y): 9o 2 S [fo1g: u � q � og:

Next, we use the fact that Y is sober and that compact saturated sets are closed
under �nite intersections to reformulate Proposition 6.2.9 as follows. Whenever
the intersection of compact saturated sets is contained in an open set then the
same is true for an intersection of �nitely many of them. This fact justi�es that
(
T
S \ o1) � o2 implies that there exist �nitely many compact saturated sets

q1; :::qn such that q1 \ ::: \ qn � o2, with ui � qi � oi for some oi 2 S [fo1g
and open ui 2 O(Y). Hence (q1 \ ::: \ qn) \ o1 � o2, where, without loss of
generality, we can assume, for all 1 � i � n, ui � qi � oi for some oi 2 S and
ui 2 O(Y).

Let u = u1 \ :::\ un . Since u1; ::; un are �nitely many open sets, u is also an
open set. Moreover u \o1 � o2 because u � q1\ :::\ qn . By our assumption on

122 Chapter 6. Powerspaces, multifunctions and predicate transformers

the pair h�; �i, �(u) \ �(o1) � �(u \ o1). But � is monotone and u \ o1 � o2.
Thus �(u) \ �(o1) � �(o2). Notice that

T
S � u because, for all 1 � i � n,

oi 2 S and

oi =
[
fu 2 O(Y) j 9q 2 KQ(Y): u � q � oig

as Y is coherent. Thus
T
f�(o) j o 2 Sg � �(u), from which follows that

(
T
f�(o) j o 2 Sg \ �(o1)) � �(o2).

Assume now Y is a spectral space. We prove that (iii) implies (i). The other
direction follows immediately.

Let o1 and o2 be two open sets of Y . Because Y is spectral they can be
written as directed union of all compact open sets below them. Below, let u and
v range over compact open sets. Because � and � are both Scott continuous,
we have

�(o1) \ �(o2) = �(
[
fu j u � o1g) \ �(

[
fv j v � o2g)

=
[
f�(u) j u � o1g \

[
f�(v) j v � o2g

=
[
f�(u) \ �(v) j u � o1 & v � o2g

�
[
f�(u \ v) j u \ v � o1 \ o2g [by (iii)]

= �(o1 \ o2):

Since spectral spaces are coherent, (i) is equivalent to (ii). Hence (iii) implies
both (i) and (ii). 2

As a consequence, if Y is a coherent space then the jointly multiplicative
and Scott continuous predicate transformers h�; �i from O(Y) to O(X) can
be described using only open sets, substituting �nite multiplicativity for M-
multiplicativity, and condition (ii) of De�nition 6.3.1 by the equivalent condition
(6:1).

6.3.3. Lemma. Let X and Y be two spaces such that Y is coherent. The
poset of all jointly multiplicative and Scott continuous predicate transformers
from O(Y) to O(X) is a cpo.

Proof: Let D = fh�i ; �ii j i 2 I g be a directed set of jointly multiplicative and
Scott continuous functions from O(Y) to O(X). De�ne �(o) =

S
I �i(o) and

�(o) =
S
I �i(o) for every open o of Y . By Proposition 6.2.9 and Theorem 6.2.12

the function � is M-multiplicative and Scott continuous. Thus � is the least
upper bound of all �i 's. The function � is completely additive by de�nition,
and hence is the least upper bound of all �i 's. We need to prove that h�; �i is
a jointly multiplicative pair.

Let o1 and o2 be two open sets of Y . If x 2 �(o1[o2) then there exists k 2 I
such that x 2 �k (o1 [o2). Since h�k ; �ki is jointly multiplicative, �k (o1 [o2) �

6.3. Pairs of predicate transformers 123

�k (o1)[�k (o2). But �k(o1) � �(o1) and �k(o2) � �(o2). Thus x 2 �(o1)[�(o2),
that is, condition (i) of De�nition 6.3.1 holds.

Because Y is a coherent space, by Lemma 6.3.2, condition (ii) of De�ni-
tion 6.3.1 is equivalent to the �nitary condition (6:1). Assume o1 and o2 are
two open sets of Y and let x 2 �(o1) \ �(o2). By directness of the set D
and the de�nitions of � and �, there exists k 2 I such that x 2 �k (o1) and
x 2 �k(o2). Since h�k ; �ki is jointly multiplicative, �k (o1)\�k (o2) � �k (o1\o2).
Thus x 2 �k(o1 \ o2) � �(o1 \ o2).

Therefore h�; �i is jointly multiplicative and the poset of all jointly multi-
plicative and Scott continuous predicate transformers from O(Y) to O(X) is
a dcpo. The pair of functions mapping every open set of Y to the empty set
is jointly multiplicative and Scott continuous. Hence they form the bottom
element of the dcpo of jointly multiplicative and Scott continuous predicate
transformers. 2

We are interested in jointly multiplicative predicate transformers because they
represent the positive and the negative information of the same computation,
as formally stated in the following stability lemma.

6.3.4. Lemma. Let X and Y be two spaces and h�; �i be a a pair of jointly
multiplicative functions from O(Y) to O(X). For x 2 X , let us denote by
q(x ; �) and o(x ; �) the sets

T
fo 2 O(Y) j x 2 �(o)g and

S
fo 2 O(Y) j x 62

�(o)g, respectively. For every u 2 O(Y) we have

(i) x 2 �(u) if and only if q(x ; �) \ (Y n o(x ; �)) � u;
(ii) x 62 �(u) if and only if q(x ; �) \ (Y n o(x ; �)) � Y n u:

Proof: (i) The direction from left to right is trivial and hence omitted. Assume
q(x ; �) \ (Y n o(x ; �)) � u. Then q(x ; �) � u [o(x ; �). Since o(x ; �) is
open (being union of opens) and � is M-multiplicative, x 2 �(u [o(x ; �)) by
Lemma 6.2.2. But �(u [o(x ; �)) � �(o)[�(o(x ; �)) because � and � are jointly
multiplicative. Since � is completely additive we have that x 62 �(o(x ; �)) by
de�nition of o(x ; �). Therefore x 2 �(u).

(ii) As above, the direction from left to right is trivial. Assume q(x ; �) \
(Y n o(x ; �)) � Y n u. Then q(x ; �) \ u � o(x ; �), which implies

(
\
f�(o) j x 2 �(o)g \ �(u)) � �(o(x ; �))

because h�; �i is jointly multiplicative. Since � is completely additive, x 62
�(o(x ; �)). But x 2

T
f�(o) j x 2 �(o)g, therefore x 62 �(u). 2

Next we use the above stability lemma to relate jointly multiplicative predicate
transformers and convex state transformers by an isomorphism that generalizes
the result in Chapter 3 for Nelson predicate transformers.

124 Chapter 6. Powerspaces, multifunctions and predicate transformers

6.3.5. Theorem. Let X and Y be two spaces. The poset of convex state trans-
formers X ! Pc(Y) is order isomorphic to the poset of all jointly multiplicative
pairs of predicate transformers in O(Y)! O(X). Also, the above isomorphism
cuts down to an order isomorphism between compact and convex state trans-
formers X ! Pco

c (Y) and the poset of all pairs of Scott continuous functions
in O(Y)! O(X) which are jointly multiplicative.

Proof: For a convex state transformer f : X ! Pc(Y) de�ne �(f) to be the
pair of functions from O(Y) to O(X)

!(f) = �o 2 O(Y):fx j f (x) � og and

(f) = �o 2 O(Y):fx j f (x) \ o 6= ;g:

Since f is continuous as a multifunction, both functions above are well-de�ned.
Moreover, !(f) is M-multiplicative and
(f) is completely additive. Next we
prove they are jointly multiplicative.

Let o1 and o2 be two open subsets of Y . If x 2 !(f)(o1 [o2) then f (x) �
o1 [o2. Towards a contradiction, assume both f (x) 6� o1 and f (x) \ o2 = ;.
Then f (x) 6� o1 [o2, hence the contradiction. Thus f (x) � o1 or f (x)\ o2 6= ;,
that is, x 2 !(f)(o1) [
(f)(o2).

Let S � O(Y) and let o1; o2 be two open subsets of Y such that
T
S \ o1 �

o2. If x 2 !(f)(o) for all o 2 S and x 2
(f)(o1), then f (x) �
T
S and

f (x) \ o1 6= ;. Hence there exists y 2 f (x) such that y 2
T
S \ o1 � o2.

It follows that f (x) \ o2 6= ;, and hence x 2
(f)(o2). Therefore the pair
�(f) = h!(f);
(f)i is jointly multiplicative.

Consider now the pair h�; �i of jointly multiplicative predicate transformers
in O(Y)! O(X). De�ne ��1(h�; �i)(x), for every x 2 X , by\

fo 2 O(Y) j x 2 �(o)g \ (Y n
[
fo 2 O(Y) j x 62 �(o)g): (6.2)

We prove that ��1(h�; �i)(x) is convex closed. Let cl be the closure operator
induced by the topology O(Y). Since Y n

S
fo 2 O(Y) j x 62 �(o)g is a closed

set,

cl(��1(h�; �i)(x)) � Y n
[
fo 2 O(Y) j x 62 �(o)g:

Similarly, the upper closure " ��1(h�; �i)(x), with respect to the order induced
by O(Y), is included in the saturated set

T
fo 2 O(Y) j x 2 �(o)g. Hence the

convex closure of ��1(h�; �i)(x) is included in (6:2). Since the other direction
is trivial, ��1(h�; �i)(x) is convex closed.

Next we prove that ��1(h�; �i) is both upper and lower semi-continuous.
For every o 2 O(Y) we have

��1(h�; �i)+(o) = fx 2 X j ��1(h�; �i)(x) � og

= fx 2 X j x 2 �(o)g [Lemma 6.3.4]

= �(o);

6.3. Pairs of predicate transformers 125

and also

��1(h�; �i)�(o) = fx 2 X j ��1(h�; �i)(x) \ o 6= ;g

= fx 2 X j ��1(h�; �i)(x) 6� Y n og

= fx 2 X j x 2 �(o)g [Lemma 6.3.4]

= �(o):

This proves not only that ��1(h�; �i) is a convex state transformer, but also
that ��1(h�; �i) is a right inverse of �. It not hard to see that it is also a left
inverse by combining Theorem 6.2.4 and Theorem 6.2.8.

Further, � and ��1 are both monotone due to Lemma 6.1.5 and Theo-
rems 6.2.4 and 6.2.8.

By Theorem 6.2.12 and because the intersection of a compact set with a
closed one gives again a compact set, it follows that the isomorphism (�; ��1)
cuts down to an order-isomorphism between the poset of compact and convex
state transformers, and the poset of all pairs of Scott continuous functions in
O(Y)! O(X) which are jointly multiplicative. 2

As for the cases of the upper space and of the lower space, the above isomor-
phisms cuts down to a �nitary isomorphism if we consider spectral spaces.

6.3.6. Corollary. Let X and Y be two spectral spaces. The poset of compact
convex state transformers X ! Pco

c (Y) is order isomorphic to the poset of all
pairs h�; �i of functions in KO(Y)! KO(X) such that

(i) � is �nitely multiplicative;
(ii) � is �nitely additive;
(iii) �(o1 [o2) � �(o1) [�(o2) for all o1; o2 2 KO(Y);
(iv) �(o1) \ �(o2) � �(o1 \ o2) for all o1; o2 2 KO(Y).

Proof: Immediate from Corollary 6.2.5, Corollary 6.2.14 and Lemma 6.3.2. 2

Despite the mathematical elegance of the presentation of the convex space, it
does not have many of the closure properties which the other power construc-
tions enjoy. In general, the underlying set of Pco

c (X) taken with the order
induced by the Vietoris topology, is not a complete lattice nor a dcpo even if X
is an algebraic dcpo with the Scott topology [AJ94, Exercise 11:(e)]. As a con-
sequence, neither sober spaces nor sober and locally open compact spaces are
closed under the compact convex space construction. Using the above isomor-
phism and Lemma 6.3.3 we obtain an easy proof that Pco

c (X) is a cpo whenever
X is a coherent space. The general situation, i.e. to �nd a topological char-
acterization of the Plotkin powerdomain, seems to be hopeless. The following
characterization theorems can be found in [Smy83b] and [AJ94, Mis95].

126 Chapter 6. Powerspaces, multifunctions and predicate transformers

6.3.7. Proposition. Let X be an !-algebraic cpo taken with the Scott topology.
The Plotkin powerdomain E(X) together with its Scott topology is isomorphic
in Sp to the non-empty, compact convex space Pco

c (X) n f;g. The same holds
if X is an algebraic cpo such that, when taken with the Scott topology, it forms
a coherent space. 2

From the above proposition and Theorem 6.3.5, we have, for !-algebraic cpo's
X and Y , that the poset of Scott continuous functions X ! E(Y) is order
isomorphic to the poset of all pairs of strict and Scott continuous functions
from the lattice of Scott opens O(Y) to the lattice of Scott opens O(X) which
are jointly multiplicative. If X and Y are SFP domains, then we can apply
Corollary 6.3.6 to obtain a �nitary duality.

For metric spaces we have the following characterization result [Mic51].

6.3.8. Proposition. Let X be a metric space taken with the metric topology.
The metric compact powerdomain Pco(X) together with the metric topology co-
incides with the compact convex space Pco

c (X) 2

The above proposition can be applied as follows. If X and Y are two metric
spaces, by Theorem 6.3.5, the set of all metric continuous functions X ! Pco(Y)
(seen as a discrete poset) is order-isomorphic to the poset of all pairs of Scott
continuous functions from the lattice of metric opens O(Y) to the lattice of
metric opens O(X) which are jointly multiplicative. If X and Y are compact
ultra-metric spaces, then in their metric topologies they are Stone spaces. Hence
we can apply Corollary 6.3.6 to obtain a �nitary duality.

It is easy to see that if X is a set then the set of all �nite subsets of X (taken
with the discrete topology) coincides with the compact convex powerspace of
X . Again, we can apply Theorem 6.3.5 to describe it by jointly multiplicative
functions.

6.4 Concluding notes

Dualities for the convex powerspace provide a natural setting for negation-
free modal logics (also called Hennessy-Milner logics). Our approach di�ers
from the one taken by Goldblatt [Gol89] and Abramsky [Abr91a] because our
axioms relating the 2 operator with the 3 operator hold also in an in�nitary
setting. It is an important topic for further investigation to de�ne an in�nitary
Hennessy-Milner logic for the convex powerspace.

The results in this chapter are in the concrete framework where predicate
transformers are functions between collections of open sets. More abstractly,
we could have used frames to represent abstract collections of a�rmative pred-
icates by restricting our attention to sober spaces (for the results of last section
coherent spaces would be necessary). The duality between frames and sober

6.4. Concluding notes 127

spaces [Joh82a] could then be used to reconstruct points from frames. In Chap-
ter 8 we discuss an abstract algebraic representation of T0 spaces. All results in
this section can be easily adapted to this algebraic framework.

To fully generalize the results of Part I , it remains a challenge to de�ne
a `meaningful' notion of topological state transformers which are dual to the
monotonic (or perhaps Scott continuous) functions between lattices of a�rma-
tive predicates. More speculatively, for algebraic cpo's the duality of Chapter
4 seems to suggest the composition of the Smyth with the Hoare powerdomain
(or vice-versa, since they commute [Hec91, Lib92]).

128 Chapter 6. Powerspaces, multifunctions and predicate transformers

Chapter 7

Predicate transformer

semantics for concurrency

Topological dualities can be used to de�ne an indirect predicate transformer se-
mantics for programming languages: given a forward semantics, the duality can
be used to generate an equivalent backward semantics. A better approach could
be the following. Based on computational considerations construct a semantic
domain of predicate transformers, and then de�ne semantic operators between
predicate transformers corresponding to the syntactic operators. Dualities with
state transformers then can be used to prove the correctness of the domain as
well as of the semantic operators.

The main contribution of the present chapter is a direct construction of a
compositional predicate transformer semantics for a simple concurrent language
with recursion. The correctness of the semantics is shown on the one hand with
respect to a metric state transformer semantics using a topological duality, and
on the other hand with respect to the weakest (liberal) precondition semantics
that we de�ned in Chapter 3.

Several authors proposed a predicate transformer semantics for concurrent
programs. For example, Van Lamsweerde and Sintzo� [LS79], Haase [Haa81],
Flon and Suzuki [FS81], Elrad and Francez [EF84], Zwiers [Zwi87], Best [Bes83,
Bes89], Lamport [Lam90], Schole�eld and Zedan [SZ92], Van Breugel [Bre93],
and Lukkien [Luk91, Luk94]. Taken all together, none of these references com-
bines compositionality and recursion for an explicit parallel operator.

7.1 A simple concurrent language

In this section we de�ne a simple concurrent language with recursion. We
consider a small variation of the sequential �nite non-deterministic language L0
introduced in Chapter 3 extended with a parallel operator.

As for L0, to de�ne the language L2, we need as basic blocks the abstract
sets (v 2) IVar of (individual) variables , (e 2)Exp of expressions, (b 2)BExp

129

130 Chapter 7. Predicate transformer semantics for concurrency

of Boolean expressions, and (x 2)PVar of procedure variables, respectively.
For a �xed set of values Val, the set of (program) states (s; t 2) St is given by
St = IVar! Val. Also, we postulate valuations

EV : Exp! (St! Val) and BV : BExp! P(St):

The language L2 below has assignments, conditionals `b!', sequential compo-
sition `;', choice `2', parallel composition `k', and recursion through procedure
variables. The only new operator with respect to the language L0 of Chapter 3 is
the parallel operator `k'. Intuitively, the parallel composition of two statements
executes in an interleaved way actions of both statements, while preserving the
relative order of the actions in the statements.

7.1.1. De�nition. (i) The set (S 2) Stat2 of statements is given by
S ::= v := e j b! j x j S ; S j S 2 S j S k S :

(ii) The set (G 2)GStat2 of guarded statements is given by
G ::= v := e j b! j G ; S j G 2 G j G k G :

(iii) The set (d 2)Decl2 of declarations is given by PVar! GStat2.
(iv) The language L2 is given by Decl2 � Stat2.

Assignments and conditionals are the only atomic statements. Their ex-
ecution may not be interrupted by the other processes. Though resembling
in their name, the guarded statements in the above de�nition and elsewhere
in this chapter are completely di�erent|both syntactically and as to their in-
tended meaning|from Dijkstra's guarded commands [Dij76]. The declarations
d 2 Decl2 associate a procedure body to each procedure variable x . For techni-
cal reasons (obtaining contractive higher-order transformations with semantic
mappings as their unique �xed point), we restrict procedure bodies to guarded
statements. Essentially, in a guarded statement G of GStat2, every occurrence
of a procedure variable is preceded either by an assignment or by a conditional
statement.

7.2 Metric predicate transformers

In this section we introduce a domain �2 for a compositional backward seman-
tics of the language L2 with parallel composition. This domain is obtained
as the solution of a domain equation involving a functor which delivers metric
predicate transformers. They are topological predicate transformers endowed
with a distance which can be characterized in terms of saturated sets. This
turns out to be convenient in formulating some properties of the domain �2.
Because metric spaces taken with the ordinary metric topology are T1, every
subset is saturated. Thus, in the light of our discussion in Chapter 5, every
predicate is speci�able by a list of a�rmative ones.

7.2. Metric predicate transformers 131

7.2.1. De�nition. Let X be a set and Y be a metric space. A metric pred-
icate transformer over Y and X is a function � : P(Y) ! P(X) such that
it is multiplicative (i.e. preserves arbitrary intersections) and, for all directed
collections D of subsets which are open in the metric topology of Y ,

�(
[

D) =
[
f�(o) j o 2 Dg:

We denote the set of all metric predicate transformers over Y and X by
MPT(Y ;X).

Since a metric predicate transformer preserves arbitrary intersections, it is
determined by its values on the metric open subsets: for a metric predicate
transformer � and P � Y ,

�(P) = �(
\
fo 2 O(Y) j P � og) =

\
f�(o) j P � og:

It follows that MPT(Y ;X) coincides with the set of all M-multiplicative and
Scott continuous functions from O(Y) to P(X).

The set of all metric predicate transformersMPT(Y ;X) can be turned into a
metric space as follows. For �1; �2 2 MPT(Y ;X) de�ne their backward distance
by

dB(�1; �2) = sup
x2X

dP(P(Y))(fP j x 2 �1(P)g; fP j x 2 �2(P)g):

Next we want to prove that if Y is a complete metric space, so isMPT(Y ;X) for
every set X . Before proving this, formally presented below as Theorem 7.2.3, we
give an alternative de�nition of this metric. This alternative de�nition is based
on Proposition 2.3.3 and on the following lemma which resembles Lemma 3.3.5
and Lemma 6.2.2.

7.2.2. Lemma. Let � :P(Y)! P(X), where Y is a metric space. Then � is
a metric predicate transformer in MPT(Y ;X) if and only if for every x 2 X
there exists a unique compact subset q(x ; �) of Y such that

x 2 �(P) if and only if q(x ; �) � P ; (7.1)

for all P � Y .

Proof: Suppose � is in MPT(Y ;X) and de�ne, for every x 2 X , the set

q(x ; �) =
\
fP � Y j x 2 �(P)g:

Since � is multiplicative, q(x ; �) satis�es the stability condition (7.1), whereas
Scott continuity with respect to metric opens implies that q(x ; �) is a metric
compact subset of Y . Uniqueness of q(x ; �) can be proved as follows. For

132 Chapter 7. Predicate transformer semantics for concurrency

x 2 X , assume A � Y such that A � P if and only if x 2 �(P) for all
P 2 P(Y). If a 2 A n q(x ; �) then we have the following contradiction:

q(x ; �) � Y n fag , a 2 �(Y n fag) , A � Y n fag:

Therefore q(x ; �) � A. We conclude, on symmetric considerations, q(x ; �) = A.
Conversely, suppose � : P(Y) ! P(X) satis�es the proposed criterion. To

see that it is multiplicative we have, for an arbitrary set I and Pi � Y for all
i 2 I ,

x 2 �(
\
I

Pi) , q(x ; �) �
\
I

Pi

, 8i 2 I : q(x ; �) � Pi

, x 2
\
I

�(Pi):

From compactness of q(x ; �) it follows that � preserves directed unions of metric
opens. Therefore � 2 MPT(Y ;X). 2

As consequence of the above lemma we have that x 2 �(q(x ; �)) and hence
q(x ; �) 2 fP j x 2 �(P)g. Thus, by Theorem 2.3.3, for every x 2 X and
�1; �2 2 MPT(Y ;X),

dP(P(Y))(fP j x 2 �1(P)g; fP j x 2 �2(P)g) = dP(Y)(q(x ; �1); q(x ; �2)):

Therefore we can conclude for every �1; �2 2 MPT(Y ;X),

dB(�1; �2) = sup
x2X

dP(Y)(q(x ; �1); q(x ; �2)):

We use this alternative de�nition of the metric on MPT(Y ;X) to prove the
completeness of the space.

7.2.3. Theorem. If Y is a complete metric space then so is MPT(Y ;X) for
every set X .

Proof: In verifying that dB is a metric, we only check that dB(�1; �2) = 0
implies �1 = �2. The other conditions follow from the respective properties of
the Hausdor� distance on the compact subsets of Y . Suppose dB(�1; �2) = 0.
Then q(x ; �1) = q(x ; �2) for all x 2 X . By Lemma 7.2.2, for all P � Y ,

x 2 �1(P) , q(x ; �1) � P , q(x ; �2) � P , x 2 �2(P):

So, �1(P) = �2(P) for all P and hence �1 = �2.
Next we check completeness of MPT(Y ;X). Suppose (�i)i is a Cauchy

sequence in MPT(Y ;X). Then, for each x 2 X the sequence (q(x ; �i))i is
Cauchy with respect to the Hausdor� distance in Pco(Y). Since the latter is a

7.2. Metric predicate transformers 133

complete metric space, limi q(x ; �i) exists for every x 2 X and it is a compact
subset of Y . De�ne the function � : P(Y)! P(X) by

�(P) = fx 2 X j lim
i
q(x ; �i) � Pg;

for every P � Y . By de�nition, the compact subset limi q(x ; �i) of Y satis�es
condition (7.1). Hence, by Lemma 7.2.2, � 2 MPT(Y ;X). Notice that this
implies that q(x ; �) = q(x ; limi �i) = limi q(x ; �i) for all x 2 X . From

dB(�; �i) = sup
x2X

dP(Y)(q(x ; �); q(x ; �i))

it follows that � = limi �i in MPT(Y ;X). 2

For a �xed set X , the assignment Y 7! MPT(Y ;X) between complete metric
spaces can be extended to a functor on the category CMS of complete metric
spaces with non-expansive maps. For a non-expansive function f : Y1 ! Y2

de�ne MPT(f ;X) = ��:� � f �1, that is,

MPT(f ;X)(�)(P) = �(f �1(P))

for all � 2 MPT(Y1;X) and P � Y2. For proving that the functorMPT(�;X) :
CMS! CMS is well-de�ned we need the following proposition.

7.2.4. Proposition. Let f :Y1 ! Y2 be a non-expansive map between complete
metric spaces, and let � 2 MPT(Y1;X) for a �xed set X . Then � � f �1 is a
metric predicate transformer in MPT(Y2;X) such that, for any x 2 X ,

q(x ; � � f �1) = f (q(x ; �)):

Proof: Multiplicativity of � � f �1 : P(Y) ! P(X) follows from set-theoretic
laws for f �1, while Scott continuity with respect to the metric opens follows
from the metric continuity of f (the inverse image of an open set is open).
Furthermore, for x 2 X and P � Y2,

f (q(x ; �)) � P , q(x ; �) � f �1(P)

, x 2 �(f �1(P)) [Lemma 7.2.2 for �]

where the �rst equivalence is obtained from a standard set-theoretic argument.
Using Lemma 7.2.2 for � � f �1 we obtain q(x ; � � f �1) = f (q(x ; �)). 2

7.2.5. Lemma. The functor MPT(�;X):CMS! CMS for some �xed set X
is well-de�ned and locally non-expansive.

Proof: To prove well-de�nedness of the functor MPT(�;X) we �rst check
whether MPT(f ;X) is non-expansive for non-expansive f : Y1 ! Y2. Let
�1; �2 2 MPT(M ;X). Then

134 Chapter 7. Predicate transformer semantics for concurrency

dB(MPT(f ;X)(�1);MPT(f ;X)(�2))

= supx2X dP(Y)(q(x ; �1 � f �1); q(x ; �2 � f �1))

= supx2X dP(Y)(f (q(x ; �1)); f (q(x ; �2))) [Proposition 7.2.4]

� supx2X dP(Y)(q(x ; �1); q(x ; �2)) [f non-expansive]

= dB(�1; �2).

For proving well-de�nedness of MPT(�;X) it remains to establish its func-
toriality. Preservation of identities is immediate, whereas MPT(g � f ;X) =
MPT(g ;X)�MPT(f ;X), for f :Y1 ! Y2 and g :Y2 ! Y3 inCMS, is directly ver-
i�ed for all arguments � 2 MPT(Y1;X) using the equality (g � f)�1 = f �1 �g�1.

Finally, we check that the functor MPT(�;X) : CMS ! CMS is locally
non-expansive. Take f ; g 2 CMS(Y1;Y2). We have to check

d(MPT(f ;X);MPT(g ;X)) � d(f ; g) (7.2)

with the distance on the left-hand side taken in MPT(Y1;X)! MPT(Y2;X),
and on the right-hand side taken in Y1 ! Y2. So, pick � 2 MPT(Y1;X). Then

dB(MPT(f ;X)(�);MPT(g ;X)(�))

= supfdP(Y1)(q(x ;MPT(f ;X)(�)); q(x ;MPT(g ;X)(�))) j x 2 X g

= supfdP(Y1)(f (q(x ; �)); g(q(x ; �))) j x 2 X g

� d(f ; g),

since, for any x 2 X , d(f (q(x ; �)); g(q(x ; �)) � d(f ; g). Thus

dB(MPT(f ;X)(�);MPT(g ;X)(�)) � d(f ; g):

Now (7.2) follows directly by de�nition of the distance on MPT(Y1;X) !
MPT(Y2;X). 2

We are now ready to de�ne a recursive domain of metric predicate transformers
�2 using the functor MPT(�;X). In the next section we will use this domain
to give a compositional semantics to the language L2.

7.2.6. De�nition. Let St be the set of (program) states. The complete metric
space (� 2) �2 of metric predicate transformers with resumptions is de�ned as
the unique (up to isometry) �xed point of the contractive functor in CMS

MPT(St + St� 1
2
� �; St):

Therefore �2 is the unique (up to isometry) complete metric space satisfying

�2
�= MPT(St+ St� 1

2
� �2; St):

Below we will omit the isomorphism pair relating the right and the left hand
side of the above domain equation.

7.3. Metric predicate transformer semantics 135

The intuition behind an element � 2 �2 is as follows. Given a set P �
St+St��2 it yields the set of all states s 2 St such that when execution of the
program represented by � starts in one of these states, it either terminates after
an atomic step in a state t 2 St satisfying P , or it makes a �rst (atomic) step
to a state s and immediately gives the control to another program, represented
by the predicate transformer �, with hs; �i 2 P . We have not yet made a formal
semantic mapping from syntax to the domain �2, but it might help the reader
to consider the following example. Consider the statement v := 1 ; v := 2. The
corresponding metric predicate transformer � is

�(P) = fs j hs[1=v]; �i 2 Pg

with � (the semantics of v := 2) such that �(Q) = fs j s[2=v] 2 Qg. The
semantics is backwards: to give a semantic meaning to v :=1 ;v :=2 we �rst need
to give a semantic meaning to v := 2 and then combine it with the semantical
meaning of v := 1.

7.3 Metric predicate transformer semantics

The language L2 can be considered to be an extension of the language L0 pre-
sented in Chapter 3. Hence we will base our present semantics on the weakest
precondition semantics Wp0[[�]] of Chapter 3. However, the presence of the par-
allel operator `k' in L2, invokes, when insisting on a compositional treatment,
a more involved domain than PTT (St; St) used for the semantics of the lan-
guage L0. We will employ the branching domain �2 given in De�nition 7.2.6
above. As maybe expected, atomic statements are treated in the same way as
for the language L0. Hence we introduce the predicate transformers for the
semantics of the atomic statements: assignments and conditionals.

7.3.1. De�nition. For every function f :St! Val, individual variable v 2 IVar

and subset V of St de�ne the predicate transformers `[f =v]' and `V!' in �2 by

[f =v](P) = fs 2 St j s[f (s)=v] 2 Pg;

V!(P) = fs 2 St j s 2 V) s 2 Pg;

for all P � St + St� �2.

Both the functions above are well-de�ned predicate transformers in �2. No-
tice that if P \ St = ; then [f =v](P) = ; and also V!(P) = ;. In general
for � 2 �2, �(St � �2) = ; if and only if � corresponds to an atomic program
(not necessarily in L2, as it can be a speci�cation construct like, for exam-
ple, an in�nite multiple assignment). Every assignment v := e in Stat2 induces
the predicate transformer [EV(e)=v] in �2, and every conditional b! in Stat2
induces the predicate transformer BV(b)! 2 �2.

136 Chapter 7. Predicate transformer semantics for concurrency

In the domain �2 interleaving points are explicitly represented. This compli-
cates the de�nitions of the operators on predicate transformers in �2 which re-

ect the constructions available in L2. Since in�nite behaviour is allowed by L2,
some operators below have a recursive de�nition and therefore well-de�nedness
must be proved.

7.3.2. De�nition. The operators `;', `2' and `k' on �2 are given, for �1; �2 2
�2 and P � St + St� �2, by

(�1 ; �2)(P) = �1(fs j hs; �2i 2 Pg [fhs; �i j hs; � ; �2i 2 Pg);

(�1 2 �2)(P) = �1(P) \ �2(P);

(�1 k �2)(P) = �1(fs j hs; �2i 2 Pg [fhs; �i j hs; � k �2i 2 Pg)\

�2(fs j hs; �1i 2 Pg [fhs; �i j hs; �1 k �i 2 Pg):

The intuition behind the above operators will be given after Lemma 7.3.12 by
means of some examples about the weakest precondition semantics for L2. Let
us for the moment concentrate on the well-de�nedness of the above operators.
For the `2' operator it is immediate.

7.3.3. Lemma. The mapping `2' is well-de�ned and non-expansive.

Proof: Choose �1; �2 2 �2 arbitrarily. Multiplicativity of �1 2 �2 is straight-
forward. Suppose V is a directed set of metric opens of St+ St� 1

2
��2. Then

we have

(�1 2 �2)(
S
V)

=
S
f�1(P) j P 2 Vg \

S
f�2(P) j P 2 Vg [continuity of �1 and �2]

=
S
f�1(P) \ �2(P) j P 2 Vg [V is directed and �1; �2 are monotone]

=
S
f(�1 2 �2)(P) j P 2 Vg.

Hence, �1 2 �2 is Scott continuous on metric opens, and �1 2 �2 2 �2. Non-
expansiveness of 2 is readily checked. 2

Well-de�nedness of the operator `;' and `k' is less trivial and is supported by
higher order transformations
; and
k , respectively.

7.3.4. De�nition. Let (� 2)Opr be the set of all non-expansive functions in
�2 � �2 ! �2. The higher-order transformation
; :Opr! Opr is given by

;(�)(h�1; �2i)(P) = �1(fs j hs; �2i 2 Pg [fhs; �i j hs; �(h�; �2i)i 2 Pg);

where �1; �2 2 �2 and P � St + St� �2.

We will prove that the operator `;' as de�ned in De�nition 7.3.2 is the unique
�xed point of
;. We need three technical lemma's.

7.3. Metric predicate transformer semantics 137

7.3.5. Lemma. Let � 2 �2. Put

P 0 = fs 2 St j hs; �i 2 Pg

for P � St + St� �2. Then it holds that
(i) If P is open then also P 0 is open.
(ii) If P is closed then also P 0 is closed.
(iii) For X � P(St + St� �2),

T
fP 0 j P 2 Xg = (

T
X)0.

Proof: We only check part (i); part (ii) is similar and part (iii) is straightfor-
ward. If s 2 P 0, then hs; �i 2 P . Hence, for some suitable � < 1, B�(hs; �i) � P
and therefore B�(s) � P 0, since B�(s) � St by the assumption � < 1. 2

An immediate consequence of Lemma 7.3.5.(iii) is that if P1 � P2 then P 0
1 � P 0

2

for all subsets P1 and P2 of St + St� �2.

7.3.6. Lemma. Let � : �2 � �2 ! �2 be non-expansive and � 2 �2. Put

P 00 = fht ; �i 2 St� �2 j ht ; �(h�; �i)i 2 Pg

for P � St + St� �2. Then it holds that
(i) If P is open then also P 00 is open.
(ii) If P is closed then also P 00 is closed.
(iii) For X � P(St + St� �2),

T
fP 00 j P 2 Xg = (

T
X)00.

Proof: In verifying part (i) and (ii) we observe that P 00 is the inverse image
under the continuous function hidSt; ��:�(h�; �i)i : (St � �2) ! (St � �2) of
P \(St��2). Hence P

00 is open if P is open, and closed if P is closed. Part (iii)
is readily checked. 2

As before, from Lemma 7.3.6.(iii) it follows that if P1 � P2 then P 00
1 � P 00

2 for
all subsets P1 and P2 of St + St� �2.

7.3.7. Lemma. (i) For any non-expansive � : �2 ��2 ! �2, and �1; �2 2 �2

it holds that
;(�)(h�1; �2i) 2 �2.
(ii) For any non-expansive � : �2 � �2 ! �2 the function
;(�) is also

non-expansive. Moreover, for any �1; �2; �1; �2 2 �2:
d�2��2(
;(�)(�1; �2);
;(�)(�1; �2)) � maxfd�2(�1; �1);

1
2
d�2(�2; �2)g:

(iii) The transformation
; is a
1
2
-contraction.

Proof: (i) Let � be a non-expansive map in �2 � �2 ! �2, �1; �2 2 �2, and
put � =
;(�)(h�1; �2i). Let P 0;P 00 be as in Lemmas 7.3.5 and 7.3.6 with
respect to �, �2 and any P � St+St��2. We �rst verify
;(�)(h�1; �2i) 2 �2.

To prove that � is multiplicative, take X � P(St + St � �2). By Lem-
mas 7.3.5 and 7.3.6,\

fP 0 j P 2 Xg = (
\
X)0 and

\
fP 00 j P 2 Xg = (

\
X)00:

138 Chapter 7. Predicate transformer semantics for concurrency

Hence, by disjointness of the P 0 and P 00,\
fP 0 [P 00 j P 2 Xg = (

\
X)0 [(

\
X)00:

Multiplicativity of �1 now delivers\
f�1(P

0 [P 00) j P 2 Xg = �1((
\
X)0 [(

\
X)00):

Since �1(P
0 [P 00) = �(P) by de�nition, we have that
;(�)(�1; �2) is multi-

plicative.
Next we prove that � preserves directed unions of metric opens. Suppose V

is a directed set of metric open subsets of St + St� 1
2
� �2. We then have

�(
[
V) = �1(

[
fP 0 j P 2 Vg [

[
fP 00 j P 2 Vg)

= �1(
[
fP 0 [P 00 j P 2 Vg)

=
[
f�1(P

0 [P 00) j P 2 Vg [Lemmas 7.3.5, 7.3.6, and �1 2 �2]

=
[
f�(P) j P 2 Vg

Hence � preserves directed joins of opens and thus � 2 �2.
(ii) Choose �; �1; �2; �1; �2 arbitrarily in �2 and put � =
;(�)(�1; �2), and

� =
;(�)(�1; �2). We �rst establish
q(s; �) = fht ; �2i j t 2 q(s; �1)g [

fht ; �(h�0; �2i)i j ht ; �
0i 2 q(s; �1)g (7.3)

for every s 2 S , using Lemma 7.2.2. Let P � St+ St� �2. Then

fht ; �2i j t 2 q(s; �1)g [fht ; �(h�
0; �2i j ht ; �

0i 2 q(s; �1)g � P

, q(s; �1) � ft j ht ; �2i 2 Pg [fht ; �0i j ht ; �(h�0; �2i)i 2 Pg

, q(s; �1) � P 0 [P 00 [De�nitions of P 0 and P 00]

, s 2 �1(P
0 [P 00) [Lemmas 7.2.2, 7.3.5, and 7.3.6]

, s 2 �(P): [De�nition of �]

A similar result holds for q(s; �). Now, for every s 2 St we have (omitting the
subscripts on the distance function d)

d(q(s; �); q(s; �))

� maxf d(fht ; �2i j t 2 q(s; �1)g; fht ; �2i j t 2 q(s; �1)g);

d(fht ; �(h�0; �2i)i j ht ; �0i 2 q(s; �1)g;

fht ; �(h�0; �2i)i j ht ; �0i 2 q(s; �1)g) g

� maxf d(q(s; �1); q(s; �1));
1
2
d�2(�2; �2) g

� maxf d�2(�1; �1);
1
2
d�2(�2; �2) g:

Taking the supremum over St, the result follows.
(iii) Let �1; �2 2 �2 � �2 ! �2 be non-expansive. Then, for arbitrary

�1; �2 2 �2 and s 2 St, we have

d(q(s;
;(�1)(�1; �2)); q(s;
;(�2)(�1; �2)))

� d(fht ; �1(h�; �2i)i j ht ; �i 2 q(s; �1)g;

fht ; �2(h�; �2i)i j ht ; �i 2 q(s; �1)g) [Equation (7.3)]

� 1
2
d(�1; �2):

7.3. Metric predicate transformer semantics 139

Hence d(
;(�1);
;(�2)) �
1
2
d(�1; �2) and
; is

1
2
-contractive. 2

Now we are in a position to prove well-de�nedness of the operator `;': it is the
unique �xed point of
;.

7.3.8. Theorem. The operator `;' as de�ned in De�nition 7.3.2 is the unique
�xed point of
;.

Proof: Since
; is a
1
2
-contraction it has a unique �xed point by Banach's �xed

point theorem. It is easy to verify that `;' is the �xed point of
;. 2

Next we proceed with the justi�cation of the recursive de�nition of the operator
`k' in �2 given in De�nition 7.3.2. We use again a higher-order transformation.

7.3.9. De�nition. Let (� 2)Opr be the set of all non-expansive maps in �2�
�2 ! �2. The higher-order transformation
k :Opr! Opr is given by

k(�)(h�1; �2i) =
;(�)(h�1; �2i) 2
;(�)(h�2; �1i):

Next we see that the higher-order transformation
k is a contraction and has,
assured by Banach's theorem, a unique �xed point, being|by de�nition|`k'.

7.3.10. Theorem. For every � 2 Opr,
k(�) is non-expansive, whereas the
function
k is an

1
2
-contraction. Further, the operator `k' as de�ned in De�ni-

tion 7.3.2 is the unique �xed point of
k.

Proof: The proof of the �rst part of the theorem is straightforward from the
de�nition of
k , and Lemmas 7.3.3 and 7.3.7. Since
k is an

1
2
-contraction it

has a unique �xed point by Banach's �xed point theorem. It is easy to verify
that `k' is indeed the �xed point of
k. 2

We are now ready to present the semantics Wp2 for L2.

7.3.11. De�nition. The weakest precondition semantics Wp2 is the unique
function in L2 ! �2 satisfying

Wp2[[hd ; v := ei]] = [EV(e)=v];

Wp2[[hd ; b!i]] = BV(b)!;

Wp2[[hd ; x i]] = Wp2[[hd ; d(x)i]];

Wp2[[hd ; (S1 ; S2)i]] = Wp2[[hd ; S1i]] ; Wp2[[hd ; S2i]];

Wp2[[hd ; S1 2 S2i]] = Wp2[[hd ; S1i]] 2Wp2[[hd ; S2i]];

Wp2[[hd ; S1 k S2i]] = Wp2[[hd ; S1i]] kWp2[[hd ; S2i]]:

140 Chapter 7. Predicate transformer semantics for concurrency

Justi�cation of the proposed de�nition can be obtained by an application
of the higher order transformation technique in a metric setting, as proposed
originally in [KR90]. We need �rst a map wgt2 which assigns a natural number
to every program in L2 to be used in proofs based on induction. It is de�ned
inductively as follows:

wgt2(hd ; v := ei) = 1;
wgt2(hd ; b!i) = 1;
wgt2(hd ; x i) = wgt2(hd ; d(x)i) + 1;
wgt2(hd ; S1 ; S2i) = wgt2(hd ; S1i) + 1;
wgt2(hd ; S1 2 S2i) = maxfwgt2(hd ; S1i);wgt2(hd ; S2i)g+ 1;
wgt2(hd ; S1 k S2i) = maxfwgt2(hd ; S1i);wgt2(hd ; S2i)g+ 1:

The weight function wgt2 is well-de�ned for each pair hd ; S i 2 L1 as can be
easily seen by induction on the syntactic complexity: �rst on the complexity
of guarded statements and then on the complexity of general statements (more
information on the weight functions can be found in [Bre94] and [BV96]). We
are now ready for the justi�cation of the semantic function Wp2. It is based
on a mapping 	2 : Sem2 ! Sem2 where (F 2)Sem2 = L2 ! �2. Pivotal is the
clause

	2(F)(hd ; S1 ; S2i) = 	2(F)(hd ; S1i) ; F (hd ; S2i)

for the sequential composition. Note that F and not 	2(F) is applied to the
second component S2. The unique �xed point of this continuous endomorphism
will satisfy the conditions of De�nition 7.3.11.

7.3.12. Lemma. Let F 2 Sem2 = L2 ! �2. De�ne 	2 : Sem2 ! Sem2

inductively by

	2(F)(hd ; v := ei) = [EV(e)=v];

	2(F)(hd ; b!i) = BV(b)!;

	2(F)(hd ; x i) = 	2(F)(hd ; d(x)i);

	2(F)(hd ; (S1 ; S2)i) = 	2(F)(hd ; S1i) ; F (hd ; S2i);

	2(F)(hd ; S1 2 S2i) = 	2(F)(hd ; S1i) 2 	2(F)(hd ; S2i);

	2(F)(hd ; S1 k S2i) = 	2(F)(hd ; S1i) k 	2(F)(hd ; S2i):

Then 	2 is
1
2
-contractive and Wp2[[�]] de�ned in De�nition 7.3.11 is the unique

�xed point of 	2.

Proof: We show, by induction on wgt2(hd ; S i), that

dSem2
(2(F1)(hd ; S i);	2(F2)(hd ; S i)) �

1
2
� dSem2

(F1;F2)

for any F1;F2 2 Sem2. We expand two typical sub-cases (omitting the subscripts
on the distance functions).

7.3. Metric predicate transformer semantics 141

[x] d(2(F1)(hd ; x i);	2(F2)(hd ; x i)

= d(2(F1)(hd ; d(x)i);	2(F2)(hd ; d(x)i)

� 1
2
d(F1;F2). [induction hypothesis]

[S1 ; S2] d(2(F1)(hd ; S1 ; S2i);	2(F2)(hd ; S1 ; S2i)

= d(2(F1)(hd ; S1i) ; F1(hd ; S2i);	2(F2)(hd ; S1i) ; F2(hd ; S2i))

� maxfd(2(F1)(hd ; S1i);	2(F2)(hd ; S1i)),
1
2
d(F1(hd ; S2i);F2(hd ; S2i))g [Lemma 7.3.7.(ii)]

� 1
2
d(F1;F2). [induction hypothesis, de�nition d(F1;F2)] 2

The language L2 does not have the assert command fbg as primitive: it is
unde�ned if b fails whereas it acts as skip otherwise. A subsequent extension of
the models is necessary. However, an additional clause involving the operator

Wp2[[fbg]](P) = fs j s 2 BV(b) & s 2 Pg

is su�cient. The underlying domain then needs to be adapted as well. Preser-
vation of nonempty intersections will replace the multiplicativity condition. Lo-
cality can also be dealt with, using techniques developed in the metric setting
(see [BKPR93] and also [BV96]). By adding a simple atomization operator on
sequential and non-deterministic statements, synchronization via semaphores
can be easily obtained in the setting of �2. It is an open problem, however, if
it is possible to deal with angelic non-determinacy.

Let us now consider some examples, one of which involving the parallel
operator, to illustrate the semantics Wp2 and the de�nition of the operators
given in De�nition 7.3.2. The sequential statement v1 := 1 ; v2 := 2 will act as
the �rst example. Maybe surprisingly we will obtain for the predicate

P = fs 2 St j s(v1) = 1 & s(v2) = 2g

that Wp2[[hd ; v1 := 1 ; v2 := 2i]](P) = ; (for some �xed, but arbitrary declara-
tion d). Let us write �1, �2 forWp2[[hd ; v1 :=1i]], Wp2[[hd ; v2 :=2i]], respectively.
We then have

Wp2[[hd ; v1 := 1 ; v2 := 2i]](P)

= (�1 ; �2)(P)

= �1(fs j hs; �2i 2 Pg [fhs; �i j hs; � ; �2i 2 Pg)

= fs j hs[1=v1]; �2i 2 Pg

= ;.

The point is that P only allows immediate terminating computations, whereas
the sequential composition has also one intermediate state as re
ected in the

142 Chapter 7. Predicate transformer semantics for concurrency

pair hs[1=v1]; �2i. In general, if we want to use our predicate transformer se-
mantics to show that a program can achieve certain goals being indi�erent as
to how it will be reached, we can incorporate such pairs as hs[1=v1]; �2i in the
predicate P . So the predicate P � St has to be `enhanced' with pairs represent-
ing the same input/output information to accommodate for composite elements
in St + St� �2.

7.3.13. De�nition. For P � St de�ne the enhanced predicate for total cor-
rectness P tc on St+ St� �2 by

P tc =
[
n

P tc
n where

(
P tc
0 = ;

P tc
n+1 = P [fhs; �i j s 2 �(P tc

n)g:

By induction on n � 0, it is straightforward to see that P tc
n � P tc

n+1. Fur-
thermore, for every n � 0, P tc

n is open in the metric topology of the metric
space St + St� 1

2
� �2. This is a consequence of the following lemma.

7.3.14. Lemma. Let P � St. For every n � 0, if x 2 P tc
n then B2�n (x) � P tc

n .

Proof: We prove the above statement by induction on n � 0. Since P tc
0 = ;

the basis case is obviously true.
Assume z 2 P tc

n implies B2�n (z) � P tc
n . Let x 2 P tc

n+1. By de�nition of P
tc
n+1

we have two cases: either x 2 P or x = hs; �i with s 2 �(P tc
n). In the �rst case

B2�(n+1)(x) = fxg � P � P tc
n+1:

In the other case, q(s; �) � P tc
n by Lemma 7.2.2. Let ht ; �i 2 B2�(n+1)(hs; �i).

Then t = s and dB(�; �) < 2�n . Hence d(q(s; �); q(s; �)) < 2�n . By Proposi-
tion 2.3.2 it follows that for every y 2 q(s; �) there exists z 2 q(s; �) such that
d(y ; z) < 2�n , that is y 2 B2�n (z). Since z 2 q(s; �) � P tc

n , by the induction
hypothesis it follows B2�n (z) � P tc

n . Therefore q(s; �) � P tc
n . By Lemma 7.2.2,

s 2 �(P tc
n) and hence hs; �i 2 P tc

n+1. 2

Using the property that metric predicate transformers preserve directed unions
of metric open sets we have that

�(P tc) = �(
S
n P

tc
n) =

[
n

�(P tc
n);

for P � St and � 2 �2. This fact will be used later in Theorem 7.5.5 in order
to show the correctness of the Wp2[[�]] semantics with respect to the weakest
precondition semantics Wp0[[�]] given in Chapter 3. Moreover, using the above
equation it is immediate to see that for P � St the enhanced predicate P tc is
the least subset of St+ St� �2 satisfying

P tc = P [fhs; �i j s 2 �(P tc)g:

7.3. Metric predicate transformer semantics 143

Therefore P tc consists of elements of P and those pairs hs; �i for which s is
appropriate in that it will lead to P tc following �. We will return to this point
in Section 7.5.

Returning to the example for v1 := 1 ; v2 := 2 we can now calculate the
semantics for P tc, where P = fs 2 St j s(v1) = 1 & s(v2) = 2g. Recall that we
write �1, �2 for Wp2[[hd ; v1 := 1i]], Wp2[[hd ; v2 := 2i]], respectively. We have

Wp2[[hd ; v1 := 1 ; v2 := 2i]](P tc)

= (�1 ; �2)(P
tc)

= �1(fs j hs; �2i 2 P tcg [fhs; �i j hs; � ; �2i 2 P tcg)

= fs j hs[1=v1]; �2i 2 P tcg

= fs j s[1=v1] 2 �2(P tc)g

= fs j s[1=v1][2=v2] 2 P tcg

= fs j s[1=v1][2=v2](v1) = 1 & s[1=v1][2=v2](v2) = 2g

= St,

which is the result to be expected.

As a second example, we compute the weakest precondition of the statement
(v1 := 1 k v2 := 2) k v3 := 3 for the enhanced predicate for total correctness of
the predicate

P = fs 2 St j s(v1) + s(v2) = s(v3)g:

Let �1 = Wp2[[hd ; v1 := 1i]], �2 = Wp2[[hd ; v2 := 2i]] and �3 = Wp2[[hd ; v3 := 3i]].
We have

Wp2[[(v1 := 1 k v2 := 2) k v3 := 3]](P tc)

= ((�1 k �2) k �3)(P tc)

= (�1 k �2)(fs j hs; �3i 2 P tcg [fhs; �i j hs; � k �3i 2 P tcg)\

�3(fs j hs; �1 k �2i 2 P tcg [fhs; �i j hs; (�1 k �2) k �i 2 P tcg)

= �1(fs j hs; �2i 2 fs j hs; �3i 2 P tcg [fhs; �i j hs; � k �3i 2 P tcgg[

fhs; �i j hs; � k �2i 2 fs j hs; �3i 2 P tcg[

fhs; �i j hs; � k �3i 2 P tcgg)\

�2(fs j hs; �1i 2 fs j hs; �3i 2 P tcg [fhs; �i j hs; � k �3i 2 P tcgg[

fhs; �i j hs; � k �1i 2 fs j hs; �3i 2 P tcg[

fhs; �i j hs; � k �3i 2 P tcgg)\

�3(fs j hs; �1 k �2i 2 P tcg [fhs; �i j hs; (�1 k �2) k �i 2 P tcg)

144 Chapter 7. Predicate transformer semantics for concurrency

= �1(fs j hs; �2 k �3i 2 P tcg [fhs; �i j hs; (� k �2) k �3i 2 P tcg)\

�2(fs j hs; �1 k �3i 2 P tcg [fhs; �i j hs; (�1 k �) k �3i 2 P tcg)\

�3(fs j hs; �1 k �2i 2 P tcg [fhs; �i j hs; (�1 k �2) k �i 2 P tcg)

= fs j s[1=v1] 2 (�2 k �3)(P tc)g \ fs j s[2=v2] 2 (�1 k �3)(P tc)g\

fs j s[3=v3] 2 (�1 k �2)(P tc)g

= : : :

= fs j s[1=v1][2=v2][3=v3] 2 P tcg

= St.

The example also indicates a more general relationship for parallel compo-
sitions of predicate transformers. Let us use �1;::;k to denote the left associated
parallel composition of �1; : : : ; �k , �

r
1;::;k (with 1 � r � k) for �1;::;k but leaving

out the operand �r , and �̂
r
1;::;k for �1;::;k but now replacing the operand �r by

the predicate transformer �. We then have

�1;::;k(P) =
k\

r=1

�r(fs j hs; �
r
1;::;ki 2 Pg [fhs; �i j hs; �̂r1;::;ki 2 Pg): (7.4)

The above equation can be veri�ed by a straightforward inductive argument
using the various de�nitions.

In both the above examples we have used the semantic function Wp2[[�]] to
study correctness properties. A more involved and probably more interesting
example of application of the metric predicate transformer semantics Wp2[[�]]
will be given in Section 7.5, where we will make more precise the connection
with the weakest (liberal) precondition semantics introduced in Chapter 3.

7.4 Relationships with state transformers

Next we turn to a state transformer domain �2 suitable for a compositional
forward semantics of the language L2. The metric resumption domain �2 is
used to measure the `goodness' of the weakest precondition semantics Wp2. We
de�ne (� 2)�2 as a variation of the domain introduced by De Bakker and Zucker
in [BZ82]: it is the unique (up to isometry) solution of the domain equation

X = St! Pco(St + St� 1
2
� X):

The intuition behind the above domain is as follows: statements are functions
which deliver for each input state a set consisting of output states and/or pairs
composed from the output after one atomic computation step together with
a function representing the rest of the computation. The domain �2 comes
equipped with the following operations (see [BZ82] for a justi�cation of their
well-de�nedness).

7.4. Relationships with state transformers 145

7.4.1. De�nition. For every function f :St! Val, individual variable v 2 IVar

and subset V of St de�ne the state transformers `[f =v]' and `V!' in �2 by

[f =v](s) = fs[f (s)=v]g;

V!(s) =

(
fsg if s 2 V
; otherwise

for every s 2 St. The binary operators `;', `2' and `k' on �2 are given by

�1 ; �2(s) = fht ; �2i j t 2 �1(s)g [fht ; � ; �2i j ht ; �i 2 �1(s)g;

�1 2 �2(s) = �1(s) [�2(s);

�1 k �2(s) = fht ; �2i j t 2 �1(s)g [fht ; � k �2i j ht ; �i 2 �1(s)g [

fht ; �1i j t 2 �2(s)g [fht ; �1 k �i j ht ; �i 2 �2(s)g;

for �1; �2 2 �2 and s 2 St.

The above operations are all we need to give a compositional forward seman-
tics for L2 along the lines of De�nition 7.3.11. On the basis of the general isomor-
phisms between state and predicate transformers studied in Theorem 6.2.12 we
can formulate the relationship between �2 and �2. The two domains are isomor-
phic. However, the isomorphism is not an order-isomorphism but an isometry
between the complete metric space �2 and the complete metric space �2. Since
the isomorphism will preserve the operations de�ned above, it follows that the
backward and the forward semantics of L2 are isomorphic.

We need some preparatory steps to prove an isomorphism between the two
semantic domains.

7.4.2. De�nition. De�ne the domain transformation pt : �2 ! �2 by

pt(�)(P) = fs 2 St j (t 2 �(s)) t 2 P) &

(ht ; �i 2 �(s)) ht ; pt(�)i 2 P)g;

for all � 2 �2, and P � St+ St� �2.

In order to justify the well-de�nedness of pt we introduce a higher-order
transformation in a such way that it is contractive and pt is its unique �xed

point. De�ne the higher-order transformation
pt : (�2
1
! �2)! (�2

1
! �2) by

pt(tr)(�)(P) = fs 2 St j (t 2 �(s)) t 2 P) &

(ht ; �i 2 �(s)) ht ; tr(�)i 2 P)g;

for all non-expansive tr : �2 ! �2, � 2 �2, and P � St + St� �2.

7.4.3. Lemma. Let tr : �2 ! �2 be non-expansive and � 2 �2. Then
(i)
pt(tr)(�) 2 �2,

146 Chapter 7. Predicate transformer semantics for concurrency

(ii)
pt(tr) is non-expansive,
(iii) the transformation
pt is

1
2
-contractive.

Therefore
pt has a unique �xed point which is the function pt of De�ni-
tion 7.4.2.

Proof: (i) Choose arbitrary tr : �2
1
! �2 and � 2 �2, and put � =
pt(tr)(�).

Multiplicativity of � is straightforwardly checked. Preservation of directed joins
of opens by � is veri�ed as follows. Take V to be a directed set of metric opens
of St + St� 1

2
� �2. Note that the set

ft 2 St j t 2 �(s)g [fht ; tr(�)i 2 St� �2 j ht ; �i 2 �(s)g

is compact: its �rst constituent equals �(s) \ St, which is the intersection of
a compact and a closed set. Its second constituent is the continuous image {
under hidSt; tri { of the compact set �(s) \ (St� �2). Therefore,

s 2 �(
S
V)

, ft 2 St j t 2 �(s)g[

fht ; tr(�)i j ht ; �i 2 �(s)g �
S
V [de�nition
pt]

, 9P 2 V: ft j t 2 �(s)g[

fht ; tr(�)i j ht ; �i 2 �(s)g � P [compactness]

, s 2
S
f�(P) j P 2 Vg.

(ii) For arbitrary tr : �2
1
! �2, � 2 �2, and P � St + St� �2 we have

s 2
pt(tr)(�)(P)

, (t 2 �(s)) t 2 P) &

(ht ; �i 2 �(s)) ht ; tr(�)i 2 P) [de�nition
pt]

, ft 2 St j t 2 �(s)g [fht ; tr(�)i j ht ; �i 2 �(s)g � P .

Therefore, by Lemma 7.2.2,

q(s;
pt(tr)(�)) = ft 2 St j t 2 �(s)g [fht ; tr(�)i j ht ; �i 2 �(s)g: (7.5)

Now, let tr : �2
1
! �2 and choose, in order to show the non-expansiveness

of
pt(tr), �1; �2 2 �2. We then have (omitting the subscripts of the distance
functions)

d(
pt(tr)(�1);
pt(tr)(�2))

= supf d(q(s;
pt(tr)(�1)); q(s;
pt(tr)(�2))) j s 2 St g

= maxf supf d(ft 2 St j t 2 �1(s)g; ft 2 St j t 2 �2(s)g) j s 2 St g;

supf d(fht ; tr(�)i j ht ; �i 2 �1(s)g;

fht ; tr(�)i j ht ; �i 2 �2(s)g) j s 2 St g g [Equation (7.5)]

� supf d(�1(s); �2(s) j s 2 St g [tr non-expansive]

= d(�1; �2).

(iii) Pick any tr1; tr2 2 �2
1
! �2. Then we have

7.4. Relationships with state transformers 147

d(
pt(tr1);
pt(tr2))

= supf d(
pt(tr1)(�);
pt(tr2)(�)) j � 2 �2 g [distance on �2 ! �2]

= supf d(q(s;
pt(tr1)(�)); q(s;
pt(tr2)(�))) j � 2 �2 & s 2 St g

� supf d(fht ; tr1(�)i j ht ; �i 2 �(s)g,

fht ; tr2(�)i j ht ; �i 2 �(s)g) j � 2 �2 & s 2 St g [Eq. (7.5)]

� supf 1
2
d(tr1(�); tr2(�)) j � 2 �2 & ht ; �i 2 �(s) g

� 1
2
d(tr1; tr2) . 2

From the proof of the Lemma 7.4.3 we have, taking pt for tr,

q(s;
pt(pt)(�)) = ft 2 St j t 2 �(s)g [fht ; pt(�)i j ht ; �i 2 �(s)g:

Since pt is the unique �xed point of
pt , the following corollary is immediate.

7.4.4. Corollary. For every � 2 �2 and s 2 St, it holds that

q(s; pt(�)) = ft 2 St j t 2 �(s)g [fht ; pt(�)i j ht ; �i 2 �(s)g 2

Next we de�ne a function which maps a predicate transformer to a state trans-
former.

7.4.5. De�nition. De�ne the domain transformation st : �2 ! �2 by

st(�)(s) = ft 2 St j t 2 q(s; �)g [fht ; st(�)i j ht ; �i 2 q(s; �)g;

for all � 2 �2, and s 2 St.

Again, to show the well-de�nedness of the function st we introduce the

higher-order transformation
st : (�2
1
! �2)! (�2

1
! �2). It is given by

st(tr)(�)(s) = ft 2 St j t 2 q(s; �)g [fht ; tr(�)i j ht ; �i 2 q(s; �)g;

for all non-expansive tr : �2 ! �2, � 2 �2, and s 2 St.

7.4.6. Lemma. Let tr : �2 ! �2 be non-expansive and � 2 �2. Then
(i)
st(tr)(�) 2 �2,
(ii)
st(tr) is non-expansive, and
(iii) the transformation
st is

1
2
-contractive.

Proof: Similar to the proof of Lemma 7.4.3 and hence omitted. 2

We are now in a position to prove the isometry between �2 and �2.

7.4.7. Theorem. The non-expansive functions pt : �2 ! �2 and st : �2 ! �2

form an isometry between �2 and �2.

148 Chapter 7. Predicate transformer semantics for concurrency

Proof: It is enough to check that pt : �2 ! �2 and st : �2 ! �2 satisfy

st � pt = id�2 and pt � st = id�2:

First we verify st � pt = id�2 . Note that by the respective de�nitions and
Corollary 7.4.4,

st(pt(�))(s)

= ft 2 St j t 2 q(s; pt(�))g [fht ; st(�)i j ht ; �i 2 q(s; pt(�))g

= ft 2 St j t 2 �(s)g [fht ; st(pt(�))i j ht ; �i 2 �(s)g.

Suppressing the subscript �2 for the moment, by the above characterization of
st(pt(�))(s) we derive

d(id; st � pt)

= supf d(�(s); st(pt(�))(s)) j � 2 �2 & s 2 St g

� supf d(ht ; �i; ht ; st(pt(�))i) j � 2 �2 & s 2 St & ht ; �i 2 �(s) g

� 1
2
supf d(�; st(pt(�))) j � 2 �2 & s 2 St & ht ; �i 2 �(s) g

� 1
2
d(id; st � pt).

From this we conclude st�pt = id�2. Likewise, but slightly simpler, one derives

d�2(id�2 ; pt � st) �
1
2
d�2(id�2 ; pt � st)

and, consequently, pt � st = id�2 . 2

Next we prove that both the domain transformations pt and st preserve as-
signments and conditionals as well as the operations of sequential composition,
choice and parallel composition. Since they form an isomorphism, it is enough
to prove the result only for pt.

7.4.8. Lemma. Let f :St! Val, v 2 IVar, V � St, and �1; �2 2 �2. Then
(i) pt([f =v]) = [f =v];
(ii) pt(V!) = V!;
(iii) pt(�1 ; �2) = pt(�1) ; pt(�2);
(iv) pt(�1 2 �2) = pt(�1) 2 pt(�2);
(v) pt(�1 k �2) = pt(�1) k pt(�2).

Proof: (i) For every P � St + St� �2 we have

pt([f =v])(P)

= fs 2 St j s[f (s)=v] 2 Pg [de�nition [f =v] in �2]

= [f =v](P) [de�nition [f =v] in �2]

(ii) Let P � St + St� �2. Then

7.4. Relationships with state transformers 149

pt(V!)(P)

= fs 2 St j s 2 V) s 2 Pg [de�nition V! in �2]

= V!(P). [de�nition V! in �2]

(iii) First notice the following

s 2 �1 ; �2(P)

, s 2 �1(ft 2 St j ht ; �2i 2 Pg [fht ; �i j ht ; � ; �2i 2 Pg)

, q(s; �1) � ft 2 St j ht ; �2i 2 Pg[

fht ; �i j ht ; � ; �2i 2 Pg [Lemma 7.2.2]

, fht ; �2i j t 2 q(s; �1)g [fht ; � ; �2i j ht ; �i 2 q(s; �1)g � P .

This means, by Lemma 7.2.2 that

q(s; �1 ; �2) = fht ; �2i j t 2 q(s; �1)g [fht ; � ; �2i j ht ; �i 2 q(s; �1)g:

Hence, for �1 = pt(�1), �2 = pt(�2) and � = pt(�) (which is always the case
as pt is an isomorphism), we have

q(s; pt(�1) ; pt(�2)) = fht ; pt(�2)i j t 2 q(s; pt(�1))g [

fht ; pt(�) ; pt(�2)i j ht ; pt(�)i 2 q(s; pt(�1))g:

On the other hand we have also

q(s; pt(�1 ; �2))

= ft j t 2 �1 ; �2(s)g [fht ; pt(�)i j ht ; �i 2 �1 ; �2(s)g [Corollary 7.4.4]

= fht ; pt(�2)i j t 2 �1(s)g[fht ; pt(� ;�2i j ht ; �i 2 �1(s)g [De�nition `;']

= fht ; pt(�2)i j t 2 q(s; pt(�1))g[

fht ; pt(� ; �2)i j ht ; pt(�)i 2 q(s; pt(�1))g. [Corollary 7.4.4]

It is now easy to verify that, for a �xed �2 2 �2,

d(q(s; pt(�1) ; pt(�2)); q(s; pt(�1 ; �2))) �
1
2
d(pt(�) ; pt(�2); pt(� ; �2)):

Therefore we can conclude that

d(pt(� ; �2); pt(�) ; pt(�2))

= supf d(pt(�1 ; �2); pt(�1) ; pt(�2)) j �1 2 �2 g

= supf d(q(s; pt(�1 ; �2)); q(s; pt(�1) ; pt(�2))) j �1 2 �2 & s 2 St g

� supf 1
2
d(pt(� ; �2); pt(�) ; pt(�2)) j �1 2 �2 g

= 1
2
d(pt(� ; �2); pt(�) ; pt(�2)).

The above implies pt(�1 ; �2) = pt(�1) ; pt(�2).
(iv) We have, for every P � St + St� �2,

pt(�1 2 �2)(P)

= fs j (t 2 �1 2 �2(s)) t 2 P) &

(ht ; �i 2 �1 2 �2(s)) ht ; pt(�)i 2 P)g

150 Chapter 7. Predicate transformer semantics for concurrency

= fs j (t 2 �1(s)) t 2 P) & (ht ; �i 2 �1(s)) ht ; pt(�)i 2 P)g\

fs j (t 2 �2(s)) t 2 P) & (ht ; �i 2 �2(s)) ht ; pt(�)i 2 P)g

= pt(�1)(P) \ pt(�2)(P)

= pt(�1) 2 pt(�2)(P).

(v) The proof is similar to the proof of point (iii) and is hence omitted. 2

The above lemma ensures that the predicate transformer semantics Wp2[[�]]
is isomorphic to the forward semantics with the operations given in De�ni-
tion 7.4.1.

7.5 Partial and total correctness

In the previous section we have shown the correctness of the semantics Wp2[[�]]
with respect to a forward semantics establishing a duality between the domain
�2 of metric predicate transformers and the domain �2 of state transformers.
In this section we answer the question concerning the correctness of the domain
�2 with respect to the three domains of predicate transformers PTT (St; St),
PTP(St; St), and PTN (St; St) introduced in Chapter 3.

A metric predicate transformer in �2 records every intermediate step of
the computations it denotes. If we want to calculate the set of those input
states s 2 St for which each computation denoted by � terminates in a �nal
state satisfying a predicate P � St then we have to enhance P to obtain a
predicate on St+ St��2. The idea is to de�ne the enhancement of P � St by
incorporating in P all those pairs hs; �i 2 St � �2 such that all computations
denoted by � started at s terminate and satisfy P .

7.5.1. De�nition. For P � St de�ne the enhanced predicates P tc for total
correctness as the least subset of St + St� �2 satisfying the equation

X = P [fhs; �i 2 St� �2 j s 2 �(X)g:

The enhancement of P for partial correctness is de�ned as the greatest subset
Ppc of St+ St� �2 satisfying the above equation.

In De�nition 7.3.13 we have given the enhancement of P for total correctness
in terms of its approximants. Similarly, the enhancement of P � St for partial
correctness can be de�ned by

Ppc =
\
n

Ppc
n where

(
Ppc
0 = St + St� �2

Ppc
n+1 = P [fhs; �i j s 2 �(Ppc

n)g:

The next theorem shows that the enhancement for total and partial correct-
ness of a predicate P is appropriate for the study of partial and total correctness
properties in the domain �2.

7.5. Partial and total correctness 151

7.5.2. Theorem. Let � 2 �2. Then
(i) �P � St:�(P tc) 2 PTT (St; St);
(ii) �P � St:�(Ppc) 2 PTP(St; St).

Proof: (i) By Corollary 6.2.13 it is enough to prove that the predicate trans-
former �P :�(P tc) is Scott-continuous and preserves �nite non-empty intersec-
tions.

To prove Scott-continuity, let V be a directed set of subsets of St. We �rst
show that for all n � 0,

(
[
V)tcn =

[
fP tc

n j P 2 Vg: (7.6)
We proceed by induction on n. For n = 0, the Equation (7.6) is obviously true.

Assume it holds for n = k , then

(
S
V)tck+1

=
S
V [fhs; �i j s 2 �((

S
V)tck)g

=
S
V [fhs; �i j s 2 �(

S
fP tc

k j P 2 Vg)g [induction hypothesis]

=
S
V [

S
ffhs; �i j s 2 �(P tc

k)g j P 2 Vg [Lemma 7.3.14, � continuous]

=
S
fP tc

k+1 j P 2 Vg.

Hence (
S
V)tc =

S
fP tc j P 2 Vg, from which it follows that �P :�(P tc) is Scott

continuous. Preservation of binary intersections follows similarly because, for
P ;Q � St it holds that

(P \ Q)tcn = P tc
n \ Q

tc
n ;

for all n. The above can be proved by induction on n.
(ii) Since predicate transformers in �2 are top-preserving (because they pre-

serve arbitrary intersections), Stpc = St + St� �2. Hence �(St
pc) = St. Also,

if V is a non empty set of predicates on St then

(
\
V)pc =

\
fPpc j P 2 Vg

follows immediately from the characterization of the enhancement for partial
correctness as the countable intersection of its approximants. Since � preserves
arbitrary intersections we obtain that �P :�(Ppc) is a partial correctness predi-
cate transformer. 2

Not only partial and total correctness are encoded in a predicate transformer
in �2. Also their combination is present in the sense of Equation (3.9).

7.5.3. Theorem. For every � 2 �2 and P � St,

�(P tc) = �(Sttc) \ �(Ppc):

Proof: The inclusion from left to right follows because � is monotone, P � St

implies P tc � St
tc, and P tc � Ppc . To prove the other direction we �rst show

that for all n � 0,

P tc
n � St

tc
n \ P

pc : (7.7)

152 Chapter 7. Predicate transformer semantics for concurrency

We proceed by induction on n � 0. In case n = 0 then both P tc
0 and St

tc
0 are

the empty set. Hence (7.7) holds. Assume now (7.7) holds for n = k and let
x 2 St

tc
k+1 \ P

pc . There are two cases. If x 2 St then x 2 P by de�nition of
Ppc . Otherwise x = hs; �i 2 St � �2. Since hs; �i 2 St

tc
k+1, s 2 �(St

tc
k). Also,

since hs; �i 2 Ppc, s 2 �(Ppc). Because � preserves intersections and by the
induction hypothesis,

s 2 �(Sttck) \ �(P
pc) = �(Sttck \ P

pc) � �(P tc
k):

By de�nition of P tc
k+1 it follows that hs; �i 2 P tc

k+1. Hence (7.7) holds for every
n � 0. As a consequence

P tc � St
tc \ Ppc

from which we can conclude �(P tc) � �(Sttc \ Ppc) = �(Sttc) \ �(Ppc). 2

The enhancement of a predicate for total correctness preserves the semantical
operators corresponding to choice and to sequential composition. We cannot
have a similar result for the parallel composition since it would allow for a com-
positional semantics for L2 by means of total correctness predicate transformers.

7.5.4. Lemma. Let �1; �2 2 �2 and P � St. Then
(i) (�1 2 �2)(P

tc) = �1(P
tc) \ �2(P tc);

(ii) (�1 ; �2)(P
tc) = �1(�2(P

tc)tc).

Proof: (i) Immediate from De�nition 7.3.2.
(ii) To begin with, we prove by induction on n that

(�1 ; �2)(P
tc
n+1) � �1(�2(P

tc
n)

tc
n+1): (7.8)

For n = 0 we have

(�1 ; �2)(P1)

= �1(fs j hs; �2i 2 P1g [fhs; �i j hs; � ; �2i 2 P1g) [De�nition 7.3.2]

= �1(fs j s 2 �2(P
tc
0)g [fhs; �i j s 2 (� ; �2)(P

tc
0)g) [De�nition 7.3.13]

= �1(�2(P
tc
0) [fhs; �i j s 2 �(P

tc
0)g) [P tc

0 = ;, (� ; �2)(;) = �(;)]

= �1(�2(P
tc
0) [fhs; �i j s 2 �(�2(P

tc
0)

tc
0)g) [�2(P tc

0)tc0 = P tc
0 = ;]

= �1(�2(P
tc
0)1). [De�nition 7.3.13]

Assume now (7.8) holds for n = k and we prove it for n = k + 1.

(�1 ; �2)(P
tc
k+2)

= �1(fs j hs; �2i 2 P tc
k+2g[fhs; �i j hs; � ;�2i 2 P tc

k+2g) [De�nition 7.3.2]

= �1(fs j s 2 �2(P tc
k+1)g[fhs; �i j s 2 (�;�2)(P

tc
k+1)g) [De�nition 7.3.13]

� �1(�2(P
tc
k+1) [fhs; �i j s 2 �(�2(P

tc
k)

tc
k+1)g) [induction, �1 monotone]

� �1(�2(P
tc
k+1) [fhs; �i j s 2 �(�2(P

tc
k+1)

tc
k+1)g) [P tc

k � P tc
k+1]

= �1(�2(P
tc
k+1)

tc
k+2). [De�nition 7.3.13]

7.5. Partial and total correctness 153

Since �1; �2, and �1 ; �2 preserve directed unions of opens, and all P tc
n 's are

opens (Lemma 7.3.14) we obtain

(�1 ; �2)(P
tc)

= (�1 ; �2)(
S
n P

tc
n)

= (�1 ; �2)(
S
n P

tc
n+1) [P tc

0 = ;]

=
S
n(�1 ; �2)(P

tc
n+1)

�
S
n �1(�2(P

tc
n)

tc
n+1)

= �1(
S
hn;mi �2(P

tc
m)

tc
n+1)

= �1(�2(
S
m P tc

m)
tc)

= �1(�2(P
tc)tc).

In order to prove the converse, we �rst prove by induction on n that

�1(�2(P
tc
m)

tc
n) � (�1 ; �2)(P

tc); (7.9)
for all m � 0. The base case is immediate: for n = 0 and m � 0,

�1(�2(P
tc
m)

tc
0)

= �1(;)

= (�1 ; �2)(;)

� (�1 ; �2)(P
tc).

Assume now (7.9) holds for n = k . Then, for every m � 0,

�1(�2(P
tc
m)

tc
k+1)

= �1(�2(P
tc
m) [fhs; �i j s 2 �(�2(P

tc
m)

tc
k)g) [de�nition �2(P tc

m)tck+1]

= �1(fs j hs; �2i 2 P tc
m+1g[fhs; �i j s 2 �(�2(P

tc
m)

tc
k)g) [de�nition P tc

m+1]

� �1(fs j hs; �2i 2 P tc
m+1g [fhs; �i j s 2 (� ; �2)(P

tc)g) [induction]

� �1(fs j hs; �2i 2 P tcg [fhs; �i j s 2 (� ; �2)(P
tc)g) [P tc

m+1 � P tc]

= �1(fs j hs; �2i 2 P tcg [fhs; �i j hs; � ; �2i 2 P tcg) [De�nition 7.5.1]

= (�1 ; �2)(P
tc). [De�nition 7.3.2]

By (7.9) we can conclude

�1(�2(P
tc)tc)

= �1(
S
n �2(

S
m P tc

m)
tc
n)

=
S
n

S
m �1(�2(P

tc
m)

tc
n)

� (�1 ; �2)(P
tc).

Hence we obtain �1(�2(P
tc)tc) = (�1 ; �2)(P

tc). 2

Similarly one can prove that for �1; �2 2 �2 and P � St,

(�1 2 �2)(P
pc) = �1(P

pc) \ �2(Ppc);
(�1 ; �2)(P

pc) = �1(�2(P
pc)pc):

154 Chapter 7. Predicate transformer semantics for concurrency

So far we compared the semantic domain �2 of metric predicate transform-
ers for concurrency to the semantic domains PTT (St; St), PTP(St; St), and
PTN (St; St) of predicate transformers for total and partial correctness. An-
other enterprise is to compare the metric semantics Wp2[[�]] with the partial
order semantics Wp0[[�]] and Wlp0[[�]]. Since the language L2 was introduced at
the beginning of this chapter as an extension of the sequential non-deterministic
language L0 of Chapter 3, we expect that both the Wp0[[�]] and the Wlp0[[�]] se-
mantics can be retrieved from the Wp2[[�]] semantics.

There are two main aspects to be considered: declarations of procedure
variables in L0 need not to be guarded as for those in L2, and the semantics
Wp2[[�]] is de�ned as the unique �xed point of a contractive function, whereas
the semantics Wp0[[�]] and Wlp0[[�]] are de�ned, respectively, as the least and the
greatest �xed point of a monotone function.

As for the �rst aspect, de�ne for every declaration d 2 Decl0 a new declara-
tion d 0 2 Decl0 by

d 0(x) = true! ; d(x)

where x 2 PVar and true 2 BExp such that BV(true) = St. It is immediate to
see that if hd ; S i 2 L0 then hd 0; S i 2 L0 \ L2. Moreover,

Wp0[[hd ; S i]] = Wp0[[hd
0; S i]] and Wlp0[[hd ; S i]] = Wlp0[[hd

0; S i]]:

Therefore below we will consider, without loss of generality, only programs
hd ; S i in L0 which are also in L2. The second aspect requires more attention
and it is formally treated in the theorem below.

7.5.5. Theorem. Let hd ; S i 2 L0 \ L2 and P � St. Then

Wp0[[hd ; S i]](P) = Wp2[[hd ; S i]](P
tc):

Proof: The proof consists of two parts. In the �rst part we prove the inclusion
from left to right whereas in the second part we prove the converse.

1. De�ne F̂ : (L0 \ L2)! PTT (St; St) by

F̂ (hd ; S i)(P) = Wp2[[hd ; S i]](P
tc): (7.10)

In Chapter 3 we introduced the weakest precondition semantics Wp0[[�]] as
the least �xed point of the monotone function 	T de�ned in Lemma 3.3.3.
Below we prove, by structural induction on S , that for hd ; S i 2 L0 \ L2
and P � St,

	T (F̂)(hd ; S i)(P) = F̂ (hd ; S i)(P); (7.11)

from which it follows that

Wp0[[hd ; S i]](P) � Wp2[[hd ; S i]](P
tc): (7.12)

We expand two typical sub-cases.

7.5. Partial and total correctness 155

[x] F̂ (hd ; x i)(P)

= Wp2[[hd ; x i]](P
tc) [Equation (7.10)]

= Wp2[[hd ; d(x)i]](P
tc) [De�nition 7.3.11]

= F̂ (hd ; d(x)i)(P) [Equation (7.10)]

= 	T (F̂)(hd ; x i)(P). [Lemma 3.3.3]

[S1 ; S2] F̂ (hd ; S1 ; S2i)(P)

= Wp2[[hd ; S1 ; S2i]](P
tc) [Equation (7.10)]

= (Wp2[[hd ; S1i]] ; Wp2[[hd ; S2i]])(P
tc) [De�nition 7.3.11]

= Wp2[[hd ; S1i]](Wp2[[hd ; S2i]](P
tc)tc) [Lemma 7.5.4]

= F̂ (hd ; S1i)(F̂ (hd ; S2i)(P)) [Equation (7.10)]

= 	T (F̂)(hd ; S1i)(T (F̂)(hd ; S2i)(P)) [induction]

= 	T (F̂)(hd ; S1 ; S2i)(P). [Lemma 3.3.3]

2. Next we claim that for hd ; S i 2 L0 \ L2, P � St, and n � 0,

Wp2[[hd ; S i]](P
tc
n) �Wp0[[hd ; S i]](P): (7.13)

From the above claim it follows that

Wp2[[hd ; S i]](P
tc)

= Wp2[[hd ; S i]](
S
n P

tc
n) [De�nition 7.3.13]

=
S
n Wp2[[hd ; S i]](P

tc
n) [Lemma 7.3.14, Wp2[[�]] open-continuous]

� Wp0[[hd ; S i]](P). [Equation (7.13)]

The above and Equation (7.12) imply

Wp2[[hd ; S i]](P
tc) = Wp0[[hd ; S i]](P):

It remains to prove the claim (7.13). We prove it by induction on n � 0.
If n = 0 then P tc

n = ;. It is easy to see by induction on wgt2(S) that
(7.13) holds. We treat two simple cases as illustration.

[x] Wp2[[hd ; x i]](;)

= Wp2[[hd ; d(x)i]](;) [De�nition 7.3.11]

� Wp0[[hd ; d(x)i]](P) [induction, wgt2(d(x)) < wgt2(x)]

= Wp0[[hd ; x i]](P). [Lemma 3.3.3]

[S1 ; S2] Wp2[[hd ; S1 ; S2i]](;)

= (Wp2[[hd ; S1i]] ; Wp2[[hd ; S2i]])(;) [De�nition 7.3.11]

= Wp2[[hd ; S1i]](;) [De�nition 7.3.2]

= Wp2[[hd ; S1i]](Wp2[[hd ; S2i]](P)
tc
0) [Wp2[[hd ;S2i]](P)

tc
0 = ;]

� Wp0[[hd ; S1i]](Wp2[[hd ; S2i]](P)) [induction, (on wgt2(S))]

156 Chapter 7. Predicate transformer semantics for concurrency

= Wp0[[hd ; S1 ; S2i]](P). [Lemma 3.3.3]

Assume now (7.13) holds for n = k and we prove it for n = k+1. As before
we proceed by induction on wgt2(S). We expand two typical sub-cases.

[x] Wp2[[hd ; x i]](P
tc
k+1)

= Wp2[[hd ; d(x)i]](P
tc
k+1) [De�nition 7.3.11]

� Wp0[[hd ; d(x)i]](P) [induction, wgt2(d(x)) <wgt2(x)]

= Wp0[[hd ; x i]](P). [Lemma 3.3.3]

[S1 ; S2] Wp2[[hd ; S1 ; S2i]](P
tc
k+1)

= (Wp2[[hd ; S1i]] ; Wp2[[hd ; S2i]])(P
tc
k+1) [De�nition 7.3.11]

� Wp2[[hd ; S1i]](Wp2[[hd ; S2i]](P
tc
k)

tc
k+1) [Equation (7.8)]

� Wp2[[hd ; S1i]](Wp0[[hd ; S2i]](P)
tc
k+1) [induction, k < k + 1]

� Wp0[[hd ; S1i]](Wp0[[hd ; S2i]](P)) [induction (on wgt2(S))]

= Wp0[[hd ; S1 ; S2i]](P). [Lemma 3.3.3] 2

In a similar way one can prove that, for hd ; S i 2 L0 \ L2 and P � St,

Wlp0[[hd ; S i]](P) = Wp2[[hd ; S i]](P
pc):

Hence both the weakest precondition semantics Wp0[[�]] and the weakest liberal
precondition semantics Wlp0[[�]] are encoded in the metric predicate transformer
semantics Wp2[[�]].

We conclude this section with an example of the use of the metric pred-
icate transformer semantics Wp2[[�]] for calculating a total correctness prop-
erty of a concurrent program. We treat the accumulator example (stemming
from. [US93]). Consider the program

v := v + 20 k v := v + 21 k : : : k v := v + 2n :

Under the assumption of atomic execution of the assignments v :=v+2i , we want
to calculate the weakest precondition for P = fs j s(v) = 2n+1g. As discussed,
we �rst have to enhance the predicate P for total correctness yielding

P tc = fs j s(v) = 2n+1g [fhs; �i j s 2 �(P tc)g:

Let, for convenience, �i = Wp2[[hd ; v := v + 2ii]]. So, we are heading, under
the notational conventions given in the examples at the end of Section 7.3, for
�0;::;n(P

tc). First we establish, for 0 � i1 < : : : < ik � n, the equation

�i1;::;ik (P
tc) = fs j s(v) +

kX
r=0

2ir = 2n+1g; (7.14)

by induction on k . We leave the base case, k = 1, to the reader. For the
induction step, k + 1 we will employ equation (7.4).

7.5. Partial and total correctness 157

�i1;::;ik+1
(P tc)

=
Tk+1
r=1 �ir (fs j hs; �

r
i1;::;ik

i 2 P tcg [fhs; �i j hs; �̂ri1;::;ik i 2 P tcg) [(7.4)]

=
Tk+1
r=1fs j hs[s(v) + 2ir=v]; �ri1;::;ik i 2 P tcg [de�nition �ir]

=
Tk+1
r=1fs j s[s(v) + 2ir=v] 2 �ri1;::;ik (P

tc)g [de�nition P tc]

=
Tk+1
r=1fs j (s(v)+2ir)+(

Pk+1
q=0;q 6=r 2

iq) = 2n+1g [induction hypothesis]

=
Tk+1
r=1fs j s(v) + 2ir) + (

Pk+1
q=0 2

iq) = 2n+1g

= fs j s(v) + 2ir) + (
Pk+1

q=0 2
iq) = 2n+1g.

From the above Equation (7.14) we immediate derive

�1;::;n(P
tc)

= fs j s(v) + (
Pn

i=0 2
i) = 2n+1g

= fs j s(v) = (2n+1 � 1) = 2n+1g

= fs j s(v) = 1g.

Hence only if we start the accumulator in a state where v = 1 can we guarantee
that it terminates in a state where v = 2n+1.

Enhancement and abstraction

Next we use the isomorphism � : PTN (St; St) ! STE (St; St) given in Equa-
tion (3.10), the isomorphism pt :�2 ! �2, and the enhancement for partial and
total correctness to relate the metric domain �2 of De Bakker and Zucker with
the domain of Egli-Milner state transformers given in Chapter 3.

We begin by de�ning a divergence predicate on St � �2. The idea is that
a state transformer � 2 �2 diverges in a state s 2 St if it fails to terminate.
Termination can be easily expressed in terms of predicate transformers using
a total correctness predicate: a state transformer � 2 �2 terminates at input
s 2 St if and only if s 2 pt(�)(Sttc). This fact leads us to the following
de�nition.

7.5.6. De�nition. Let � 2 �2 and s 2 St. De�ne the divergence predicate *
on St� �2 to be the complement of the convergence predicate +. The latter is
de�ned by

hs; �i + if and only if 9n � 0: hs; �i +n

where

hs; �i +0 if and only if �(s) = ;;
hs; �i +n+1 if and only if ht ; �i 2 �(s)) ht ; �i +n :

158 Chapter 7. Predicate transformer semantics for concurrency

The above de�nition agrees with the intuition about termination in terms
of predicate transformers.

7.5.7. Lemma. For s 2 St and � 2 �2,

hs; �i + if and only if s 2 pt(�)(Sttc):

Proof: We prove by induction on n � 0 that

s 2 pt(�)(Sttcn) if and only if hs; �i +n : (7.15)

If n = 0 Equation (7.15) holds because

pt(�)(Sttc0) = pt(�)(;) = fs j �(s) = ;g:

Assume now (7.15) holds for n = k . Then

s 2 pt(�)(Sttck+1)

, s 2 pt(�)(St [fhs; �i j s 2 �(Sttck)g) [De�nition St
tc
k+1]

, (t 2 �(s)) t 2 St) & (ht ; �i 2 �(s)) t 2 pt(�)(Sttck))

[De�nition pt]

, ht ; �i 2 �(s)) ht ; �i +k . [induction]

Therefore (7.15) holds and we can immediately conclude that hs; �i + if and
only if s 2 pt(�)(Sttc). 2

The set of outcomes of the terminating computations of � 2 �2 can be expressed
in terms of the corresponding predicate transformer pt(�) and the enhancement
for partial correctness, or, more directly, via a
attening function.

7.5.8. De�nition. De�ne the
attening operator j � j : �2 ! STE (St; St) by

j�j(s) =
[
n

j�jn(s)

where

j�j0(s) = ;
j�jn+1(s) = ft 2 St j t 2 �(s) or (ht 0; �i 2 �(s) & t 2 j� jn(t 0))g;

for all � 2 �2 and s 2 S .

We have the following characterization of the
attening operator.

7.5.9. Lemma. For every � 2 �2,

j�j = !�1(�P � St:pt(�)(Ppc)):

7.5. Partial and total correctness 159

Proof: By de�nition j�j is a Hoare state transformer in STH (St; St). Since
!�1 : PTP(St; St) ! STH (St; St) is part of an isomorphism preserving the
opposite order, it is enough to prove that, for all � 2 �2 and n � 0,

j�jn = !�1(pt(�)n); (7.16)

where pt(�)n is a shorthand for the predicate transformer �P � St:pt(�)(Ppc
n).

We prove the above equation by induction on n � 0.
If n = 0 then Ppc

0 = St+St��2. Since pt(�) is top preserving, pt(P
pc
0) = St.

Hence pt(�)0(P) = St for all P � St. It follows that

!�1(�P � St:pt(�)(Ppc
0))(s)

= !�1(pt(�)0)(s) [our convention: pt(�)0 = �P � St:pt(�)(Ppc
0)]

=
T
fP � St j s 2 pt(�)0(P)g [de�nition !�1]

=
T
fP j P � Stg [pt(�)0(P) = St]

= ;

= j�j0.

Assume now (7.16) holds for n = k . We �rst note that

pt(�)(Ppc
k+1)

= pt(�)(P [fht ; �i j t 2 �(Ppc
k)g) [De�nition P

pc
k+1]

= fs 2 St j (t 2 �(s)) t 2 P) & (ht ; �i 2 �(s)) t 2 pt(�)(Ppc
k))g

[De�nition pt]

= fs 2 St j (t 2 �(s)) t 2 P) & (ht ; �i 2 �(s)) t 2 pt(�)k (P))g

[our convention: pt(�)k = �P � St:pt(�)(Ppc
k)]

= fs 2 St j (t 2 �(s)) t 2 P) &

(ht ; �i 2 �(s)) !�1(pt(�)k)(t) � P)g [Lemma 3.3.5]

= fs 2 St j (t 2 �(s)) t 2 P) & (ht ; �i 2 �(s)) j� jk(t) � P)g

[induction]

= fs 2 St j j�jk+1 � Pg [de�nition j�jk+1]

= !(j�jk+1)(P). [de�nition !]

Since ! and !�1 form an isomorphism, we can conclude that Equation (7.16)
holds also for n = k + 1. 2

We use Lemma 7.5.7 and Lemma 7.5.9 to obtain an Egli-Milner state trans-
former from � 2 �2. We proceed as follows.

160 Chapter 7. Predicate transformer semantics for concurrency

1. By the duality Theorem 7.4.7 we have that pt(�) is a predicate transformer
in �2.

2. By the correctness Theorem 7.5.2, �P � St:pt(�)(P tc) is a total correct-
ness predicate transformer in PTT (St; St), and �P � St:pt(�)(Ppc) is a
partial correctness predicate transformer in PTP(St; St).

3. By Theorem 7.5.3, the pair h�P � St:pt(�)(P tc); �P � St:pt(�)(Ppc)i is
a Nelson predicate transformer in PTN (St; St).

4. By the duality Theorem 3.3.14,

��1(h�P � St:pt(�)(P tc); �P � St:pt(�)(Ppc)i)(s)

= !�1(�P � St:pt(�)(Ppc))(s) [f? j s 62 pt(�)(Sttc)g

is an Egli-Milner state transformer in STE (St; St).

5. By Lemma 7.5.7, s 62 pt(�)(Sttc) if and only if hs; �i *.

6. By Lemma 7.5.9, j�j(s) = !�1(�P � St:pt(�)(Ppc))(s).

This yields an abstraction function absE : �2 ! STE (St; St) by putting

absE (�)(s) = j�j [f? j hs; �i *g

for � 2 �2 and s 2 St. Moreover, using the function EH : STE (St; St) !
STH (St; St) and ES : STE (St; St) ! STS (St; St) de�ned in Section 3:2 we
obtain two other abstraction functions

absH = EH � absE : �2 ! STH (St; St)
absS = ES � absE : �2 ! ST S (St; St):

Thus the three basic denotational models for sequential non-deterministic lan-
guages can be encoded into the forward metric semantics with resumptions.

7.5.10. Theorem. Let � 2 �2 and P � St. Then
(i) �(absE (�))(P) = hpt(�)(P tc); pt(�)(Ppc)i;
(ii) !(absH (�))(P) = pt(�)(Ppc);
(iii) !(absS (�))(P) = pt(�)(P tc).

Proof: The �rst item follows immediately by de�nition of absE and because
��1 is the inverse of �. The other two items can be proved simultaneously as
follows.

hpt(�)(P tc); pt(�)(Ppc)i

= �(absE (�))(P) [by the above item (i)]

= h!(ES(absE (�)))(P); !(EH (absE (�)))(P)i [Equation (3.10)]

7.6. Temporal properties 161

= h!(absS (�))(P); !(absH (�))(P)i. [De�nition of absS and absH] 2

An immediate consequence of the above Theorem, Lemma 7.5.4, Lemma 7.4.8,
and Lemma 3.3.7 is that all the three abstraction functions absH , absS and absE
preserve both the union function `2' and the composition function `;'.

7.6 Temporal properties

We conclude this chapter by showing (without going into details) how (linear)
temporal properties of programs can be treated within the metric predicate
transformer semanticsWp2[[�]]. Branching temporal properties could be studied
in a similar way.

Let St
1 be the set of all �nite and in�nite sequence of states in St. A

sequence of states in St can be thought of as the juxtaposition of the states
in which a computation may result when executing a program. A predicate
P � St

1 is said to be linear time. For example, if P � St then the predicate

always(P) = fw 2 St
1 j 8u; v 2 St

1 8s 2 St:w = usv) s 2 Pg

is linear time. Informally, a program S satis�es the linear predicate always(P)
if the predicate P holds in any state of any computation of S .

For every linear time predicate P � St
1, de�ne the truncated predicate

trunc(P) and the �rst state predicate �rst(P) respectively by

trunc(P) = fw 2 St
1 j 9s 2 St: sw 2 Pg

�rst(P) = fs 2 St j 9w 2 St
1: sw 2 Pg:

Informally, if a linear predicate P holds for a computation then trunc(P) holds
for the rest of the computation after its �rst atomic step, and �rst(P) holds for
the �rst state of the computation. The truncated predicate and the �rst state
predicate are used for de�ning the linear enhancement of P � St

1 as the least
subset P lin � St + St� �2 such that

P lin = �rst(P) [fhs; �i j s 2 �rst(P) & s 2 �(trunc(P)lin)g: (7.17)

Hence P lin consists of all strings of length one of P and of all those pairs hs; �i
for which s is appropriate in the sense that it satis�es the �rst state of the
predicate P and it will lead to trunc(P)lin following �. By taking the greatest
solution of the above equation we obtain both a weakest and a weakest liberal
linear semantics in the style of Lukkien [Luk91, Luk94].

For example consider the program hd ; v1 := 1 ; v2 := 2i in L2, and let �1 =
Wp2[[hd ; v1:=1i]] and �2 = Wp2[[hd ; v2:=2i]]. We want to calculate the semantics
of the above program for the linear enhancement P lin of the linear time predicate

P = fs1s2 2 St
1 j s1(v1) = s2(v1) = 1 & s2(v2) = 2g:

162 Chapter 7. Predicate transformer semantics for concurrency

Intuitively P says that after the �rst atomic step the value of v1 is 1, and
immediately after the value of v2 is 2 while the value of v1 remains the same.
We have

Wp2[[hd ; v1 := 1 ; v2 := 2i]](P lin)

= (�1 ; �2)(P
lin)

= �1(fs j hs; �2i 2 P ling [fhs; �i j hs; � ; �2i 2 P ling)

= fs j hs[1=v1]; �2i 2 P ling

= fs j s[1=v1] 2 �rst(P) & s[1=v1] 2 �2(trunc(P)
lin)g

= fs j s[1=v1](v1) = 1 & s[1=v1][2=v2] 2 trunc(P)ling

= fs j s[1=v1](v1) = 1 & s[1=v1][2=v2](v1) = 1 & s[1=v1][2=v2](v2) = 2g

= St

which is indeed the result to be expected. From the above it follows that if we
take P to be the linear time predicate

fs1w 2 St
1 j s1(v1) 6= 1 & w 2 St

1g

then Wp2[[hd ; v1 := 1 ; v2 := 2i]](P lin) = ;.
Returning to the predicate always(P) for P � St, it is immediate to see that

trunc(always(P)) = always(P) and �rst(always(P)) = P . Hence the linear
extension of always(P) according to the Equation (7.17) is the least subset
Palw of St+ St� �2 such that

Palw = P [fhs; �i j s 2 P & s 2 �(Palw)g: (7.18)

As for P tc, we can give a characterization of Palw in terms of its approximants.
De�ne, for n � 0, Palw

n inductively by

Palw
0 = ; and

Palw
n+1 = P [fhs; �i j s 2 P & s 2 �(Palw

n)g:

Using a proof similar to that of Lemma 7.3.14 we can show that for all n � 0,
Palw
n is open in the metric topology of St+St� 1

2
��2. From this fact it follows

immediately that

Palw =
[
n

Palw
n :

Informally, this means that �(Palw) holds exactly for those input states s such
that all computations of the program denoted by � started in s terminate and
every state that is reached satis�es the predicate P . By taking the greatest
solution of the Equation (7.18) we obtain a more liberal version in which ter-
mination is not required.

7.7. Concluding notes 163

7.7 Concluding notes

The language we considered in this chapter assumes a global shared state for all
parallel components, and it does not have a synchronization operator. Hence
the domain of `sequences of pairs' of [BHR94] could have been used in order
to obtain a fully abstract model. We opted for a branching domain because it
gives a �ner equivalence on processes and supports both linear and branching
time properties. In fact the domain �2 is internally fully abstract with respect
to bisimulation [BKV95], that is, two predicate transformers �; � 2 �2 are equal
if and only if the computations they denote are bisimilar.

Synchronization by shared variables can be implemented in our language us-
ing, for example, semaphores [Dij68]. This requires a simple form of atomization
for sequential and non-deterministic statements [BKV95].

In the last section we focused on two classes of properties of programs,
namely classes of properties based on partial and total correctness. In the area
of parallel programming many other properties are of importance as well. The
metric predicate transformer domain �2 supports reasoning about both linear
and branching time predicates. We brie
y studied the linear time predicate
`always P ' (during an execution the predicate P always holds). It would be
interesting to investigate other more speci�c linear predicates like `eventually
P ' (during an execution the predicate P will holds), or `P leads-to Q ' (during
an execution if P holds then at some point later Q will hold').

164 Chapter 7. Predicate transformer semantics for concurrency

Part III

A logical perspective

165

Chapter 8

Topological spaces and

observation frames

In this last part of the thesis we make an abstraction step towards an axiomatic
approach to the semantics and the speci�cation of programming languages.
We consider predicates as elements of an abstract algebra. For example, we
may think of an abstract algebra as stemming from a logical system: elements
correspond to equivalence classes of formulae which are provably equivalent,
and the order corresponds to the entailment relation.

In order to show that the axioms of the class of algebras we consider capture
exactly the collection of predicates we have in mind, a representation theorem
is necessary. A representation theorem is a correspondence between an abstract
algebra and its set-theoretical model. The �rst representation theorem is due to
Cayley [Ca878] showing that every abstract group is isomorphic to a concrete
group of permutations. A representation theorem for the algebra of all pred-
icates was �rst proved by Lindenbaum and Tarski [Tar35]. They proved that
a Boolean algebra is isomorphic to the collection of all subsets of some set if
and only if it is complete and atomic. This general result restricts the class of
Boolean algebras for which a concrete representation exists. It was Stone [Sto36]
who �rst saw a connection between algebra and topology. He constructed from
a Boolean algebra a set of points using prime ideals which can be made into
a topological space in a natural way. Conversely, using a topology on a set
of points he was able to construct a Boolean algebra. For certain topological
spaces (later called Stone spaces) these constructions give an isomorphism. In
a later paper [Sto37], Stone generalized this correspondence from Stone spaces
to spectral spaces and from Boolean algebras to distributive lattices. Hofmann
and Keimel [HK72] described the Stone representation theorem in a categorical
framework showing a duality between the category of Boolean algebras and a
sub-category of topological spaces. A representation theorem for Boolean alge-
bras with operators has been considered by J�onsson and Tarski [JT51, JT52].
By means of an extension theorem they proved that operators on a Boolean al-

167

168 Chapter 8. Topological spaces and observation frames

gebra can be naturally extended to completely additive operators on a complete
and atomic Boolean algebra.

Stone's representation theorem leaves open the problem of �nding an ab-
stract characterization of topological spaces. For every topological space, its
lattice of open sets forms a frame. This fact leads Papert and Papert [PP58]
to a representation theorem between spatial frames and sober spaces. Even
further, Isbell [Isb72a] gives an adjunction between the category of topologi-
cal spaces with continuous functions and the opposite category of frames with
frame homomorphisms. This adjunction yields a duality between the category
of sober spaces and the category of spatial frames.

The importance of Stone-like dualities in a mathematical context is shown in
a book of Johnstone [Joh82a], and in the context of domain theory in [GHK+80].
Abramsky [Abr87] applied Stone duality to get logics of domains, as used in
denotational semantics. He argues that Stone duality is the bridge between
denotational and axiomatic semantics.

In this chapter we consider a topological space as a function from its frame
of open sets to its completely distributive lattice of saturated sets. More ab-
stractly this structure is an observation frame. In the light of our discussion
in Chapter 5, an observation frame is a map from a�rmative predicates to
speci�able predicates preserving the geometric logic of the a�rmative predi-
cates. We construct topological spaces from observation frames by taking as
points special kinds of prime elements. In this way we obtain a duality between
observation frames and T0 spaces. We also give a logic of observation frames
with arbitrary conjunctions and disjunctions. This is done by the introduction
of M-topological systems, which are a generalization of the topological systems
of Vickers [Vic89]. Finally we consider some examples of interesting T0 spaces
which need not to be sober.

8.1 Observation frames

Complete lattices are closed under in�nite meets and in�nite joins. However
these operations do not need to represent in�nite conjunctions and in�nite dis-
junctions even if the elements of the lattice are subsets of some set. For example,
the lattice of open sets of a topological space X is complete since an arbitrary
union of open sets is open, but the meet of an arbitrary collection of open sets
S is given by the interior of the intersection of S , which does not, in general,
coincide with the intersection of S .

In this section we introduce a mathematical structure which represents ab-
stract topological spaces and which supports both the arbitrary conjunctions
and the arbitrary disjunctions of the abstract open sets.

Our starting point is the fact that the lattice of open sets of a topological
space X can be embedded in the lattice of saturated sets of X . The saturated

8.1. Observation frames 169

sets are closed under arbitrary unions and intersections. Since every open set
is saturated, the logic of the a�rmative predicates is preserved.

8.1.1. De�nition. An observation frame is a frame morphism � :F ! L from
a frame F to a completely distributive lattice L such that every element q in L
is saturated , that is,

q = uf�(x) j q v �(x)g:

For clarity we adopt the following convention for an observation frame � :
F ! L. The order, the meet and the join in F are denoted by (�;

V
;
W
),

respectively, while the order, the meet and the join in L are denoted by (v
;u;t). In case F (or L) is a subset of P(X) for some set X we use the
standard (�;

T
;
S
) whenever these coincide with the order, the meet or the join

in F (or L)
The identity function idL : L ! L, for L a completely distributive lattice,

is an observation frame. If L is the two point completely distributive lattice
2 = f?;>g with ? v >, we refer to the observation frame idL : L! L simply
by 2. Another example of an observation frame is given by the inclusion map
O(X) ,! Q(X), where X is a topological space, O(X) is the frame of opens
and Q(X) is the completely distributive lattice of the saturated sets. We denote
this observation frame by
(X).

Next we organize observation frames into a category. We need an appropri-
ate notion of morphism for observation frames. It can be obtained by adapting
De�nition 6.2.1.

8.1.2. De�nition. A morphism from an observation frame � : F ! L to an
observation frame � :G ! K consists of a frame morphism � :F ! G which is
M-multiplicative, that is, for all subsets S and T of F

u�(S) vu�(T) implies u�(�(S)) vu�(�(T)):

This gives a category (with composition as for ordinary functions) which is
denoted by OFrm.

The idea is that a morphism between observation frames preserves the logic
of a�rmative predicates, but also takes into account what happens to in�-
nite conjunctions of these a�rmative predicates (which are usually outside the
frame). The above de�nition of morphisms between observation frames can be
justi�ed by the following example:

Assume that X and Y are two topological spaces and let f : X ! Y be
a continuous function (i.e. a map in the category of topological spaces Sp).
The function f induces a morphism
(f) :
(Y) !
(X) in OFrm de�ned
by its inverse image, i.e.,
(f)(o) = f �1(o) = fx 2 X j f (x) 2 og for every

170 Chapter 8. Topological spaces and observation frames

o 2 O(Y). We check the multiplicativity condition. Assume S ;T � O(Y)
with

T
S �

T
T . Then

x 2
\

(f)(S) , 8o 2 S : f (x) 2 o

, f (x) 2
\

S

) f (x) 2
\

T [
T
S �

T
T]

, x 2
\

(f)(T):

Thus we have a functor
 : Sp ! OFrmop . Later it will be shown that
 has
a right adjoint.

The next theorem gives a mathematical justi�cation of the de�nition of a
morphism between observation frames. First we need the following preparatory
lemma.

8.1.3. Lemma. Let � : F ! L be an observation frame, � : G ! H be a
frame morphism from a frame G to a completely distributive lattice H , and
� :F ! G be a frame morphism. If :L! H is a function preserving arbitrary
intersections and such that � � � = � �, then preserves also arbitrary joins
(and hence is a morphism between completely distributive lattices).

Proof: Let S be a subset of L and consider the following set of sets

A = ff�(a) j a 2 F & q v �(a)g j q 2 Sg:

Because � : F ! L is an observation frame q = ufa 2 F j q v �(a)g for all
q 2 S . Hence we have that

 (tS) = (tfuA j A 2 Ag)

= (uft f (A) j f 2 �(A)g) [complete distributivity]

= uf (t f (A)) j f 2 �(A)g [preserves arbitrary meets]

= uftf (�(a)) j �(a) 2 f (A)g j f 2 �(A)g; (8.1)

where the latter equality holds because for every f 2 �(A), f (A) is a subset of
the image under � of F (since f : A !

S
A) and because the commutativity

� � � = � � implies that preserves all joins t�(T) in L for every T � F .
Consider now the following set of sets

B = ff (�(a)) j a 2 F & q v �(a)g j q 2 Sg:

We have

t (S) = tf (uf�(a) j a 2 F & q v �(a)g) j q 2 Sg

= tfuf (�(a)) j a 2 F & q v �(a)g j q 2 Sg

= tfuB j B 2 Bg

= uft g(B) j g 2 �(B)g: [complete distributivity] (8.2)

8.1. Observation frames 171

But for every g 2 �(B) there exists f 2 �(A) such that f (q) = �(a) if g(q) =
 (�(a)). Hence

ft g(B) j g 2 �(B)g �tf (�(a)) j �(a) 2 f (A)g j f 2 �(A)g

from which it follows, using the equalities (8.1) and (8.2), that

 (tS) vt (S):

The converse of the above inequation holds by monotonicity of . 2

A frame morphism is a morphism between observation frames if and only
if it can be uniquely extended to a morphism between completely distribu-
tive lattices. This result is similar to the extension theorem of J�onsson and
Tarski [JT51] for Boolean algebras.

8.1.4. Theorem. Let � :F ! L and � :G ! H be two observation frames and
� : F ! G be a frame morphism. Then � is a morphism in OFrm if and only
if there exists a unique morphism e� : L! H in CDL such that � � � = e� � �.

F
� - L L

�

G

�
?

�
- H
?

e�
H
?

e�

Proof: Assume e� : L ! H is a morphism between completely distributive
lattices such that � � � = e� � �. We need to prove that � : F ! G is M-
multiplicative. Let S ;T � F be such that u�(S) v u�(T). Then we have:

u�(�(S)) = u e�(�(S)) [� � � = e� � �]
= e�(u�(S)) [e� is meet preserving]

v e�(u�(T)) [monotonicity of e� and u�(S) vu�(T)]

= u e�(�(T)) [e� is meet preserving]

= u�(�(T)): [� � � = e� � �]
Conversely, assume � is an observation frame morphism and de�ne, for S � F ,

e�(u�(S)) =u �(�(S)):

It is well-de�ned because � is M-multiplicative: if u�(S) = u�(T) for sub-
sets S and T of F then, u�(�(S)) = u�(�(T)). By de�nition, e� preserves
arbitrary meets and it is the unique function preserving arbitrary meets such
that � � � = e� � �. By Lemma 8.1.3 it follows that e� preserves also arbitrary
joins. 2

172 Chapter 8. Topological spaces and observation frames

M-�lters and M-prime elements

In this subsection we introduce the notions of M-�lter and of M-prime element
of an observation frame. They will be used later to construct the points of a
topological space associated with an observation frame. Furthermore we prove
that completely prime M-�lters and the M-prime elements of an observation
frame � :L! F and morphisms from � to 2 in OFrm are essentially the same.
In the next chapter we will state the precise relationships to the standard notions
of �lter and prime elements of a frame.

8.1.5. De�nition. Let � : F ! L be an observation frame. A subset U of F
is an M-�lter of � if for all a 2 F ,

u�(U) v �(a)) a 2 U :

An M-�lter U of � is called completely prime if for every S � F ,_
S 2 U) 9s 2 S : s 2 U :

Notice that a completely prime M-�lter U cannot contain ?F because ?F =W
; and hence by the de�nition above there should be s 2 ; such that s 2 U .
The condition de�ning an M-�lter can be described as closure under arbi-

trary meets as distinguished from the closure under �nite meets of a �lter. It is
easy to see that every M-�lter U of an observation frame � :F ! L is a �lter of
F . Indeed, it is non-empty because u�(U) v >L = �(>F) implies >F 2 U . It
is an upper closed subset of F because if a 2 U and a � b then, by monotonicity
of �,u�(U) v �(a) v �(b). Hence b 2 U . Finally, suppose a and b 2 U . Then
u�(U) v �(a) and u�(U) v �(b). Hence u�(U) v �(a) u �(b) = �(a ^ b),
which implies a ^ b 2 U .

The converse is in general not true. This can be shown using a counter-
example due to Chellas [Che80] in the context of minimal augmented models
for modal logics. Consider the observation frame idP(IR) :P(IR)! P(IR), where
IR is the set of real numbers ordered as usual. For r 2 IR de�ne

Fr = fV � IR j 9s 2 IR: r < s & (r ; s) � V g

where (r ; s) = ft 2 IR j r < t < sg. Hence Fr is the set of all sets of real
numbers that include some open interval (r ; s) for some r < s. It is an easy
veri�cation to prove that Fr is a �lter of P(IR). However Fr is not an M-�lter
of the observation frame idP(IR) because

T
Fr is the empty set since there is

no smallest open interval (r ; s) for r < s, whereas ; 62 Fr because (r ; s) is not
empty for every r < s. Therefore

T
Fr = ; but ; 62 Fr . We will return to the

relation between �lters and M-�lters in the next chapter.

8.1.6. Lemma. Let � : F ! L be an observation frame. The assignment
U 7! "(u�(U)) is an isomorphism between M-�lters of � and principal �lters
of L, where "(�) denotes the upper closure with respect to the order of L.

8.1. Observation frames 173

Proof: The above map is well-de�ned because, by de�nition, "(u�(U)) is a
principal �lter of L. Assume U1 and U2 are two di�erent M-�lters of �, say there
exists a 2 U1 but a 62 U2. Then �(a) 2 "(u�(U1)) butu�(U2) 6v �(a) because
otherwise a 2 U2 since U2 is an M-�lter. Hence the above map is injective. Next
we show it is also onto: let V be a principal �lter of L and consider the set
U = fa 2 F j �(a) 2 V g. For every a 2 F , ifu�(U) v �(a) thenuV v �(a)
because �(U) = V \�(F). Since V is a principal �lter of L, �(a) 2 V and hence
a 2 U . Therefore U is a M-�lter of �. It remains to prove V = "(u�(U)). The
inclusion from right to left follows because �(U) = V \ �(F) and V = "uV ,
being V a principal �lter. Conversely, let q 2 V . Then �(a) 2 V for all a 2 F
such that q v �(a) because V is upper closed. Hence �(a) 2 V \�(F) = �(U),
which implies

u�(U) vuf�(a) j a 2 F & q v �(a)g = q

where the latter equality follows because � is an observation frame. Therefore
q 2 "(u�(U)). 2

In other words, the above lemma says that M-�lters of � :F ! L are in bijective
correspondence with elements of L. As an immediate consequence we have, for
every M-�lter U of � : F ! L,

�(U) = "(u�(U)) \ �(F):

Let X be a topological space and consider the observation frame
(X).
Every saturated set q 2 Q(X) induces an M-�lter

U(q) = fo 2 O(X) j q � og:

Indeed, if
T
U(q) � o then q � o because q =

T
U(q). Therefore o 2 U(q).

Also, for every x 2 X the set

U0(x) = fo 2 O(X) j x 2 og

is clearly an M-�lter of
(X). Furthermore, U0(x) is completely prime since for
every S � O(X) and o 2 U0(x) such that o �

S
S we have x 2 o �

S
S . Hence

there exists s 2 S such that x 2 s. Therefore s 2 U0(x).

8.1.7. De�nition. For an observation frame � : F ! L, an element p 2 F is
called M-prime if for all S � F ,

u�(S) v �(p)) 9s 2 S : s � p:

The set of all M-prime elements of � is denoted by MP(�).

174 Chapter 8. Topological spaces and observation frames

Consider the observation frame
(X) of a topological space X . De�ne for
every x 2 X the open set

ox = int(X n fxg) =
[
fo 2 O(X) j x 62 og � X n fxg;

where int(�) is the interior operator associated with the topology on X . By
de�nition ox is the greatest (with respect to subset inclusion) open set not
containing x , that is, for an open o 0, x 62 o 0 if and only if o 0 � ox . It is also an
M-prime element. Indeed, for every subset S of O(X) if

T
S � ox then x 62

T
S

because otherwise we would have x 2
T
S � ox contradicting x 62 ox . But then

there exists an s 2 S such that x 62 s. Since ox is the greatest open set not
containing x , s � ox . Thus ox 2 MP(
(X)) for every x 2 X .

Notice that for every o 2 O(X) we have
T
fox j x 62 og = o:

(�) If y 2
T
fox j x 62 og then y 2 o because otherwise y 2 X n o and

hence oy 2 fox j x 62 og. But this yields y 2
T
fox j x 62 og � oy , a

contradiction.

(�) For every x 2 X n o, o � (X n fxg). Hence by idempotency and mono-
tonicity of the interior operator we obtain o = int(o) � int(X nfxg) = ox
for every x 62 o. Therefore o �

T
fox j x 62 og.

(For the case when o = X observe that fox j x 62 og = ; and that
T
; = X = o.)

Next we show that every M-prime element in
(X) is of the form ox for some
x 2 X . Indeed, let p be an M-prime element of
(X). Since p 2 O(X) we have
just seen that

T
fox j x 62 pg � p. But then ox � p for some x 62 p. The latter

yields p � ox and hence p = ox . This fact will be crucial later on for obtaining
our duality. If X is a T0 space then clearly every M-prime element of
(X) is
of the form ox for a unique x 2 X .

The next lemma is the main result of this subsection. It gives isomorphisms
between M-�lters, M-prime elements of an observation frame � : F ! L and
also morphisms from � to 2 in OFRm.

8.1.8. Lemma. For an observation frame � : F ! L there are bijective cor-
respondences between

(i) morphisms � from � to 2 in OFrm,
(ii) completely prime M-�lters U of �,
(iii) M-prime elements p of �.

The correspondences are given by:

(i)) (ii) � 7! U� = fa 2 F j �(a) = >g;

(ii)) (i) U 7! �U = �a 2 F :

(
> if a 2 U
? otherwise;

(ii)) (iii) U 7! pU =
W
fa 2 F j a 62 Ug;

8.1. Observation frames 175

(iii)) (ii) p 7! Up = F n (# p);

(iii)) (i) p 7! �p = �a 2 F :

(
? if a � p
> otherwise;

(i)) (iii) � 7! p� =
W
fa 2 F j �(a) = ?g:

Proof: Let � : F ! L be an observation frame, � : � ! 2 be a morphism
in OFrm, U � F be a completely prime M-�lter and p 2 F be an M-prime
element. We prove only (i)) (ii)) (iii)) (i). The veri�cation of the
other correspondences is left to the reader.

� (i)) (ii): We have to prove that U� is a completely prime M-�lter.
We start by proving that U� is an M-�lter. For every x 2 F such that
u�(U�) v �(x) we have

V
f�(a) j a 2 U�g � �(x) since � is a morphism

in OFrm. But a 2 U� if and only if �(a) = > by de�nition, hence also
�(x) = >. Therefore x is in U�.

It remains to show that U� is completely prime. Let S � F and a 2 U�
be such that a �

W
S . Then �(

W
S) = > because � is a frame morphism

and > = �(a) � �(
W
S) =

W
�(S). Therefore there is s 2 S such that

�(s) = >, that is, there is a s 2 S such that s 2 U�.

� (ii)) (iii): We have to prove that pU is an M-prime element. Let S � F
be such that u�(S) v �(pU). Then u�(S) v �(

W
fa 2 F j a 62 Ug) =

tf�(a) j a 62 Ug. There must exist s 2 S such that s 62 U because if not,
S � U would imply u�(U) vu�(S) v �(

W
fa 2 F j a 62 Ug) and henceW

fa 2 F j a 62 Ug 2 U as U is an M-�lter. Since it is also completely
prime we have the contradiction that there exists a 62 U such that a 2 U .

� (iii)) (i): We have to prove that �p is a morphism inOFrm. It is easily
veri�ed that it is a frame morphism from F to 2. Hence we concentrate
on the proof that �p is M-multiplicative. Let S ;T � F be such that
u�(S) v u�(T). Assume

V
�p(S) = > but suppose

V
�p(T) = ?.

Then there exists t 2 T such that �p(t) = ? and hence t � p. Since p
is an M-prime element, we have that u�(S) v u�(T) v �(t) v �(p)
implies there exists s 2 S such that s � p. Hence �p(s) = ? contradictingV
�p(S) = >. 2

Completely prime M-�lters are preserved by the inverse image of a morphism in
OFrm: let � : (� :F ! L)! (� :G ! H) be a morphism in OFrm and let U be
a completely prime M-�lter of �. Then �U :� ! 2 is also a morphism in OFrm
which hence yields by composition a morphism from � to 2, or, equivalently, a
completely prime M-�lter ��1(U) of �.

We conclude this subsection by taking a closer look at Galois connections
between posets. Galois connections play an important role in spectral theory
(see for example [GHK+80]) and in general in lattice theory. In particular we

176 Chapter 8. Topological spaces and observation frames

are interested in those posets which constitute the frame part of an observation
frame.

8.1.9. De�nition. Let F and G be two posets and f : F ! G , g :G ! F be
two functions. We say the pair (f ; g) is a Galois connection between F and G
if both f and g are monotone, and, for all x 2 F and y 2 G ,

f (x) � y , x � g(y):

For a Galois connection (f ; g) the function g is called upper (or left) adjoint
and the function f is called lower (or right) adjoint. A Galois connection is
a special case of adjoint functors, where the posets F and G are seen as cat-
egories [ML71, Chapter IV]. Any upper adjoint g preserves all meets in G ,
while any lower adjoint f preserves all joins in F . More generally we have the
following characterization of Galois connections.

8.1.10. Lemma. Let F ;G be two complete lattices.
(i) A function g :G ! F preserves all meets in G if and only if g is monotone

and has a lower adjoint f : F ! G given by f (x) =
V
fy 2 G j x � g(y)g.

(ii) A function f :F ! G preserves all joins in F if and only if f is monotone
and has an upper adjoint g :G ! F given by g(y) =

W
fx 2 F j f (x) � yg.

(iii) A pair of monotone functions (f ; g) with f : F ! G and g :G ! F is a
Galois connection if and only if f (g(y)) � y and x � g(f (x)) for all x 2 F and
y 2 G.

Proof: See Corollary 0-3:5 and Theorem 0-3:6 in [GHK+80]. 2

If F and G are frames and �:F ! G is a frame morphism then, since � preserves
arbitrary joins, it has an upper adjoint, say g :G ! F , which preserves arbitrary
meets by the above Lemma. Also, the upper adjoint g preserves prime elements
because � preserves �nite meets [GHK+80, Lemma IV -4:5]. If � : F ! G is
also an observation frame morphism from � :F ! L to � :G ! H then we have
the following.

8.1.11. Lemma. Assume � is a morphism in OFrm between the observation
frames � : F ! L and � : G ! H . Then � : F ! G has an upper adjoint
g : G ! F which preserves arbitrary meets of G, prime elements and also the
M-prime elements of �.

Proof: Since an observation frame morphism � is a frame morphism from F
to G it has an upper adjoint g : G ! F which preserves arbitrary meets of G
and prime elements of G . Let now p 2 MP(�) and S � F , then

u�(S) v �(g(p))) u�(�(S)) v �(�(g(p))) [M-multiplicativity]

) u�(�(S)) v �(p) [Lemma 8.1.10 (iii)]

, 9s 2 S : �(s) � p [p is M-prime]

, 9sS : s � g(p) [(�; g) is a Galois connection]

that is, g(p) 2 MP(�). 2

8.1. Observation frames 177

For a Galois connection (f ; g) there does not seem to be any condition on g
alone which implies that f preserves �nite meets (see [Joh82a]). However, for
lattices in which every element is the meet of all the primes above it, g preserves
prime elements if and only if f preserves �nite meets (see [GHK+80]).

Duality for T0 spaces

In this subsection we de�ne a point functor Pt from the opposite of the category
of observation frames to the category Sp of topological spaces by topologizing
the M-prime elements. We show that the functor Pt is a right adjoint to the
functor
 :Sp! OFrmop and that this adjunction restricts to a duality for T0
spaces.

In order to de�ne a topology for the set of M-prime elements MP(�) of an
observation frame � : F ! L, de�ne the `open set' 4(a) by

4(a) = MP(�) n " a = fp 2 MP(�) j a 6� pg;

for all a element of F .

8.1.12. Lemma. Let � : F ! L be an observation frame. Then:

4(
W
S) =

S
f4(a) j a 2 Sg for all subsets S of F ;

4(
V
S) =

T
f4(a) j a 2 Sg for all �nite subsets S of F .

Proof: We prove only the second item. The other one is trivial.

p 2
\
f4(a) j a 2 Sg , p 2 MP(�) and 8a 2 S : a 6� p

�
, p 2 MP(�) and

^
S 6� p

, p 2 4(
^

S);

where the implication (
�
() is trivial and for (

�
)) we use that p is an M-prime

element: if
V
S � p then also u�(S) v �(p) and hence a � p for some a 2 S .

2

The above lemma implies that, for every observation frame � : F ! L, the
collection of sets of the form 4(a), for a 2 F , forms a topology on MP(�).
We denote it by O4(MP(�)) and the corresponding topological space by Pt(�).
Notice that Pt(�) is T0. Indeed, let p and q 2 MP(�) be such that p �O q
and q �O p in the specialization preorder induced by the topology O4(MP(�)).
Equivalently, p 2 4(a) if and only if q 2 4(a) for every a 2 F . Hence, for every
a 2 F , a 6� p if and only if a 6� q , that is p = q . Therefore the specialization
preorder is a partial order, that is, the topological space Pt(�) is T0.

8.1.13. Lemma. Let � : F ! L be an observation frame. The map " : F !
O4(MP(�)) de�ned by "(a) = 4(a) for every a 2 F is a morphism in OFrm
from � to the observation frame
(Pt(�)). It is surjective as a function.

178 Chapter 8. Topological spaces and observation frames

Proof: By Lemma 8.1.12, " is a frame morphism which is surjective as a func-
tion by de�nition. It remains to prove that it is M-multiplicative. Let S and
T be two subsets of F be such that u�(S) v u�(T), and take p 2

T
"(S).

From the de�nition of ", p 2 MP(�) and s 6� p for every s 2 S . We claim
that also t 6� p for every t 2 T . If not then there would exist t 2 T such
that t � p and hence �(t) v �(p). Since u�(S) v u�(T) v �(t) v �(p)
there would exist s 2 S such that s � p (because p is an M-prime element),
therefore contradicting the hypothesis. Thus p 2 4(t) for every t 2 T , that is,
p 2

T
"(T). 2

We are now ready to formulate the relationship between topological spaces and
observation frames.

8.1.14. Theorem. Let X be a topological space, � : F ! L be an observation
frame and � be a morphism in OFrm from � to
(X). Then there is a unique
continuous function f� : X ! Pt(�) in Sp such that
(f�) � " = �.

�
" -
(Pt(�)) Pt(�)

HHHHHHHHHHHHH

�

j

(X)
?

(f�)

X

f�

6

This extends the assignment � 7! Pt(�) to a functor from OFrmop to Sp which
is a right adjoint of
.

Proof: Let a 2 F . In order to obtain the required commutativity we have to
prove

8x 2 X : x 2 �(a) , x 2
(f�)("(a))

, f�(x) 2 "(a) [de�nition of
(f�)]

, f�(x) 2 4(a) [de�nition of "(a)]

, a 6� f�(x): [de�nition of 4(a)]

This determines f�(x) uniquely as
W
fb 2 F j x 62 �(b)g. Indeed, for all x 2 X ,

if a 6� f�(x) then x 2 �(a) because otherwise we would have a 2 fb 2 F j x 62
�(b)g and hence the contradiction a �

W
fb 2 F j x 62 �(b)g = f�(x).

Conversely, if x 2 �(a) then a 6� f�(x) because otherwise a � f�(x) =
W
fb 2

F j x 62 �(b)g would imply, after applying �,

�(a) � �(
_
fb 2 F j x 62 �(b)g) =

[
f�(b) 2 O(X) j x 62 �(b)g:

Since x 2 �(a) we would get that there exists b 2 F such that x 2 �(b) and
x 62 �(b).

8.1. Observation frames 179

Next we show that f�(x) is an M-prime element, i.e. f�(x) 2 MP(�). Let
S be a subset of F such that u�(S) v �(f�(x)). Then from the de�nition of
f�(x) and after applying � we obtain\

�(S) � �(
_
fa 2 F j x 62 �(a)g) =

[
f�(a) 2 O(X) j x 62 �(a)g:

Hence there exists s 2 S such that s � f�(x) because otherwise for all s 2 S
we would have s 6� f�(x) and hence by the above, x 2 �(s) for every s 2 S .
But then x 2

T
�(S) which implies there exists a 2 F such that x 2 �(a) and

x 62 �(a).
The function f� is also continuous. Let a 2 F and consider the open set

4(a) of Pt(�). Then we have:

f �1� (4(a)) = fx 2 X j f�(x) 2 4(a)g

= fx 2 X j a 6� f�(x)g [de�nition of 4(a), f�(x) M-prime]

= fx 2 X j x 2 �(a)g

= �(a):

Since �(a) 2 O(X) is open, we have that f� is continuous. 2

The unit of the above adjunction is given by the function � de�ned in the
following Lemma.

8.1.15. Lemma. Let X be a topological space. Then the unit of the adjunc-
tion between OFrmop and Sp is given by function � : X ! Pt(
(X)) de�ned
by �(x) = int(X n fxg) = ox . It is a continuous surjective function in Sp.
Moreover, � is injective and preserves open sets if and only if X is T0.

Proof: By Theorem 8.1.14 the unit of the adjunction between OFrmop and Sp
is uniquely determined by the function f�, where �:
(X)!
(X) is the identity
morphism inOFrmop . Therefore, for every space X , the unit � :X ! Pt(
(X))
is de�ned by �(x) =

S
fo 2 O(X) j x 62 og = ox . Next we show � is a continuous

surjective function in Sp.
We have already seen that the M-prime elements of
(X) are exactly those

of the form ox = int(X nfxg) in a topological space X . Hence � is clearly onto.
Let us now check it is also continuous. For o 2 O(X) we have:

��1(4(o)) = fx 2 X j �(x) 2 4(o)g

= fx 2 X j o 6� �(x)g

= fx 2 X j x 2 og

= o:

This proves also that � is injective as a function and hence an isomorphism
between X and MP(
(X)). It remains to prove that it is also an open map,

180 Chapter 8. Topological spaces and observation frames

i.e. it preserves open sets. For o 2 O(X) we have:

�(o) = f�(x) 2 MP(
(X)) j x 2 og

= f�(x) 2 MP(
(X)) j o 6� �(x)g [by de�nition of �(x)]

= f�(x) 2 MP(
(X)) j �(x) 2 4(o)g [by de�nition 4(o)]

= fp 2 MP(
(X)) j p 2 4(o)g [� is an isomorphism]

= 4(o);

which is open in the topology of Pt(
(X)). Therefore, if X is a T0 space then
� is an isomorphism in Sp.

Finally, if � is injective and open then it forms an isomorphism in Sp between
X and Pt(
(X)). However, for every observation frame � : F ! L the space
Pt(�) is T0. Hence also X is T0. 2

By Lemma 8.1.15 and because Pt(�) is T0 for every observation frame �:F ! L,
the adjunction of Theorem 8.1.14 restricts to a re
ection of Sp0 into the full
image of the functor
 : Sp0 ! OFrm. Therefore the adjunction between Sp0
and OFrm is Galois. Next we characterize this full sub-category of OFrm and
hence we prove directly that the adjunction of Theorem 8.1.14 restricts to an
equivalence.

A subset X of a complete lattice L is said to be order generating in L (or
equivalently L is said to be order generated by X) if

x =
^
(" x \ X) =

^
fy 2 X j x � yg

for every x 2 L.

8.1.16. Proposition. For X � L where L is a complete lattice the following
statements are equivalent.

(i) X is order generating in L;
(ii) every element of L can be written as a meet of a subset of X ;
(iii) L is the smallest subset containing X closed under arbitrary meets;
(iv) whenever y 6� x , then there is a p 2 X with x � p but y 6� p.

Proof: See Proposition I :3:9 in [GHK+80]. 2

For example, for a topological space X the lattice of open sets O(X) is order
generated byMP(
(X)): we already know that every M-prime element of
(X)
is of the form ox = int(X n fxg) for some x 2 X . Therefore we need to show
o =

V
fox j o � oxg for every open set o.

Clearly, o �
V
fox j o � oxg. To prove the other direction of the inclusion,

consider y 2
V
fox j o � oxg and assume towards a contradiction that y 62 o.

Then oy = int(X n fyg) is the greatest open set not containing y , so o � oy .
But then oy 2 fox j o � oxg and hence y 2 oy because, obviously, y 2

V
fox j

o � oxg � oy .

8.1. Observation frames 181

By de�nition, in an observation frame � :F ! L, every element of L can be
written as the meet of elements in �(F). The following corollary to the above
proposition is then immediate.

8.1.17. Corollary. A frame morphism � : F ! L from a frame F to a com-
pletely distributive lattice L is an observation frame if and only if �(F) is order
generating L. 2

De�ne the category of spatial observation frames SOFrm to be the full sub-
category of OFrm with as objects the observation frames � : F ! L in which
F is order generated by the set MP(�) of M-prime elements.

The previous example shows that the functor
 maps every topological space
to an object of SOFrm. We have already seen that the functor Pt maps every
observation frame to an object of Sp0. Moreover for every T0 space X the unit
of the adjunction is an isomorphism by Lemma 8.1.15. The following lemma
gives a similar result for the counit.

8.1.18. Lemma. Let �:F ! L be an observation frame. The counit morphism
" from � to
(Pt(�)) is an order isomorphism if and only if � :F ! L is order
generated by its M-primes (i.e. it is in SOFrm).

Proof: (only if) Assume a 6� b for some a; b 2 F . Since " is an order isomor-
phism (and hence order re
ecting), "(a) = 4(a) 6� 4(b) = "(b). Hence, by
de�nition of 4(�), there exists p 2 MP(�) such that a 6� p and b � p. Thus,
by Proposition 8.1.16, F is order generated by MP(�).
(if) De�ne "�1(4(a)) =

V
(MP(�) n 4(a)) for every a 2 F . Then we have:

"�1("(a)) = "�1(4(a))

=
^
(MP(�) n 4(a))

=
^
(MP(�) n (MP(�) n " a))

=
^
(MP(�) \ " a)

= a:

Therefore " is injective. We have already seen in Lemma 8.1.13 that " is onto,
therefore " is an isomorphism with inverse "�1. It is also order re
ecting because
if a 6� b for a and b in F , by Proposition 8.1.16, there is a p 2 MP(�) such
that a 6� p and b � a. Therefore "(a) = 4(a) 6� 4(b) = "(b). 2

Now our main result follows.

8.1.19. Corollary. The adjunction Sp

! OFrmop restricts to an equivalence

of categories Sp0 ' SOFrmop. Hence Sp0 and SOFrm are each other's duals
and the adjunction is Galois. 2

182 Chapter 8. Topological spaces and observation frames

Notice that if � :F ! L is an observation frame such that F is order gener-
ated by the M-prime elements, then � is order-re
ecting (and hence injective):
by Lemma 8.1.18 there is an order isomorphism " from � to
(Pt(�)), and
by Theorem 8.1.4 there exists a unique complete distributive lattice morphisme" : L! Q(MP(�)) such that e"(�(a)) = "(a) for all a 2 F . Hence, for a and b
in F , if �(a) v �(b) then, by monotonicity of e",

"(a) = e"(�(a)) v e"(�(b)) = "(b):

Since " is order-re
ecting, a � b. From the monotonicity of � it follows that
a � b if and only �(a) v �(b).

8.2 M-topological systems

Topological systems were introduced by Vickers [Vic89] in order to have a frame-
work of which both topological spaces and (ordinary) frames are instances. In
a topological system we have a set of subjects (points) and a set of predicates
(opens) and a satisfaction relation matching the geometric propositional logic
(the logic of �nite observations). In this section we generalize these topological
systems in order to obtain a satisfaction relation of propositional logic for obser-
vation frames (with both in�nite conjunctions and disjunctions). Our interest
in M-topological systems is justi�ed since they clarify the connection between
the in�nitary operations of an observation frame � :F ! L (the arbitrary joins
t and the arbitrary meets u living in L) and the points of �.

8.2.1. De�nition. Let X be a set, let � :F ! L be an observation frame, and
let j= � X � L be a relation. Then (X ; j=; �) is called an M-topological system
if and only if j= satis�es

x j=t S , 9s 2 S : x j= s

x j=u S , 8s 2 S : x j= s

for all subsets S of L.

Directly from the above de�nition we can deduce that
(i) x j= > for all x 2 X ;
(ii) x j= ? for no x 2 X ;
(iii) x j= q1 and q1 v q2 implies x j= q2 for every q1 and q2 in F .
Next we give the two main examples of M-topological systems. Let X be a

topological space and de�ne, for every x 2 X and q 2 Q(X),

x j= q if and only if x 2 q :

Then T (X) = (X ; j=;
(X)) is obviously an M-topological system.

8.2. M-topological systems 183

Let � :F ! L be an observation frame and de�ne a relation j= � MP(�)�L
by

p j= q if and only if 8a 2 F : q v �(a)) a 6� p:

Next we show that S(�) = (MP(�); j=; �) is an M-topological system. Let p
be an M-prime element of �, q 2 L, �p : F ! 2 is the morphism in OFrm

corresponding to the M-prime element p 2 F (Lemma 8.1.8) and let f�p :L! 2

be the unique complete distributive lattice morphism such that f�p � � = �p
(Theorem 8.1.4). We have

p j= q , (8a 2 F : q v �(a)) a 6� p)

, (8a 2 F : q v �(a)) �p(a) = >) [Lemma 8.1.8]

,
^
f�p(a) j q v �(a)g = >

,
^
ff�p(�(a)) j q v �(a)g = > [Theorem 8.1.4]

, f�p(uf�(a) j q v �(a)g) = > [f�p preserves meets]

, f�p(q) = >: [q =uf�(a) j q v �(a)g]

Since f�p preserves arbitrary joins and arbitrary meets, it is now easy to verify
that S(�) is an M-topological system.

Next we organize M-topological systems in a category for which we introduce
the following morphisms.

8.2.2. De�nition. Let �:F ! L and �:G ! H be two observation frames, and
D = (X ; j=; �) and E = (Y ; j=; �) be two M-topological systems. A morphism
from D to E consists of a pair (f ; �) where f is a function from X to Y and �
is a morphism from � to � in OFrm such that, for every x 2 X and a 2 G ,

x j= �(�(a)) if and only if f (x) j= �(a):

It is straightforward to check that composition of two morphisms de�ned as
the usual element-wise composition is again a morphism. Hence M-topological
systems together with these morphisms form a category to which we refer to as
MTS.

For a continuous function f : X ! Y in Sp, the pair T (f) = (f ;
(f)) is
a morphism from T (X) = (X ; j=;
(X)) to T (Y) = (Y ; j=;
(Y)) in MTS
because

x j=
(f)(o) , x 2
(f)(o) [de�nition of j= in T (X)]

, f (x) 2 o [de�nition of
(f)]

, f (x) j= o: [de�nition of j= in T (Y)]

It is easy to check that T is a functor from Sp to MTS.

184 Chapter 8. Topological spaces and observation frames

Next we show that the adjunction of Theorem 8.1.14 can be split into two
parts: one from topological spaces to M-topological systems and one from M-
topological systems to observation frames. We start with the �rst adjunction.

Every M-topological system D = (X ; j=; � : F ! L) induces a topology on
X by taking as open sets the extent of all a 2 F :

ext(a) = fx 2 X j x j= �(a)g:

By de�nition of j= and since � preserves �nite meets and arbitrary joins we have
that the collection of all extents forms a topology on X . We denote this topo-
logical space by Sp(D). Furthermore the assignment a 7! ext(a) is a morphism
in OFrm from � to idP(X) : P(X)! P(X). Indeed, it is a frame morphism as
the collection of all extents forms a topology and it is M-multiplicative because
if u�(S) vu�(T) for subsets S and T of F then

x 2
\

ext(S) , 8s 2 S : x j= �(s) [de�nition of ext(�)]

, x j=u�(S) [de�nition of j=]

) x j=u�(T)

, 8t 2 T : x j= �(t) [de�nition of j=]

, x 2
\

ext(T): [de�nition of ext(�)]

This shows also that the pair (idX ; ext) is a morphism in MTS from T (Sp(D))
to D .

8.2.3. Theorem. Let D = (X ; j=; � : F ! L) be an M-topological system and
let Y be a topological space such that there is a morphism (f ; �) in MTS from
T (Y) to D. Then there exists a unique continuous function g : Y ! Sp(D) in
Sp such that the following diagram commutes

D �
(idX ; ext)

T (Sp(D)) Sp(D)
}Z
Z
Z
Z
Z
Z
Z
Z

(f ; �)

T (Y)

6

T (g)

Y

g

6

This extends Sp to a functor from MTS to Sp which is a right adjoint of T .

Proof: Take g = f . It is clearly continuous and the unique one such that T (g)
makes the diagram commute. 2

An M-topological system is called spatial if it is isomorphic in MTS to T (X)
for some topological space X .

Next we give the second adjunction between M-topological systems and
observation frames. There is an obvious forgetful functor MTS ! OFrmop

which maps every M-topological system (X ; j=; � : F ! L) to � and every
morphism (f ; �) in MTS to the observation frame morphism �.

8.2. M-topological systems 185

8.2.4. Lemma. Let D = (X ; j=; � : F ! L) be an M-topological system and
p : X ! MP(�) be a function which assigns to a concrete point x 2 X the
abstract point p(x) =

W
fa 2 F j x 6j= �(a)g. Then p(x) is an M-prime element

of � for every x 2 X and the pair (p; idF) is a morphism in MTS from D to
S(�).

Proof: We �rst show that p(x) is M-prime. Let S � F be such that u�(S) v
�(p(x)). There must exist an s 2 S such that s � p(x), (or, equivalently, x 6j=
�(s)) because otherwise x j= u�(S). Since u�(S) v �(p(x)), x j= �(p(x)).
But then x j= �(

W
fa 2 F j x 6j= �(a)g) = tfa 2 F j x 6j= �(a)g. From the

de�nition of j= this holds if and only if there exists a 2 F such that x 6j= �(a)
and x j= �(a). Contradiction.

Consider now the pair (p; idF) : D ! S(�) where D = (X ; j=; � : F ! L).
We show that it forms a morphism inMTS. By the above it is enough to prove
x j= �(a) if and only if p(x) j= �(a), where p(x) j= �(a) means �(a) v �(b)
implies b 6� p(x) for all b 2 F .

)) Let b 2 F be such that �(a) v �(b). Then b 6� p(x) =
W
fc 2 F j x 6j=

�(c)g because otherwise x j= �(a) and �(a) v �(b) implies x j= �(b) and
hence also x j= �(p(x)). But this leads us to the contradiction that there
exists a c 2 F such that x 6j= �(c) and x j= �(c).

() If p(x) j= �(a) then a 6� p(x) =
W
fb 2 F j x 6j= �(b)g. Hence x j= �(a)

because otherwise a 2 fb 2 F j x 6j= �(b)g and hence the contradiction
a � p(x). 2

8.2.5. Theorem. Let � : F ! L be an observation frame and let D be an M-
topological system (Y ; j=; � : G ! H) such that there is a morphism � from �
to � in OFrm. Then there exists a unique function g : Y ! MP(�) such that
(g ; �) is a morphism in MTS from D to S(�).

Proof: De�ne g(y) =
W
fb 2 F j x 6j= �(�(b))g for all y 2 Y . It is not hard to

see that g(y) is an M-prime element of �. We only prove y j= �(�(a)) if and
only if g(y) j= �(a) for all y 2 Y and a 2 F .

)) If y j= �(�(a)) then also g(y) j= �(a) because otherwise by de�nition of
j= in S(�) there exists b 2 F such that �(a) v �(b) and b � g(y) =W
fc 2 F j y 6j= �(�(c))g. Hence, by M-multiplicativity of �,

�(�(a)) v �(�(b))

v �(�(
_
fc 2 F j y 6j= �(�(c))g))

= tf�(�(c)) j y 6j= �(�(c))g:

But y j= �(�(a)) and hence also y j= tf�(�(c)) j y 6j= �(�(c))g. There-
fore, by de�nition of j=, we get the contradiction that there exists c 2 F
such that y 6j= �(�(c)) and y j= �(�(c)).

186 Chapter 8. Topological spaces and observation frames

() If g(y) j= �(a) then a 6� g(y) =
W
fb 2 F j x 6j= �(�(b))g by de�nition of

j= in S(�). But then y j= �(�(a)) because otherwise a 2 fb 2 F j x 6j=
�(�(b))g and hence a �

W
fb 2 F j x 6j= �(�(b))g contradicting a 6� g(y).

Clearly g is the unique function with the required property. 2

As a consequence of the above theorem, the assignment � 7! S(�) extends to a
functor from OFrmop to MTS which is a right adjoint of the forgetful functor
MTS! OFrmop .

An M-topological system is called observational if it is isomorphic in MTS
to S(�) for some observation frame � : F ! L. Clearly the full sub-category
of spatial observational M-topological systems is equivalent to the category of
T0 topological spaces and is equivalent to the category of observation frames
� :F ! L with F order generated by the M-prime elements of �. The following
diagram summarizes the situation.

Sp
� Sp

>
T

- MTS
� S

> - OFrmop

Sp0
[

6

' MTSM
[

6

' SOFrmop
[

6

Next we show that spatiality of an observational M-topological system cor-
responds to the completeness of the logic. To show this we need the de�nition
of semantic entailment.

8.2.6. De�nition. For an observation frame � : F ! L de�ne the relation of
semantic entailment on F as follows. For all elements a and b of F , a `F b
if and only if for every M-topological system (X ; j=; �) and x 2 X , x j= �(a)
implies x j= �(b).

We also de�ne the relation of semantic entailment on L for all q and r in L
by putting q `L r if and only if for every M-topological system (X ; j=; �) and
x 2 X , x j= q implies x j= r .

The next lemma states that for every observation frame � :F ! L the order
on F is contained in the entailment relation. This gives us the soundness for
the logic of F . Similarly we have soundness for the logic of L.

8.2.7. Lemma (soundness). Let � :F ! L be an observation frame. Then
(i) a � b implies a `F b for all a; b 2 F,
(ii) q v r implies q `L r for all q ; r 2 L.

8.2. M-topological systems 187

Proof: We prove only the �rst item. If a � b for a; b 2 F then �(a) v �(b).
Therefore, in every M-topological system (X ; j=; �) if x j= �(a) then x j= �(b).
Hence a `F b. The proof of the second item is equally simple. 2

The entailment relation of F and L is included in the order of F , L respectively,
if and only if the observation frame � :F ! L is such that F is order generated
by the M-prime elements of �.

8.2.8. Lemma (completeness). Let � : F ! L be an observation frame. The
following statements are equivalent.

(i) F is order generated by the M-prime elements of �;
(ii) a `F b implies a � b for all a and b in F ;
(iii) q `L r implies q v r for all q and r in L and � is order-re
ecting.

Proof: (i)) (ii). Suppose F is order generated by the M-prime elements of
� :F ! L and let a `F b for some a; b 2 F . Hence for all M-topological systems
(X ; j=; �) and x 2 X if x j= �(a) then x j= �(b). In particular consider the
M-topological system S(�) and the isomorphism (idMP; ") in MTS from S(�)
to T (Pt(�)). We have

p 2 4(a) , p j= 4(a) [de�nition of j= in T (Pt(�))]

, p j= "(a) [de�nition of "]

, p j= �(a) [(idMP; ") is a morphism in MTS]

) p j= �(b) [because a `F b]

, p 2 4(b):

Hence "(a) = 4(a) � 4(b) = "(b). But " is an order-preserving isomorphism
by Lemma 8.1.18, therefore a � b.
(ii)) (i). We use the formulation of Proposition 8.1.16(iv). Let a; b 2 F be
such that a 6� b. Then a 6`F b, that is, there exists an M-topological system
D = (X ; j=; �) and an x 2 X such that x j= �(a) but x 6j= �(b). Consider
the morphism (p; idF) in MTS from D to S(�). Then x j= �(a) if and only if
p(x) j= �(a), where p(x) 2 MP(�). Hence, by de�nition of j= in S(�) we have
found an M-prime element p(x) such that a 6� p(x) but b � p(x). Therefore,
by Proposition 8.1.16 we have that F is order generated by MP(�).
(ii)) (iii). Suppose a `F b implies a � b for all a; b 2 F and let q ; r 2 L
be such that q `L r . Then for all M-topological systems (X ; j=; �) and x 2 X
we have that x j= q implies x j= r . But q =uf�(a) j a 2 F & q v �(a)g and
also r = uf�(b) j b 2 F & r v �(b)g, hence, by de�nition of j=, x j= �(a)
for all a 2 F such that q v �(a), implies x j= �(b) for all b 2 F such that
r v �(b). But this means that a `F b for a; b 2 F such that q v �(a) and
r v �(b). Hence a � b (which implies �(a) v �(b)) for all a; b 2 F such that
q v �(a) and r v �(b). Therefore q v r . It is easy to see that � re
ects the
order: assume �(a) v �(b), but a 6� b. Then a 6`F b and hence �(a) 6`L �(b).

188 Chapter 8. Topological spaces and observation frames

This is a contradiction.
(iii)) (ii). If a `F b, then �(a) `L �(b), so �(a) v �(b) and thus a � b
since � re
ects the order. 2

8.3 Some further equivalences

In this section we restrict our attention to sub-categories of Sp. We consider
topological spaces which are not, in general, sober. For these spaces we give a
duality by restricting the adjunction of Theorem 8.1.14. Of special interest is a
duality for the category PoSet. We derive a pointless version of the (directed)
ideal completion of posets.

T1 spaces

An observation frame � :F ! L will be called atomic if for all M-prime elements
p and q of �, if p � q then p = q . The full sub-category of OFrm whose
objects are atomic observation frames is denoted by OFrmA, whereas the full
sub-category of SOFrm whose objects are atomic observation frames is denoted
by SOFrmA.

8.3.1. Lemma. The functors
 : Sp ! OFrmop and Pt : OFrmop ! Sp
restrict to an adjunction between the category of T1 spaces Sp1 and the category
of atomic observation frames OFrmA

op. Hence we have a duality between Sp1
and SOFrmA.

Proof: If a space X is T1 then the specialization preorder is the equality. More-
over, since every T1 space is T0, we have that points are M-prime elements
ox =

S
fo 2 O(X) j x 62 og. Therefore, for every ox and oy in MP(
(X)) of a

given T1 space X , if ox � oy then x � y and hence x = y , i.e. ox = oy .
Conversely, let � : F ! L be an atomic observation frame and take p; q 2

MP(�) with p 6= q . This implies p 6� q or q 6� p. Suppose p 6� q then clearly
q is in the open 4(p) = fr 2 MP(�) j p 6� rg but p is not. The other case can
be treated similarly. Hence Pt(�) is a T1 space. 2

Notice that for an atomic observation frame � :F ! L with F order generated
by the M-prime elements, there can be no element di�erent from the > which
is above some other M-prime element. This means that the M-prime elements
of � are exactly the co-atoms of F (that is, maximal elements which di�er from
the top).

Locally open compact spaces

Denote by OKSp0 the full sub-category of Sp0 whose objects are locally open
compact spaces. Let SOFrmAlg denote the full sub-category of SOFrm whose
objects are observation frames � : F ! L such that F is an algebraic lattice.

8.3. Some further equivalences 189

8.3.2. Lemma. The functors
 : Sp ! OFrmop and Pt : OFrmop ! Sp
restrict to a duality between OKSp0 and SOFrmAlg .

Proof: It is enough to prove that a space X is open compact if and only if
O(X) is an algebraic complete lattice. Let X be an open compact space and let
o 2 O(X). For every x 2 o, since X is open compact, there exists a compact
open u such that x 2 u � o. Hence o �

S
fu 2 KO(X) j u � og. The reverse

inclusion is clear, and hence O(X) is algebraic.
Conversely, if O(X) is algebraic then for every open set o we have o =S
fu 2 KO(X) j u � og. Hence for every x 2 X , if x 2 o then there exists a

compact open u 2 KO(X) such that x 2 u � o, that is, X is open compact. 2

Posets and complete lattices

Let AlSp0 denote the full sub-category of Sp whose objects are T0 spaces X
in which open sets are closed under arbitrary intersection (i.e. they form the
Alexandrov topology). The full and faithful functor from the category PoSet
(posets and monotone functions) to Sp0 which maps a poset (X ;�) to the
underlying set X equipped with the Alexandrov topology, determines an equiv-
alence of categories between PoSet and AlSp0.

8.3.3. Lemma. The functors
 : Sp ! OFrmop and Pt : OFrmop ! Sp
restrict to an equivalence between AlSp0 and

V
-SOFrmop , the full sub-category

of SOFrmop whose objects are observation frames � : F ! L for which �
preserves arbitrary meets and F is order generated by the M-prime elements of
�.

Proof: It is enough to prove for every � : F ! L in
V
-SOFrm that

T
4(A) =

4(
V
A) for every A � F .

p 2
\
f4(a) 2 a 2 Ag , p 2 MP(�) and 8a 2 A: a 6� p

�
, p 2 MP(�) and

^
A 6� p

, p 2 4(
^

A)

where the implication (
�
() is trivial and for (

�
)) we use that p 2 MP(�) and

the following contradiction: if
V
A � p then also �(

V
A) =u�(A) v �(p) and

hence a � p for some a 2 A. 2

Let now CLat be the category whose objects are complete lattices and whose
morphisms are functions preserving arbitrary joins and arbitrary meets. Given
a complete lattice L, an element p 2 L is called completely prime if

V
A � p for

A � L implies there exists a 2 A such that a � p.

190 Chapter 8. Topological spaces and observation frames

8.3.4. Lemma. The category
V
-SOFrm is equivalent to SCDL, the full sub-

category of CLat whose objects are completely distributive lattices order gener-
ated by the completely prime elements.

Proof: Let � : F ! L in
V
-SOFrm. Then � is order-re
ecting, preserving

arbitrary meets and arbitrary joins. Since every element of L is the meet of
elements of �(F), � is an isomorphism between the complete lattices F and
L. Therefore F is a completely distributive lattice. It is not hard to see that
a morphism in

V
-SOFrm between two observation frames preserves arbitrary

meets and arbitrary joins.
Conversely, if L is a complete distributive lattice order generated by its

completely prime elements, then idL : L! L is clearly an object in
V
-SOFrm.

Moreover, every morphism between completely distributive lattices is a mor-
phism between the corresponding observation frames. Since the two construc-
tions are each other's inverse, we obtain the required equivalence of categories.

2

Since complete rings of sets are closed under arbitrary unions and intersections,
they are in one-to-one correspondence with posets taken with the Alexandrov
topology. By combining Lemma 8.3.3 and Lemma 8.3.4 it follows that a com-
plete lattice L is isomorphic with a complete ring of sets if and only if every
element of L is the meet of a set of completely prime elements. A very similar
result is due to Raney [Ran52]: A complete lattice L is isomorphic to a complete
ring of sets if and only if every element of L is the join of a set of completely
join-irreducible elements (an element x 2 L is called completely join-irreducible
if for every S � L such that x �

W
S there exists y 2 S such that x � y).

The above result suggests that we can give a sharper representation theorem
for the category PoSet in terms of algebraic completely distributive lattices.

8.3.5. Corollary. The category PoSet is dual to the category AlgCDL (the
full sub-category of CDL whose objects are algebraic completely distributive
lattices). This duality is given by the functor OAl(�) : PoSet ! AlgCDLop

which assigns to a poset its Alexandrov topology and by MP(�) which assigns to
every algebraic completely distributive lattice L the set of all its completely prime
elements ordered as in Lop (the specialization order induced by the topological
space Pt(idL : L! L)).

Proof: Every poset X in the Alexandrov topology is an open compact space.
Hence by Lemma 8.3.2 and Lemma 8.3.4 we have that every complete lattice
L which is order generated by its M-prime elements is an algebraic complete
lattice. Since the Alexandrov topology is a complete ring of sets, it is also a
completely distributive lattice. Therefore OAl(X) is an algebraic completely
distributive lattice.

8.3. Some further equivalences 191

Conversely, it is enough to prove that every algebraic completely distributive
lattice L is order generated by its completely prime elements. We begin by show-
ing, using Lemma 8.1.16, that L is order generated by its completely irreducible
elements, where p 2 L is called completely irreducible if for all S � L such that
p =

V
S there exists s 2 S such that p = s (notice that if p is completely prime

then p is completely irreducible, but the converse, in general, is not true). Let
x ; y 2 L such that x 6� y . Since L is algebraic by [GHK+80][Theorem 4:22,
page 93] there exists a completely irreducible element p 2 L such that x � p
but y 6� p. We need to prove now that p is completely prime. Let S � L be
such that p �

V
S . Then p _

V
S = p and hence by complete distributivity of

L we obtain
V
fp _ s j s 2 Sg = p. Since p is completely irreducible there exists

s 2 S such that p _ s = p, that is s � p. Therefore p is completely prime and
by Lemma 8.1.16 we have that L is order generated by its completely prime
elements. 2

By combining the above result with Lemma 8.3.1 we obtain that the category
of sets Set is dual to the category of atomic algebraic completely distributive
lattices.

In [GHK+80, AJ94] it is shown that the category AlgCDF of algebraic
completely distributive frames with frame morphisms is dual to the category
AlgPos of algebraic dcpo's and Scott continuous functions. This duality is
given by the functor OSc(�) :AlgPos! AlgCDFop which assigns to every al-
gebraic dcpo its Scott topology and by Spec(�) which assigns to every algebraic
completely distributive frame F the set of all its prime elements Spec(F) with
the inherited opposite order. Notice that the categoriesAlgCDF andAlgCDL
di�er only in the morphisms: they preserve �nite meets and arbitrary joins in
the �rst category and both arbitrary meets and joins in the second one. Hence,
we have an inclusion functor i :AlgCDL ,! AlgCDF.

Next we give the pointless version of a result by Ho�mann [Hof79]: the
soberi�cation of a poset in its Alexandrov topology equals the ideal completion
in its Scott topology. Alternatively we can see it as the ideal completion of
a poset without considering points and even without considering ideals but
working only on the lattice-side of the duality. The function which maps every
poset P to the set of its directed ideals Idl(P) ordered by subset inclusion,
extends to a functor Idl(�) : PoSet ! AlgPos which is a left adjoint of the
forgetful functor U :AlgPos! PoSet (see for example [Plo81a]).

8.3.6. Lemma. The inclusion functor i : AlgCDL ,! AlgCDF has a left
adjoint j that is given by assigning to every algebraic complete lattice L the
Alexandrov topology of the set of all prime elements Spec(L) (with the opposite

192 Chapter 8. Topological spaces and observation frames

of the inherited order). Moreover the two squares below commute.

PoSet ' AlgCDLop

AlgPos

Idl

?

a

6

U

' AlgCDFop

iop

?

\

a

6

j op

Proof: Let us �rst notice that the inclusion functor iop is naturally isomorphic
to the functor given by the composition OSc �Idl�MP(�). Indeed for every alge-
braic complete lattice L we have OSc(Idl(MP(L))) �= OAl(MP(L)) �= L = iop(L),
where the latter isomorphism holds by Corollary 8.3.5. Naturality follows from
the fact that the functor Idl :PoSet! AlgPos is faithful.

Since the functor OSc � Idl �MP(�) has a right adjoint, namely OAl � U �
Spec(�) = OAl � Spec(�) = j op(�), we have that j op(�) is also a right adjoint
of iop(�). Therefore j :AlgCDF ! AlgCDL is a left adjoint of i(�). Com-
mutativity of the diagram is immediate from the de�nition of j (�). 2

The above lemma implies that the completely distributive lattice of the Alexan-
drov opens of a dcpo X is free over the frame of the Scott opens of X . In the
next chapter we will generalize the above results to sober spaces.

8.4 Concluding notes

In this chapter we studied topological spaces in terms of the inclusion of the
lattice of open sets into the lattice of saturated sets. Our representation theorem
di�ers signi�cantly from previous representation theorems of (some) topological
spaces in algebraic terms because observation frames are not algebras in the
traditional sense. However, in the next chapter we will prove that observation
frames are also algebraic structures, even if they are not set-based.

Our work on observations frames is strictly related to the work of J�onsson
and Tarski on Boolean algebras [JT51, JT52]. In particular we generalize the
notion of perfect extension of a Boolean algebra to that of observation frame
(a completely distributive lattice which `perfectly extends' a frame). Both the
extension theorems for Boolean algebras and for Boolean algebras with opera-
tors in [JT51] are generalized to frames (in Theorem 9.1.5 and Theorem 8.1.4,
respectively).

Our main application for the theory we developed so far is that it can be
used to extend a �nitary logic based on a topological model to an in�nitary one
without changing the model. We will treat an example of such an extension in
Chapter 10.

Further research is needed to describe limits, colimits, monos, and epis in
the category of observation frames. A related question is whether the category

8.4. Concluding notes 193

of observation frames is any good for doing some form of pointless topology, as
in the category of frames [Joh91].

Finally, we mention one more point which needs to be exploited further: it
is possible to �nd an algebraic representation of general (non-sober) directed
complete partial orders with the Scott topology. In fact the category of dcpo's
is fully and faithfully embedded into Sp0, and hence into some full sub-category
of OFrm.

194 Chapter 8. Topological spaces and observation frames

Chapter 9

Frames and observation frames

Traditionally, topological spaces are studied in an abstract way by considering
the lattice of open sets. In this case, it is convenient to regard open sets as
elements of a frame. Frames are in�nitary algebras which can be presented
by a set together with a proper class of operations (�nite meets and arbitrary
joins) which satisfy some suitable axioms. In particular �nite meets distribute
over in�nite joins. For any set X the free frame over X exists, and every frame
F can be presented as the free frame over a set of generators modulo some
(proper class of) equations. The category of frames is of interest because it is
the `right' place to do pointless topology [Joh91]. Indeed, the (opposite of the)
category of frames is related by an adjunction to the category of topological
spaces. In particular, a full sub-category of frames is dual to the category of
sober topological spaces [Joh82a].

In this chapter we continue our study of topological spaces as functions map-
ping the lattice of open sets into the lattice of saturated sets. We relate these
two abstract approaches to topology by constructing the free observation frame
over a given frame. Abstract points are preserved in constructing the free ob-
servation frame. As a consequence we obtain a characterization of sober spaces
in terms of its lattice of saturated sets, which will be the key mathematical tool
in the next chapter in which we give a conservative extension of Abramsky's
�nitary domain logic of transition systems [Abr91b] to an in�nitary domain
logic. We also study the relationship between ordinary �lters and M-�lters.

Observation frames are also shown to be (categorical) algebras over onto
functions between two sets, that is, the forgetful functor from the category of
observation frames to the category of onto functions between sets (with the
evident commutative squares as morphisms) is monadic. Using results on the
presentation of frames and of completely distributive lattices, a universal pre-
sentation of observation frames is given.

195

196 Chapter 9. Frames and observation frames

9.1 Two in�nitary algebraic theories

In this section we investigate frames and completely distributive lattices as
in�nitary algebras. We show that for the theory of frames, as well as for the
theory of completely distributive lattices, every presentation always presents an
algebra.

Presenting frames

The algebraic theory of frames has a proper class of operators,
V
I (the I -ary

meet for each �nite set I) and
W
J (the J -ary join for each set J), and a proper

class of equations:
(i) x ^ y = y ^ x (commutativity)
(ii) x ^ (y ^ z) = (x ^ y) ^ z (associativity)
(iii) x ^ x = x (idempotency)
(iv) x ^ > = x (unit)
(v) xk ^

W
fxj j j 2 Jg = xk for k 2 J (join absorption)

(vi) x ^
W
fxj j j 2 Jg =

W
fx ^ xj j j 2 Jg (in�nite distributivity)

where ^ is the binary meet and > is the 0-ary meet. The category of algebras
of the above algebraic theory is equivalent to the category Frm.

First we construct the free frame over a set X . Let Fr(X) denote the set of all
lower-closed subsets of (P�n(X);�) ordered by subset inclusion, where P�n(X)
is the collection of all �nite subsets of X . The poset Fr(X) is a complete lattice
with arbitrary intersections as arbitrary joins and �nite unions as �nite meets.
Hence the equations (i) - (v) hold. Because Fr(X) is a sub-lattice of P(P�n(X)),
the in�nite distributivity law (vi) also holds.

The set X can be mapped into the frame Fr(X) by the function �X : X !
Fr(X) de�ned, for every every x 2 X , by

�X (x) = fA ��n X j x 2 Ag:

The above construction is universal in the following sense.

9.1.1. Theorem. Let X be a set and F be an arbitrary frame. For any function
f : X ! F there exists a unique frame morphism f] : Fr(X) ! F such that
f] � �X = f .

X
�X - Fr(X) Fr(X)

HHHHHHHHf j
F
?
f]

F
?
f]

Proof: For every element I of Fr(X), it holds that

I =
[
f
\
f�X (x) j x 2 Ag j A 2 I g:

9.1. Two in�nitary algebraic theories 197

Since f]:Fr(X)! F must preserve arbitrary joins and �nite meets, and f]��X =
f , its only possible de�nition is given, for I 2 Fr(X), by

f](I) =
_
A2I

^
x2A

f (x):

The function f] preserves all joins and all �nite meets [Joh82a, Lemma 4:4 and
Theorem 1:2]. 2

By Proposition 2.1.1 it follows that the assignment X 7! Fr(X) can be extended
to a functor Fr : Set ! Frm which is a left adjoint to the forgetful functor
Frm ! Set. By Proposition 2.1.3, Frm has all small limits and all small
colimits.

Next we come to the presentation of frames. For a set G of generators, an
expression e formed from generators in G by applying the frame operators is
said to be in frame-normal form if

e =
_
I

^
J

gi;j ; (9.1)

for some set I , �nite set J and gi;j 2 G . An expression formed from elements
of G by applying the frame operators can always be reduced to an equivalent
expression in frame normal form using the equations of the algebra of frames.

9.1.2. Corollary. In the theory of frames, any presentation FrhG j Ri by a
set of generators G and a set of relations R presents a frame.

Proof: Construct the free frame Fr(G) and assume, without loss of generality,
that every expression in the relations of R is in frame normal form. There are
two functions fl ; fr : R ! Fr(G) de�ned by

fl(hel ; eri) =
[
I

\
J

�G(gi;j)

for el =
W
I

V
J gi;j , and similarly for fr . By Theorem 9.1.1 we can extend the

above functions to the frame morphisms f]l ; f
]
r : Fr(R)! Fr(G). Let F be the

coequalizer in Frm of this diagram and let h : Fr(G) ! F be the canonical
frame morphism associated with this colimit. The frame F together with the
function h � �G :G ! F is a model for the presentation, and by universality of
the construction, F presents FrhG j Ri. 2

Also the converse of the above corollary holds: every frame F has a presen-
tation. For each x 2 F , let bx be a generator, and take as relations

h
^
x2S

bx ; d̂
x2S

x i for every �nite subset S of F

h
_
x2S

bx ; d_
x2S

x i for every subset S of F :

Notice that for each frame we use only set-many relations.

198 Chapter 9. Frames and observation frames

Presenting completely distributive lattices

Next we turn to the theory of completely distributive lattices . It has a proper
class of operators, uI (the I -ary meet for each set I) and tJ (the J -ary join
for each set J), and a proper class of equations:

(i) x u y = y u x (commutativity)
(ii) x u (y u z) = (x u y) u z (associativity)
(iii) x u x = x (idempotency)
(iv) x u > = x (unit)
(v) x uufxi j i 2 I g =ufx u xi j i 2 I g (meet absorption)
(vi) xk utfxj j j 2 Jg = xk for k 2 J (join absorption)

(vii)
uftfxi;j j j 2 Jig j i 2 I g =
tfuff (i) j i 2 I g j f 2 �(I)g

(complete distributivity)

where u is the binary meet, > is the 0-ary meet, and I = ffxi;j j j 2 Jig j
i 2 I g. Recall, from Section 2.2 that �(I) denotes the set of all functions
f : I !

S
I with f (i) in the set fxi;j j j 2 Jig for all i 2 I . From the above

equations it follows that every completely distributive lattice is also a frame.
The category of algebras of the above theory is equivalent to the category CDL
of completely distributive lattices together with functions preserving arbitrary
meets and arbitrary joins.

As before, we begin by constructing the free completely distributive lattice
over a set. The construction we present is similar to the free frame construc-
tion and di�ers only slightly from the construction presented (without proof)
in [Mar79]. Recall from De�nition 4.3.1 that for a set X , CDL(X) denotes the
collection of all lower-closed subsets of the poset (P(X);�) ordered by subset
inclusion. Since CDL(X) is closed under arbitrary unions and arbitrary inter-
sections, it is a complete sub-lattice of P(P(X)). Hence CDL(X) is a completely
distributive lattice.

The set X can be mapped into CDL(X) by the function �X :X ! CDL(X)
de�ned by

�X (x) = fA � X j x 2 Ag;

for every x 2 X . The above construction is universal.

9.1.3. Theorem. Let X be a set and L be a completely distributive lattice. For
any function f : X ! L there exists a unique morphism f y : CDL(X) ! L in
CDL such that f y � �X = f .

X
�X - CDL(X) CDL(X)

HHHHHHHHf j
L
?
f y

L
?
f y

9.1. Two in�nitary algebraic theories 199

Proof: For every element J in CDL(X), it holds

J =
[
f
\
f�X (x) j x 2 Ag j A 2 Jg:

Since f y : CDL(X) ! L preserves arbitrary joins and arbitrary meets, and
f y � �X = f , its only possible de�nition is given, for J 2 CDL(X), by

f y(J) =tfuff (x) j x 2 Ag j A 2 Jg:

From the form of the above de�nition it follows that f y preserves arbitrary joins.
So it remains to prove that f y preserves all meets. Let Ji 2 CDL(X) for all i in
an arbitrary set I , and let � :P(X)! L be the function mapping every subset
A of X to

T
ff (x) j x 2 Ag. It is not hard to see that � preserves arbitrary

meets. Moreover f y(J) =tf�(A) j A 2 Jg. We have

uff y(Ji) j i 2 I g = uftf�(A) j A 2 Jig j i 2 I g

= tfuf�(g(i)) j i 2 I g j g 2 �(I)g [complete distributivity]

= tf�(ufg(i) j i 2 I g) j g 2 �(I)g [� preserves meets]

= tf�(A) j A 2
\
fJi j i 2 I gg [all Ji 's are lower sets]

= f y(
\
fJi j i 2 I g);

where �(I) is the set of all functions g : I !
S
I Ji such that g(i) 2 Ji . 2

By Proposition 2.1.1 the assignment X 7! CDL(X) can be extended to a functor
CDL :Set! CDL which is a left adjoint to the forgetful functor CDL! Set.
Moreover, by Proposition 2.1.3, CDL has all small limits and all small colimits.

For a set G of generators, an expression e formed from generators in G by
applying the operators of the theory of completely distributive lattices is said
to be in cdl-normal form if

e =t
I
u
J
gi ;j ; (9.2)

for some sets I and J , and generators gi;j 2 G . Every expression formed from
elements of G by applying the operators of the theory of completely distributive
lattices can always be reduced to an equivalent expression in cdl-normal form by
using the equations of the algebra of frames and the dual completely distributive
law as given in Section 2.2.

9.1.4. Corollary. In the theory of completely distributive lattices, any presen-
tation CDLhG j Ri by a set of generators G and a set of relations R presents a
completely distributive lattice.

Proof: Similar to that of Corollary 9.1.2. 2

200 Chapter 9. Frames and observation frames

As for the case of frames, also the converse of the above corollary holds: every
completely distributive lattice L has a presentation. For each x in L, let bx be a
generator, and take as relations

hu
x2S

bx ; du
x2S

x i for every subset S of L

ht
x2S

bx ; dt
x2S

x i for every subset S of L:

Notice that also for completely distributive lattices we use set-many relations.
We conclude this section by constructing the free completely distributive lat-

tice over a frame, using the results on the presentation of frames and completely
distributive lattices.

9.1.5. Theorem. The forgetful functor CDL ! Frm has a left adjoint de-
noted by (�) : Frm ! CDL. Moreover, for every frame F, the unit of the
adjunction, �F : F ! F de�nes an observation frame.

Proof: Let F be a frame presented by FrhG j Ri and let [[�]]FG :G ! F be its
associated function. Say F is the completely distributive lattice which presents
CDLhG jRi (notice that we have used the same generators and relations as in
the frame presentation of F). Because F is a model for CDLhG jRi, it comes

equipped with a canonical function [[�]]FG : G ! F . Since F is also a frame
and, by construction a model for FrhG j Ri, Corollary 9.1.2 gives us a unique

frame morphism �F : F ! F such that �F ([[g]]
F

G) = [[g]]FG for all generators g in
G , i.e. �F maps each generator of F to the corresponding generator of F . The
morphism �F is the unit of the adjunction between the category of frames and
that of the completely distributive lattices.

Moreover, for every other completely distributive lattice L, if f :F ! L is a
frame morphism then L together with the function f �[[�]]FG :G ! L is a model of
FrhG j Ri and also of CDLhG j Ri (only �nite meets are present in the relations
of R). By Corollary 9.1.4, there exists a unique morphism h : F ! L in CDL

such that h([[g]]FG) = f ([[g]]FG) for all generators g 2 G . Since [[�]]FG = �F ([[�]]
F

G),
f and �F are frame morphisms, and every element in F is the join of �nite meets
of elements in [[G]]FG , we have that h : F ! L is the unique morphism in CDL
such that h � �F = f . Thus, by Proposition 2.1.1, the �rst statement of the
theorem follows.

Next we prove that the frame morphism �F :F ! F mapping each generator
of F to the corresponding generator of F , de�nes an observation frame. By

construction, each element in F is the join of the meets of elements in [[G]]FG .
Using the dual of the complete distributive law (which holds for every completely
distributive lattice [Ran52]) we obtain that, for every element x 2 F ,

x =u
I
t
J
[[gi ;j]]

F

G

9.2. Observation frames as algebras 201

for some sets I and J , and generators gi;j of F . But [[gi;j]]
F

G = �F ([[gi;j]]
F

G), the

unit �F preserves arbitrary joins, and for all i 2 I ,
W
J [[gi;j]]

F

G is an element in
F . Hence every element in F is the meet of elements in �F (F), that is, by
Proposition 8.1.16, �F (F) is order generating F . By applying Corollary 8.1.17
we conclude that �F : F ! F is an observation frame. 2

Free objects are unique up to isomorphism, and hence the above theorem implies
that Fr(X) is isomorphic in the category CDL to CDL(X) for every set X .
But �Fr(X) : Fr(X) ! Fr(X) is an observation frame, hence also the unique

frame morphism �]X : Fr(X) ! CDL(X) such that �]X � �X = �X (given in
Theorem 9.1.1) de�nes an observation frame.

9.2 Observation frames as algebras

Using the results of the previous section, we are now in a position to view
observation frames as algebras. Since an observation frame is a function between
two ordinary algebras (frames and completely distributive lattices, respectively),
we expect it to be an algebra over a function between sets.

Let f : X ! Y be a function in Set. By Theorem 9.1.1 and because every
completely distributive lattice is a frame there exists a unique frame morphism
(�Y � f)

] : Fr(X)! CDL(Y) such that (�Y � f)
] � �X = �Y � f . Let f

� denote
(�Y � f)]. Using the de�nition of �Y and Theorem 9.1.1, f � :Fr(X)! CDL(Y)
can be characterized directly, for all I 2 Fr(X), by

f �(I) =
[
A2I

\
x2A

fB � Y j f (x) 2 Bg: (9.3)

In general, f � : Fr(X) ! CDL(Y) will not be an observation frame, as can
be seen by taking, for example, f to be the inclusion of a one-element set X
into a two-element set Y . The following lemma gives a necessary condition on
f : X ! Y in order that f � : Fr(X)! CDL(Y) be an observation frame.

9.2.1. Lemma. Let f :X ! Y be a function between two sets X and Y . If f
is onto then the function f � : Fr(X)! CDL(Y) is an observation frame.

Proof: Because f � is a frame morphism, we only need that every element in
CDL(Y) is the intersection of elements in the image under f � of Fr(X). Since
�]Y : Fr(Y) ! CDL(Y) is an observation frame, and Fr(Y) = Fr(f (X)), f
being onto, every element in CDL(Y) is the meet of elements in �]Y (Fr(f (X))).
Since Fr(f (X)) is the free frame over Y = f (X), every element in Fr(f (X)) is
the join of �nite meets of elements in �Y (f (X)), where �Y : Y ! Fr(f (X)) is
the unit of the adjunction in Theorem 9.1.1. But �]Y preserves arbitrary joins

202 Chapter 9. Frames and observation frames

and �nite meets, and, for all x 2 X ,

�]Y (�Y (f (x))) = �Y (f (x)) [de�ning property of �]Y]

= (�Y � f)
](�X (x)) [de�ning property of (�Y � f)]]

= f �(�X (x)): [de�nition of f �]

Since every element in Fr(f (X)) is the join of �nite meets of elements in
�Y (f (X)) and f � preserves both arbitrary joins and �nite meets, we have that
�]Y (Fr(f (X))) = f �(Fr(X)). Therefore every element in CDL(Y) is the meet
of elements in f �(Fr(X)). By Corollary 8.1.17, it follows that f � : Fr(X) !
CDL(Y) is an observation frame. 2

Consider now the full sub-category of Set2 whose objects are onto functions,
and denote it by Setepi . Thus objects in Setepi are onto functions f : X ! Y
between sets, and morphisms from f : X ! Y to g : X 0 ! Y 0 are pairs of
functions hh : X ! X 0; k : Y ! Y 0i such that k � f = g � h. Composition
is de�ned componentwise. The category Setepi has all small limits and all
small colimits (which are constructed as in category Set2). There is a functor
U :OFrm ! Setepi mapping every observation frame � : F ! L to the onto
function U (�) = � : F ! �(F) (the co-restriction of � to its image). The
functor U is de�ned on morphisms as follows:

U (�) = h� : F ! G ; e� : �(F)! �(G)i;

where � is a morphism from the observation frame � :F ! L to the observation
frame � : G ! H , and e� : �(F) ! �(G) is the restriction and co-restriction
of the unique morphism form L to G in CDL such that e� � � = � � � (see
Theorem 8.1.4). By the above commutativity, U (�) is well-de�ned.

9.2.2. Theorem. Assume that f :X ! Y is an onto function between the sets
X and Y and let � : G ! H be an observation frame. For every morphism
hh : X ! G ; k : Y ! �(G)i in Setepi from f to U (�), the frame morphism
h] :Fr(X)! G is the only morphism in OFrm from f � to � such that U (h]) �
h�X ; �Y i = hh; ki in Setepi .

Y
�Y- f �(Fr(X)) CDL(Y)

��
��
��
��

f
* HHHHHHHHk j��

��
��
��

f �
*

��
��
��
��

f �
*

X
�X - Fr(X) �(G)

?

fh]
Fr(X) H

?

fh]
HHHHHHHHh j ��

��
��
��

�
*

��
��
��
��

�
*

G
?
h]

G
?
h]

9.2. Observation frames as algebras 203

Proof: By Theorem 9.1.1, h = h] � �X . Hence � � h] � �X = � � h. Also
k y � f � � �X = � � h because

k y � f � � �X = k y � (�Y � f)
] � �X [de�nition of f �]

= k y � �Y � f [by Theorem 9.1.1 (�Y � f)] � �X = �Y � f]

= k � f [by Theorem 9.1.3 k y � �Y = k]

= � � h: [hh; ki is a morphism in Setepi]

Therefore, by Theorem 9.1.1, � � h] = k y � f �. Using Theorem 8.1.4 it follows

that h] is a morphism in OFrm from f � to � with fh] = k y. Moreover, by
Theorem 9.1.1 and Theorem 9.1.3,

U (h]) � h�X ; �Y i = hh];fh]i � h�X ; �Y i
= hh]; k yi � h�X ; �Y i

= hh] � �X ; k
y � �Y i

= hh; ki:

Uniqueness of h] follows immediately from Theorem 9.1.1, Theorem 9.1.3 and
Theorem 8.1.4. 2

The above theorem and Proposition 2.1.1 imply that the assignment

(f : X ! Y) 7! (f � : Fr(X)! CDL(Y))

extends to a functor from Setepi to OFrm which is a left adjoint to the functor
U : OFrm ! Setepi . Next we want to prove that the functor U is monadic.
As a consequence we have that the category of observation frames OFrm is
equivalent to the category of algebras induced by the monad U � (�)�. We
need the following three lemmas.

9.2.3. Lemma. The functor U :OFrm! Setepi re
ects isomorphisms.

Proof: Assume that � : F ! L and � : G ! H are observation frames such
that U (�) is isomorphic to U (�) in Setepi . Then F �= G and �(F) �= �(G).
Since every element in L is the meet of elements in �(F), the isomorphism
�(F) �= �(G) can be extended to an isomorphism between L and G . Hence F
and G are isomorphic as frames while L and G are isomorphic as completely
distributive lattices, that is � and � are isomorphic as observation frames. 2

9.2.4. Lemma. The category OFrm has all coequalizers.

Proof: Assume that �1 and �2 are morphisms in OFrm from the observation
frame � : F ! L to the observation frame � : G ! H . By Theorem 8.1.4,
�1 : F ! G induces uniquely a morphism f�1 : L ! H between completely
distributive lattices such that f�1 � � = � � �1. Similarly, �2 : F ! G induces

204 Chapter 9. Frames and observation frames

uniquely a morphism f�2 : L! H between completely distributive lattices such
that f�2 � � = � � �2.

Let (G 0; c1 : G ! G 0) be the coequalizer in Frm of �1 and �2, and let

(H 0; c2 : H ! H 0) be the coequalizer in CDL of f�1 and f�2. Notice that
c2 � � � �1 = c2 � f�1 � � = c2 � f�2 � � = c2 � � � �2:

By the de�ning property of coequalizers, there exists a unique frame morphism

 : G 0 ! H 0 such that
 � c1 = c2 � �. We claim
 is an observation frame.
Indeed, since q = uf�(x) j q v �(x)g for all q 2 H and c2 preserves arbitrary
meets, we have

c2(q) = ufc2(�(x)) j q v �(x)g

w ufc2(�(x)) j c2(q) v c2(�(x))g [c2 is monotone]

= uf
(c1(x)) j c2(q) v
(c1(x))g: [de�ning property of
]

The reverse of the above inequality holds by the de�ning property of meets.
Hence
 :G 0 ! H 0 is an observation frame. Notice that
 � c1 = c2 � � implies
c2 = fc1 by Theorem 8.1.4. One can now easily verify that
 is indeed the
coequalizer in OFrm of �1 and �2. 2

9.2.5. Lemma. The functor U :OFrm! Setepi preserves all coequalizers

Proof: Assume �1 and �2 are two morphisms in OFrm from the observation
frame � : F ! L to the observation frame � : G ! H . By Theorem 8.1.4,
�1 : F ! G induces uniquely a morphism f�1 : L ! H between completely
distributive lattices such that f�1 � � = � � �1. Similarly, �2 : F ! G induces
uniquely a morphism f�2 : L! H between completely distributive lattices such
that f�2 � � = � � �2.

Let (
 :G 0 ! H 0; c1 :G ! G 0) be the coequalizer in OFrm of �1 and �2 as
described in Lemma 9.2.4. Then (G 0; c1 :G ! G 0) is the coequalizer in Frm of

�1 and �2, and (H
0; c2 :H ! H 0) is the coequalizer in CDL of f�1 and f�2, where

c2 is the unique morphism in CDL such that
 � c1 = c2 � �. We need to prove
that (U (
);U (c1) = hc1; c2i) is the coequalizer in Setepi of U (�1) = h�1;f�1i
and U (�2) = h�2;f�2i.

Assume there is an object f :X ! Y in Setepi and a morphism hh1; h2i from
U (�) to f : X ! Y such that U (�1) � hh1; ki = U (�2) � hh1; h2i. De�ne the
functions k1 : G

0 ! X and k2 :
(G
0)! Y as follows:

k1(c1(x)) = h1(x) and k2(c2(y)) = h2(y)

for all x 2 G and y 2 �(G). By the standard theory on congruences, the above
maps are well-de�ned and they are the unique ones such that k1 � c1 = h1 and

9.2. Observation frames as algebras 205

k2 � c2 = h2. It remains only to prove that hk1; k2i is a morphism in Setepi , that
is, k2 �
 = f � k1. For all c1(x) 2 G 0,

k2(
(c1(x))) = k2(c2(�(x))

= h2(�(x)) [de�nition k2]

= f (h1(x)) [hh; ki is morphism in Setepi]

= f (k1(c1(x))): [de�nition k1]

2

9.2.6. Theorem. The functor U :OFrm! Setepi is monadic.

Proof: Apply Proposition 2.1.2 using the above Lemmas 9.2.3, 9.2.4, and 9.2.5.
2

Since Setepi has small limits and monadic functors create limits [ML71], the
category OFrm has all small limits too.

Presenting observation frames

Consider a frame F = FrhG1 j R1i and a completely distributive lattice L =
CDLhG2 j R2i. Let

[[�]]G1
:G1 ! F and [[�]]G2

:G2 ! L

be the two canonical embeddings of the generators into F and L, respectively.
Assume there exists an onto function f : G1 ! G2 between the generators of
the two presentations. If the relations in R1 and R2 (in their respective normal
forms) satisfy the following commutativity property

h
_
I

^
J

g ji ;
_
N

^
M

gmn i 2 R1) ht
I
u
J
f (g ji);t

N
u
M
f (gmn)i 2 R2; (9.4)

then the function [[�]]G2
� f :G1 ! L makes L a model of the frame presentation

FrhG1 j R1i. Hence, by Corollary 9.1.2, there exists a unique frame morphism
f � : F ! L such that, for all generators g 2 G1,

f �([[g]]G1
) = [[f (g)]]G2

:

In a way similar to the proof of Lemma 9.2.1, it is possible to show that every
element in L is the meet of elements in f �(F). Hence, by Corollary 8.1.17,
f � : F ! L is an observation frame.

Conversely, every observation frame � :F ! L can be `presented' as follows.
Consider the following two sets of generators

G1 = fbx j x 2 Fg and G2 = f
d�(x) j x 2 Fg;

206 Chapter 9. Frames and observation frames

and de�ne the function f :G1 ! G2 by f (bx) = d�(x) for all bx 2 G1. Clearly f is
an onto function. De�ne also the sets of relations

R1 = fh
^
x2S

bx ; d̂
x2S

x i j S ��n Fg [fh
_
x2S

bx ; d_
x2S

x i j S � Fg;

R2 = fhufbx j x 2 Sg; d(u S)i j S � �(F) & uS 2 �(F)g

[fhtfbx j x 2 Sg; d(tS)i j S � �(F) & tS 2 �(F)g:

The frame F presents FrhG1 j R1i and the completely distributive lattice L
presents CDLhG2 j R2i. By universality of the presentation of F it follows that
f � : F ! L is equal to � : F ! L.

9.3 Frames and observation frames

In this section we take a closer look at the relationship between frames and
observation frames. We start by relating the categories of frames, completely
distributive lattices and observation frames.

There is a functor Dom : OFrm ! Frm mapping an observation frame
� : F ! L to Dom(�) = F and a morphism � : (� : F ! L)! (� : G ! H) in
OFrm, to the frame morphism Dom(�) = � : F ! G .

9.3.1. Theorem. The functor Dom :OFrm! Frm has a left adjoint.

Proof: Let F be a frame and consider the observation frame �F :F ! F given
in Theorem 9.1.5. By de�nition, Dom(�F) = F . Let now � :G ! H be another
observation frame together with a frame morphism � : F ! Dom(�). The
composition � �� :F ! H is a frame morphism. Hence, by Theorem 9.1.5 there
exists a unique morphism : F ! H in CDL such that � �F = � � �. By
Theorem 8.1.4 this implies that � is a morphism in OFrm. Since Dom(�) = �,
by Proposition 2.1.1 we have that the functor Dom :OFrm! Frm has a left
adjoint. 2

Next we consider the relationship between observation frames and completely
distributive lattices. Let Cod :OFrm ! CDL be the functor which maps an
observation frame � :F ! L to the completely distributive lattice Cod(�) = L,
and every morphism � in OFrm, between the observation frames � : F ! L
and � : G ! H , to Cod(�) = e�, where e� : L ! H is the unique morphism in
CDL such that e� � � = � � � given in Theorem 8.1.4.

9.3.2. Theorem. The functor Cod :OFrm! CDL has a right adjoint.

Proof: For any completely distributive lattice L consider the observation frame
idL : L ! L. If � : G ! H is another observation frame and : H ! L is a
morphism in CDL, then � = � � :G ! L is the unique frame morphism such

9.3. Frames and observation frames 207

that idL � � = � �. Hence, by Theorem 8.1.4, � is a morphism in OFrm and
Cod(�) = e� = . From the dual of Proposition 2.1.1 it follows that the functor
Cod :OFrm! CDL has a right adjoint. 2

It is not di�cult to see that an element p of a completely distributive lattice L
is completely prime if and only if p is an M-prime element of the observation
frame idL : L! L. By Lemma 8.3.4 it follows that idL : L! L is spatial if and
only if L is isomorphic in CDL to a complete ring of sets.

Filters and M-�lters

In this section we investigate, for an observation frame � : F ! L, some of the
relationships between elements of the completely distributive lattice L, M-�lters
of the observation frame � and ordinary �lters of the frame F . We will use these
relationships for a characterization of sober spaces.

We start by showing that points are preserved by the construction of the free
observation frame over a frame in which a point in a frame F is a completely
prime �lter of F , whereas by Lemma 8.1.8 a point in an observation frame
� : F ! L is a completely prime M-�lter of �.

9.3.3. Theorem. The collection of all completely prime �lters of a frame F is
isomorphic to the collection of all completely prime M-�lters of the free obser-
vation frame �F : F ! F.

Proof: Let 2 = f>;?g be the two point completely distributive lattice with
? v >, and write 2 for the observation frame id2 : 2! 2. Let CPF(F) be the
set of all completely prime �lters of F and CPMF(�F) the set of all completely
prime M-�lters of �F : F ! F . By Lemma 8.1.8, OFrm(�F ; 2) �= CPMF(�F),
whereas Frm(F ; 2) �= CPF(F) (see [Vic89, Proposition 5:4:7] for the latter
isomorphism). But Dom(2) = 2 and �F is the free observation frame over F by
Theorem 9.3.1. Hence Frm(F ; 2) �= OFrm(�F ; 2). 2

A frame F is called spatial, or said to have enough points, if for all x and y
in F , if x 6� y then there exists a completely prime �lter F of F such that
a 2 F and b 62 F . The full sub-category of Frm whose objects are spatial
frames F is denoted by SFrm. If X is any topological space then its lattice of
open sets O(X) is a spatial frame, since we can take F to be the completely
prime �lter Fx = fo 2 O(X) j x 2 og. The following corollary is an immediate
consequence of the above theorem.

9.3.4. Corollary. A frame F is spatial if and only if the observation frame
�F : F ! F is spatial. Hence the adjunction of Theorem 9.3.1 restricts to an
adjunction between the category of spatial frames SFrm and the category of
spatial observation frames SOFrm. 2

208 Chapter 9. Frames and observation frames

In De�nition 5.2.3 we have seen that a topological space X is sober if the
assignment x 7! Fx , for all x 2 X , de�nes an isomorphism between X and
CPF(O(X)). Given a frame F , we can construct a sober space Pt!(F) by
taking the set of all completely prime �lters of F , denoted by CPF(F), together
with the collection of open sets

F(a) = fF 2 CPF(F) j a 2 Fg;

for every a 2 F . This collection forms a topology on CPF(F). The following
proposition can be found in [Joh82a, II, Corollary 1:7].

9.3.5. Proposition. The assignment F 7! Pt!(F) de�nes a functor Frmop!
Sp which is a right adjoint of O(�) : Sp! Frmop (the functor which maps
every topological space to its lattice of open sets and every continuous function
to its inverse restricted to the open sets). Furthermore we have that

(i) the adjunction restricts to a duality between the SFrm and Sob;
(ii) the inclusion Sob ,! Sp0 has left adjoint Pt!(O(�));
(iii) the inclusion SFrm ,! Frm has left adjoint O(Ptop! (�))op. 2

The soberi�cation of a topological space X is the sober space Pt!(O(X)). Notice
that the process of soberi�cation of a topological space X can be replaced by
the process of constructing the topological space which best approximates the
`frame part' of the observation frame associated with X , that is,

Pt!(O(X)) = Pt!(Dom(
(X)):

Since adjoints are de�ned uniquely (up to natural isomorphisms), the above
implies that the two squares below commute.

Sp0 ' SOFrmop

Sob

Pt!(O(�))

?

a

[

6

i

' SFrmop

Domop

?

a

6

(�)
op

The functor Dom :OFrm! Frm can therefore be considered as the pointless
soberi�cation of an abstract topological space. Next we use the above results
(which generalize Lemma 8.3.6) for a characterization of sober spaces.

9.3.6. Theorem. A T0 space X is sober if and only if the completely distribu-
tive lattice of saturated sets Q(X) is free over the frame of open sets O(X).

Proof: Assume X is a sober space. By the commutativity of the above diagram
it follows that the observation frames
(X):O(X)!Q(X) and �O(X) :O(X)!

O(X) are isomorphic in OFrm. Hence O(X) is isomorphic to Q(X) in CDL.

9.3. Frames and observation frames 209

But O(X) is the free completely distributive lattice over the frame O(X), by
Theorem 9.1.5.

For the converse, assume X is a T0 space and Q(X) is the free completely
distributive lattice over the frame O(X). Then the set of all completely prime
M-�lter of
(X) coincides with the set of all completely prime M-�lters of �O(X),
that is,

CPMF(
(X)) = CPMF(�O(X)):

Notice that we have an equality and not an isomorphism because the frame
parts of the two observation frames are identical. By combining Lemmas 8.1.8
and 8.1.15, and because X is a T0 space, the assignment x 7! fo 2 O(X) j
x 2 og is an isomorphism between X and CPMF(
(X)). On the other hand,
CPMF(�O(X)) coincides with CPF(O(X)) by Theorem 9.3.3. Hence X is sober.

2

The characterization of sober spaces by means of saturated sets can intuitively
be explained as follows. Sober spaces are precisely those spaces whose com-
pletely distributive lattice of saturated sets can be presented without in�nite
meets in its relations. The following corollary is then immediate.

9.3.7. Corollary. A T0 space X is sober if and only if the completely prime
�lters of O(X) coincide with the completely prime M-�lters of
(X).

Proof: If X is sober then X is isomorphic to the set CPMF(
(X)) of all
completely prime M-�lters of
(X) by Lemma 8.1.15. By Theorem 9.3.6,
CPMF(
(X)) coincides with the set CPMF(�O(X)) of all completely prime M-
�lters of �O(X). The latter set coincides with the set CPF(O(X)) of completely
prime �lters of O(X) by Lemma 9.3.3 because O(X) is a spatial frame.

Conversely, assume CPMF(
(X)) coincides with CPF(O(X)). Because X
is T0 the mapping x 7! fo 2 O(X) j x 2 og is an isomorphism between X and
CPMF(
(X)). Hence, by de�nition, X is sober. 2

Recall from Chapter 5 that a sober space X is said to be spectral if �nite
intersections of compact open sets are still compact, and the compact open sets
form a basis; a spectral space X is a Stone space if the complement of compact
open is compact open. For a T0 space X , we have the following characterization
`by freeness':

(i) X is a Stone space if and only if its frame of open sets O(X) is free over
the Boolean algebra of compact open sets KO(X);

(ii) X is a spectral space if and only if its frame of open sets O(X) is free
over the distributive lattice of compact open sets KO(X);
(iii) X is a coherent space if and only if its frame of open sets O(X) is free

over the distributive lattice of compact saturated sets KQ(X);

210 Chapter 9. Frames and observation frames

(iv) X is a sober space if and only if the completely distributive lattice of
saturated sets Q(X) is free over the frame of open sets O(X).
The �rst three characterizations are standard and can be easily derived from
similar results in [Joh82a, Vic89].

We conclude this chapter by establishing the fundamental role of M-�lters
in the setting of observation frames.

9.3.8. Lemma. Let � : F ! L be an observation frame. There is an order
isomorphism between L and the collection of M-�lters MF(�) ordered by superset
inclusion.

Proof: We have already seen in Lemma 8.1.6 that the map U 7! "(u�(U))
is an isomorphism between M-�lters of � and principal �lters of L. Since
"(u�(U)) is isomorphic to u�(U) we have that the map

U 7!u�(U)

is an isomorphism between M-�lters and elements of L with as inverse the
mapping q 7! U(q) = fa 2 F j q v �(a)g. It is not di�cult to see that both
mappings are order preserving. 2

Let � :F ! L be an observation frame. An element q 2 L is said to be compact
with respect to F if for all directed subsets S of F , q v t�(S) implies that
there exists s 2 S such that q v �(s). For example, for every topological space
X , a set q 2 Q(X) is compact with respect to O(X) if and only if q is compact.

The order-isomorphism of Lemma 9.3.8 restricts to elements of L compact
with respect to F and Scott open M-�lters of �, where an M-�lter U of � is
said to be Scott open if it is an open set in the Scott topology on F .

9.3.9. Lemma. Let � : F ! L be an observation frame.
(i) An element q of L is compact with respect to F if and only if U(q) is a

Scott open M-�lter of �.
(ii) A subset U of F is a Scott open M-�lter of � if and only if u�(U) is

compact with respect to F .

Proof: By Lemma 9.3.8 it is enough to prove only one implication for each
item.

(i) Let q 2 L be compact with respect to F and let S � F be a directed
set. If

W
S 2 U(q) then q v �(

W
S) =t�(S). Since q is compact with respect

to F there exists s 2 S such that q v �(s). Hence s 2 U(q), that is, U(q) is a
Scott open subset of F . It is also an M-�lter of � because if u�(U(q) v �(a)
for some a 2 F , then q v �(a) and hence a 2 U(q).

(ii) Assume U is a Scott open M-�lter of � and let S be a directed subset
of F . If u�(U) v t�(S) = �(

W
S) then

W
S 2 U because U is an M-�lter.

But it is also Scott open, hence there exists s 2 S such that s 2 U . Hence
u�(U) v �(s), that is, u�(U) is compact with respect to F . 2

9.3. Frames and observation frames 211

For an observation frame � : F ! L we can obtain a relationship between
completely prime M-�lters and elements q 2 L such that for every S � F if
q v t�(S) then there exists an s 2 S such that q v �(s). The proof is as
before.

Lemma 9.3.9 is of a more fundamental nature than what is normally called
the Hofmann-Mislove theorem (also known as the Scott-open �lter theorem)
given in Corollary 9.3.11 below. The latter is about Scott-open sets F � O(X)
of a (sober) space X , which are ordinary �lters. This theorem is due to Hof-
mann and Mislove [HM81], and can in our present setting be obtained from the
following result. It is stated where the Axiom of Choice is used and when the
soberness of the space is needed. We sketch the proof for reasons of complete-
ness. It is very similar to Lemma 8.2.2 in [Vic89].

9.3.10. Lemma. For a sober space X , a Scott-open set F � O(X) is an M-
�lter if and only if it is an ordinary �lter.

Proof: The (only-if) part is obvious, so we concentrate on the (if) part. Take
a Scott-open �lter F � O(X). We have to show\

F � o 0) o 0 2 F :

Towards a contradiction, suppose o 0 62 F . Then we have to produce an element
x 2 X with x 2

T
F but x 62 o 0. Because X is sober it su�ces to give a prime-

open p 2 O(X) with p 62 F and o 0 � p, where we think of p as the directed
union

S
fo 2 O(X) j x 62 og. Hence one considers the poset

P = fu 2 O(X) j o 0 � u and u 62 Fg; ordered by inclusion.

Every chain in P has an upper bound, so by Zorn's Lemma we get a maximal
element p 2 P . It remains to show that p is prime-open. Towards the contrary,
assume

o1 \ o2 � p but o1 6� p and also o2 6� p:

Because p is maximal, both the open sets o 01 = p [o1 and o 02 = p [o2 are in F
and hence, because F is a �lter, also o 01\o

0
2 2 F . But o

0
1\o

0
2 = p[(o1\o2) = p.

Contradiction. 2

Finally we obtain the result of Hofmann and Mislove [HM81] as a direct
consequence of Lemma 9.3.10 and Lemma 9.3.9.

9.3.11. Corollary (Hofmann-Mislove theorem). For a sober space X , there is
an order isomorphism between the poset (KQ(X);�U) of compact saturated sets
and the poset of Scott-open �lters F � O(X), ordered by inclusion. 2

212 Chapter 9. Frames and observation frames

In general, even for a sober space X , the set of all M-�lters of the observation
frame
(X) is strictly included in the set of all ordinary �lters of O(X). We
have already seen in the previous chapter an example of �lter which is not an
M-�lter. Alternatively, consider an in�nite set X with the discrete topology.
There are many �lters F for which

T
F is empty, ranging from the �lter of

co�nite sets to P(X) itself, and including all non-principal ultra�lters. But the
empty set is a saturated subset of X , and hence, by Lemma 9.3.8, it corresponds
to only one M-�lter of
(X).

9.4 Concluding notes

The construction of the free completely distributive lattice over a frame which
we presented in this chapter is rather indirect. First we construct the free
completely distributive lattice CDL(F) over the underlying set of a frame F
and then we impose relations on CDL(F) in order to turn it into a model of a
presentation of F . It would be nice to characterize the free completely distribu-
tive lattice over a frame directly. The intuitively appealing �lter completion
of a frame in order to add the missing codirected meets unfortunately does
not work: by Theorem 9.3.6, it would imply the existence of an isomorphism
between �lters of open sets and saturated sets of a sober space. Such an iso-
morphism does not always exists, as can be deduced from the last example after
Corollary 9.3.11.

Presentations by generators and relations of observation frames enable us
to de�ne new observation frames for old. Much of the theory presented by
Vickers [Vic89] for frames can be exported to observation frames. An interesting
related question is whether the coproduct of two spatial observation frames gives
a spatial observation frame. For ordinary frames coproduct does not need to
preserve spatiality [Joh82a, Proposition 2:14].

Chapter 10

An in�nitary domain logic for

transition systems

The aim of this chapter is to apply the framework of observation frames in order
to provide a bridge between the semantics of computations and their logic.

We treat a case study based on the theory developed by Abramsky [Abr87].
Our starting point is Abramsky's domain logic for transition systems [Abr91a]:
his logic is equivalent to the Hennessy-Milner logic in the in�nitary case, and
hence it characterizes bisimulation for every transition system. However in
the �nitary case it is more satisfactory than the Hennessy-Milner logic in the
sense that it characterizes the �nitary observable part of bisimulation for every
transition system.

The main result of Abramsky [Abr91a] is that the Lindenbaum algebra gen-
erated by his �nitary logic is a distributive lattice dual to an SFP-domain ob-
tained as a solution of a recursive domain equation. We extend Abramsky's
result by proving that the Lindenbaum algebra generated by the in�nitary logic
is a completely distributive lattice dual to the same SFP-domain. As a conse-
quence soundness and completeness of the in�nitary logic is obtained for the
class of �nitary transition systems.

10.1 Domain theory in logical form

Complete partial orders were originally introduced as a mathematical struc-
ture to model computation [Sco70], in particular as domains for denotational
semantics [SS71]. Successively, Scott's presentation of domains as information
systems [Sco82] suggested a connection between denotational semantics and
logics of programs. Abramsky [Abr87, Abr91b] uses Stone duality to relate two
views of complete partial orders: one in terms of theories and one in terms of
models.

Abramsky's starting point is that for an algebraic cpo P , its compact el-
ements completely determine P , whereas for a logic the Lindenbaum algebra

213

214 Chapter 10. An in�nitary domain logic for transition systems

provides a model from which the logic can be recovered. If P is an SFP-domain,
then the collection KO(P) of all Scott compact open subsets of P ordered by
subset inclusion forms a distributive lattice, that is, P in its Scott topology is
a spectral space. The distributive lattice KO(P) can be viewed as the Linden-
baum algebra of some logic. Conversely, given a distributive lattice L we can
�rst construct the free frame Idl(L) by ideal completing L, and then we derive
a topological space from Idl(L) using using the adjunction given in Proposi-
tion 9.3.5.

In this way, the duality between the category of spatial frames SFrm and
the category of sober spaces Sob given in Proposition 9.3.5 cuts down to a
duality between the category of distributive lattices DLat and the category
Spec of spectral T0 spaces and continuous functions which preserve compact
open subsets under inverse image ([Joh82a, II :2:11 and II :3:3]).

In his thesis [Abr87] Abramsky provides a method that allows to identify the
logic that an SFP-domain generates. He considers a number of basic construc-
tors of domain theory and shows how to generate a logic whose Lindenbaum
algebra arises from the application of the constructors to the Lindenbaum al-
gebras dual to the SFP-domains to which the constructors are to be applied.
Abramsky's theory applies therefore to all SFP-domains freely generated by the
constructors he considered. These constructors include lift, coalesced and sepa-
rated sum, products, function space, Hoare, Smyth and Plotkin powerdomains,
and recursion.

The logics of compact opens considered by Abramsky are weak in expressive
power, and inadequate as a general speci�cation formalism [Abr91b]. What we
need is a language, with an accompanying semantic framework, which permits
to go beyond compact open sets. A �rst step would be to allow more general
open sets by means of in�nite disjunctions. Since the spaces considered by
Abramsky are spectral, this would not require a major adjustment of the se-
mantic framework. However, for speci�cation purposes we also need the ability
to express in�nite conjunctions. To this end we can apply the results of the
previous two chapters|characterizing sober spaces in terms of the completely
distributive lattice of saturated sets|and we can freely extend the �nitary logic
of compact opens to the in�nitary logic of saturated sets. The extension is con-
servative in the sense that the topological space represented by a �nitary logic
coincides with the one represented by its in�nitary extension.

10.2 Transition systems

We begin by recalling some notions on labelled transition systems (with diver-
gence). In Chapter 4 we have already introduced transition systems as a basic
mathematical structure for modeling computations of programming languages
(see also [Plo81b]).

10.2. Transition systems 215

10.2.1. De�nition. A labelled transition system with divergence is a tuple
hP ;Act ;�!;*i where P is a set of processes, Act a set of atomic actions,
�!� P � Act � P is a transition relation and * is a predicate on P . The
predicate * is called the divergence predicate. The convergence predicate + on
P is de�ned to be the complement of the divergence predicate, that is += Pn *.
We use p * (p +) to denote that the process p diverges (converges).

Transition systems can be used to identify processes with the same observ-
able behaviour. One of the well-known behavioral equivalences on processes is
bisimulation [Mil80, Par81].

10.2.2. De�nition. Given a transition system hP ;Act ;�!;*i, a relation R �
P�P is called a partial bisimulation whenever, if hp; qi 2 R then for all a 2 Act

(i) p
a
�! p 0) 9q 0 2 P : q

a
�! q 0 & hp 0; q 0i 2 R;

(ii) p +) q + & (q
a
�! q 0) 9p 0 2 P : p

a
�! p 0 & hp 0; q 0i 2 R).

We write p <�
B q if there exists a partial bisimulation R with hp; qi 2 R.

Often we will use partial bisimulations to compare processes from di�erent
transition systems. This can be formally done by taking the disjoint union of
the two systems, and using the above de�nition of partial bisimulation. Partial
bisimulations can also be described in terms of iteration [Par81], but in general
one needs to consider a non-countable sequence of relations (in the complete
lattice P(P � P) ordered by subset inclusion) approximating <�

B . By consid-
ering only countable approximants of <�

B one obtains the so-called observable
equivalence <�

!=
T
!
<�
n [Mil80], where

� <�
0= P � P , and

� p <�
n+1 q if and only if for all a 2 Act

(i) p
a
�! p 0) 9q 0 2 P : q

a
�! q 0 & p 0 <�

n q 0;

(ii) p +) q + & (q
a
�! q 0) 9p 0 2 P : p

a
�! p 0 & p 0 <�

n q 0).

In general for a transition system T , <�
B�<�

!. However, if T is image-�nite
then the two notions coincide [HM85], where T = hP ;Act ;�!;*i is said to be
image-�nite if for all processes p 2 P and actions a 2 Act the set

fq j p
a
�! qg

is �nite.
A particular example of a transition system is given by the collection of all

(�nite) synchronization trees over an alphabet Act of actions. De�ne the set
(t 2)ST (Act) of �nitary synchronization trees over Act by

t ::= �Iai ti j �I ai ti +
;

216 Chapter 10. An in�nitary domain logic for transition systems

where I is a �nite index set, and all the ai 's are actions in Act for i 2 I .
If I = ; then we write � for �I ai ti , and
 for �I ai ti +
. The set of all
�nitary synchronization trees can be turned into a transition system ST (Act) =
hST (Act);Act ;�!;*i, where

� t * if and only if
 is included as a summand of t , and

� t
ai�! ti for each summand ai ti of t .

Synchronization trees can be used to de�ne a �nitary preorder on processes
of more general transition systems [Gue81].

10.2.3. De�nition. For a transition system hP ;Act ;�!;*i de�ne the �nitary
preorder <�

F� P � P by

p <�
F q if and only if 8t 2 ST (Act): t <�

B p) t <�
B q :

Since �nite synchronization trees are a model for �nite processes, the �nitary
preorder can be considered as the �nite observable part of partial bisimulation.
For every transition system T , it holds that

<�
B�<�

!�<�
F :

In general, these inclusions are strict [Abr91a, pag. 191]. If p 2 P is a process of
a transition system hP ;Act ;�!;*i and t 2 ST (Act) is a �nite synchronization
tree it holds that t <�

B p if and only if t <�
! p [Abr91a, Lemma 5:10].

Another example of a transition system is given by the SFP-domain D ob-
tained as the initial (and �nal) solution in the category SFP of the recursive
domain equation

X �= (1)? � (Pco
c

 X
a2Act

X

!
n f;g);

where 1 is the one-point cpo, Act is a countable set of actions, (�)? is the lift, �
is the coalesced sum,

P
a2Act is the countable separated sum, and Pco

c (�) n f;g
is the Plotkin powerdomain (we use Proposition 6.3.7 to characterize it in terms
of Scott-compact and convex sets). Below we will omit the isomorphism pair
relating the left and the right hand side of the solution D of the above domain
equation. The SFP-domain D can be seen as the transition system hD;Act ;�!
;*i where

� d
a
�! d 0 if and only if ha; d 0i 2 d and

� d * if and only if ? 2 d .

The above de�nition implies, for d 2 D, that if d = 1 then d + and for all
a 2 Act and d 0 2 D there is no transition d

a
�! d 0; whereas if d = f?g then

d * and for all a 2 Act and d 0 2 D there is no transition d
a
�! d 0.

10.2. Transition systems 217

Abramsky's logic for transition systems

Like the Hennessy-Milner logic [HM85], the idea of Abrasmky's in�nitary logic
L1;1 for transition systems [Abr91a] is to obtain a suitable characterization of
partial bisimulation in terms of a notion of property of processes: p <�

B q if and
only if every property satis�ed by p is also satis�ed by q . However, the �nitary
restriction of Abramsky's logic di�ers from the �nitary Hennessy-Milner logic in
the sense that it characterizes the �nitary observable part of partial bisimulation
for all transition systems.

10.2.4. De�nition. Let (a 2)Act be a set of actions. The language L1;1 over
Act has two sorts: � (processes) and k (capabilities). We write (� 2)L�

1;1 for
the class of formulae of sort �, and (2)Lk1;1 for the class of formulae of sort
k , which are de�ned inductively as follows:

� :: =
_
I

�i j
^
I

�i j 2 j 3

 :: =
_
I

 i j
^
I

 i j a(�);

where I is an arbitrary index set. If I = ; then we write tt for
V
I �i and

V
I i ,

and we write � for
W
I �i and

W
I i .

Before we interpret the language L1;1 we need the following de�nitions.
For a transition system hP ;Act ;�!;*i de�ne the set Cap of capabilities by

Cap = f?g [(Act � P):

The set of capabilities of a process p 2 P is given by

C (p) = f? j p * g [fha; qi j p
a
�! qg:

For a transition system T = hP ;Act ;�!;*i, we interpret the language
L1;1 by means of the satisfaction relations j=�� P � L�

1;1 and j=k� Cap �
Lk1;1 de�ned as follows:

p j=�

V
I �i , 8i 2 I : p j=� �i

p j=�

W
I �i , 9i 2 I : p j=� �i

p j=� 2� , p + and 8c 2 C (p): c j=k �
p j=� 3� , 9c 2 C (p): c j=k �

c j=k

W
I �i , 9i 2 I : c j=k �i

c j=k

V
I �i , 8i 2 I : c j=k �i

c j=k a(�) , c = ha; qi and q j=� �:

For a transition system T = hP ;Act ;�!;*i and formula � of L�
1;1 we write

[[�]]�T for fp 2 P j p j=� �g. Assertions A over the language L�
1;1 are of the

218 Chapter 10. An in�nitary domain logic for transition systems

form � �� or � =� for � in f�; kg with � and in L�
1;1. The satisfaction

relation between transition systems T and assertions is de�ned by

T j= � �� , 8p 2 P : p j=� � implies p j=�
T j= � =� , 8p 2 P : p j=� � if and only if p j=�

T j= � �k , 8c 2 Cap: c j=k � implies c j=k
T j= � =k , 8c 2 Cap: c j=k � if and only if c j=k :

As usual, the satisfaction relation can be extended to classes of transition sys-
tems T by

T j= A , 8 T 2 T : T j= A:

If T is the class of all transition systems then we simply write j= A.
Let L!;! be the sub-language of L1;1 obtained by the restriction to �nite

conjunctions and �nite disjunctions.

10.2.5. Theorem. For a transition system hP ;Act ;�!;*i and p; q in P,

(i) p <�
B q if and only if 8� 2 L�

1;1: p j= �) q j= �;
(ii) p <�

F q if and only if 8� 2 L�
!;!: p j= �) q j= �.

Proof: See Theorems 5:6 and 5:8 in [Abr91a]. 2

Next we present a proof system for assertions over L1;1. (We omit the sort
subscripts.) The following logical axioms give to the language the structure of
a large completely distributive lattice.

(� �ref) � � � (� �trans)
� � & � �

� � �

(= �I)
� � & � �

� =
(= �E)

� =

� � & � �

(^ � I)

f� � igi2I

� �
^
I

 i
(^ � E)

V
I �i � �k (k 2 I)

(_ � I)

f�i � gi2I_
I

�i � (_ � E) �k �
W
I �i (k 2 I)

(^ � dist)
V
I

W
Ji
�i;j =

W
f 2�(I)

V
I �i;f (i)

where �(I) denotes the set of all functions f : I !
S
I Ji with f (i) 2 Ji for

all i 2 I . The dual of the (^ � dist)-axiom is derivable from these logical
axioms [Ran52]. The followingmodal axioms relate constructors with the logical
structure.

10.2. Transition systems 219

(a� �)
� �

a(�) � a()

(a � ^)
(i) a(

V
I �i) =

V
I a(�i) (I 6= ;)

(ii) a(�) ^ b() = F (a 6= b)
(a � _) a(

W
I �i) =

W
I a(�i)

(2� �)
� �

2� � 2

(2� ^) 2
V
I �i =

V
I 2�i (I 6= ;) (2� _) 2(� _) � 2� _3

(3� �)
� �

3� � 3

(3� ^) 2� ^3 � 3(� ^) (3� _) 3
W
I �i =

W
I 3�i

We write L1;1 ` A if the assertion A of L1;1 is derivable from the above
axioms and rules.

10.2.6. Theorem. (Soundness) If L1;1 ` A then j= A.

Proof: See Theorem 4:2 in [Abr91a]. 2

Next we turn to the �nitary logic L!;! in order to prove the reverse of the above
result for the class of all transition systems.

De�ne the syntactic equivalence � on formulae of L�
!;! by

�1 � �2 if and only if L�
!;! ` �1 =� �2:

Clearly, � is an equivalence relation. Let [�] be the equivalence class of � under
�, and denote the set of � equivalence classes by LA�

!;!. There are natural
operations making LA�

!;! a distributive lattice. To show this, we de�ne an order
� on LA�

!;! by

[�1] � [�2] if and only if L�
!;! ` �1 �� �2:

It can be checked that � is a well-de�ned order relation. Notice that the poset
LA�

!;! has greatest and least elements given by the equivalence classes of all
theorems in LA�

!;! and of all non-derivable formulae in LA�
!;!, respectively.

The next step is to de�ne join and meet in LA�
!;!:

[�1] _ [�2] =def [�1 _ �2] and [�1] ^ [�2] =def [�1 ^ �2]:

The above operations are well-de�ned. Moreover, by the logical axioms, it
follows that the join and the meet of the poset LA�

!;! are given by the above

220 Chapter 10. An in�nitary domain logic for transition systems

_ and ^, and that the poset LA�
!;! is in fact a distributive lattice. We call the

lattice LA�
!;! the Lindenbaum algebra of L�

!;!.
Since LA�

!;! is a distributive lattice, it can be represented by a spectral
space. The following fundamental result shows that the �nitary logic L�

!;! does
indeed correspond exactly to the SFP-domain D de�ned in the previous section
and taken with the Scott topology.

10.2.7. Theorem. Let KO(D) be the distributive lattice of Scott compact open
sets of D ordered by subset inclusion. The function
 :LA�

!;! ! KO(D) de�ned,
for � in L�

!;!, by

([�]) = [[�]]�D

is a well-de�ned order isomorphism.

Proof: See Theorem 4:3 in [Abr91a]. 2

As already suggested by Lemma 8.2.8, the proof of the spatiality of the dis-
tributive lattice LA�

!;! is equivalent to completeness of the underlying logical
system. Indeed, (strong) completeness of L�

!;! is an immediate consequence of
the soundness Theorem 8.2.7 and of the above duality result.

10.2.8. Theorem. (Completeness) Let T be any class of transition systems
containing D. For �1 and �2 in L�

!;!, T j= �1 � �2 if and only if L�
!;! ` �1 �

�2.

Proof: For �1 and �2 in L�
!;1 we have,

D j=� �1 �� �2 , [[�1]]
�

D � [[�2]]
�

D

,
([�1]) �
([�2]) [de�nition of
]

, [�1] � [�2] [
 is an order isomorphism]

, L�
!;! ` �1 �� �2: [de�nition of LA�

!;!]

2

We conclude this section by showing that the SFP-domain D can be used as
semantic domain for all transition systems. Let T = hP ;Act ;�!;*i be a
transition system and let p 2 P . The set

TS(p) = f[�] 2 LA�
!;! j p j=� �g

is a prime �lter of the distributive lattice LA�
!;!. Hence, by Theorem 10.2.7, it

corresponds uniquely to an element in D. Therefore, the assignment p 7! TS(p)
de�nes a function TS[[�]] :P ! D which is unique among all functions f :P ! D
such that

p j=� � if and only if f (p) j=� �;

for all p 2 P and � 2 L�
!;! [Abr91a, Theorem 5:21]. By the characterization

Theorem 10.2.5, it follows that p and TS[[p]] are equivalent in the �nitary pre-
order <�

F . Hence the function TS[[�]] : P ! D can be regarded as a syntax-free
semantics which is universal because it is de�ned for every transition system.

10.3. Compactly branching transition systems 221

10.3 Compactly branching transition systems

Consider properties of a transition system hP ;Act ;�!;*i like `the process p
converges', `every a-path starting from p is �nite', or `along every a-path start-
ing from p eventually holds'. The �nitary language L�

!;! is too weak to
formalize these properties, which however can be expressed in the in�nitary
language L�

1;1 by

� p j=� 2
W
a2Act a(tt);

� p j=�

W
n2! �n , where

(
�0 = � and
�n+1 = 2(a(�n) _

W
Actnfag b(tt));

� p j=�

W
n2! �n , where

(
�0 = � and
�n+1 = ^3a(tt) _2(a(�n) _

W
Actnfag b(tt)):

What we need is a language which allows more general formulae. An example
is L!;1, the sub-language of L1;1 which allows in�nite disjunctions but has
only �nite conjunctions. Adding expressive power to the �nitary logic should
not change our main motivation for its introduction: it should characterize
the �nitary observable part of partial bisimulation. We introduce the following
scheme over L!;1 which restricts the class of transition systems and allows to
write any formula in L!;1 as disjunctions (possibly in�nite) of �nitary formulae
in L!;!:

(BN) 2
W
I �i �

W
J2Fin(I) 2

W
J �j (�i 2 L!;!)

where Fin(I) is the set of all �nite subsets of I . The axioms (BN) could equiv-
alently be formulated as: 2 is Scott-continuous (preserves directed joins). This
explains that the intuition behind (BN) is that of bounded non-determinism.
For example, every weakly �nitely branching transition system satis�es (BN)
(a transition system hP ;Act ;�!;*i is said to be weakly �nitely branching if for
all p 2 P ,

p + implies fq 2 P j 9a 2 Act : p
a
�! qg

is �nite. We denote the set on the right-hand side by Br(p)).
Transition systems satisfying (BN) can be characterized topologically as fol-

lows. Let T = hP ;Act ;�!;*i be a transition system and let O(T) denote the
set of all [[�]]�T for � in L�

!;1. Clearly, O(T) forms a topology on P . Transition
systems together with a topology are introduced in the context of modal logic
in [Esa74], where, in a restricted form, the direction from left to right of the next
lemma is proved (the proof of the other direction can been found in [BK95]).

10.3.1. Lemma. A transition system T = hP ;Act ;�!;*i satis�es (BN) if
and only if for all p 2 P such that p + the set Br(p) is compact in the topology
O(T).

222 Chapter 10. An in�nitary domain logic for transition systems

Proof: Assume T satis�es (BN), take a p 2 P with p + and Br(p) �
S
I [[�i]]

�

T
.

Then p j=� 2
W
I �i . Hence, by (BN), p j=�

W
J2Fin(I) 2

W
J �j , that is, Br(p) �S

J [[�j]]
�

T for a �nite subset J of I . Hence Br(p) is compact in O(T).
Conversely, assume that if p + then the set Br(p) is compact in the topology

O(T), and let p j=� 2
W
I �i . Since p converges, Br(p) �

S
I [[�i]]

�

T . But Br(p)
is compact, hence Br(p) �

S
J [[�j]]

�

T for some �nite subset J of I . It follows
that p satis�es (BN). 2

A transition system is called compactly branching if it satis�es all instances
of (BN). Using the duality Theorem 10.2.7 and the de�nition of the Plotkin
powerdomain, it is immediate to see that the transition system induced by the
SFP-domain D is compactly branching (and not weakly �nite branching).

10.3.2. Lemma. For every formula � in L�
!;1 there exist formulae �i 2 L!;!

with i 2 I such that L�
!;1 + (BN) ` � =

W
I �i .

Proof: Adapt Lemma 5:17 of [Abr91a]. 2

The above lemma together with the soundness Theorem 8.2.7, the de�nition of
the satisfaction relation, and the characterization Theorem 10.2.5, imply that
for compactly branching transition systems hP ;Act ;�!;*i and processes p; q
in P ,

p <�
F q if and only if 8� 2 L�

!;1: p j= �) q j= �:

The next step is to prove the completeness of the logic L�
!;1 for the class of

compactly branching transition systems. We proceed as for the �nite case:
de�ne the syntactic equivalence � on formulae of L�

!;1 by

�1 � �2 if and only if L�
!;1 + (BN) ` �1 =� �2:

Let LA�
!;1 be the Lindenbaum algebra of L�

!;1 with as objects equivalence
classes of formulae in L�

!;1 under �, ordered by

[�1] � [�2] if and only if L�
!;1 + (BN) ` �1 �� �2:

The poset LA�
!;1 is a frame with meets and joins de�ned as expected.

10.3.3. Lemma. The frame LA�
!;1 is free over the distributive lattice LA�

!;!.

Proof: For every frame F and function f : LA�
!;! ! F preserving �nite meets

and �nite joins, de�ne h : LA�
!;1 ! F by h([�]) =

W
I f ([�i]) where, using

10.3. Compactly branching transition systems 223

Lemma 10.3.2, [�] =
W
I [�i] with �i in L�

!;!. By de�nition, h preserves joins
and h([�]) = f ([�]) for all � in L�

!;!. Moreover, h preserves �nite meets:

h([�] ^ [�0]) = h([
_
I

�i] ^ [
_
J

�0j]) [Lemma 10.3.2]

= h(
_
I�J

[�i ^ �
0
j]) [distributivity]

=
_
I�J

f ([�i ^ �
0
j]) [h preserves joins and commutativity]

=
_
I�J

(f ([�i]) ^ f ([�
0
j])) [f preserves meets]

=
_
I�J

(h([�i]) ^ h([�
0
j])) [commutativity]

=
_
I

h(�i]) ^
_
J

h([�0j]) [distributivity]

= h([�]) ^ h([�0]):

Hence h is the unique frame morphism such that h � � = f , where � : LA�
!;! !

LA�
!;1 is the obvious inclusion function. 2

We can now draw an interesting consequence of the �nitary axiom (BN).

10.3.4. Lemma. The assignment [�] 7! [[�]]�D de�nes a unique order isomor-
phism
+ : LA�

!;1 ! O(D) such that
+([�]) =
([�]) for all � in L�
!;!.

Proof: Because D is an SFP-domain, when taken with its Scott topology it
forms a spectral space. Hence the lattice of Scott open sets O(D) is the free
frame over the distributive lattice of Scott compact open sets KO(D), which,
by Lemma 10.2.7, is order isomorphic to the Lindenbaum algebra LA�

!;!. But
LA�

!;1 is the free frame over the distributive lattice LA�
!;! (Lemma 10.3.3),

hence O(D) is order isomorphic to LA�
!;1. The isomorphism is given by the

unique extension
+ of the function
 :LA�
!;! ! KO(D) given in Lemma 10.3.3.

Using Lemma 10.3.2 and the soundness Theorem 10.2.6, it can be characterized
by

+([�]) =
[
I

([�i]) =
[
I

[[�i]]
�

D = [[
_
I

 i]]
�

D = [[�]]�D;

for all � in L�
!;1. 2

Soundness of the logical system associated to L�
!;1 including the scheme (BN)

follows from Theorem 10.2.6 and the de�nition of compactly branching transi-
tion systems. In a way similar to the completeness Theorem 10.2.8, complete-
ness follows from the duality Lemma 10.3.4.

10.3.5. Theorem. (Completeness) Let CB be any class of compactly branching
transition systems containing D. For �1 and �2 in L

�
!;1, CB j= �1 � �2 if and

only if L�
!;1 + (BN) ` �1 � �2. 2

224 Chapter 10. An in�nitary domain logic for transition systems

10.4 Finitary transition systems

The language L!;1 is more expressive than the �nitary language L!;!. Next
we consider the even more expressive language L1;1. For example, given a
transition system hP ;Act ;�!;*i we can specify in L�

1;1 properties like `there
exists an in�nite a-path starting from the process p', and `at any point of any
path starting from p an a-transition is always possible', respectively by

� p j=�

V
n2! �n , where

(
�0 = tt and
�n+1 = 3a(�n);

� p j=�

V
n2! �n , where

(
�0 =tt and
�n+1=3a(�n) ^

V
Act(2b(�n) _

W
Actnfbg c(tt)):

This kind of properties cannot be represented by open sets, but they can be
expressed by sets which are saturated with respect to the topology O(T) associ-
ated to the transition system T . By using results on observation frames, we can
prove a completeness result following the same pattern as for the completeness
result of L!;1.

We begin with the introduction of two �nitary axiom schemes over L1;1.
These schemes will restrict the class of transition systems under consideration,
and will allow us to write a formula in L1;1 as a conjunction of disjunctions of
�nitary formulae in L!;!:

(BN) 2
W
I �i �

W
J2Fin(I) 2

W
J �j (�i 2 L!;!)

(FA)
V
J2Fin(I)3

V
J �j � 3

V
I �i (�i 2 L!;!);

where Fin(I) is the set of all �nite subsets of I . The axiom scheme (FA) is the
dual of (BN). While the axiom (BN) is related to the width of a computation,
the axiom (FA) is related to the length of it. It can be understood as a notion
of �nite approximation. For example, every weakly �nite branching transition
system with no in�nite transition sequences satis�es both (BN) and (FA). An
example of this kind of transition system is given by the set of �nite synchro-
nization trees. In general, a transition system which satis�es all instances of
(BN) and (FA) is called �nitary. The main example of �nitary transition sys-
tems (which has in�nite transition sequences) is given by the transition system
induced by the SFP-domain D (Theorem 5:15 in [Abr91a]).

10.4.1. Lemma. For each � in L�
1;1 there exist formulae �i 2 L�

!;1, i 2 I ,
such that L�

1;1 + (BN) + (FA) ` � =�

V
I �i .

Proof: See Lemma 5:17 of [Abr91a] and Lemma 10.3.2. 2

An immediate consequence of the above lemma is the following characterization
property. For a �nitary transition system hP ;Act ;�!;*i and p; q in P ,

p <�
F q if and only if 8� 2 L�

1;1: p j= �) q j= �:

10.4. Finitary transition systems 225

By Theorem 10.2.5 it follows that for �nitary transition systems, <�
F and <�

B

coincide, while, by the duality Theorem 10.2.7, it follows that the order of
D, which is equivalent to the specialization order of O(D), coincides with the
�nitary preorder <�

F . Therefore, in D, d1 � d2 if and only if d1 <�
B d2.

To prove the completeness of the logic L�
1;1 for the class of �nitary transition

systems, de�ne the syntactic equivalence � on formulae of L�
1;1 by

�1 � �2 if and only if L�
1;1 + (BN) + (FA) ` �1 =� �2:

Also, de�ne the Lindenbaum algebra LA�
1;1 to be the set of equivalence classes

of formulae in L�
!;1 under �, ordered by

[�1] � [�2] if and only if L�
1;1 + (BN) + (FA) ` �1 �� �2:

The logical axioms say that the poset LA�
1;1 is a completely distributive lattice.

By Lemma 10.4.1 and with a proof similar to the proof of Lemma 10.3.3, it is
not hard to see that LA�

1;1 enjoys universal properties.

10.4.2. Lemma. The completely distributive lattice LA�
1;1 is free over the

frame LA�
!;1. 2

By Theorem 9.3.1 it follows that the inclusion function

� : LA�
!;1 ,! LA�

1;1

is the free observation frame over LA�
!;1.

10.4.3. Lemma. The assignment [�] 7! [[�]]�D de�nes the unique order isomor-
phism
? : LA�

1;1 !Q(D) such that
?([�]) =
([�]) for all � 2 L�
!;!.

Proof: Because D is an SFP-domain, if it is equipped with the Scott topology
then it forms a sober space. Hence, by Theorem 9.3.6, the lattice of saturated
sets Q(D) is the free completely distributive lattice over the frame of Scott
open sets O(D), which, by Lemma 10.3.4, is order isomorphic to the Linden-
baum algebra LA�

!;1. But LA�
1;1 is the free completely distributive lattice

over the frame LA�
!;1 (Lemma 10.4.2), and hence Q(D) is order isomorphic

to LA�
1;1. The isomorphism is given by the unique extension
? of the func-

tion
+ :LA�
!;1 ! O(D) which can be characterized (using Lemma 10.3.2, the

soundness Theorem 10.2.6, and the duality Theorem 10.3.4) by

?([�]) =
\
I

+([�i]) =
\
I

[[�i]]
�

D = [[
^
I

 i]]
�

D = [[�]]�D;

for all � in L�
1;1. 2

As before, soundness of the logical system associated with L�
!;1 including both

the �nitary schemes (BN) and (FA) follows from Theorem 10.2.6 and from
the de�nition of �nitary transition systems. In a similar way to the proof of
the completeness Theorem 10.2.8, completeness follows from the above duality
result.

226 Chapter 10. An in�nitary domain logic for transition systems

10.4.4. Theorem. (Completeness) Let FT be any class of �nitary transition
systems containing D. For �1 and �2 in L�

1;1, FT j= �1 � �2 if and only if
L�
1;1 + (BN) + (FA) ` �1 � �2. 2

10.5 Concluding notes

In this chapter we extended Abramsky's �nitary domain logic for transition sys-
tems to an in�nitary domain logic, the latter being a syntactical representation
of the lattice of saturated sets of a particular SFP-domain. The whole lattice
of saturated sets however is too big to be represented by �nite syntax. The
same holds for the lattice of open sets. A better approach would be to extend
Abramsky's �nitary language with both a greatest �xed point operator and a
least �xed point operator to describe some of the saturated sets.

The present chapter does not deal with a formal comparison between Abram-
sky's logic and Hennessy-Milner logic for transition systems. Such a compari-
son can be found in [Abr91a], where L1;1 is proved equivalent to the in�nitary
Hennessy-Milner logic in the sense that a process of a transition system satis�es
a formula of Abramsky's logic if and only if it satis�es the equivalent formula in
the Hennessy-Milner logic. As a consequence, the complete distributive lattice
induced by the (ordinary) interpretation of the in�nitary Hennessy-Milner logic
coincides with the one induced by the in�nitary Abramsky's logic. Thus the
in�nitary Hennessy-Milner logic extended with the axiom schemas (BN) and
(FA) is isomorphic to the completely distributive lattice of saturated sets of the
SFP-domain D.

The techniques we used in this chapter are general and can be applied to
every logic based on a topological interpretation. Below we explain how to get
an in�nitary extension of a �nitary logic step by step.

Let L be a language closed with respect to the binary operations ^ and _,
and such that both tt and � are in L. Assume that L comes equipped with a
preorder <� and a set of logical axioms which gives to (L; <�) the structure of
a distributive lattice such that ^ de�nes the binary meet, _ de�nes the binary
join, tt is the top element and � is the bottom element. It follows that the
Lindenbaum algebra LA of L is a distributive lattice and hence is isomorphic
in DLat to the set of compact opens KO(X) for a spectral space X . This
isomorphism de�nes a canonical interpretation function

[[�]]L : L ! KO(X)

mapping every element p 2 L to the compact open that is isomorphic to the
equivalence class corresponding to p in the Lindenbaum algebra of L.

The goal is to extend L to a language LE closed with respect to the in�nitary
operations

V
and

W
in a way that a `canonical' interpretation function [[�]]LE can

10.5. Concluding notes 227

be de�ned from LE to the lattice Q(X) of saturated sets of X such that [[�]]LE
restricted to L coincides with [[�]]L.

To this end axioms and rules must be de�ned on LE : logical axioms to give
(LE ; <�) the structure of a completely distributive lattice, and structural axioms
to relate

V
and

W
with the other constructors of L. This last step is the `creative

part' of the enterprise. The criterion is that the resulting Lindenbaum algebra
LAE of the extended language LE must be the free completely distributive
lattice over the distributive lattice LA. If this is the case then we can use

1. the characterization of spectral spaces in terms of the free frames of opens,
and

2. the characterization of sober spaces in terms of the free completely dis-
tributive lattice of saturated sets

to obtain the canonical isomorphism

[[�]]LE : LE ! Q(X)

such that [[p]]LE = [[p]]L for every p 2 L.
It is a topic for future work to provide in�nitary domain logics for the speci�c

languages of Abramsky for properties, typed terms, and morphisms. They are
interpreted, respectively, as compact opens of SFP-domains, elements of SFP-
domains, and morphisms between SFP-domains freely generated by means of a
language of type expressions.

228 Chapter 10. An in�nitary domain logic for transition systems

Bibliography

[Abr87] S. Abramsky. Domain theory and the logic of observable properties.
PhD thesis, Queen Mary College, University of London, 1987.

[Abr91a] S. Abramsky. A domain equation for bisimulation. Information and
Computation, 92:161{218, 1991.

[Abr91b] S. Abramsky. Domain theory in logical form. Annals of Pure and
Applied Logic, 51:1{77, 1991.

[AJ94] S. Abramsky and A. Jung. Domain theory. In S. Abramsky, D.M.
Gabbay, and T.S.E. Maibaum, editors, Handbook of Logic in Com-
puter Science, volume III - Semantic Structures. Clarendon Press,
1994.

[Ale37] P.S. Alexandrov. Diskrete R�aume. Mat.Sb., 1(43):501{519, 1937.

[Ale39] J.W. Alexander. Ordered sets, complexes and the problem of com-
pacti�cations. Proceedings of the National Academy of Sciences,
USA, 25:296{298, 1939.

[AN80] A. Arnold and M. Nivat. Metric interpretations of in�nite trees
and semantics of nondeterministic recursive programs. Theoretical
Computer Science, 11(2):181{205, 1980.

[AP86] K.R. Apt and G.D. Plotkin. Countable nondeterminism and ran-
dom assignment. Journal of the ACM, 33(4):724{767, October 1986.

[AR89] P. America and J.J.M.M. Rutten. Solving re
exive domain equa-
tions in a category of complete metric spaces. Journal of Computer
and System Sciences, 39(3):343{375, 1989.

[AS85] B. Alpern and F.B. Schneider. De�ning liveness. Information Pro-
cessing Letters, 21:181{185, 1985.

[AV93] S. Abramsky and S.J. Vickers. Quantales, observational logic and
process semantics. Mathematical Structures in Computer Science,
3:161{227, 1993.

229

230 Bibliography

[Bac78] R.-J.R. Back. On the correctness of re�nement steps in program
development. PhD thesis, Department of Computer Science, Uni-
versity of Helsinki, 1978. Report A-1978-4.

[Bac80] R.-J.R. Back. Correctness Preserving Program Re�nements: Proof
Theory and Applications, volume 131 of Mathematical Centre
Tracts. Mathematical Centre, Amsterdam, 1980.

[Bac81] R.-J.R. Back. On correct re�nement of programs. Journal of Com-
puter and System Sciences, 23(1):49{68, 1981.

[Bac89] R.-J.R. Back. Changing data representation in the re�nement calcu-
lus. In Proceedings 21st Hawaii International Conference on System
Sciences, 1989.

[Bak75] J.W. de Bakker. Inleiding bewijsmethoden. In J.W. de Bakker, edi-
tor, Colloquium Programmacorrectheid, volume 21 of Mathematical
Centre Syllabus, pages 1{17, 1975. (In Dutch).

[Bak80] J.W. de Bakker. Mathematical Theory of Program Correctness.
Prentice-Hall, 1980.

[Ban22] S. Banach. Sur les operations dans les ensembles abstraits et leurs
applications aux equations integrales. Fundamenta Mathematicae,
3:133{181, 1922.

[Bar84] H.P. Barendregt. The Lambda Calculus: Its Syntax and Semantics.
North-Holland, revised edition, 1984.

[BBR96a] M.M. Bonsangue, F. van Breugel, and J.J.M.M. Rutten. Gener-
alized metric spaces: completion, topology, and powerdomains via
the Yoneda embedding. Technical Report CS-R9636, CWI, Ams-
terdam, 1996.

[BBR96b] M.M. Bonsangue, F. van Breugel, and J.J.M.M. Rutten. Alexan-
dro� and Scott topologies for generalized metric spaces. In S.
Andima, R. C. Flagg, G. Itzkowitz, P. Misra, Y. Kong, and R. Kop-
perman, editors, Papers on General Topology and Applications:
Eleventh Summer Conference at University of Southern Maine, An-
nals of the New York Academy of Sciences. New York Academy of
Sciences, 1996. To appear.

[Ber63] C. Berge. Topological Spaces - including a treatment of multi-valued
functions, vector spaces and convexity. Oliver & Boyd, 1963. En-
glish translation of `Espaces Topologiques: Fonctions Multivoques'
published by Dunod, Paris 1959.

Bibliography 231

[Bes83] E. Best. Relational semantics of concurrent programs (with some
applications). In D. Bj�rner, editor, Proceedings of the IFIP Work-
ing Conference on on Formal Description of Programming Concepts
- II, pages 431{452, Garmisch-Partenkirchen, FRG, 1983. North-
Holland Publishing Company.

[Bes89] E. Best. Towards compositional predicate transformer semantics for
concurrent programs. In J.W. de Bakker, 25 jaar Semantiek, pages
111{117, CWI, Amsterdam, 1989.

[BHR94] J.W. de Bakker, E. Horita, and J.J.M.M. Rutten. Fully abstract
denotational models for nonuniform concurrent languages. Infor-
mation and Computation, 115(1):125{178, 1994.

[Bir67] G. Birkho�. Lattice Theory, volume 25 of AMS Colloquium Publi-
cations. American Mathematical Society, 1967. Third edition.

[BJK95] M.M. Bonsangue, B. Jacobs, and J.N. Kok. Duality beyond sober
spaces: topological spaces and observation frames. Theoretical
Computer Science, 151(1):79{124, 1995.

[BK86] J.A. Bergstra and J.W. Klop. Algebra of communicating processes.
In J.W. de Bakker, M. Hazewinkel, and J.K. Lenstra, editors, Proc-
cedings of the CWI symposioum Mathematics and Computer Sci-
ence volume 1 of CWI Monographs, pages 89{138. North-Holland,
1986.

[BK93a] M.M. Bonsangue and J.N. Kok. Isomorphisms between state and
predicate transformers. In A.M. Borzyszkowski and S. Sokolowoski,
editors, Proceedings of MFCS '93, Gdansk, Poland, volume 711
of Lecture Notes in Computer Science, pages 301{310. Springer-
Verlag, 1993.

[BK93b] M.M. Bonsangue and J.N. Kok. Semantics, orderings and recursion
in the weakest precondition calculus. In J.W. de Bakker, W.-P.
de Roever, and G. Rozenberg, editors, Rex Workshop '92 `Seman-
tics: Foundations and Applications', volume 666 of Lecture Notes
in Computer Science, pages 91{109. Springer-Verlag, 1993.

[BK94a] M.M. Bonsangue and J.N. Kok. Relating multifunctions and pred-
icate transformers through closure operators. In Masami Hagiya
and John C. Mitchell, editors, TACS '94, Sendai, Japan, volume
789 of Lecture Notes in Computer Science, pages 822{843. Springer-
Verlag, 1994.

232 Bibliography

[BK94b] M.M. Bonsangue and J.N. Kok. The weakest precondition calculus:
recursion and duality. Formal Aspects of Computing, 6A:788{800,
1994. Full version in Formal Aspect of Computing, 6(E):71{100,
1994. Available through anonymous ftp from ftp.cs.man.ac.uk as
the (compressed PostScript) �le /pub/fac/FACj 6E p71.ps.Z.

[BK95] M.M. Bonsangue and M.Z. Kwiatkowska. Re-interpreting the modal
�-calculus. In A. Ponse, M. de Rijke, and Y. Venema, editors,
Modal Logic and Process Algebra, volume 53 of CSLI Lecture notes,
pages 65{83, Stanford, 1995. Centre for Study of Languages and
Information.

[BKPR93] F.S. de Boer, J.N. Kok, C. Palamidessi, and J.J.M.M. Rutten.
On blocks: locality and asynchronous communication. In J.W.
de Bakker, W.-P. de Roever, and G. Rozenberg, editors, Rex Work-
shop '92 `Semantics: Foundations and Applications', volume 666 of
Lecture Notes in Computer Science, pages 73{90. Springer-Verlag,
1993.

[BKV94] M.M. Bonsangue, J.N. Kok, and E. de Vink. Metric predicate trans-
formers: towards a notion of re�nement for concurrent programs.
Technical Report IR - 371, Vrije Universiteit Amsterdam - Depart-
ment of Computer Science, 1994.

[BKV95] M.M. Bonsangue, J.N. Kok, and E. de Vink. Metric predicate trans-
formers: towards a notion of re�nement for concurrent programs. In
I. Lee and S.A. Smolka, editors, Proceedings of the 6th international
conference Concur 95: Concurrency theory, volume 962 of Lecture
Notes in Computer Science, pages 363 { 377. Springer-Verlag, 1995.

[BR92] J.W. de Bakker and J.J.M.M. Rutten, editors. Ten Years of Con-
currency Semantics - selected papers of the Amsterdam Concurrency
Group. World Scienti�c, Singapore, 1992.

[Bre93] F. van Breugel. Relating state transformation semantics and predi-
cate transformer semantics for parallel programs. Technical Report
CS-9339, CWI, Amsterdam, 1993.

[Bre94] F. van Breugel. Topological models in comparative semantics. PhD
thesis, Vrije Universiteit Amsterdam, 1994.

[BV96] J.W. de Bakker and E. de Vink. Control Flow Semantics. The MIT
Press, 1996.

[BW90a] R.-J.R. Back and J. von Wright. Dualities in speci�cation lan-
guages: a lattice theoretical approach. Acta Informatica, 27:583{
625, 1990.

Bibliography 233

[BW90b] R.-J.R. Back and J. von Wright. Re�nement calculus, part I: se-
quential nondeterministic programs. In J.W. de Bakker, W.-P.
de Roever, and G. Rozenberg, editors, Stepwise Re�nement of Dis-
tributed Systems: Models, Formalisms, Correctness, volume 430 of
Lecture Notes in Computer Science, pages 42{66. Springer-Verlag,
1990.

[BW96] R.-J.R. Back and J. von Wright. Re�nement Calculus: a Systematic
Introduction. Preliminary version of a book submitted for publica-
tion, 1996.

[BWP87] M. Broy, M. Wirsing, and P. Pepper. On the algebraic de�nition
of programming languages. ACM Transactions on Programming
Languages and Systems, 9(1):54{99, 1987.

[BZ82] J.W. de Bakker and J.I. Zucker. Processes and the denotational se-
mantics of concurrency. Information and Control, 54:70{120, 1982.

[Ca878] A. Cayley. The theory of groups. American Journal of Mathematics,
1:50{52, 1878.

[Che80] B.F. Chellas. Modal Logic: an introduction. Cambridge University
Press, 1980.

[Chu32] A. Church. A set of postulates for the foundation of logic. Annals
of Mathematics, 33:346{366, 1932.

[Col54] G.E. Collins. Distributivity and an axiom of choice. Journal of
Symbolic Logic, 19:275{277, 1954.

[DG86] E.W. Dijkstra and A.J.M. van Gasteren. A simple �xpoint argu-
ment without the restriction to continuity. Acta Informatica, 23:1{7,
1986.

[Dij68] E.W. Dijkstra. Cooperating sequential processes. In F. Genuys, ed-
itor, Programming Languages, pages 43{112. Academic Press, Lon-
don, 1968.

[Dij76] E.W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

[DP90] B.A. Davey and H.A. Priestley. Introduction to Lattices and Order.
Cambridge University Press, 1990.

[DS90] E.W. Dijkstra and C.S. Scholten. Predicate Calculus and Program
Semantics. Springer-Verlag, New York, 1990.

[Dug66] J. Dugundji. Topology. Allyn and Bacon, inc., 1966.

234 Bibliography

[EF84] T. Elrad and N. Francez. A weakest precondition semantics for com-
municating processes. Theoretical Computer Science, 29(3):231{
250, 1984.

[Egl75] H. Egli. A mathematical model for nondeterministic computations.
Technical report, ETH Zurich, Switzerland, 1975.

[EM85] H. Ehrig and B. Mahr. Fundamentals of Algebraic Speci�cation I,
volume 6 of EATCS monographs. Springer-Verlag, 1985.

[Eng89] R. Engelking. General Topology, volume 6 of Sigma Series in Pure
Mathematics. Heldermann Verlag, Berlin, 1989. Revised and com-
pleted edition.

[Esa74] L. Esakia. Topological Kripke models. Soviet Mathematics Doklady,
15:147{151, 1974.

[Flo67] R.W. Floyd. Assigning meaning to programs. In Mathematical
Aspects of Computer Science volume 20 of AMS Colloquium Publi-
cations, pages 19{32, American Mathematical Society, 1967.

[FK96] B. Flagg and R. Kopperman. Continuity spaces: Reconciling do-
mains and metric spaces - part I. To appear in Theoretical Computer
Science, 1996.

[Fre77] G. Frege. Compound thoughts (Gedankef�uge). In P.T. Geach,
and R.H. Stooho�, translators, Logical Investigation. Gottlob Frege,
pages 55{78, Basil Blackwell, Oxford, 1977.

[FS81] L. Flon and N. Suzuki. The total correctness of parallel programs.
SIAM Journal on Computing, 10(2):227{246, 1981.

[FS96] B. Flagg and P S�underhauf. The essence of ideal completion in
quantitative form. Draft, 1996.

[FW96] B. Flagg and K. Wagner. A logical approach to quantitative domain
theory. Draft, 1996.

[Gai64] H. Gaifman. In�nite Boolean polynomials I. Fundamenta Mathe-
maticae, 54:229{250, 1964. Errata in volume 57, page 117 (1965).

[GHK+80] G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M.W. Mislove,
and D.S. Scott. A Compendium of Continuous Lattices. Springer-
Verlag, 1980.

[GM91] P. Gardiner and C. Morgan. Data re�nement of predicate trans-
formers. Theoretical Computer Science, 87(1):143{162, 1991.

Bibliography 235

[Gol89] R. Goldblatt. Varieties of complex algebras. Annals of Pure and
Applied Logic, 44:173{242, 1989.

[Gor79] M. Gordon. The Denotational Description of Programming Lan-
guages. Springer-Verlag, New York, 1979.

[GR89] R.J. van Glabbeek and J.J.M.M. Rutten. The processes of de
Bakker and Zucker represent bisimulation equivalence classes. In
J.W. de Bakker, 25 jaar Semantiek, pages 243{246, CWI, Amster-
dam, 1989.

[Gri81] D. Gries. The Science of Programming. Springer-Verlag, Berlin,
1981.

[GTW78] J.A. Goguen, J.W. Thatcher, and E.G. Wagner. An initial algebra
approach to the speci�cation, correctness and implementation of ab-
stract data types. In R.T. Yeh, editor, Current Trends in Program-
ming Methodology IV: Data Structuring, pages 80{114. Prentice-
Hall, 1978.

[GTW+77] J.A. Goguen, J.W. Thatcher, E.G. Wagner, and J.B. Wright. Initial
algebra semantics and continuous algebras. Journal of the ACM,
24:68{95, 1977.

[Gue81] I. Guessarian. Algebraic Semantics, volume 99 of Lecture Notes in
Computer Science. Springer-Verlag, 1981.

[Haa81] V.H. Haase. Real-time behaviour of programs. IEEE Transaction
on Software Engineering, SE-7(5):494{501, 1981.

[Hah48] H. Hahn. Reelle Funktionen, volume 1: Punktfunktionen. Chelsea
Publishing Company, New York, 1948.

[Hal62] P.R. Halmos. Algebraic Logic. Chelsea, New York., 1962.

[Hal64] A.W. Hales. On the non-existence of free complete Boolean alge-
bras. Fundamenta Mathematicae, 54:45{66, 1964.

[Har80] D. Harel. And/or programs: a new approach to structured program-
ming. ACM Transactions on Programming Languages and Systems,
2(1):1{17, 1980.

[Hec91] R. Heckmann. Lower and upper power domain constructions com-
mute on all cpos. Information Processing Letters, 40:7{11, 1991.

[Heh79] E.C.R. Hehner. Do considered od: a contribution to programming
calculus. Acta Informatica, 11:287{304, 1979.

236 Bibliography

[Hen88] M. Hennessy. Algebraic Theory of Processes. The MIT Press, 1988.

[Hes88] W.H. Hesselink. An algebraic calculus of commands. Technical
Report CS-8808, University of Groningen, 1988.

[Hes89] W.H. Hesselink. Predicate transformer semantics of general recur-
sion. Acta Informatica, 26:309{332, 1989.

[Hes92a] W.H. Hesselink. Processes and formalisms for unbounded choice.
Theoretical Computer Science, 99:105{119, 1992.

[Hes92b] W.H. Hesselink. Programs, Recursion and Unbounded Choice, vol-
ume 27 of Cambridge Tracts in Theoretical Computer Science. Cam-
bridge University Press, 1992.

[Hes94] W.H. Hesselink. Nondeterminacy and recursion via stacks and
games. Theoretical Computer Science, 124(2):273{295, 1994.

[HK72] K.H. Hofmann and K. Keimel. A general character theory for par-
tially ordered sets and lattices. Memories of American Mathemati-
cal Society, 122, 1972.

[HM81] K.H. Hofmann and M.W. Mislove. Local compactness and con-
tinuous lattices. In B. Banaschewski and R.-E. Ho�mann, editors,
Continuous lattices - Proceedings Bremen 1979, volume 871 of Lec-
ture Notes in Mathematics, pages 209{248. Springer-Verlag, 1981.

[HM85] M.C. Hennessy and R. Milner. Algebraic laws for non-determinism
and concurrency. Journal of the ACM, 32:137{161, 1985.

[Hoa69] C.A.R. Hoare. An axiomatic basis for computer programming.
Communications of the ACM, 12:576{580, 1969.

[Hoa71] C.A.R. Hoare. Proofs of correctness of data representation. Acta
Informatica, 1(4):271{281, 1971.

[Hoa78] C.A.R. Hoare. Some properties of predicate transformers. Journal
of the ACM, 25:461{480, 1978.

[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall,
1985.

[Hof79] R.-E. Ho�mann. Sobri�cation of partially ordered sets. Semigroup
Forum, 17:123{138, 1979.

[HP72] P. Hitchcock and D. Park. Induction rules and termination proofs.
In M. Nivat, editor, Proceedings 1st International Colloquium of Au-
tomata, Languages and Programming; Rocquencourt, France, pages
225{251. North-Holland, 1972.

Bibliography 237

[HP79] M. Hennessy and G.D. Plotkin. Full abstraction for a simple parallel
programming language. In J. Becvar, editor, Proceedings of the 8th
MFCS, volume 74 of Lecture Notes in Computer Science, pages
108{120. Springer-Verlag, 1979.

[HS87] C.A.R. Hoare and J. Sanders. Prespeci�cation in data re�nement.
Information Processing Letters, 25:71{76, 1987.

[Isb72a] J.R. Isbell. Atomless parts of spaces. Math. Scand., 31:5{32, 1972.

[Isb72b] J.R. Isbell. General functorial semantics. American Journal of
Mathematics, 94:535{596, 1972.

[Joh81] P.T. Johnstone. Scott is not always sober. In B. Banaschewski and
R.-E Ho�mann, editors, Continuous lattices - Proceedings Bremen
1979, volume 871 of Lecture Notes in Mathematics, pages 282{283.
Springer-Verlag, 1981.

[Joh82a] P.T. Johnstone. Stone Spaces. Cambridge University Press, 1982.

[Joh82b] P.T. Johnstone. The Vietoris monad on the category of locales.
In R.-E. Ho�man, editor, Continuous lattices and related topics,
volume 27, pages 162{179. Mathematik-Arbeitspapiere, University
of Bremen, 1982.

[Joh91] P.T. Johnstone. The art of pointless thinking: the category of lo-
cales. In H. Herrlich and H.-E. Porst, editors, Category theory at
work, pages 85{107. Heldermann Verlag Berlin, 1991.

[JS96] A. Jung and P. S�underhauf. On the duality of compact vs. open.
In S. Andima, R. C. Flagg, G. Itzkowitz, P. Misra, Y. Kong, and
R. Kopperman, editors, Papers on General Topology and Appli-
cations: Eleventh Summer Conference at University of Southern
Maine, Annals of the New York Academy of Sciences, 1996. To
appear.

[JT51] B. J�onsson and A. Tarski. Boolean algebras with operators, part I.
American Journal of Mathematics, 73:891{939, 1951.

[JT52] B. J�onsson and A. Tarski. Boolean algebras with operators, part
II. American Journal of Mathematics, 74:127{167, 1952.

[KK89] P. Knijnenburg and J.N. Kok. On the semantics of atomized state-
ments: the parallel-choice option. In Budach, editor, Proceedings
of Fundamentals of Computation Theory '91, volume 529 of Lecture
Notes in Computer Science, pages 297{307. Springer-Verlag, 1991.

238 Bibliography

[Kle52] S.C. Kleene. Introduction to Meta-Mathematics. van Nostrand, New
York, 1952.

[Kna28] B. Knaster. Un th�eor�eme sur les fonctions d'ensembles. Ann. Soc.
Polon. Math., 6:133{134, 1928.

[KR90] J.N. Kok and J.J.M.M. Rutten. Contractions in comparing concur-
rency semantics. Theoretical Computer Science, 76 (2/3):179{222,
1990.

[Kun80] K. Kunen. Set Theory: An Introduction to Independence Proofs.
Volume 102 of Studies in Logic and the Foundations of Mathematics,
1980. North-Holland, Amsterdam.

[Kur56] K. Kuratowski. Sur une m�ethode de m�etrisation compl�ete des cer-
tain espaces d'ensembles compacts. Fundamenta Mathematicae,
42:114{138, 1956.

[Kwi91] M.Z. Kwiatkowska. On topological characterization of behavioural
properties. In G.M. Reed, A.W. Roscoe, and R.F. Wachter, editors,
Topology and Category Theory in Computer Sciences - Proceedings
of the Oxford Topology Symposium, June 1990, pages 153{177. Ox-
ford Science Publications, 1991.

[Lam77] L. Lamport. Proving the correctness of a multiprocess program.
IEEE Transaction on Software Engineering, SE-3:125{143, 1977.

[Lam90] L. Lamport. Win and sin: predicate transformers for concur-
rency. ACM Transactions on Programming Languages and Systems,
12(3):396{428, 1990.

[Law73] F.W. Lawvere. Metric spaces, generalized logic, and closed cate-
gories. Rendiconti del Seminario Matematico e Fisico di Milano,
43:135{166, 1973.

[Law86] F.W. Lawvere. Taking categories seriously. Revista Colombiana de
Matem�aticas, XX:147{178, 1986.

[Lib92] L. Libkin. An elementary proof that upper and lower powerdomain
constructions commute. Volume 48 of Bulletin of EATCS, pages
175{177, 1992.

[Lin66] F.E.J. Linton. Some aspects of equational categories. In Proceedings
of Conference on Categorical Algebra, La Jolla 1965, pages 84{94.
Springer-Verlag, 1966.

Bibliography 239

[LNS82] J.-L. Lassez, V.L. Nguyen, and E.A. Sonenberg. Fixed point the-
orems and semantics: a folk tale. Information Processing Letters,
14(3):112{116, 1982.

[LS79] L. van Lamsweerde and M. Sintzo�. Formal derivation of strongly
correct concurrent programs Acta Informatica, 12(1):1{31, 1979.

[Luk91] J.J. Lukkien. Parallel program design and generalized weakest pre-
conditions. PhD thesis, Rijksuniversiteit Groningen, 1991.

[Luk94] J.J. Lukkien. Operational semantics and generalized weakest pre-
conditions. Science of Computer Programming, 22:137{155, 1994.

[Man76] E.G. Manes. Algebraic Theories, volume 26 of Graduate Texts in
Mathematics. Springer-Verlag, 1976.

[Mar73] G. Markowsky. Combinatorial aspects of lattice theory with appli-
cations to the enumeration of free distributive lattices. PhD thesis,
Harvard University, 1973.

[Mar79] G. Markowsky. Free completely distributive lattices. Proceedings of
the American Mathematical Society, 74(2):227{228, 1979.

[Mey85] J.-J.Ch. Meyer. Programming calculi based on �xed point transfor-
mations: semantics and applications. PhD thesis, Vrije Universiteit,
Amsterdam, 1985.

[ML71] S. Mac Lane. Categories for the Working Mathematician, volume 5
of Graduate Texts in Mathematics. Springer-Verlag, 1971.

[Mic51] E. Michael. Topologies on spaces of subsets. Transactions of the
American Mathematical Society, 71:152{182, 1951.

[Mil73] R. Milner. Processes: a mathematical model of computing agents.
In H.E. Rose, and J.C. Shepherdson, editors, Proceedings of Logic
Colloquium 73, pages 157{173. North-Holland, 1973.

[Mil80] R. Milner. A Calculus of Communicating Systems, volume 92 of
Lecture Notes in Computer Science. Springer-Verlag, 1980.

[Mis91] M.W. Mislove. Algebraic posets, algebraic cpo's and models of
concurrency. In G.M. Reed, A.W. Roscoe, and R. Wachter, editors,
Topology and Category Theory in Computer Science, pages 75{111,
Clarendon Press, 1991.

240 Bibliography

[Mis95] M.W. Mislove. Topology, domain theory and theoretical computer
science. Unpublished note presented at Eleventh Summer Confer-
ence on Topology and Applications. Available through anonymous
ftp from the machine 129.81.96.30 as the (compressed PostScript)
�le pub/mwn/topandcs.ps.gz.

[MO91] M.W. Mislove and F.J. Oles. A topological algebra for angelic non-
determinism. Technical Report RC 17344, IBM, 1991.

[MO92] M.W. Mislove and F.J. Oles. A simple language supporting an-
gelic nondeterminism and parallel composition. In S. Brookes, M.
Main, A. Melton, and M. Mislove editors, Proceedings of 7th MFPS,
Pittsburgh (USA), volume 598 of Lecture Notes in Computer Sci-
ence, pages 77{101. Springer-Verlag, 1992.

[Mor87] J.M. Morris. A theoretical basis for stepwise re�nement and the
programming calculus. Science of Computer Programming, 9:287{
306, 1987.

[Mor90] C.C. Morgan. Programming from Speci�cations. Prentice-Hall,
1990.

[Mos92] P. Mosses. Action Semantics. Cambridge University Press, 1992.

[MRS95] M.W. Mislove, A.W. Roscoe, and S.A. Schneider. Fixed points
without completeness. Theoretical Computer Science, 138:273{314,
1995.

[MS76] R.E. Milne and C. Strachey. A Theory of Programming Language
Semantics. Chapman and Hall, 1976.

[Nad78] S.B. Nadler. Hyperspaces of Sets. Pure and Applied Mathematics.
Marcel Dekker, 1978.

[Nel89] G. Nelson. A generalization of Dijkstra's calculus. ACM Trans-
actions on Programming Languages and Systems, 11(4):517{561,
1989.

[Nil82] N.J. Nilsson. Principles of Arti�cial Intelligence. Springer-Verlag,
1982.

[Par81] D.M.R. Park. Concurrency and automata on in�nite sequences. In
P. Deussen, editor, Proceedings of the 5th GI Conference, volume
104 of Lecture Notes in Computer Science, pages 167{183. Springer-
Verlag, 1981.

Bibliography 241

[Plo76] G.D. Plotkin. A powerdomain construction. SIAM Journal on
Computing, 5:452{487, 1976.

[Plo79] G.D. Plotkin. Dijkstra's predicate transformer and Smyth's pow-
erdomain. In D. Bj�rner, editor, Proceedings of the Winter School
on Abstract Software Speci�cation, volume 86 of Lecture Notes in
Computer Science, pages 527{553. Springer-Verlag, 1979.

[Plo81a] G.D. Plotkin. Post-graduate lecture notes in advanced domain the-
ory (incorporating the `Pisa notes'). Department of Computer Sci-
ence, University of Edinburgh, 1981.

[Plo81b] G.D. Plotkin. A structural approach to operational semantics. Tech-
nical Report DAIMI FN-19, Computer Science Department, Aarhus
University, 1981.

[Pnu77] A. Pnueli. The temporal logic of programs. In Proceedings of the
18th IEEE Symposioum on the Foundations of Computer Science,
pages 46{57.

[PP58] D. Papert and S. Papert. Sue les treillis des ouverts et les
paratopologies. In Seminaire Ehresmann, topologie et geometrie
di�erentielle, 1958.

[Pra81] V.R. Pratt. Dynamic logic. In J.W. de Bakker and J. van Leeuwen,
editors, Proceedings of Foundations of Computer Science III, Part
2, volume 109 of Mathematical Centre Tracts, pages 53{84. Mathe-
matical Centre, Amsterdam, 1981.

[Ran52] G. Raney. Completely distributive complete lattices. In Proceedings
of the American Mathematical Society, volume 3(4), pages 677{680.
Menasha, Wis., and Providence, R.I., 1952.

[Rew96] I.M. Rewitzky. A topological framework for program semantics. PhD
thesis, Department of Mathematics and Applied Mathematics, Uni-
versity of Cape Town, South Africa, 1996.

[Rob88] E. Robinson. Logical aspects of denotational semantics. In Summer
conference on Category Theory and Computer Science, volume 83
of Lecture Notes in Computer Science, pages 238{253. Springer-
Verlag, 1988.

[Roe76] W.P. de Roever. Dijkstra's predicate transformer, non-determinism,
recursion, and termination. In Proceedings of the 5th MFCS, vol-
ume 45 of Lecture Notes in Computer Science, pages 472{481.
Springer-Verlag, 1976.

242 Bibliography

[RT93] J.J.M.M. Rutten and D. Turi. On the foundations of �nal semantics:
non-standard sets, metric spaces, partial orders. In J.W. de Bakker,
W.-P. de Roever, and G. Rozenberg, editors, Rex Workshop '92
`Semantics: Foundations and Applications', volume 666 of Lecture
Notes in Computer Science, pages 477{530. Springer-Verlag, 1993.

[Rut95] J.J.M.M. Rutten. Elements of generalized ultrametric domain the-
ory. Technical Report CS-R9507, CWI, Amsterdam, 1995.

[Sc890] E. Schr�oder. Vorlesunger �uber die Algebra der Logik, volume I. B.G.
Teubner, Leipzig, 1890. Republished in 1966 by Chelsea Publishing
Co., New York.

[Sch93] A. Schalk. Algebras for generalized power constructions. PhD thesis,
Technische Hochschule Darmstadt, Germany, 1993.

[Sco70] D.S. Scott. Outline of a mathematical theory of computation. In
Proceedings 4th Annual Princeton Conference on Information Sci-
ences and Systems, pages 169{176, 1970.

[Sco72] D.S. Scott. Continuous lattices. In Toposes, Algebraic geometry and
Logic, volume 274 of Lecture Notes in Mathematics, pages 97{136.
Springer-Verlag, 1972.

[Sco76] D.S. Scott. Data types as lattices. SIAM Journal on Computing,
5(2):522{587, 1976.

[Sco82] D.S. Scott. Domains for denotational semantics. In M. Nielsen and
E.M. Schmidt, editors, 9th International Colloquium on Automata,
Languages and Programming; Aarhus, Denmark, volume 140 of Lec-
ture Notes in Computer Science, pages 577{613. Springer-Verlag,
1982.

[Smy83a] M.B. Smyth. The largest cartesian closed category of domains.
Theoretical Computer Science, 27:109{119, 1983.

[Smy83b] M.B. Smyth. Power domains and predicate transformers: a topo-
logical view. In J. Diaz, editor, Proceedings 10th International
Colloquium on Automata, Languages and Programming; Barcelona,
Spain, volume 154 of Lecture Notes in Computer Science, pages
662{675. Springer-Verlag, 1983.

[Smy87] M.B. Smyth. Quasi uniformities: reconciling domains with metric
spaces. In M. Main, A. Melton, M. Mislove, and D. Schmidt, editors,
Proceedings of the 3rd Workshop on Mathematical Foundations of
Programming Language Semantics, volume 298 of Lecture Notes in

Bibliography 243

Computer Science, pages 236{253. Springer-Verlag, New Orleans,
1987.

[Smy91] M.B. Smyth. Totally bounded spaces and compact ordered spaces
as domains of computation. In G.M. Reed, A.W. Roscoe, and R.F.
Wachter, editors, Topology and Category Theory in Computer Sci-
ences - Proceedings of the Oxford Topology Symposium, June 1990,
pages 207{229. Oxford Science Publications, 1991.

[Smy92] M.B. Smyth. Topology. In S. Abramsky, D.M. Gabbay, and T.S.E.
Maibaum, editors, Handbook of Logic in Computer Science, volume
I - Background: Mathematical Structures, pages 641{761. Claren-
don Press, 1992.

[SP82] M.B. Smyth and G.D. Plotkin. The category-theoretic solution of
recursive domain equations. SIAM Journal on Computing, 11:761{
783, 1982.

[SS71] D.S. Scott and C. Strachey. Towards a mathematical semantics for
computer languages. In Proceedings of the Symposium on Com-
puters and Automata, volume 21 of Microwave Research Institute
Symposia series, 1971.

[Sto36] M.H. Stone. The theory of representation for Boolean algebras.
Transactions of the American Mathematical Society, 40:37{111,
1936.

[Sto37] M.H. Stone. Topological representation of distributive lattices and
Brouwerian logics. Cas. Math. Fys., 67:1{25, 1937.

[Sto77] J. Stoy. Denotational Semantics: the Scott-Strachey Approach to
Programming Language Theory. The MIT press, 1977.

[Str91] B. Stroustrup. The C++ Programming Language Addison-Wesley,
1991.

[SZ92] D. Schole�eld and H.S.M. Zedan. Weakest precondition seman-
tics for time and concurrency. Information Processing Letters,
43(6):301{308, 1992.

[Tar35] A. Tarski. Zur Grundlegung der Boole'schen Algebra. Fundamenta
Mathematicae, 24:177{198, 1935.

[Tar55] A. Tarski. A lattice theoretical �xpoint theorem and its applica-
tions. Paci�c Journal of Mathematics, 5:285{310, 1955.

244 Bibliography

[Tur49] A.M. Turing. On cheking a large routine. In Report on the Confer-
ence on High-Speed Automatic Calculating Machines, pages 67{69,
University Mathematical Laboratory, Cambridge, 1949.

[US93] A. Udaya Shankar. An introduction to assertional reasoning for
concurrent systems. ACM Computing Surveys, 25:225{262, 1993.

[Vic89] S.J. Vickers. Topology via Logic, volume 5 of Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press, 1989.

[Wag94] K.R. Wagner. Solving domain equations with enriched categories.
PhD thesis, Carnegie Mellon University, Pittsburgh, July 1994.
Technical report CMU-CS-94-159.

[Wan77] M. Wand. A characterization of weakest preconditions. Journal of
Computer and System Sciences, 15:209{212, 1977.

[Win93] G. Winskel. The Formal Semantics of Programming Languages, an
introduction. Foundations of Computing Series. The MIT Press,
1993.

[Wir71] N. Wirth. The design of a Pascal compiler. Software{Practice and
Experience, 1(4):309{333, 1971.

[Wri90] J. von Wright. A lattice-theoretical basis for program re�nement.
PhD thesis, �Abo Akademi, 1990.

[Wri94] J. von Wright. The lattice of data re�nement. Acta Informatica,
31(2):105{135, 1994.

[Zha91] G.-Q. Zhang Logic of Domains. Progress in Theoretical Computer
Science, 1991.

[Zwi87] J. Zwiers. Compositionality, Concurrency and Partial Correctness.
volume 321 of Lecture Notes in Computer Science, pages 1{272.
Springer-Verlag, 1987.

Selected notation

(v 2)IVar Set of individual variables.

(e 2)Exp Set of expressions.

(b 2)BExp Set of Boolean expressions.

(x 2)PVar Set of procedure variables.

Val Set of values.

(s; t 2)St Set of states.

EV Valuation of expressions.

BV Valuation of Boolean expressions.

(S 2)Stat Collection of statements.

(G 2)GStat Collection of guarded statements.

(d 2)Decl Collection of declarations.

L = Decl� Stat Programming language.

P(X) Collection of all subsets of X .

P�n(X) Collection of all �nite subsets of X .

Pco(X) Compact powerdomain of a metric space X .

Pcl(X) Closed powerdomain of a metric space X .

Pl(X) Lower powerspace of a topological space X .

Pu(X) Upper powerspace of a topological space X .

Pco
u (X) Compact upper powerspace of a topological space X .

Pc(X) Convex powerspace of a topological space X .

245

246 Selected notation

Pco
c (X) Compact convex powerspace of a topological space X .

H(X) Hoare powerdomain of an algebraic cpo X .

S(X) Smyth powerdomain of an algebraic cpo X .

E(X) Plotkin powerdomain of an algebraic cpo X .

(o; u 2)O(X) Topology on a set X .

OS (X) Scott topology on a dcpo X .

OA(X) Alexandrov topology on a poset X .

KO(X) Compact open subsets of (X ;O(X)).

(q 2)Q(X) Saturated subsets of (X ;O(X)).

KQ(X) Compact saturated subsets of (X ;O(X)).

(c 2)C(X) Closed subsets of (X ;O(X)).

Lo Sub-basic open in the lower topology.

Uo Basic open in the upper topology.

Fr(X) Free frame over a set X .

FrhG j Ri Frame presented by a set of generators G and a set of
relations R.

CDL(X) Free completely distributive lattice over a set X .

CDLhG j Ri Completely distributive lattice presented by a set of
generators G and a set of relations R.

F Free completely distributive lattice over a frame F .

f � : Fr(X)! CDL(Y) Free observation frame over an onto function f :X ! Y .

Pt(�) T0 space induced by an observation frame �.

Pt!(F) Sober space induced by a frame F .

(X) Observation frame induced by a space X .

O(X) Frame induced by a space X .

(�; � 2)ST (X ;Y) State transformers for speci�cation from X to Y .

(�; � 2)STH (X ;Y) Hoare state transformers from X to Y .

Selected notation 247

(�; � 2)ST S (X ;Y) Smyth state transformers from X to Y .

(�; � 2)ST �n
S (X ;Y) Finitary Smyth state transformers from X to Y .

(�; � 2)STE (X ;Y) Egli-Milner state transformers from X to Y .

(�; � 2)ST �n
E (X ;Y) Finitary Egli-Milner state transformers from X to Y .

(�; � 2)�2 Metric state transformers with resumptions.

(�; � 2)PT (Y ;X) Predicate transformers from predicates on Y to predi-
cates on X .

(�; � 2)PTM (Y ;X) Monotonic predicate transformers from predicates on
Y to predicates on X .

(�; � 2)PTT (Y ;X) Total correctness predicate transformers from predi-
cates on Y to predicates on X .

(�; � 2)PTP(Y ;X) Partial correctness predicate transformers from predi-
cates on Y to predicates on X .

(�; � 2)MPT(Y ;X) Metric predicate transformers from predicates on Y to
predicates on X .

(�; � 2)�2 Metric predicate transformers with resumptions.

<� Preorder.

<�O Specialization preorder on topological space.

<�
B Partial bisimulation (for transition systems).

<�
! Observable equivalence (for transition systems).

<�
F Finitary preorder (for transition systems).

P ��n Q P is a �nite subset of the set Q .

P tc Enhancement for total correctness of a predicate P .

Ppc Enhancement for partial correctness of a predicate P .

P lin Linear enhancement of a predicate P .

B�(x) �-ball centered in x .

(b 2)K(X) Compact (�nite) elements of a dcpo X .

Idl(X) Ideal completion of a poset X .

248 Selected notation

(n;m 2)IN Set of natural numbers.

!0 Cardinality of the set of natural number.

Index

T -Alg, 12
T -algebra, see algebraV
-SOFrm, 189
L0, 29
L1, 62
L2, 130
LB , 50
!-chain, 16
AlSp0, 189
AlgCDF, 191
AlgCDL, 190
AlgPos, 17
CDL, 16, 190, 198
CLat, 15, 189
CMS, 21, 133
CPO, 17
CSLat, 15
DCPO, 17
DLat, 15, 214
Frm, 15, 196
MTS, 183
OFrmA, 188
OFrm, 169
OKSp0, 188
PoSet, 14, 189
SCDL, 190
SFP, 18
SFrm, 207, 214
SOFrmA, 188
SOFrm, 181, 207
SOFrmAlg , 188
Set2, 9
Set, 9
Sob, 214
Spec, 214

L1;1, 217
T0 space, 98
T0-i�cation, 99
T1 space, 98, 188
T2 space, 98

Abramsky's logic, 217
logical axioms, 218
modal axioms, 218
syntactic equivalence, 219

abstraction function, 160
adjunction, 10

equivalence, 10
Galois, 10
re
ection, 10

algebra, 12
| is presented, 13
category of |, see T -Alg
generators, 12
model, 12
presentation, 12
relations, 12

algebraic theory, 12
completely distributive lattices,

198
�nitary, 13
frames, 196

angelic choice, 60
assert command, 60, 141
assertion, 217

backward distance, 131
basis, 97
Boolean algebra, 15
bounded non-determinism, 221

capabilities (set of), 217

249

250 Index

category, 9
cocomplete, 11
complete, 11
discrete, 11
dual, 10
equivalent, 10
full sub-category, 10
opposite, 10
small, 11

Cauchy sequence, 20
closed set, 22, 97
closure operator, 97
coalesced sum, 17, 216
colimit, 11

coequalizer, 11
coproduct, 11

command, 62
compact element, 17

| with respect to, 210
compact set, 22, 102
complete multiplicativity, 111
complete ring, 16, 190
completely additive, 14, 112
completely join-irreducible element,

190
completely multiplicative, 14
completely prime element, 189
completeness, 187, 220, 223, 226
composition, 9, 32, 34, 36, 60
computation, 71

�nite, 71
in�nite, 71

con�guration, 75
continuous function, 17, 99
contracting function, 21
convergence predicate, 157, 215
convergent sequence, 20
convex powerspace, 110

compact, 110
cpo, 16

at, 17

dcpo, 16

algebraic, 17
discrete, 17

declaration, 29, 50, 62, 130
demonic choice, 60
dense set, 116
diagram, 11
directed ideals, 17
directed set, 16
disjoint union, 21
divergence predicate, 157, 215
domain, 1, 13
dual function, 108

exponent, 21
expression, 29, 129

Boolean, 29, 130
in cdl-normal form, 199
in frame-normal form, 197

extent, 184

�lter, 16, 207
completely prime, 16, 100
prime, 16
principal, 14

�nitary preorder, 216
�nite approximation, 224
�nitely additive, 14
�nitely multiplicative, 14

attening operator, 158
frame, 15

free, 196
open set, 208
spatial, 207

function
greatest �xed point, 14
least �xed point, 14
strict, 14

functor, 10
left adjoint, 10
locally contracting, 23
locally non-expansive, 23
monadic, 11
re
ect isomorphisms, 10
right adjoint, 10

Index 251

Galois connection, 176
generators, 12
guarded command, 60

Hausdor� distance, 22
Hausdor� space, 98
Heyting algebra, 15
hyper transition system, 71, 75

upper closed, 73

ideal completion, 17, 191
individual variables, 29, 129
interior operator, 174
intersection system, 100

join, 14
join-semilattice, 14

complete, 15
jointly multiplicative, 120

labelled transition system, see tran-
sition system

language, 1
lattice, 14

algebraic, see dcpo, algebraic
co-atom, 188
complete, 15, 189
completely distributive, 15, 190,

218
free, 66, 198

distributive, 15
order generated, see order gen-

erating subset
least upper bound, 14
lift, 17, 216
limit, 11, 20

equalizer, 11
product, 11

Lindenbaum algebra, 220
liveness, 116
lower adjoint, 176
lower powerspace, 110

M-�lter, 172, 207
completely prime, 172

Scott open, 210
M-multiplicativity, 111, 169
M-prime element, 173
M-topological system, 182

observational, 186
spatial, 184

meet, 14
meet-semilattice, 14

complete, 15
metric space, 20

compact, 22
complete, 20
discrete, 20
generalized, 106
pseudo, 20
quasi, 20
ultra-, 20

minimal upper bound, 18
monad, 11
monotone function, 14
morphism, 9

T -homomorphism, 12
identity, 9
isomorphism, 10

multifunction, 108
continuous, 108
lower inverse, 108
lower semi-continuous, 108
upper inverse, 108
upper semi-continuous, 108

natural transformation, 10
counit, 10
unit, 10

non-expansive function, 21

object, 9
initial, 11
isomorphic, 10
terminal, 11

observable equivalence, 215
observation frame, 169

atomic, 188
morphism, 169

252 Index

open set, 177
spatial, 181

opens set, 97
basic, 97

order generating subset, 180
order re
ecting function, 14

partial bisimulation, 215
partial correctness, 39
partial order, 14

complete, 16
directed complete, 16

poset, 14, 189
discrete, 14

powerdomain
closed, 22, 115
compact, 22, 120, 126
Hoare, 17, 115
Plotkin, 17, 126, 216
Smyth, 17, 118

predicate, 38
always(�), 161
a�rmative, 95, 96
enhanced, 142, 150
�rst state, 161
linear time, 161
refutative, 96
truncated, 161

predicate transformer, 28, 39
jointly multiplicative, 120
M-multiplicative, 111
metric, 131
with resumption, 134

monotonic, 59
Nelson, 47
partial correctness, 40
topological, 111
total correctness, 40
totally correct, 59

preorder, 14
Egli-Milner, 17
Hoare, 17
Smyth, 17

specialization, 98
presentation, 12

| presents an algebra, 13
model, 12

prime element, 16, 191
procedure variable, 29, 62, 130
process capabilities, 217
product, 18, 21
program, 1
programming language, 1

re�nement, 59
relation, 65

relations, 12

safety, 113, 116
satisfaction relation, 217
saturated element, 169
saturated set, 99
Scott continuous function, 17
semantic entailment, 186
semantics, 1, 27

action, 2
algebraic, 2
axiomatic, 2, 28
denotational, 2, 27
correct, 3
fully abstract, 3

operational, 2, 27
relational, 34
weakest liberal precondition, 40
weakest precondition, 40

separated sum, 17, 216
sequential program, 27
SFP domain, 18
sober space, 101, 208, 210
soberi�cation, 208
soundness, 186, 219
speci�cation, 58, 100

consistent, 100
deductively closed, 100
�nitary, 102
proper, 100

state transformer, 28

Index 253

convex, 110
Egli-Milner, 35, 111
for speci�cation, 66
Hoare, 33, 111
lower, 110
resumption domain, 144
Smyth, 31, 111
topological, 110
upper, 110

statement, 29, 50, 62, 130
guarded, 130

Stone space, 104, 167, 209
strict function, 14
sub-base, 97
synchronization tree, 215

topological duality, 4
topological space, 97

coherent, 104
compact, 102
locally open compact, 103, 188
second countable, 97
spectral, 104, 209

topological system, 182
topology, 97

Alexandrov, 101, 189
discrete, 97
indiscrete, 97
lower, 109
on metric space, 105
Scott, 101
upper, 109
Vietoris, 109

total correctness, 39
transition system, 2, 71, 215

compactly branching, 222
�nitary, 224
image �nite, 215
weakly �nitely branching, 221

union, 32, 34, 36
update command, 60
upper adjoint, 176
upper powerspace, 110

compact, 110

weight function, 140

254 Index

255

Abstract

Topological dualities in semantics

The formal semantics of a programming language consists of assigning to ev-
ery program of the language an element of a mathematical structure. In this
thesis we study the relationship between two di�erent approaches to de�ne the
semantics of a program, namely the denotational and the axiomatic one.

The denotational semantics characterizes programs as elements of some
mathematical domain in a compositional way: the semantics of a language
construct is de�ned in terms of its components. Due to the possibility of self-
application given by some programming languages, the semantic domain must
sometimes be de�ned in a recursive way.

The axiomatic semantics characterizes programs in a logical framework in-
tended for reasoning about programs properties: computations are expressed
by relating programs to assertions about their behaviour.

In this thesis we study di�erent transformations which ensure the correctness
of one semantics in terms of the other. These transformations form dualities
rather than equivalences. This is due to the fact that denotationally programs
are identi�ed with functions which transform states on the input space to (sets
of) states of the output space, whereas axiomatically programs can be expressed
as functions which transform predicates on the output space to predicates on
the input space.

The dualities between the denotational and the axiomatic views of a pro-
gram are topological because they are set in a topological framework: topolog-
ical spaces are data-types and continuous functions between topological spaces
are computations. These interpretations form the basis for a systematic devel-
opment of a propositional program logic from a denotational semantics.

In the �rst part of the thesis we consider predicates as subsets of an abstract
set of states, and we study several semantic model of sequential languages. We
begin by considering the weakest precondition and the weakest liberal precon-
dition semantics. Then we relate them to three denotational models based
on state transformation. The relationships between these axiomatic and deno-
tational models generalize the duality of Plotkin between Dijkstra's predicate
transformers and the Smyth powerdomain.

Then we extend sequential languages with speci�cation constructs. We use
the language of Back's re�nement calculus which supports two kinds of un-
bounded non-determinism. Traditionally, the semantics of the re�nement cal-
culus is based on monotonic predicate transformers. Beside it, we give a denota-
tional semantics based on state transformations, and an operational semantics
based on a hyper transition system. We relate the three models as follows: the
operational semantics coincides with the denotational semantics which, in turn,
is dual to the predicate transformer semantics.

256 Abstract

In the second part of the thesis, in order to study the semantics of con-
current languages, we re�ne the notion of predicates by considering a�rmative
predicates. They are open subsets of an abstract set of states equipped with
a topology. This permits us to de�ne dualities between the upper, lower and
Vietoris powerspace constructions, and topological predicate transformers.

One of the above dualities is applied to prove the correctness of a new
compositional predicate transformer semantics for a concurrent language. The
semantics domain is a metric space which is shown to be isometric to the re-
sumption domain of De Bakker and Zucker. Partial and total correctness, and
also temporal properties are studied for this metric predicate transformer se-
mantics.

Finally, in the third part of the thesis, we make an abstraction step by re-
garding predicates as elements of an abstract algebra. We consider a topological
space as a function from the abstract set of a�rmative predicates (with alge-
braic operations representing arbitrary unions and �nite intersections) to the
abstract set of speci�cations (with algebraic operations representing arbitrary
unions and arbitrary intersections). We call this function an observation frame.
We �rst show that topological spaces can be reconstructed from observation
frames, and then we prove that observation frames are algebraic structures in
a precise categorical sense.

The above theory is applied to extend the �nitary domain logic of Abram-
sky to an in�nitary one preserving completeness. As an example we extend
Abramsky's �nitary domain logic for transition systems to an in�nitary logic
with arbitrary conjunctions and arbitrary disjunctions. Our extension is conser-
vative in the sense that the domain represented in logical form by the in�nitary
logic coincides with the domain represented in logical form by Abramsky's �ni-
tary logic. As a consequence we obtain soundness and completeness of the
in�nitary logic for the class of all �nitary transition systems.

257

Samenvatting

Topologische dualiteit in semantiek

De formele semantiek van een programmeertaal komt tot stand door aan ieder
programma van die taal een element van een wiskundige structuur toe te kennen.
In dit proefschrift bestuderen we de relatie tussen twee verschillende manieren
waarop we een dergelijke semantiek kunnen de�ni�eren: de denotationele en de
axiomatische.

De denotationele semantiek wordt gekenmerkt door compositionaliteit: de
semantiek van een programma wordt gede�nieerd in termen van zijn samen-
stellende delen. Aangezien sommige programmeertalen de mogelijkheid bieden
tot zelf-applicatie, moeten we het semantische domein soms op een recursieve
manier de�ni�eren.

Een axiomatische semantiek karakteriseert programma's binnen een logisch
formalisme dat bedoeld is om over de eigenschappen van die programma's te
redeneren, waarbij berekeningen beschreven worden als relaties tussen enerzijds
programma's en anderzijds asserties over hun gedrag.

In dit proefschrift bestuderen we verschillende transformaties van de de-
notationele semantiek in de axiomatische en vice versa. Deze transformaties
vormen geen equivalenties, maar dualiteiten. Dit is het gevolg van het feit dat
de denotationele semantiek van een programma begintoestanden overvoert in
(verzamelingen van) eindtoestanden, terwijl in de axiomatische benadering een
programma wordt beschreven als een functie die predikaten op eindtoestanden
overvoert in predikaten op begintoestanden.

De dualiteit tussen denotationele en axiomatische semantiek formuleren we
binnen een topologische context, waarbij topologische ruimten worden gezien
als data-typen en de continue functies tussen topologische ruimten als bereke-
ningen. Deze interpretaties vormen de basis voor een systematische a
eiding
van een propositionele programma-logica uit denotationele semantiek.

In het eerste deel van dit proefschrift beschouwen we predikaten als
deelverzamelingen van een abstracte verzameling van toestanden en bestuderen
we verschillende semantische modellen van sequenti�ele talen. Allereerst be-
kijken we de zwakste en de zwakste liberale preconditie-semantiek. Daarna
vergelijken we deze axiomatische modellen met drie denotationele modellen die
gebaseerd zijn op toestandstranformaties. De relaties tussen deze axiomati-
sche en denotationele modellen generaliseren Plotkins dualiteit tussen Dijkstra's
predikaattransformaties en het `Smyth powerdomain'.

Vervolgens breiden we eerdergenoemde sequenti�ele talen uit met construc-
ties voor het speci�ceren van programma's. We gebruiken de taal van Backs
ver�jningscalculus, die twee soorten van onbegrensd non-determinisme kent.
Oorspronkelijk is de semantiek van deze calculus gebaseerd op monotoni-
sche predikaattransformaties. Daarnaast geven we zowel een denotationele se-

258 Samenvatting

mantiek, die gebaseerd is op toestandstranformaties, als een operationele se-
mantiek, die gebaseerd is op een hypertransitiesysteem. Voorts beschrijven we
het verband tussen deze drie semantische modellen voor de ver�jningscalculus:
er is een equivalentie tussen het operationele model en het denotationele model,
en er is een dualiteit tussen het denotationele model en het model dat gebaseerd
is op predikaattransformaties.

In het tweede deel van dit proefschrift komen we tot een ver�jning van het
begrip predikaat door a�rmatieve predikaten te beschouwen, zodat we ook de
semantiek van parallelle talen kunnen bestuderen. Deze a�rmatieve predikaten
zijn de open deelverzamelingen van een abstracte verzameling van toestanden
die voorzien is van een topologie. Dit stelt ons in staat dualiteiten te de�ni�eren
tussen topologische hyperruimten enerzijds en topologische predikaattransfor-
maties anderzijds.

E�en van deze dualiteiten gebruiken we om de correctheid te bewijzen van
een nieuwe, compositionele predikaattransformatie-semantiek voor een parallelle
taal. Het domein van deze semantiek is een metrische ruimte, waarvan we
aantonen dat zij isometrisch is met het resumptiedomein van De Bakker en
Zucker. Verder bestuderen we parti�ele en totale correctheid, en ook temporele
eigenschappen.

In het derde deel van dit proefschrift nemen we een nog abstracter stand-
punt in door predikaten op te vatten als elementen van een abstracte algebra.
We beschouwen een topologische ruimte als een functie van de abstracte verza-
meling van a�rmatieve predikaten (met algebra��sche operaties die willekeurige
verenigingen en eindige doorsneden representeren) naar de abstracte verzame-
ling van speci�caties (met willekeurige verenigingen en willekeurige doorsne-
den). Deze functie noemen we een `observation frame'. Allereerst laten we
zien dat topologische ruimten gereconstrueerd kunnen worden uit zulke `obser-
vation frames'. Vervolgens bewijzen we dat `observation frames' algebra��sche
structuren zijn in categorische zin.

De hieruit voortvloeiende theorie kan worden gebruikt om de eindige domein-
logica van Abramsky uit te breiden tot een oneindige logica, waarbij de
volledigheid wordt behouden. Bij wijze van voorbeeld breiden we Abramsky's
eindige domeinlogica voor transitiesystemen uit tot een oneindige logica met
willekeurige conjuncties en disjuncties. Deze uitbreiding is in die zin conser-
vatief, dat het domein dat in zijn logische vorm wordt gerepresenteerd door de
oneindige logica, samenvalt met het domein dat in zijn logische vorm wordt
gerepresenteerd door de eindige logica van Abramsky. Hieruit volgt dat de
oneindige logica voor de klasse van alle eindige transitiesystemen zowel gezond
als volledig is.

